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Abstract. Let Y be a parabolic Riemann surface, i.e. subhar-
monic functions defined on Y are constant. We discuss Nevan-
linna’s theory for holomorphic maps f : Y → P1. The results we
obtain parallels the classical case Y = C, as we describe now.

Let X be a manifold of general type, and let A be an ample
line bundle on X. It is known that there exists a holomorphic jet
differential P (of order k � 0) with values in the dual of A. If
the map f has infinite area and if Y has finite Euler characteristic,
then we show that f satisfies the differential relation induced by
P .

As a consequence, we obtain a generalization of Bloch Theorem
concerning the Zariski closure of maps f with values in a complex
torus.

We then study the degree of Nevanlinna’s current T [f ] associ-
ated to a parabolic leaf f of a foliation F by Riemann surfaces on
a compact complex manifold. We show that the degree of T [f ] on
the tangent bundle of the foliation is bounded from below in terms
of the counting function of f with respect to the singularities of F ,
and the Euler characteristic of Y. In the case of complex surfaces of
general type, we obtain a complete analogue of McQuillan’s result:
a parabolic curve of infinite area and finite Euler characteristic
tangent to F is not Zariski dense.

1. Introduction

Let X be a compact complex manifold. S. Kobayashi introduced a
pseudo-distance, determined by the complex structure of X. We recall
here its infinitesimal version, cf. [13].

Given a point x ∈ X and a tangent vector v ∈ TX,x at X in x, the
length of v with respect to the Kobayashi-Royden pseudo-metric is the
following quantity

kX,x(v) := inf{λ > 0;∃f : D→ X, f(0) = x, λf ′(0) = v},

where D ⊂ C is the unit disk, and f is a holomorphic map.

We remark that it may very well happen that kX,x(v) = 0; however,
thanks to Brody re-parametrization lemma, this situation has a geo-
metric counterpart, as follows. If there exists a couple (x, v) as above
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such that kX,x(v) = 0, then one can construct a holomorphic non-
constant map f : C→ X. The point x is not necessarily in the image
of f .

In conclusion, if any entire curve drawn on X is constant, then the
pseudo-distance defined above is a distance, and we say that X is hy-
perbolic in the sense of Brody, or simply hyperbolic (since most of the
time we will be concerned with compact manifolds).

As a starting point for the questions with which we will be concerned
with in this article, we have the following result.

Proposition 1.1. Let X be a hyperbolic manifold, and let C be a Rie-
mann surface. Let E ⊂ C be a closed, countable set. Then any holo-
morphic map f : C \ E → X admits a (holomorphic) extension to the
surface C.

In particular, in the case of the complex plane we infer that any
holomorphic map f : C \E → X must be constant (under the hypoth-
esis of Proposition 1.1). We will give a proof and discuss some related
statements and questions in the first paragraph of this paper. Observe
however that if the cardinal of E is at least 2, then C \E is Kobayashi
hyperbolic.

Our next remark is that the surface C \ E is a particular case of a
parabolic Riemann surface; we recall here the definition. A Riemann
surface Y is parabolic if any bounded subharmonic function defined on
Y is constant. This is a large class of surfaces, including e.g. Y \ Λ,
where Y is a compact Riemann surface of arbitrary genus and Λ ⊂ Y is
any closed polar set. It is well-known (cf. [1]) that a parabolic Riemann
surface Y admits a smooth exhaustion function

σ : Y → [1,∞[

such that:
• σ is strictly subharmonic in the complement of a compact set;

• τ := log σ is harmonic in the complement of a compact set of Y .
Moreover, we impose the normalization

(1)

∫
Y
ddc log σ = 1,

where the operator dc is defined as follows

dc :=

√
−1

4π
(∂ − ∂).

On the boundary S(r) := (σ = r) of the parabolic ball of radius r
we have the induced measure

dµr := dc log σ|S(r).
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The measure dµr has total mass equal to 1, by the relation (1) combined
with the Stokes formula.

Since we are dealing with general parabolic surfaces, the growth of
the Euler characteristic of the balls B(r) = (σ < r) will appear very
often in our estimates. We introduce the following notion.

Definition 1.2. Let (Y , σ) be a parabolic Riemann surface, together
with an exhaustion function as above. For each t ≥ 1 such that S(t) is
non-singular we denote by χσ(t) the Euler characteristic of the domain
B(t), and let

Xσ(r) :=

∫ r

1

∣∣χσ(t)
∣∣dt
t

be the (weighted) mean Euler characteristic of the ball of radius r.

If Y = C, then Xσ(r) is bounded by log r. The same type of bound is
verified if Y is the complement of a finite number of points in C. If Y =
C \ E where E is a closed polar set of infinite cardinality, then things
are more subtle, depending on the density of the distribution of the
points of E in the complex plane. However, an immediate observation
is that the surface Y has finite Euler characteristic if and only if

(2) Xσ(r) = O(log r).

In the first part of this article we will extend a few classical results in
hyperbolicity theory to the context of parabolic Riemann surfaces, as
follows.

We will review the so-called “first main theorem” and the logarithmic
derivative lemma for maps f : Y → X, where X is a compact complex
manifold. We also give a version of the first main theorem with respect
to an ideal J ⊂ OX . This will be a convenient language when studying
foliations with singularities.
As a consequence, we derive a vanishing result for jet differentials,
similar to the one obtained in case Y = C, as follows.

Let P be a jet differential of order k and degree m on X, with values
in the dual of an ample bundle (see [8]; we recall a few basic facts about
this notion in the next section). Then we prove the following result.

Theorem 1.3. Let Y be a parabolic Riemann surface. We consider a
holomorphic map f : Y → X, such that the area of f(Y) ⊂ X (counted
with multiplicities) is infinite. Let P be an invariant jet differential of
order k and degree m, vanishing on the dual of an ample line bundle.
Then we have

P (jk(f)) = 0

identically on Y, provided that

lim sup
r→∞

Xσ(r)

Tf,ω(r)
= 0
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For example, the requirement above is satisfied if Y has finite Euler
characteristic. In the previous statement we denote by jk(f) the kth

jet associated to the map f . If Y = C, then this result is well-known,
starting with the seminal work of A. Bloch (cf. [2]; see also [7], [24]
and the references therein), and it is extremely useful in the investi-
gation of the hyperbolicity properties of projective manifolds. In this
context, the above result says that the vanishing result still holds in
the context of Riemann surfaces of (eventually) infinite Euler charac-
teristic, provided that the growth of this topological invariant is slow
when compared to Tf,ω(r).

Concerning the existence of jet differentials, we recall Theorem 0.1 in
[9], see also [15].

Theorem 1.4 ([7]). Let X be a manifold of general type. Then there
exist a couple of integers m � k � 0 and a (non-zero) holomorphic
jet differential P of order k and degree m with values in the dual of an
ample line bundle A.

Thus, our result 1.3 can be used in the context of the general type
manifolds.

As a consequence of Theorem 1.3, we obtain the following analogue of
Bloch’s theorem.

Theorem 1.5. Let CN/Λ be a complex torus, and let Y be a para-
bolic Riemann surface of finite Euler characteristic. Then the smallest
analytic subset containing the closure of a holomorphic map

f : Y → CN/Λ

of infinite area is a translate of a sub-torus in CN/Λ.

In the second part of this paper our aim is to recast part of the work
of M. McQuillan and M. Brunella concerning the Green-Griffiths con-
jecture in the parabolic setting. We first recall the statement of this
problem.

Conjecture 1.6. ([10]) Let X be a projective manifold of general type.
Then there exists an algebraic subvariety W ⊂6= X which contains the
image of all holomorphic curves f : C→ X.

It is hard to believe that this conjecture is correct for manifolds X
of dimension ≥ 3. On the other hand, given the results available for
surfaces (i.e. dimX = 2), it is rather safe to predict that this holds
true.

Given a map f : Y → X defined on a parabolic Riemann surface Y ,
we can associate a a Nevanlinna-type closed positive current T [f ]. If X
is surface of general type and if Y has finite Euler characteristic, then
there exists an integer k such that the k-jet of f satisfies an algebraic
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relation. As a consequence, there exists a foliation F by Riemann
surfaces on the space of k-jets Xk of X0, such that the lift of f is
tangent to F . In conclusion we are naturally lead to consider the pairs
(X,F), where X is a compact manifold, and F is a foliation by curves
on X. We denote by TF the so-called tangent bundle of F .

We derive a lower bound of the intersection number

∫
X

T [f ]∧c1(TF)

in terms of a Nevanlinna-type counting function of the intersection of f
with the singular points of F . As a consequence, if X is a complex sur-

face and F has reduced singularities, we show that

∫
X

T [f ]∧c1(TF) ≥ 0.

For this part we follow closely the original argument of [16].
When combined with a result by Y. Miyaoka, the preceding inequal-

ity shows that the classes {T [f ]} and c1(TF) are orthogonal. Since the
class of the current T [f ] is nef, we show by a direct argument that we

have

∫
X

{T [f ]}2 = 0, and from this we infer that the Lelong numbers

of the diffuse part of {T [f ]}, say R are equal to zero at each point of
X.

This regularity property of R is crucial, since it allows to show –via
the Baum-Bott formula and an elementary fact from dynamics– that

we have

∫
X

T [f ] ∧ c1(NF) ≥ 0, where NF is the normal bundle of the

foliation, and c1(NF) is the first Chern class of NF .

We then obtain the next result, in the spirit of [16].

Theorem 1.7. Let X be a surface of general type, and consider a holo-
morphic map f : Y → X, where Y is a parabolic Riemann surface of
finite Euler characteristic. We assume that f is tangent to a holomor-
phic foliation F ; then the dimension of the Zariski closure of f(Y) is
at most 1.

Furthermore, we show that the index theorem of M. Brunella in [3]
admits an immediate generalization. Let L be a line bundle on a com-
plex surface X, such that SmT ?X ⊗L has a non-identically zero section.
Then we show that ∫

X

c1(L) ∧ T [f ] ≥ 0.

Brunella’s theorem corresponds to the case m = 1 and L = NF : indeed,
a foliation on X can be seen as a section of T ?X ⊗ NF (or in a dual
manner, as a section of TX ⊗ T ?F).

If X is a minimal surface of general type, such that c2
1 > c2, we see

that this implies Theorem 1.7 directly, i.e. without considering the
T [f ]-degree of the tangent of F . It is a very interesting problem to
generalize the inequality above in the framework of higher order jet
differentials, see section 6 for a precise statement.
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2. Preliminaries

2.1. Motivation: an extension result. To start with, we first give
the proof of Proposition 1.1; we refer to [18] for further results in this
direction.

Proof (of Proposition 1.1) A first observation is that it is enough to
treat the case where E is a single point. Indeed, assume that this case
is settled. We consider the set E0 ⊂ E such that the map f does not
extends across E0; our goal is to prove that we have E0 = ∅. If this
is not the case, then we remark that E0 contains at least an isolated
point –since it is countable and non-empty–, and thus we obtain a
contradiction.

Thus we can assume that we have a holomorphic map

f : D? → X

where D? is the pointed unit disc. Let gP be the Kobayashi metric
on X; we remark that by hypothesis, gP is non-degenerate. By the
distance decreasing property of this metric we infer that

(3) |f ′(t)|2gP ≤
1

|t|2 log2 |t|2

for any t ∈ D?. This is a crucial information, since now we can argue as
follows. The inequality (3) implies that the area of the graph associated
to our map Γ0

f ⊂ D? ×X defined by

Γ0
f := {(t, x) ∈ D? ×X : f(t) = x}

is finite. By the theorem of Bishop-Skoda (cf. [23] and the references
therein) this implies that there exists an analytic subset Γ ⊂ D × X
whose restriction to D?×X is precisely Γ0

f . Hence we infer that the fiber
of the projection Γ→ D on the second factor is a point. Indeed, if this
is not the case, then the area of the image (via f) of the disk of radius
ε is bounded from below by a constant independent of ε > 0. This of
course cannot happen, as one can see by integrating the inequality (3)
over the disk of radius ε.

�

In connection with this result, we recall the following conjecture pro-
posed in [18].

Conjecture 2.1. Let X be a Kobayashi hyperbolic compact manifold
of dimension n. We denote by B the unit ball in Cp, and let E be a
closed polar subset of B. Then any holomorphic map

f : B \ E → X

extends across E.
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In case where X is the quotient of a bounded domain in Cn, a proof of
this conjecture was proposed by M. Suzuki in [27]. In general, even if
we assume that the holomorphic bisectional curvature of X is bounded
from above by -1, the conjecture above seems to be open.

2.2. Jet spaces. We will recall here a few basic facts concerning the
jet spaces associated to complex manifolds; we refer to [8], [13] for a
more complete overview.

Let X be an l-dimensional complex space; we denote by Jk(X) the
space of k-jets of holomorphic discs, described as follows. Let f and g
be two germs of analytic discs (C, 0)→ (X, x), we say that they define
the same k jet at x if their derivatives at zero coincide up to order k,
i. e.

f (j)(0) = g(j)(0)

for j = 0, ...k. The equivalence classes defined by this equivalence
relation is denoted by Jk(X, x); as a set, Jk(X) is the union of Jk(X, x)
for all x ∈ X. We remark that if x ∈ Xreg is a non-singular point of X,
then Jk(X, x) is isomorphic to Ckl, via the identification

f →
(
f ′(0), ..., f (k)(0)

)
.

This map is not intrinsic, it depends on the choice of some local coor-
dinate system needed to express the derivatives above; at a global level
the projection map

Jk(Xreg)→ Xreg

is a holomorphic fiber bundle (which is not a vector bundle in general,
since the transition functions are polynomial instead of linear).

If k = 1, and x ∈ Xreg is a regular point, then J1(X, x) is the tangent
space of X at x. We also mention here that the structure of the analytic
space Jk(X) at a singular point of X is far more complicated.

We assume that X is a subset of a complex manifold M ; then for
each positive integer k we have a natural inclusion

Jk(X) ⊂ Jk(M)

and one can see that the space Jk(X) is the Zariski closure of the
analytic space Jk(Xreg) in the complex manifold Jk(M) (note that this
coincides with the topological closure)

Next we recall the definition of the main geometric objects we will use
in the analysis of the structure of the subvarieties of complex tori which
are Zariski closure of some parabolic image.

As before, let x ∈ Xreg be a regular point of X; we consider a
coordinate system (x1, ..., xl) of X centered at x. We consider the
symbols

dx1, ..., dxl, d2x1, ..., d2xl, ..., dkx1, ..., dkxl

and we say that the weight of the symbol dpxr is equal to p, for any r =
1, ..., l. A jet differential of order k and degree m at x is a homogeneous
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polynomial of degree m in (dpxr)p=1,...,k,r=1,...,l; we denote by EGG
k,m(X, x)

the vector space of all such polynomials, and then the set

EGG
k,m

(
Xreg

)
:= ∪x∈XregE

GG
k,m(X, x)

has a structure of vector bundle, whose global sections are called jet
differentials of weight m and order k. A global section P of the bundle
EGG
k,m(X) can be written locally as

P =
∑

|α1|+···+k|αk|=m

aαdx
α1 . . . dkxαk ;

here we use standard the multi-index notation.
Let f : (C, 0) → (X, x) be a k-jet at x; we say that the operator P

is invariant if

P
(
(f ◦ ϕ)′, . . . , (f ◦ ϕ)(k)

)
= ϕ′

mP
(
f ′, . . . , f (k)

)
.

The bundle of invariant jet differentials is denoted by Ek,m(X); we will
recall next an alternative description of this bundle, which will be very
useful in what follows.

The group Gk of k–jets of biholomorphisms of (C, 0) acts on Jk(X),
and along the next few lines, we indicate a compactification of the
quotient Jregk (X)/Gk following [8], where Jregk (X) denote the space of
non-constants jets.

We start with the pair (X, V ), where V ⊂ TX is a subbundle of the
tangent space of X. Then we define X1 := P(TX), and the bundle
V1 ⊂ TX1 is defined fiberwise by

V1,(x,[v]) := {ξ ∈ TX1(x,[v]) : dπ(ξ) ∈ Cv}
where π : X1 → X is the canonical projection and v ∈ V . It is easy to
see that we have the following alternative description of V1: consider a
non-constant disk u : (C, 0)→ (X, x). We can lift it to X1 and denote
the resulting germ by u1. Then the derivative of u1 belong to the V1

directions.
Inductively by this procedure we get a tower of manifolds (Xk, Vk),

starting from (X,TX) and it turns out that we have an embedding
Jregk /Gk → Xk. On each manifold Xk, we have a tautological bundle
OXk(−1), and the positivity of its dual plays an important role here.

We denote by πk : Xk → X the projection, and consider the direct
image sheaf πk∗

(
OXk(m)

)
. The result is a vector bundle Ek,m(X) whose

sections are precisely the invariant jet differentials considered above.
The fiber of πk at a non-singular point of X is denoted by Rn,k;

it is a rational manifold, and it is a compactification of the quotient
Cnk \ 0/Gk.

The articles [2], [8], [24] (to quote only a few) show that the existence
of jet differentials are crucial in the analysis of the entire maps f : C→
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X. As we will see in the next sections, they play a similar role in the
study of the images of the parabolic Riemann surfaces.

3. Basics of Nevanlinna Theory for Parabolic Riemann
Surfaces

Let Y be a parabolic Riemann surface; as we have recalled in the
introduction, this means that there exists a non-singular exhaustion
function

σ : Y → [1,∞[

such that:
• σ is strictly psh in the complement of the subset (σ < r0) ⊂ Y ;

• The function τ := log σ is harmonic in the complement of a compact
subset of Y , and we have

∫
Y dd

cτ = 1.

We denote by B(r) ⊂ Y the parabolic ball of radius r, that is to say

B(r) := {y ∈ Y : σ(y) ≤ r}.

For almost every value r ∈ R, the sphere S(r) := ∂B(r) is a smooth
curve drawn on Y . The induced length measure on S(r) is equal to

dµr := dc log σ|S(r).

Let v : Y → [−∞,∞[ be a function defined on Y , such that lo-
cally near every point of Y it can be written as a difference of two
subharmonic functions, i.e. ddcv is of order zero.

Then we recall here the following formula, which will be very useful in
what follows.

Proposition 3.1. (Jensen formula) For every r ≥ 1 large enough we
have ∫ r

1

dt

t

∫
B(t)

ddcv =

∫
S(r)

vdµr −
∫
B(r0)

vddcτ =

=

∫
S(r)

vdµr +O(1)

where we have τ = log σ.

Proof. The arguments are standard. To start with, we remark that for
each regular value r of σ the function v is integrable with respect to
the measure dµr over the sphere S(r). Next, we have
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∫ r

1

dt

t

∫
B(t)

ddcv =

∫
B(r)

(
log r − log σ

)
ddcv =

=

∫
log+ r

σ
ddcv =

∫
vddc

(
log+ r

σ

)
=

∫
S(r)

vdµr −
∫
B(r)

vddcτ.

�

Remark 3.2. As we can see, the Jensen formula above holds true
even without the assumption that the function τ is harmonic outside
a compact set. The only difference is eventually as r → ∞, since the

term

∫
B(r)

vddcτ may tend to infinity.

We reformulate next the notion of mean Euler characteristic in an-
alytic terms. To this end, we first recall that the tangent bundle TY
of a non-compact parabolic surface admits a trivializing global holo-
morphic section v ∈ H0(Y , TY), cf. [11] (actually, any such Riemann
surface admits a submersion into C). Via Poincaré-Hopf index theo-
rem, we obtain the following result.

Proposition 3.3. Let (Y , σ) be a parabolic Riemann surface, so that
log σ is harmonic in the complement of a compact set. Then we have

Xσ(r) =
1

2

∫
S(r)

log+ |dσ(v)|2dµr +O(log r)

for any r ≥ 1.

Proof. By Jensen formula we have

∫
S(r)

log+ |dσ(v)|2dµr =2 log r +

∫
S(r)

log+ |d log σ(v)|2dµr

=

∫ r

1

dt

t

∫
B(t)

ddc log+ |d log σ(v)|2 + 2 log r +O(1)

=

∫ r

1

dt

t

∫
B(t)

ddc log |∂ log σ(v)|2 +O(log r)

where the last identity is due to the fact that the function ∂ log σ(v) is
holomorphic outside a compact set.

The term O(log r) above depends on the exhaustion function σ and
on the fixed vector field v, but the quantity∫ r

1

dt

t

∫
B(t)

ddc log |∂ log σ(v)|2
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is equal to the weighted Euler characteristic Xσ(r) of the domains B(r),
in particular it is independent of v, up to a bounded term. This can be
seen as a consequence of the Poincaré-Hopf index theorem, combined
with the fact that the function ∂ log σ(v) is holomorphic. �

Along the next lines, we obtain the first main theorem and the log-
arithmic derivative lemma of Nevanlinna theory in the parabolic set-
ting. The results are variation on well-known techniques (see [26] and
the references therein). But for the convenience of the reader, we will
reproduce here the arguments.

Let X be a compact complex manifold, and let L → X be a line
bundle on X, endowed with a smooth metric h. We make no particular
assumptions concerning the curvature form Θh(L). Let s be a non-
trivial section of L normalized such that supX |s| = 1, and let f : Y →
X be a holomorphic map, where Y is parabolic.

We define the usual characteristic function of f with respect to Θh(L)
as follows

Tf,Θh(L)(r) :=

∫ r

r0

dt

t

∫
B(t)

f ?Θh(L).

If the form Θh(L) is positive definite, then precisely as in the classical
case Y = C, the area of the image of f will be finite if and only if
Tf,Θh(L)(r) = O(log r) as r →∞.

Let

Nf,s(r) :=

∫ r

r0

nf,s(t)
dt

t

be the counting function, where nf,s(t) is the number of zeroes of s ◦ f
in the parabolic ball of radius t (counted with multiplicities). Hence
we assume implicitly that the image of f is not contained in the set
(s = 0). Moreover, in our context the proximity function becomes

mf,s(r) :=
1

2π

∫
S(r)

log
1

|s ◦ f |h
dµr.

In the important case of a (meromorphic) function F : Y → P1, one
usually takes Θh(L) to be the Fubini-Study metric, and s the section
vanishing at infinity; the proximity function becomes

(4) mf,∞(r) :=
1

2π

∫
S(r)

log+ |f |dµr,

where F := [f0 : f1], f = f1/f0 and log+ := max(log, 0).

As a consequence of Jensen formula, we derive the next result.

Theorem 3.4. With the above notations, we have

(5) Tf,Θh(L)(r) = Nf,s(r) +mf,s(r) +O(1)

as r →∞.
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Proof. The argument is similar to the usual one: we apply the Jensen
formula (?) to the function v := log |s ◦ f |h. Recall that that the
Poincaré-Lelong equation gives ddc log |s|2h = [s = 0] − Θh(L), which
implies

ddcv =
∑
j

mjδaj − f ?(Θh(L))

so by integration we obtain (5). �

Remark 3.5. If the measure ddcτ does not have a compact support,
then the term O(1) in the equality (5) is to be replaced by

(6) −
∫
B(r)

log |s ◦ f |2hddcτ.

We observe that, thanks to the normalization condition we impose to
s, the term (6) is negative. In particular we infer that

(7) Tf,Θh(L)(r) ≥ Nf,s(r)

for any r ≥ r0.

We will discuss now a version of Theorem 3.4 which will be very
useful in dealing with singular foliations. Let J ⊂ OX be a coherent
ideal of holomorphic functions. We consider a finite covering of X with
coordinate open sets (Uα)α∈Λ, such that on Uα the ideal J is generated
by the holomorphic functions (gαi)i=1...Nα .

Then we can construct a function ψJ , such that for each α ∈ Λ the
difference

(8) ψJ − log(
∑
i

|gαi|2)

is bounded on Uα. Indeed, let ρα be a partition of unity subordinated
to (Uα)α∈Λ. We define the function ψJ as follows

(9) ψJ :=
∑
α

ρα log(
∑
i

|gαi|2)

and the boundedness condition (8) is verified, since there exists a con-
stant C > 0 such that

C−1 ≤
∑

i |gαi|2∑
i |gβi|2

≤ C

holds on Uα∩Uβ, for each pair of indexes α, β. In the preceding context,
the function ψJ corresponds to log |s|2h.

We can define a counting function and a proximity function for a
holomorphic map f : Y → X with respect to the analytic set defined
by J , as follows. Let (tj) ⊂ Y be the set of solutions of the equation

exp
(
ψJ ◦ f(y)

)
= 0.
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For each r > 0 we can write

ψJ ◦ f(y)|B(r) =
∑

σ(tj)<r

νj log |y − tj|2 +O(1)

for a set of multiplicities νj, and then the counting function is defined
as follows

(10) Nf,J (r) :=
∑
j

νj log
r

σ(tj)
.

In a similar way, the proximity function is defined as follows

(11) mf,J (r) := −
∫
S(r)

ψJ ◦ fdµr.

By the principalization theorem (cf. e.g. [14]), there exists a non-

singular manifold X̂ together with a birational map p : X̂ → X such
that the inverse image of the ideal J is equal to OX̂(−D), where

D :=
∑

j ejWj is a simple normal crossing divisor on X̂. Recall that

OX̂(−D) ⊂ OX̂ is the sheaf of holomorphic functions vanishing on D.
In terms of the function ψJ associated to the ideal J , this can be
expressed as follows

(12) ψJ ◦ p =
∑
j

ej log |sj|2hj + τ

where Wj = (sj = 0), the metric hj on O(Wj) is arbitrary (and non-

singular), and where τ is a bounded function on X̂.
Since we assume that the image of the map f is not contained in the

zero set of the ideal J , we can define the lift f̂ : Y → X̂ of f to X̂

such that p ◦ f̂ = f . We have the next result.

Theorem 3.6. Let O(D) be the line bundle associated to the divisor
D; we endow it with the metric induced by (hj), and let ΘD be the
associated curvature form. Then we have

Tf̂ ,ΘD(r) = Nf,J (r) +mf,J (r) +O(1)

as r →∞.

The argument is completely similar to the one given for Theorem 3.4
(by using the relation (12)). We basically apply the first main theorem
for each sj and add up the contributions. �

We will treat now another important result in Nevanlinna theory,
namely the logarithmic derivative lemma in the parabolic context. To
this end, we will suppose that as part of the data we are given a vector
field

ξ ∈ H0(Y , TY)
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which is nowhere vanishing –hence it trivializes the tangent bundle of
our surface Y . We denote by f ′ the section df(ξ) of the bundle f ?TX .

For example, if Y = C, then we can take ξ =
∂

∂z
.

In the proof of the next result, we will need the following form of the
co-area formula. Let ψ be a 1-form defined on the surface Y ; then we
have

(13)

∫
B(r)

dσ ∧ ψ =

∫ r

0

dt

∫
S(t)

ψ

for any r > 1. In particular, we get

(14)
d

dr

∫
B(r)

dσ ∧ ψ =

∫
S(r)

ψ

We have the following version of the classical logarithmic derivative
lemma.

Theorem 3.7. Let f : Y → P1 be a meromorphic map defined on a
parabolic Riemann surface Y. The inequality

mf ′/f,∞(r) ≤ C
(

log Tf (r) + log r
)

+ Xσ(r)

holds true for all r outside a set of small measure. We also get a similar
estimate for higher order derivatives.

Proof. Within the framework of Nevanlinna theory, this kind of results
can be derived in many ways if Y is the complex plane; the proof
presented here follows an argument due to Selberg in [21].

On the complex plane C ⊂ P1 we consider the coordinate w corre-
sponding to [1 : w] in homogeneous coordinates on P1. The form

(15) Ω :=
1

|w|2(1 + log2 |w|)

√
−1

2π
dw ∧ dw

on C has finite volume, as one can easily check by a direct computation.
In what follows, we will use the same letter to denote the expression
of the meromorphic function Y → C induced by f . For each t ≥ 0, we
denote by n(t, f, w) the number of zeroes of the function z → f(z)−w
in the parabolic ball B(t) and we have

(16)

∫
B(t)

f ?Ω =

∫
C
n(t, f, w)Ω

by the change of variables formula.
Next, by integrating the relation (16) above and using Theorem 3.4,

we infer the following

(17)

∫ r

1

dt

t

∫
B(t)

f ?Ω =

∫
C
Nf−w,∞(r)Ω ≤

∫
C
Tf (r)Ω;
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by Remark 3.4. This last quantity is smaller than C0Tf (r), where C0

is a positive constant. Thus, we have

(18)

∫ r

1

dt

t

∫
B(t)

f ?Ω ≤ C0Tf (r).

A simple algebraic computation shows the next inequality

log
(

1 +
|df(ξ)|2

|f(z)|2
)
≤ log

(
1 +

|df(ξ)|2

|f(z)|2(1 + log2 |f(z)|2)|dσ(ξ)|2
)

+

+ log(1 + log2 |f(z)|2) + log(1 + |dσ(ξ)|2)

and therefore we get

mf ′/f,∞(r) ≤ 1

4π

∫
S(r)

log
(

1 +
|df(ξ)|2

|f(z)|2
)
dµr ≤

≤ log+

∫
S(r)

|df(ξ)|2

|f(z)|2(1 + log2 |f(z)|)
1

|dσz(ξ)|2
dµr+

+

∫
S(r)

log(1 + log2 |f(z)|2)dµr+

+
1

4π

∫
S(r)

log(1 + |dσz(ξ)|2)dµr + C1,

where C1 is a positive constant; here we use the concavity of the log
function.

By the formula (14) we obtain∫
S(r)

|df(ξ)|2

|f(z)|2(1 + log2 |f(z)|)
1

|dσz(ξ)|2
dµr =

=
1

r

d

dr

∫
B(r)

|df(ξ)|2

|f(z)|2(1 + log2 |f(z)|)
1

|dσz(ξ)|2
dσ ∧ dcσ.

Next we show that we have

|df(ξ)|2

|f(z)|2(1 + log2 |f(z)|)
1

|dσz(ξ)|2
dσ ∧ dcσ = f ?Ω.

Indeed this is clear, since we can choose a local coordinate z such that

ξ =
∂

∂z
and moreover we have dσ ∧ dcσ =

√
−1

2π

∣∣∣∂σ
∂z

∣∣∣2dz ∧ dz (we are

using here the fact that f is holomorphic).

Let H be a positive, strictly increasing function defined on (0,∞).
It is immediate to check that the set of numbers s ∈ R+ such that the
inequality

H ′(s) ≤ H1+δ(s)
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is not verified, is of finite Lebesgue measure. By applying this calculus

lemma to the function H(r) :=

∫ r

1

dt

t

∫
B(t)

f ?Ω we obtain

log+ 1

r

d

dr

∫
B(r)

f ?Ω ≤ log+ 1

r

(∫
B(r)

f ?Ω
)1+δ

+O(1)

≤ log+
(
rδ
[ d
dr

∫ r

1

dt

t

∫
B(t)

f ?Ω
]1+δ)

+O(1)

≤δ log r +
1

2
log+

(∫ r

1

dt

t

∫
B(t)

f ?Ω
)(1+δ)2

+O(1)

for all r outside a set of finite measure.
The term ∫

S(r)

log(1 + log2 |f(z)|2)dµr

is bounded -up to a constant- by log Tf (r); combined with Proposition
3.3, this implies the desired inequality. �

It is a simple matter to deduce the so-called second main theorem of
Nevanlinna theory starting from the logarithmic derivative lemma (cf.
e.g. [7]). The parabolic version of this result can be stated as follows.

Theorem 3.8. Let f : (Y , σ) → P1 be a meromorphic function. We
denote by NRf (r) the Nevanlinna counting function for the ramification
divisor associated to f . Then for any set of distinct points (a)1≤j≤p in
P1 there exists a set Λ ⊂ R+ of finite Lebesgue measure such that

NRf (r) +

p∑
j=1

mf,aj(r) ≤ Tf,ω(r) + Xσ(r) +O
(

log r + log+ Tf,ω(r)
)
+

for all r ∈ R+ \ Λ.

For the proof we refer e.g. to [7]; as we have already mentioned, it is
a direct consequence of the logarithmic derivative lemma. As a conse-
quence, we have

p∑
j=1

δf (aj) ≤ 2 + limr→∞
Xσ(r)

Tf,ω(r)

provided that Tf,ω(r) � log r. In the inequality above we use the

classical notation δf (a) := limr

mf,a(r)

Tf,ω(r)
= 1− limr

Na(r)

Tf,ω(r)
.

4. The Vanishing Theorem

Let P be an invariant jet differential of order k and degree m. We
assume that it has values in the dual of an ample line bundle, that is
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to say

P ∈ H0(X,Ek,mT
?
X ⊗ A−1)

where A is an ample line bundle on X.
Let f : Y → X be a parabolic curve on X; assume that we are given

the exhaustion function σ, a vector field ξ and that

(19) limr→∞
Xσ(r)

Tf,ω(r)
= 0

As we have already recalled in the preliminaries, the operator P can
be seen as section of OXk(m) on Xk.

On the other hand, the curve f admits a canonical lift to Xk as
follows. One first observes that the derivative df : TY → f ?TX induces
a map

f1 : Y → P(TX);

we remark that to do so we do not need any supplementary data, since
df(v1) and df(v2) are proportional, provided that vj ∈ TY,t are tangent
vectors at the same point. It turns out that the curve f1 is tangent to
V1 ⊂ TX1 , so that we can continue this procedure and define inductively
fk : Y → Xk.

We prove next the following result.

Theorem 4.1. We assume that the curve f has infinite area, and that
the condition (19) holds. Then the image of fk is contained in the zero
set of the section of OXk(m)⊗ A−1 defined by the jet differential P.

Proof. We observe that we have

dfk−1(ξ) : Y → f ?k
(
OXk(−1)

)
that is to say, the image of the derivative of fk−1 belongs to the tauto-
logical bundle. Thus the quantity

Pfk
(
dfk−1(ξ)⊗m

)
is a section of f ?k (A−1); as a consequence, if ωA is the curvature form
of A, we have

(20)
√
−1∂∂ log |Pfk

(
dfk−1(ξ)⊗m

)
|2 ≥ f ?k (ωA).

The missing term involves the Dirac masses at the critical points of
f . We observe that the positivity of the bundle A is fully used at this
point: we obtain an upper bound for the characteristic function of f .
By integrating and using Jensen formula, we infer that we have∫

S(r)

log |Pfk
(
dfk−1(ξ)⊗m

)
|2dµr ≥ Tf,ωA(r) +O(1)

as r →∞.
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Now we follow the arguments in [7]: there exists a finite set of rational
functions uj : Xk → P1 and a positive constant C such that we have

log+ |Pfk
(
dfk−1(ξ)⊗m

)
|2 ≤ C

∑
j

log+ |d(uj ◦ fk−1)(ξ)|2

|uj ◦ fk−1|2

pointwise on Y . We invoke next the logarithmic derivative lemma
(Theorem 3.7) established in the previous section, and so we infer that
we have

(21)

∫
S(r)

log |Pfk
(
dfk−1(ξ)⊗m

)
|2dµr ≤ C(log Tfk−1(r) + log r + Xσ(r)).

It is not difficult to see that the characteristic function corresponding
to fk−1 is the smaller than CTf (r), for some constant C; by combining
the relations (20) and (21) we have

Tf (r) ≤ C
(

log Tf (r) + log r + Xσ(r)
)
.

Since the area of f in infinite, and since Xσ(r) = o
(
Tf (r)

)
, we obtain

lim
r

log r

Tf (r)
= 0

that is to say, a contradiction. Therefore, if the image of fk is not
contained in the zero set of P , then the area of f is finite. �

Let E ⊂ C be a polar subset of the complex plane. In the case

Y = C \ E,
we show that we have the following version of the previous result in
the context of arbitrary jet differentials.

Theorem 4.2. Let f : C \E → X be a holomorphic curve; we assume
that the area of f is infinite, and that condition (19) is satisfied. Then
P(f ′, . . . , f (k)) ≡ 0 for any holomorphic jet differential P of degree m
and order k with values in the dual of an ample line bundle.

Proof. The argument is similar to the proof of the preceding Theorem
4.1, except that we use the pointwise inequality

log+ |P(f ′, . . . , f (k))| ≤ C
∑
j

k∑
l=1

log |dl log(uj ◦ f)|

combined with Theorem 3.7 in order to derive a contradiction. �

To state our next result, we consider the following data. Let X be a
non-singular, projective manifold and let D = Y1 + · · ·+Yl be an effec-
tive divisor, such that the pair (X,D) is log-smooth (this last condition
means that the hypersurfaces Yj are non-singular, and that they have
transverse intersections). In some cases we have

(22) H0
(
X,Ek,mT

?
X〈D〉 ⊗ A−1

)
6= 0
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where Ek,mT
?
X〈D〉 is the log version of the space of invariant jet dif-

ferentials of order k and degree m (for example, when KX +D is big)

We have the following result, which is a more general version of Theo-
rem 4.2.

Theorem 4.3. Let f : C\E → X \D be a non-algebraic, holomorphic
map. If the parabolic Riemann surface Y := C \ E verifies

Xσ(r) = o
(
Tf (r)

)
then for any invariant log-jet differential

P ∈ H0
(
X,Ek,mT

?
X〈D〉 ⊗ A−1

)
we have P(f ′, . . . , f (k)) ≡ 0.

Proof. We only have to notice that the ”logarithmic derivative lemma”
type argument used in the proof of the vanishing theorem is still valid
in our context, despite of the fact that the jet differential has poles
along D (see [19] for a complete treatment). Thus, the result follows
as above. �

As a corollary of this result, we obtain the following statement.

Corollary 4.4. Let (X,D) be a pair as above, and let f : C → X be
a non-algebraic, holomorphic map; we define E := f−1(D). Moreover,
we assume that the property (19) holds true for Y := C \ E, and that
there exists a polynomial P such that P(f ′, . . . , f (k)) is not identically
zero. We denote by NE(r) the Nevanlinna counting function associated

to E, i. e. NE(r) =

∫ r

0

dt

t
card

(
E ∩ (σ < r)

)
. Then we have

(23) lim inf
r

NE(r)

Tf (r)
> 0.

Proof. By the non-vanishing of the P(f ′, . . . , f (k)) and the proof of the
vanishing theorem we infer that the inequality

Tf (r) ≤ C
(

log Tf (r) +O(log r) + Xσ(r)
)

holds as r →∞. On the other hand, we have Xσ(r) = NE(r), so if the
relation (23) is not verified, then we obtain a contradiction. �

4.1. A few examples. At the end of this paragraph we will discuss
some examples of parabolic surfaces; we will try to emphasize in par-
ticular the properties of the function Xσ(r).

(1) Let E ⊂ C be a finite subset of the complex plane. Then clearly
we have Xσ(r) = O(log r) for Y := C \ E.

(2) We treat next the case of Y := C\E, where E = (aj)j≥1 is a closed,
countable set of points in C. As we will see, in this case it is natural
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to use the Jensen formula without assuming that the support of the
measure ddc log σ is compact, see Remark 3.2.

Let (rj)j≥1 be a sequence of positive real numbers, such that the
Euclidean disks D(aj, rj) are disjoints. As in the preceding example,
we define the exhaustion function σ such that

log σ = log+ |z|+
∑
j≥1

log+ rj
|z − aj|

;

the difference here is that dµr is no longer a probability measure. How-
ever, we have the following inequality

1

σ

∣∣∣∂σ
∂z

∣∣∣ ≤ (∑
j≥1

1

|z − aj|
χD(ai,1) +

1

|z|
χ(|z|>1)

)
which holds true on Y . On the parabolic sphere S(r) we have |z| < r

and |z − aj| >
rj
r

so that we obtain

Xσ(r) ≤ log r +
∑

σ(aj+rje
iθj )<r

log
r

rj
≤

≤ log r +
∑
|aj |<r

log
r

rj
:= log r +N(aj)j≥1

(r).

Therefore, we can bound the Euler characteristic by the counting func-
tion for (aj)j≥1.

Remark 4.5. Let Y be a parabolic Riemann surface, with an exhaus-
tion σ normalized as in (1). In more abstract terms, the quantity Xσ(r)
can be estimated along the following lines, by using the same kind of
techniques as in the proof of the logarithmic derivative lemma.

Xσ(r) =

∫
S(r)

log+
∣∣∣∂σ
∂z

∣∣∣2dµr ≤
≤2

ε
log+

∫
S(r)

∣∣∣∂σ
∂z

∣∣∣εdc log σ =
2

ε
log+ 1

r

∫
S(r)

∣∣∣∂σ
∂z

∣∣∣εdcσ ≤
≤2

ε
log+ 1

r

d

dr

∫
B(r)

∣∣∣∂σ
∂z

∣∣∣εdσ ∧ dcσ ≤
≤2

ε
log+ 1

r

(∫
B(r)

∣∣∣∂σ
∂z

∣∣∣2+ε

dz ∧ dz
)1+δ

≤

≤2

ε
log+ rδ

(∫
B(r)

1

r

∣∣∣∂σ
∂z

∣∣∣2+ε

dz ∧ dz
)1+δ

≤

≤2δ

ε
log+ r +

(1 + δ)2

ε
log+

(∫ r

1

dt

t

∫
B(t)

∣∣∣∂σ
∂z

∣∣∣2+ε

dz ∧ dz
)
.
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On the other hand, we remark that we have

(24)

∫
B(t)

dσ ∧ dcσ = t2;

this can be verified e.g. by considering the derivative of the left hand
side of the expression (24) above. However, this does not means that
the surface Y is of finite mean Euler characteristic, since we cannot
take ε = 0 in our previous computations–and as the example (2) above
shows it, there is a good reason to that.

5. Bloch Theorem

Let T be a complex torus, and let X ⊂ T be an irreducible analytic
set. In some sense, the birational geometry of X was completely un-
derstood since the work of Ueno [29]. He has established the following
result.

Theorem 5.1. [29] Let X be a subvariety of a complex torus T . Then
there exist a complex torus T1 ⊂ T , a projective variety W and an
abelian variety A such that

(1) We have W ⊂ A and W is a variety of general type;

(2) There exists a dominant (reduction) map R : X → W whose
general fiber is isomorphic to T1.

Thus, via this theorem the study of an arbitrary submanifold X of a
torus is reduced to the case where X is of general type.

We analyze next the case where X is the Zariski closure of a parabolic
Riemann surface of finite Euler characteristic. The next result can be
seen as the complete analogue of the classical theorem of Bloch [2]

Theorem 5.2. Let X ⊂ T be a submanifold of a complex torus T . We
assume that X is the Zariski closure of a parabolic Riemann surface of
finite mean Euler characteristic, whose area is infinite. Then up to a
translation, X is a torus.

Proof. We will follow the approach in [2], [24]; starting with V :=
TX , we consider the tower of directed manifolds (Tk, Vk)k≥0, whose
construction was recalled in the 1st part of this article. Since T is flat,
we have

Tk = T ×Rn,k

where we recall that here Rn,k is the “universal” rational homogeneous
variety, cf. [8]. The curve f : Y → T lifts to Tk, as already explained;
we denote by

fk : Y → Tk
the lift of f .

Let Xk be the Zariski closure of the image of fk, and let

τk : Xk → Rn,k



22 MIHAI PĂUN, NESSIM SIBONY

be the composition of the injection Xk 7→ Tk with the projection on
the second factor Tk → Rn,k.

Then either the generic fibers of τk are finite for all k, or there exists
a value of k for which they are positive dimensional. The geometric
counterpart of each of these eventualities in analyzed along the two
following statements, due to A. Bloch.

Proposition 5.3. We assume that for each k ≥ 1 the fibers of τk are
positive dimensional. Then the dimension of the subgroup AX of T
defined by

AX := {a ∈ T : a+X = X}
is strictly positive.

Proof. We fix a point x0 ∈ Y such that fk(x0) is a regular point of Xk,
for each k ≥ 1. It is clear that such a point exists, since the image of the
curve fk is dense in Xk, hence the inverse image of the singular set of
Xk by fk is at most countable. By the same argument, we can assume
that the fiber of the map τk through fk(x0) is “generic”, meaning that
it is positive dimensional.

Hence by this choice of the point x0 the fiber

Fk,0 := τ−1
k τk

(
fk(x0)

)
is positive dimensional, for each k ≥ 1. Thus, there exists a curve
γk : (C, 0)→ Xk such that

γk(t) =
(
z(t), λ

)
such that fk(x0) corresponds to the couple

(
z(0), λ

)
according to the

decomposition of Tk. In particular, this shows that the dimension of
the analytic set

Ξk := {a ∈ T : fk(x0) ∈ Jk(X) ∩ Jk(a+X)}
is strictly positive. This is so because for each t close enough to zero
we can define an element at by the equality

fk(x0) = at + z(t)

and thus at ∈ Ξk since the curve t→ z(t) lies on X.

Next we see that we have the sequence of inclusions

Ξ1 ⊃ Ξ2 ⊃ ... ⊃ Ξk ⊃ Ξk+1 ⊃ ...

therefore by Noetherian induction there exists a large enough positive
integer k0 such that

Ξk = Ξk+1

for each k ≥ k0, and such that the dimension of Ξk is strictly positive.
But this means that for every a ∈ Ξk0 , the image of the curve f belongs
to the translation a+X of the set X (because this curve is tangent to an
infinite order to the a-translation of X). Thus we will have X = X +a
given that the curve f is Zariski dense.The proposition is proved. �
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In the following statement we analyze the other possibility.

Proposition 5.4. Let k be a positive integer such that the map

τk : Xk → Rn,k

has finite generic fibers. Then there exists a jet differential P of order
k with values in the dual of an ample line bundle, and whose restriction
to Xk is non-identically zero.

Proof. The proof relies on the following claim: the restriction to Xk of
the tautological bundle Ok(1) associated to Tk is big This condition is
equivalent to the fact that

H0
(
Xk,Ok(m)⊗ A−1

)
6= 0.

Indeed, in the first place we know that Ok(1) = τ ?kO(1) where O(1)
is the tautological bundle on Rn,k. It also turns out that O(1) is big
(cf. [24]), and these two facts combined with the fact that the generic
fibers of τk are of dimension zero proves our claim.

�

Theorem 5.2 follows from the two statements above: let

ϕ : Y → T

be a non-constant holomorphic map from a parabolic surface Y of finite
mean Euler characteristic into a complex torus T . We denote by X the
Zariski closure of its image. Thanks to the result of Ueno we can
consider the reduction map R : X → W associated to X. We claim
that under the hypothesis of Theorem 5.2 the base W is reduced to a
point.

If this is not the case, then we can assume that X is of general type.
By the vanishing theorem 4.1 we see that the hypothesis of Proposition
5.3 will never be verified, for any k ≥ 1. Hence the hypothesis of the
Proposition 5.4 are verified, and so X will be invariant by a positive
dimensional sub-torus of T . Since X is assumed to be a manifold of
general type, this cannot happen, so our result is proved. �

Remark 5.5. The same arguments show that Theorem 5.2 still holds
in a more general context: it is enough to assume that we have Xσ(r) =
o(Tf (r)). We leave the details to the interested reader.

6. Parabolic Curves Tangent to Holomorphic Foliations

6.1. Nevanlinna’s Currents Associated to a Parabolic Riemann
Surface. Let (Y , σ) be a parabolic Riemann surface. We fix a Kähler
metric ω on X, and let ϕ : Y → X be holomorphic map. For an open
set S ⊂ Y with smooth boundary we denote by

(25) ‖ϕ(S)‖ :=

∫
S

ϕ?ω
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We define the (normalized) integration current

TS :=
[ϕ?(S)]

‖ϕ(S)‖
which has bidimension (1,1) and total mass equal to 1. In general, the
current TS is positive but not closed. However, it may happen that for
some accumulation point

T∞ = lim
k
TSk

is a closed current, when Sk → Y .

Theorem 6.1. [6] Let (Y , σ) be a parabolic Riemann surface; we de-
note by Sj := B(rj) the parabolic balls of radius rj, where (rj)j≥1 is a
sequence of real numbers such that rj → ∞. We consider a holomor-
phic map ϕ : Y → X of infinite area. Then there exists at least one
accumulation point of the sequence of currents

Tj :=
[ϕ?(Sj)]

‖ϕ(Sj)‖
which is a closed (positive) current, denoted by T∞.

Proof. The arguments presented here are a quantitative version of the
ones in [6].

We denote by u := log σ the log of the exhaustion function; by hy-
pothesis, the measure ddcu has compact support. We define a function
H on Y by the equality

ϕ?ω := Hdu ∧ dcu.
Let A(t) :=

∫
(u<t)

ϕ?ω be the area of the parabolic ball of radius et

with respect to the inverse image of the metric ω, and let

L(t) :=

∫
(u=t)

√
Hdcu;

geometrically, it represents the length of the parabolic sphere of radius
et measured with respect to the metric induced by Hdu ∧ dcu.

By Cauchy-Schwarz inequality we have

(26) L(t)2 ≤
∫

(u=t)

Hdcu

∫
B(t)

ddcu =

∫
(u=t)

Hdcu

because
∫
B(t)

ddcu = 1. On the other hand we have

(27)
d

dt
A(t) =

∫
(u=t)

Hdcu

thus combining the inequalities (26) and (27) we obtain

L(t)2 ≤ d

dt
A(t).



PARABOLIC RIEMANN 25

For every positive ε we have
d

dt
A(t) ≤ A1+2ε(t) for any t belonging to

the complement of a set Λε of finite measure; as a result we infer that
the inequality

(28) L(t) ≤ A(t)1/2+ε

holds true for any t ∈ R+ \Λε. In particular, this implies the existence
of a current as an accumulation point of Tj, and the theorem in proved.

�

By using similar arguments, combined with a few results by B. Kleiner
[12] and B. Saleur [20] we obtain a result in the direction of the conjec-
ture in paragraph 1. Let E ⊂ D be a polar subset of the unit disk, and
let f : D \ E → M be a holomorphic map with values in a compact,
Kobayashi hyperbolic manifold M . As it is well-known (cf [28]) the
set D \ E carries a local exhaustion function σ such that u := log σ is
harmonic. Let χ(t) be the Euler characteristic of the domain (σ < t);
we define A(t) :=

∫
σ<t

f ?ω.

Corollary 6.2. If we have
|χ(t)|
A(t)

→ 0 as t → ∞, then the map f

admits an extension through E.

Proof. The argument relies heavily on the following result, which uses
a technique due to B. Kleiner [12].

Theorem 6.3. [20] Let (M,ω) be a compact Kobayashi hyperbolic man-
ifold. There exist two constants C1, C2 such that for every holomorphic
map f : Σ → M defined on a Riemann surface with smooth boundary
∂Σ we have

(29) Area
(
f(Σ)

)
≤ C1|χ(Σ)|+ C2L

(
f(∂Σ)

)
.

Coming back to the domains (σ < t), inequality (28) shows that we
have

L(t) ≤ A(t)1/2+ε.

When combined with the inequality (29) of the preceding theorem, we
get

A(t) ≤ C1|χ(t)|+ C2A(t)1/2+ε.

Given the hypothesis concerning the growth of the Euler characteristic,
we infer the existence of a constant C3 such that

A(t) ≤ C3

and for the rest of the proof we will follow the argument given in
Proposition 1.1. Indeed, the current associated to the graph Γf ⊂ D \
E×M of the map f has finite mass near the polar set E×M ⊂ D×M .
By using Skoda-ElMir extension theorem (for a simple proof, see [23]),
the current [Γ] extends to D ×M with no mass on E ×M . But this
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implies that the graph Γ extends as an analytic subset of D ×M ; in
other words, f extends as a meromorphic map. It follows that in fact
f is holomorphic, since f is defined on a 1-dimensional disk. �

Remark 6.4. We obtain the same results if (Y , σ) is not necessarily
parabolic, but we have to assume that we have∫

B(t)

ddcu = O
(
A(t)1−ε)

for some ε > 0.

Remark 6.5. We can also consider a version of the current T∞ in the
above statement. For each r > 0, the expression

Tr :=
1

Tf (r)

∫ r

0

dt

t
[ϕ?(Bt)]

defines a positive current on X. One can show that there exists a
sequence rk such that the limit points of (Trk) are positive and closed.
Any such limit will be called a Nevanlinna current associated to ϕ, and
will be denoted by T [f ]. If we consider a lift of f to P(TX), we get -with
the same construction- a current denoted T [f ′]. Let π : P(TX)→ X be
the projection; then we can assume that π?(T [f ′]) = T [f ], as we will
see later.

6.2. Metrics on the tangent bundle of a holomorphic foliation
by disks. Let F be a 1-dimensional holomorphic foliation (possibly
with singularities) on a manifold X. This means that we are given a
finite open covering (Uα)α of X with coordinates charts, and a family
of associated vector fields vα ∈ H0(Uα, TX |Uα) such that there exists
gαβ ∈ O?(Uα ∩ Uβ) with the property that

vα = gαβdπαβ(vβ)

on the intersection of Uα and Uβ; here we denote by (παβ) the transition
functions of X, corresponding to the covering (Uα). The (analytic) set
of zeros of (vα) is supposed to have codimension at least two, and it
is denoted by Fsing. The functions (gαβ) verify the cocycle property,
and they define the cotangent bundle corresponding to the foliation F ,
denoted by T ?F .

From the global point of view, the family of vector fields (vα)α cor-
responds to a section V of the vector bundle TX ⊗ T ?F .

Let ω be a metric on X (which is allowed to be singular). We will show
next that ω induces a metric hs on the tangent bundle TF (as we will
see, the induced metric may be singular even if the reference metric ω
is smooth).

Let x ∈ X, and let ξ ∈ TF ,x be an element of the fiber at x of the
tangent bundle corresponding to F . Then we define its norm as follows

(30) |ξ|2hs := |Vx(ξ)|2ω.
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The local weights of the metric hs on the set Uα are described as follows.
Let z1, . . . zn be local coordinates on X centered at x. We write

vα =
n∑
i=1

aiα
∂

∂zi

where aiα are holomorphic functions defined on Uα; we assume that
their common zero set has codimension at least 2 in X.

The local weight φα of the metric hs is given by the expression

φα = − log
∑
i,j

aiαa
j
αωij

where ωij are the coefficients of the metric ω with respect to the local

coordinates (zj)j=1,...n. Indeed, let θ be a local trivialization of the
bundle TF . Then according to the formula (30) we have

(31) |ξ|2hs =
(∑

i,j

aiαa
j
αωij

)
|θ(ξ)|2,

which clarifies the formula for the local weight of hs.

In some cases, the previous construction can be further refined, as
follows.

Let B =
∑N

j=1Wj be a divisor on X. We assume that the following
requirements are fulfilled.

(a) At each point of x ∈ Supp(B) the local equations of the analytic
sets

(Wj, x)j=1,...,k

can be completed to a local coordinate system centered at x.
Here we denote by k the number of hypersurfaces in the support
of B containing the point x (and we make a slight abuse of
notation). In the language of algebraic geometry, one calls such
a pair (X,B) log-smooth.

(b) We assume that each component Wj of Supp(B) is invariant by
the foliation F .

If the condition (a) above is verified, then we recall that the logarithmic
tangent bundle of (X,B) is the subsheaf of O(TX) defined locally as
follows.

Let U ⊂ X be a coordinate open set. We assume that we have a
coordinate system z1, . . . , zn on U , such that

Supp(B) ∩ U =
(
z1z2 . . . zk = 0

)
.

Then the logarithmic tangent bundle TX〈B〉 corresponding to the pair
(X,B) is the subsheaf of TX whose local sections on U are given by

v =
k∑
j=1

vjz1
∂

∂z1

+
n∑

p=k+1

vp
∂

∂zp
.
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In other words, the local sections of TX〈B〉|U are the vector fields of
TX |U which are tangent to B when restricted to B. We note that the
TX〈B〉 is a vector bundle of rank n, and the local model of a hermitian
metric on it is given by

ωU ≡
√
−1

k∑
j=1

dzj ∧ dzj
|zj|2

+
n∑

j=k+1

dzj ∧ dzj

i.e. a metric with logarithmic poles along B. So, we have

|v|2ωU =
∑
j

|vj|2.

From a global point of view, a hermitian metric ωX,B on TX〈B〉 can be
written as

ωX,B|U =
√
−1

k∑
j,i=1

ωji
dzj ∧ dzi
zjzi

+ 2Re
√
−1

∑
j>k≥i

ωji
dzj ∧ dzi

zi
+

+
√
−1

∑
j,i≥k+1

ωjidzj ∧ dzi

where the Hermitian matrix (ωji) is positive definite.

If moreover the condition (b) is fulfilled, then the family of vector fields
vα defining the foliation F can be seen as a global section VB of the
bundle

TX〈B〉 ⊗ T ?F
and we have the following version of the metric constructed above. For
each vector ξ ∈ TF ,x we define

‖ξ‖2
hs,B

:= |VB,x(ξ)|2ωX,B .

As in the case discussed before, we can give the local expression of the
metric on TF , as follows. Let

vα =
k∑
i=1

aiαzi
∂

∂zi
+

n∑
i=k+1

aiα
∂

∂zi

be a logarithmic vector field trivializing the tangent bundle of the foli-
ation on a coordinate set Uα. Then the local weight φα,B of the metric
hs,B induced by the metric ωX,B is given by the expression

(32) φα,B = − log
∑
i,j

aiαa
j
αωij.

In particular we see that this weight is less singular than the one in
the expression (31). This will be crucial in the applications.

As far as the curvature current is concerned, the metric hs as well
as its logarithmic variant hs,B seem useless: given the definition above,
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its associated curvature is neither positive nor negative. Indeed, φα
may tend to infinity along the singular set of the foliation F , and it
may tend to minus infinity along the singularities of the metric ω.
However, we will present a few applications of this construction in the
next paragraphs.

6.3. Degree of currents associated to parabolic Riemann sur-
faces on the tangent bundle of foliations. Let (X,ω) be a compact
complex hermitian manifold, and let F be a holomorphic foliation on
X of dimension 1. Let f : Y → X be a holomorphic map, where (Y , σ)
is a parabolic Riemann surface tangent to F , and let

T [f ] := lim
r
Tr[f ]

be a Nevanlinna current associated to it.
In this section we will derive a lower bound in arbitrary dimension for
the quantity ∫

X

T [f ] ∧ c1(TF),

in the same spirit as [16], [3]. Prior to this, we introduce a few useful
notations.

Let JFs be the coherent ideal associated to the singularities of F ;
this means that locally on Uα the generators of JFs are precisely the
coefficients (aα) of the vector vα defining F , i.e.

vα =
n∑
i=1

aiα
∂

∂zi
.

As we have already mentioned in paragraph 3, there exists a function
ψsing defined on X and having the property that locally on each open
set Uα we have

ψsing ≡ log |vα|2ω
modulo a bounded function.

Let B =
∑

jWj be a divisor on X, such that the pair (X,B) satisfies

the requirements (a) and (b) in the preceding paragraph. Then the
local generator of TF can be written in this case as

(33) vα,B =
k∑
i=1

aiαzi
∂

∂zi
+

n∑
i=k+1

aiα
∂

∂zi
.

We denote by JFs,B
the coherent ideal defined by the functions (aiα) in

(33). Then we have

JFs ⊂ JFs,B
,

and the inclusion may be strict. We denote by ψsing,B the associated
function.
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The counting function with respect to the ideal defined by Fsing will
be denoted

Nf,JFs (r) =
∑

0<σ(tj)<r

νj log
r

σ(tj)
=

∫ r

0

dt

t

∫
B(t)

(
ddcψsing ◦ f

)
s
,

with f(tj) ∈ Supp(Fsing), and the subscript s above denotes the singu-
lar part od the measure in question. Its normalized expression will be
written as

(34) νT (f,Fsing)(r) :=
1

Tf (r)
Nf,JFs (r).

The upper limit of the expression above will be denoted by

νT (f,Fsing) := limrν
T (f,Fsing)(r).

If Ξ is an arbitrary analytic subset of X, we will denote by νT (f,Ξ) the
quantity defined in a similar manner by using the function ψΞ instead
of ψsing.

We define the counting function with respect to Fs,B as

Nf,JFs,B (r) =
∑

0<σ(tj)<r

νj log
r

σ(tj)
,

with f(tj) ∈ Supp(Fs,B), together with it normalized expression

(35) νT (f,Fsing, B)(r) :=
1

Tf (r)
Nf,JFs,B (r).

The following truncated counting function will appear in our next com-
putations:

(36) N
(1)
f,JFs∩B

(r) =
∑

0<σ(tj)<r,f(tj)∈B

log
r

σ(tj)
.

and let νT1 (f,Fsing ∩B) be its normalized upper limit.
We also recall the definition of

mT (f,Fsing) := limr
1

Tf (r)

∫
S(r)

−ψsing ◦ fdµr

which is the (normalized) asymptotic proximity function for f with
respect to the ideal JFs , together with its logarithmic variant

mT (f,Fsing,B) := limr
1

Tf (r)

∫
S(r)

−ψsing,B ◦ fdµr.

The ramification function corresponding to f is

(37) Rf (r) =
∑

0<σ(t′j)<r

µj log
r

σ(t′j)
;
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so that µj is the vanishing order of f ′ at t′j. The curve f is tangent to
F , therefore for each open set Ω ⊂ Y such that f(Ω) ⊂ Uα for some
index α we can write

f ′(t) = λ(t)vα,f(t)

for some function λ which is holomorphic on Ω\f−1(Fsing). We remark
that if f(tj) 6∈ Fsing, then the multiplicities µj above coincide with the
vanishing order of λ evaluated at the critical points of f . It will be
useful in what follows to have the decomposition

Rf (r) := Mf (r) +Nf (Ram, r)

according to the possibility that the critical value f(t′j) of f belongs to
the set Fsing or not. We are using the notations

Nf (Ram, r) :=
∑

0<σ(t′j)<r,f(t′j)6∈Fsing

µj log
r

σ(t′j)
,

and

Mf (r) :=
∑

0<σ(t′j)<r,f(t′j)∈Fsing

µj log
r

σ(t′j)
.

Finally, the asymptotic normalized ramification of f is denoted by

ν(Ram, f) := limr
1

Tf (r)
Rf (r).

We establish next the following general result, which gives an estimate
of the quantity

∫
X
T [f ]∧c1(TF) in terms of the intersection of f with the

singularities of the foliation. Our statement is a quantitative expression
of the fact that the derivative of f can be seen as a meromorphic section
of f ?TF .

Theorem 6.6. Let (X,F) be a compact complex manifold endowed
with a holomorphic 1-dimensional foliation F . Let (Y , σ) be a parabolic
Riemann surface of finite Euler characteristic, and let f : Y → X be
a holomorphic map whose image is tangent to F . We assume that the
image of f is Zariski dense. Then we have

(?)

∫
X

T [f ] ∧ c1(TF) ≥ −νT (f,Fsing)−mT (f,Fsing) + ν(Ram, f)

Proof. Let ω be a smooth metric on X, and let hs be the metric induced
on TF by the procedure described in the preceding sub-section.

Let r > t > 0; we begin by evaluating the quantity∫
X

Tr[f ] ∧Θhs(TF)

and to this end we introduce the notations

Bα,ε(t) := {z ∈ B(t) : f(z) ∈ Uα, and dω
(
f(z),Fsing) ≥ ε}



32 MIHAI PĂUN, NESSIM SIBONY

as well as its complement set inside the parabolic ball of radius t

Bcα,ε(t) := Bα(t) \ Bα,ε(t)

where Bα(t) := B(t) ∩ f−1(Uα). Let (ρα) be a partition of unit corre-
sponding to the cover (Uα).

In the definition of the metric hs we use the smooth Kähler metric
ω we have fixed on X, and we have.∫

X

Tr[f ] ∧Θhs(TF) =−
∑
α

1

Tf (r)

∫ r

1

dt

t

∫
Bcα,ε(t)

ρα(f)f ?ddc log |vα|2ω

−
∑
α

1

Tf (r)

∫ r

1

dt

t

∫
Bα,ε(t)

ρα(f)f ?ddc log |vα|2ω.

We remark that for each t < r and for each index α we have∫
Bα,ε(t)

ρα(f)f ?ddc log |vα|2ω =

∫
Bα,ε(t)

ρα(f)ddc log |f ′|2ω

−
∑

0<σ(t′j)<t,f(t′j)6∈Fsing

ρα
(
f(t′j)

)
µjδt′j .

The equality in the formula above is due to the fact that locally at each
point in the complement of the set Fsing we have

f ′(t) = λvf(t)

for some holomorphic function λ. We also remark that the relation
above is valid for any ε > 0, and if we let ε→ 0, we have

lim
ε→0

∫ r

1

dt

t

∫
Bα,ε(t)

ρα(f)ddc log |f ′|2ω =

∫ r

1

dt

t

∫
Bα(t)

ρα(f)ddc log |f ′|2ω

−
∑

f(t′j)∈Fsing

ρα
(
f(tj)

)
µj log

r

σ(tj)

as well as

lim
ε→0

∫ r

1

dt

t

∫
Bcα,ε(t)

ρα(f)f ?ddc log |vα|2ω =
∑

tj∈Bα(t)

ρα
(
f(tj)

)
νj log

r

σ(tj)
.

Therefore we obtain

〈Tr[f ],Θhs(TF)〉 ≥ − νT (f,Fsing)(r) +
1

Tf (r)
Mf (r)

− 1

Tf (r)

∫ r

1

dt

t

∫
B(t)

ddc log |f ′|2ω +
1

Tf (r)
Nf (Ram, r) =

=− νT (f,Fsing)(r) +
1

Tf (r)
Rf (r)−

1

Tf (r)

∫
S(r)

log |f ′|2ωdµr.
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Let h := hs exp(−ψsing); it is a metric with bounded weights of TF ,
hence we can use it in order to compute the quantity we are interested
in, namely ∫

X

T [f ] ∧ c1(TF) = lim
r
〈Tr[f ],Θh(TF)〉.

We recall that we have the formula

Θh(TF) = Θhs(TF) + ddcψsing,

so as a consequence we infer that we have∫
X

Tr[f ]∧Θh(TF) = 〈Tr[f ]∧Θhs(TF)〉+ 1

Tf (r)

∫
S(r)

ψsing ◦ fdµr + o(1).

By combining the relations above we infer that we have∫
X

Tr[f ] ∧Θh(TF) ≥− νT (f,Fsing)(r) +
1

Tf (r)

∫
S(r)

ψsing ◦ fdµr

+
1

Tf (r)
Rf (r)−

1

Tf (r)

∫
S(r)

log |f ′|2ωdµr + o(1).

By the logarithmic derivative lemma, the last term of the preceding
relation tends to a positive value, as r →∞, hence we obtain∫

X

Tr[f ] ∧Θh(TF) ≥ −νT (f,Fsing)−mT (f,Fsing) + ν(Ram, f)

and Theorem 6.6 is proved. �

Before stating a version of Theorem 6.6, we note the following obser-
vations. The lower bound obtained in Theorem 6.6 admits an easy
interpretation, as follows.

Let J be the ideal sheaf defined by the scheme Fsing; locally, this
ideal is generated by the coefficients of the vectors (vα) defining the

foliation F . Let p : X̂ → X be a principalization of J , so that p?(J ) =

O(−D) for some (normal crossing) effective divisor D on X̂. According
to Theorem 3.5, we have

Tf̂ ,ΘD(r) = Nf̂ ,J (r) +mf̂ ,J (r) +O(1)

where f̂ is the lifting of the map f to X̂. As a consequence, we infer
the relation ∫

X̂

T [f̂ ] ∧ c1(D) ≥ νT (f,Fsing) +mT (f,Fsing)

and therefore Theorem 6.6 can be restated as follows.

Corollary 6.7. We have the inequality

(38)

∫
X̂

T [f̂ ] ∧
(
c1(TF̂) + c1(D)

)
≥ 0.

We turn next to the logarithmic version of Theorem 6.6.
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Theorem 6.8. Let (X,B) be a log-smooth pair, such that every com-
ponent of the support of B is invariant by the foliation F . Let (Y , σ) be
a parabolic Riemann surface of finite characteristic, and let f : Y → X
be a holomorphic map whose image is tangent to F , and it is not con-
tained in the set Supp(B). Then we have the inequality
(?B)∫
X

T [f ] ∧ c1(TF) ≥ −νT (f,Fsing,B)− νT1 (f,Fsing ∩B)−mT (f,Fsing,B).

The proof of Theorem 6.8 follows from the arguments we have used
for 6.6. The additional negative term in the statement is due to the
singularities of the metric ωX,B:

lim
ε→0

∫ r

1

dt

t

∫
Bα,ε(t)

ρα(f)ddc log |f ′|2ωX,B =

∫ r

1

dt

t

∫
Bα(t)

ρα(f)ddc log |f ′|2ωX,B

−
∑

f(t′j)∈Fsing\B

ρα
(
f(t′j)

)
νj log

r

σ(t′j)

+
∑

f(t′′j )∈Fsing∩B

ρα
(
f(t′′j )

)
log

r

σ(t′′j )
.

where we denote by t′j the critical points of f . The points t′′j appearing
in the last expression above are not necessarily critical. We remark
that the limit

limr
1

Tf (r)

∫
S(r)

log |f ′|2ωX,Bdµr

is non-positive, as it follows from the logarithmic derivative lemma, i.e.
this term is not affected by the poles of ωX,B.

In conclusion, the presence of a log-smooth divisor on X invariant by
F improves substantially the lower bound we have obtained in Theorem
6.6, since the main negative terms are defined by JFs,B. �

6.4. Foliations with reduced singularities on surfaces. In this
subsection we assume that the dimension of X is equal to n = 2. As
an application of the results in the preceding paragraph, we obtain
here a complete analogue of some results originally due to Michael
McQuillan [16].

The twisted vector field V defining the foliation F is locally given
by the expression

vα = aα1
∂

∂z
+ aα2

∂

∂w
.

In this paragraph we will assume that the singularities of F are reduced,
i.e. the linearization of the vector field at a singular point has at least a
non-zero eigenvalue. A result by Seidenberg implies that this situation
can be achieved after finitely many monoidal transformations. We ex-
tract next the following important consequences from the classification
theory of foliations with reduced singularities in dimension two [22].
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(s1) A singular point x0 of F is called non-degenerate if we have

C−1 ≤ |aα1(z, w)|2 + |aα2(z, w)|2

|z|2 + |w|2
≤ C

for some coordinate system (z, w) centered at x0.

(s2) A singular point x1 of F is called degenerate if we have

C−1 ≤ |aα1(z, w)|2 + |aα2(z, w)|2

|z|2 + |w|2k
≤ C

for some coordinate system (z, w) centered at x1, where k ≥ 2
is an integer.

(s3) Any singular point of F is either non-degenerate or degenerate.

(s4) For any blow-up p : X̂ → X of a point x0 on the surface X we

denote by F̂ the induced foliation on X̂. Then we have

p?TF = TF̂

and moreover, the foliations F and F̂ have the same number
of degenerate singular points. In addition, the number “k” ap-
pearing in the inequality (s2) is invariant.

For a proof of the preceding claims (s1)–(s3) we refer to the paper [22].
As for the property (s4), we can verify it by an explicit computation,
as follows.

Locally near the point x0 the equations of the blow-up map p are
given by

(x, y)→ (x, xy) or (x, y)→ (xy, x)

corresponding to the two charts covering P1. Then the expression of

the vector field defining the foliation F̂ on the first chart is as follows

aα1(x, xy)
∂

∂x
+
(aα2(x, xy)

x
− yaα1(x, xy)

x

) ∂
∂y
.

We denote by Aα1 and Aα2 the coefficient of ∂
∂x

and ∂
∂y

in the expression

above, respectively. They are holomorphic functions, and the set of
their common zeroes is discrete. Indeed, this is clear if the singularity
x0 is non-degenerate. If x0 is a degenerate singularity of F , then this
can be verified by an explicit computation, given the normal form [22]

vα =
(
z(1 + τwk) + wF (z, w)

) ∂
∂z

+ wk+1 ∂

∂w
,

where F is a function vanishing to order k, and τ is a complex number.

In conclusion, the transition functions for the tangent bundle of F̂ are
the same as the ones corresponding to F , modulo composition with the
blow-up map p, so our statement is proved.
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6.4.1. Intersection with the tangent bundle. In the context of foliations
with reduced singularities, the lower bound obtained in Theorem 6.6
can be improved substantially, as follows.

Theorem 6.9. Let (X,F) be a non-singular compact complex surface,
endowed with a foliation. Let f : Y → X be a holomorphic map tangent
to F ; here (Y , σ) is a parabolic Riemann surface not necessarily of finite
Euler characteristic. If the singularities of F are reduced, then we have

(39)

∫
X

T [f ] ∧ c1(TF) ≥ 0.

Proof. If Y = C, then Theorem 6.9 is one of the key results established
in [16]. The original arguments in this article can be adapted to the
parabolic setting we are interested in, as we will sketch next.

• Let x0 ∈ Fsing be a singular point of the foliation. We will assume
for simplicity that p is non-degenerate; the general case is a little bit
more complicated technically, but the main ideas are the same. We
denote by π : X1 → X the blow-up of X at x0, and let E1 be the
corresponding exceptional divisor. Let F1 be the foliation π?F on X1;
then E1 is an invariant curve. The foliation F1 has two singularities on
E, say x̂1 and ŷ1, both non-degenerate.

We repeat this procedure, and blow-up x̂1 and ŷ1. On the surface
X2 obtained in this way, the inverse image of x0 is equal to

B := Ê1 + E2 + E3,

where Ê1 is the proper transform of E1 and E2, E3 are the exceptional
divisors. In the new configuration, we have 4 singular points of the

induced foliation F2. Two of them belong to Ê1 ∩ E2 and Ê1 ∩ E3,
respectively, and we denote x̂2 and ŷ2 the other ones.

We have the injection of sheaves

(40) 0→ TF̂ → TX̂〈B〉
that is to say, the tangent bundle of F2 is a subsheaf of the logarithmic
tangent bundle of (X,B). The metric on TF̂ induced by the morphism
above is non-singular at each of the four singular points above, and
moreover, the image of the lift of the curve to X2 do not intersect

Ê1 ∩E2 or Ê1 ∩E3. Indeed, these singularities of the foliation F̂ have
the property that both separatrices containing them are algebraic sets.
So if one of these points belong to the image of the curve, then the

curve is automatically contained in Ê1, E2 or E3 (since they are leaves
of the foliation).

Therefore, by Theorem 6.8 we do not have any negative contribution
in (?B) due to these two points; the only term we have to understand
is

(41) νT1 (f, x̂2) + νT1 (f, ŷ2)
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i.e. the truncated counting function corresponding to x̂2 and ŷ2.

• Let T [f ] be a Nevanlinna current associated to a Zariski-dense par-

abolic curve on the surface X. Let π : X̂ → X be the blow-up of X at

x; we denote by f̂ the lifting of f . Then there exists T [f̂ ] a Nevanlinna

current associated to f̂ such that we have

(42) T [f̂ ] = π?T [f ]− ρ[E]

where ρ =

∫
X̂

T [f̂ ]∧c1(E) is a positive number, smaller than the Lelong

number of T at p. We remark that we have

ρ2 +

∫
X̂

{T [f̂ ]}2 =

∫
X

{T [f ]}2

where we denote by {T [f̂ ]} the cohomology class of T [f̂ ]. Indeed, we
have

∫
X̂
π?T [f ] ∧ c1(E) = 0.

• If we iterate the blow-up procedure, the quantities ρj we obtain as
in (42) verify

(43)
∑
j

ρ2
j ≤

∫
X

{T [f ]}2,

that is to say, the preceding sum is convergent.

• Let p ∈ Fsing be a singular point of the foliation F . We blow-up the
points x2 and y2 and we obtain x3 and y3, plus two singular points at
the intersection of rational curves. After iterating k times the blow-up
procedure described above, the only negative factor we have to deal
with is

(44) −νT1 (f, x̂k)− νT1 (f, ŷk)

where Xk is the surface obtained after iterating k times the procedure
described above, fk is the induced parabolic curve and Fk is the induced
folia tion. We emphasize that even if the number of singular points of
the induced foliation has increased, the corresponding negative terms
we have to take into account in (?B) remains the same, i.e. the algebraic
intersection of the lifting of f with the two “extremal” singular points.
By using the notations in (44) above, the convergence of the sum (43)
implies that we have∑

k≥1

νT1 (fk, x̂k)
2

+ νT1 (fk, ŷk)
2
<∞

since νT1 (fk, x̂k) =

∫
Xk

T [fk] ∧ c1(Ek). Hence the algebraic multiplicity

term (44) tends to zero as k →∞.

• We therefore have ∫
Xk

T [fk] ∧ c1(TFk) ≥ −εk
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Since the singularities of F are reduced, we use the property s4 and
we have ∫

Xk

T [fk] ∧ c1(TFk) =

∫
Xk

T [fk] ∧ π?kc1(TF)

and this last term is simply∫
X

T [f ] ∧ c1(TF)

by the projection formula. �

The theorem above is particularly interesting when coupled with the
following very special case of a result due to Y. Miyaoka, cf. []

Theorem 6.10. Let X be a projective surface, whose canonical bundle
KX is big. Let L→ X be a line bundle such that H0

(
X,SmTX⊗L

)
6= 0.

Then L is pseudo-effective.

We apply this result for L = T ?F , so we infer that T ?F is pseudo-
effective (indeed, the bundle TX ⊗ T ?F has a non-trivial section).

Combined with Theorem 6.9, we obtain

(45)

∫
X

T [f ] ∧ c1(TF) = 0.

We derive the following consequence.

Theorem 6.11. We consider the data (X,F) and f : Y → X as in
Theorem 6.9; in addition, we assume that KX is big. Then we have

(46)

∫
X

{T [f ]}2 = 0.

If R denotes the diffuse part of T [f ], then we have

∫
X

{R}2 = 0. In

particular, since T [f ] as already nef, we infer that ν(R, x) = 0 at each
point x ∈ X.

Proof. If the equality (46) does not hold, we show next that

∫
X

T [f ]∧

c1(TF) < 0, contradicting the relation (45).
We will only discuss here the case KX ample; the general case (i.e. KX

big) is obtained in a similar manner.
Let ω be a metric on X, such that Ricciω ≤ −ε0ω. We have a

sequence of Kähler classes (αk)k≥1 whose limit is {T [f ]}. It follows
from Yau’s theorem [?] that there exists a sequence of Kähler metrics
(ωk)k≥1, such that ωk ∈ αk for each k ≥ 1, and such that we have

ω2
k = λkω

2.

The sequence of normalizing constants λk is bounded from above, and
also from below away from zero, by our assumption.
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We denote by V the tautological section of TX ⊗ T ?F . The Poincaré-
Lelong formula gives

√
−1∂∂ log |V |2k ≥ Θh(TF)− 〈Θωk(TX)V, V 〉

|V |2k
where we denote by |V |k the norm of V measured with respect to ωk
and an arbitrary metric h on TF .

By considering the wedge product with ωk and integrating over X
we obtain ∫

X

ωk ∧ c1(TF) ≤
∫
X

Ricciωk(V, V )

|V |2ωk
ω2
k.

We remark that the expression
Ricciωk(V, V )

|V |2ωk
under the integral sign is

well-defined, even if V is only a vector field with values in T ?F . Given
the Monge-Ampère equation satisfied by ωk we have∫

X

Ricciωk(V, V )

|V |2ωk
ω2
k = λk

∫
X

Ricciω(V, V )

|V |2ωk
ω2

Since Ricciω is negative definite, we have∫
X

Ricciω(V, V )

|V |2ωk
ω2 ≤

∫
Uk

Ricciω(V, V )

|V |2ωk
ω2

for any open set Uk ⊂ X.

We have

∫
X

ωk ∧ω ≤ C for some constant C independent of k, there

exists an open set Uk of large volume (with respect to ω), on which the
trace of ωk with respect to ω is bounded uniformly with respect to k,
i.e. there exists a constant C1 such that

ωk|Uk ≤ C1ω|Uk
for any k ≥ 1. With this choice of Uk, we will have

αk ∧ c1(TF) ≤
∫
Uk

Ricciω(V, V )

|V |2ωk
ω2 ≤ C2

∫
Uk

Ricciω(V, V )

|V |2ω
ω2 < −δ

for some strictly positive quantity δ, and the first part of Theorem 6.11
is established by taking k →∞.

We write next the Siu decomposition of T [f ]

(46) T [f ] =
∑
j

τ j[Cj] +R

and we remark that the class of the current R is nef. Indeed, this is
a consequence of the fact that R = limRε, where for each ε > 0 the
current Rε is closed, positive, and non-singular in the complement of a
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finite set of points. Then we have

∫
X

{T [f ]}2 ≥
∫
X

{R}2, and it follows

that
∫
X
{R}2 = 0. Thus we infer that

(47) ν(R, x) = 0

for any x ∈ X, i.e. the Lelong number of R at each point of X is equal
to zero. �

6.4.2. Intersection with the normal bundle, I. Our aim in this part is to
evaluate the degree of the curve f on the normal bundle of the foliation
F . To this end we follow [3], [16] up to a certain point; their approach
relies on the Baum-Bott formula [], which is what we will survey next.

Actually, we will first give the precise expression of a representative of
the Chern class

(48) c1

(
NF ,B

)
in arbitrary dimension, where B = B1 + · · · + BN be a divisor on X,
such that (X,B) verifies the conditions (a) and (b) in subsection 6.2.
The vector bundle in (48) is defined by the exact sequence

(49) 0→ TF → TX〈B〉 → NF ,B → 0.

We remark that in the case of surfaces, this bundle equals NF⊗O(−B).
Let Uα ⊂ X be an open coordinate set, and let (z1, . . . , zn) be a

coordinate system on Uα. We assume that

Supp(B) ∩ Uα = (z1 . . . zp = 0).

Since B is invariant by F , the vector field giving the local trivialization
of TF is written as

(50) vα =

p∑
j=1

zjFjα(z)
∂

∂zj
+

n∑
i=p+1

Fiα(z)
∂

∂zi

where Fjα are holomorphic functions defined on Uα.
With respect to the coordinates (z) on Uα, the canonical bundle

associated to (X,B) is locally trivialized by

(51) Ωα :=
dz1

z1

∧ · · · ∧ dzp
zp
∧ dzp+1 ∧ · · · ∧ dzn,

and therefore we obtain a local trivialization of the bundle det
(
N?
F ,B
)

by contracting the form (51) with the vector field (50), i.e.

(52) ωα := Λvα(Ωα),

that is to say
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ωα =

p∑
j=1

(−1)j+1Fjα(z)
dz1

z1

∧ · · · d̂zj
zj
∧ · · · ∧ dzp

zp
∧ dzp+1 ∧ · · · ∧ dzn

+
n∑

i=p+1

(−1)i+1Fiα(z)
dz1

z1

∧ · · · ∧ dzp
zp
∧ dzp+1 ∧ · · · ∧ d̂zi ∧ · · · dzn

We define the differential 1-form ξα on Uα by the formula

(53) ξα,ε :=
F

(1)
α

‖Gα‖2

∑
j

Gjαdzj

where we have used the following notations. If the index j is smaller
than p, then Gjα := zjFjα, and if j > p, then we define Gjα := Fjα.
Also, we write

F (1)
α (z) :=

p∑
j=1

zjFjα,zj(z) +
n∑

i=p+1

Fiα,zi(z)

where Fkα,zr is the partial derivative of Fkα with respect to zr, and

‖Gα‖2 :=
∑
i

|Giα|2.

Then we have the equality

(54) dωα = ξα ∧ ωα
as one can check by a direct computation.

Let α, β be two indexes such that Uα ∩ Uβ 6= ∅. Then we have

(55) ωα = gαβωβ

on Uα ∩ Uβ; here gαβ are the transition functions for the determinant
bundle of N?

F(B). By differentiating the relation (55), we obtain

(56) dωα = d log gαβ ∧ ωα + gαβdωβ

hence from the relation (54) we get

(57)
(
ξα − ξβ − d log gαβ

)
∧ ωα = 0

on Uα ∩ Uβ.

For the rest of this section, we assume that the singularities of F are
isolated and non-degenerate.

Then we can find a family of non-singular 1-forms γα so that we have

(58) ξα − ξβ − d log gαβ = γα − γβ;

for example, we can take

(59) γα :=
∑
β

ρβ
(
ξα − ξβ − d log gαβ

)
,
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where (ρα) is a partition of unit subordinate to the covering (Uα). Here
we assume that each Uα contains at most one singular point of F .
Then the global 2-form whose restriction to Uα is

(60) Θ|Uα :=
1

2π
√
−1

d(ξα − γα)

represents the first Chern class of NF ,B.

Let T be a closed positive current of type (n−1, n−1) on X; we assume
that T is diffuse and directed by the foliation F . This implies that for
each index α there exists a positive measure τα on Uα such that

(61) T |Uα = ταωα ∧ ωα.
We intend to use the representative (60) in order to evaluate the degree
of the current T on the normal bundle of the foliation. Prior to this,
we have to regularize the forms ξα. This is done simply by replacing ξα
with hαξα, where hα is equal to 0 in a open set containing the singularity
of F , and it is equal to one out of a slightly bigger open set. A specific
choice of such functions will be made shortly; we remark that the effect
of the multiplication with hα is that the equality (54) is only verified
in the complement of an open set containing the singular point. The

formula for the curvature becomes Θ|Uα :=
1

2π
√
−1

d(hαξα − γα).

As a consequence, we have the next statement, which is the main result
of this subsection.

Lemma 6.12. Let F be a foliation by curves with isolated singularities
on X. We consider a closed positive current T of bidimension (1,1),
which is directed by the foliation F . If Fsing ∩ Supp(T ) consists in
non-degenerate points only, then we have

(62) T ∧Θ ≥ −C sup
x∈Fsing

ν(T, x)

for some positive constant C.

Proof. We first observe that we have

(63) dγα ∧ T = 0.

Indeed, ωα is holomorphic and γα is a (1,0) form, so we have

(64) dγα ∧ T = τα∂(γα ∧ ωα) ∧ ωα.
The equality (63) is therefore a consequence of (57)-(59).

In order to compute the other term of (62), we use the relation (54),
and we infer that we have

(65) ∂(hαξα) ∧ ωα = ∂hα ∧ ξα ∧ ωα
for any choice of hα.

In what follows, we will drop the index α, and concentrate around a
single singular point namely the origin of the coordinate system. Let
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χ be a smooth function vanishing near zero, and which equals 1 for
x ≥ 1/2. We consider

(66) hr(z) := χ
(
‖z‖r

)
for each r > 0. We have then 0 ≤ hr ≤ 1, and as r → 0, hr converges
to the the characteristic function of U \ 0.
If moreover the singular point z = 0 is non-degenerate, in the sense
that we have

C−1 <
‖G(z)‖
‖z‖

< C

for some constant C > 0, then we have to bound from above the mass
of the measure

r
χ′
(
‖z‖r

)
‖z‖2−r σT

as r → 0; here σT is the trace measure of T . In other words we have
to obtain an upper bound for the integral

(67) r

∫
C1<‖z‖r<C2

‖z‖r−2σT .

We observe that we have∫
C1<‖z‖r<C2

‖z‖r−2σT =

∫ ∞
0

σT

((
‖z‖r−2 > s

)
∩ (C1 < ‖z‖r < C2)

)
ds;

and up to a O(r) term, the quantity we have to evaluate is smaller
than

(68) r

∫ C
− 2−r

r
1

1

σT
(
‖z‖ < s

1
r−2

)
ds.

If ν is Lelong number of T at 0, then we have σT
(
‖z‖ < τ

)
≤ 2ντ 2,

as soon as τ is small enough. Therefore, a quick computation shows
that the integral (68) is bounded by Cν, for some positive constant
C > 0. �

As one can see from the proof, this kind of arguments can only be
used if the singular point is non-degenerate. However, this is sufficient
for our purposes, given the next result.

Theorem 6.13. Let X be a projective surface endowed with a holomor-
phic foliation F . We assume that the singularities of F are reduced.
Let R be a diffuse closed positive (1,1) current on X, directed by F .
Let {x1, . . . xd} be the set of degenerate singularities of F . Then we
have

Supp(R) ⊂ X \ {x1, . . . xd}.
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Proof. Suppose (0, 0) is a degenerate reduced singularity of F . It is
well-known that the holonomy map h at such a point is tangent to
identity (eventually after a finit enumber of iterations). We assume
that the separatrix is given by w = 0, and that the w-axis is transversal
to F .

The argument is based on the fact that the dynamics of such a map
near the origin is well-understood. It is the Léau “flower theorem”.
There is a neighborhood of zero, say U , such that

U \ 0 =
⋃

1≤j≤p

P+
j ∪ P−j .

If the point z belongs to the petals P+
j , then we have hn(z)→ 0, where

we denote by hn the nth iteration of h. If z belongs to the petals P−j ,
then we have h−n(z)→ 0.

Suppose that the current R has mass in a small open Ξ set near 0,
which can be assumed to have the form Ξ = P+

1 × ∆, where ∆ is a
disk. Let x0 := (0, w0) be a point in U ∩ Supp(R), such that w0 6= 0.

The current R can be written on Ξ as

R =

∫
P+
1

[Vw]dµ(w),

where Vw is the plaque through w.
We show now that µ has no mass out of the origin. Let W ⊂ P+

1 be
an open set containing w0, such that W ∩ (w = 0) = ∅. We construct
a new open set W1 ⊂ P+

1 via the holonomy map, as follows. Without
loss of generality we can assume that the petal P+

1 is invariant by h.
We define W1 := hn1(W ) where n1 is large enough in order to have
W1 ∩W = ∅.

We can restart this procedure with W1, obtaining W2, . . . ,Wk. In
conclusion, we get a sequence of open sets (Wk) ⊂ P+

1 such that Wi ∩
Wj = ∅ if i 6= j. The mass of each set with respect to the transverse
measure is preserved, since the measure is invariant by the holonomy
map. This is equivalent to the fact that the current R is closed and
directed by F . Therefore we obtain a contradiction. �

In conclusion, we obtain the next result.

Theorem 6.14. Let X be a projective surface endowed with a holomor-
phic foliation F . We assume that the singularities of F are reduced.
Let T be a diffuse closed positive (1,1) current on X, directed by F .
Then there exists a constant C > 0 such that

(69)

∫
X

T ∧ c1

(
NF(−B)

)
≥ −C sup

x∈Fsing

ν(T, x)

Proof. By Theorem 6.13, we infer that the local contribution of the
representative (60) at a degenerate singular point to the evaluation of
(62) is equal to zero.
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In the case of a non-degenerate singularity, we use the relations (66)
and (68) above. The theorem is thus proved. �

As a conclusion of the considerations in the preceding subsections, we
infer the following “parabolic version” of the result in [16].

Corollary 6.15. Let (X,F) be a surface of general type endowed with
a holomorphic foliation F , and let f : Y → X be a holomorphic curve,
where Y is a parabolic Riemann surface of finite Euler characteristic.
If f is tangent to F , then the dimension of the Zariski closure of the
image of f is at most 1.

Proof. The first thing to remark is that the hypothesis is stable by
blow-up, hence we can assume that the singularities of F are reduced.
We can also assume that the current associated to f can be written as

T [f ] =
∑
j

νj[Cj] +R

where C := C1 + . . . CN verifies (a) and (b), and the Lelong numbers
of R may be positive eventually at a finite subset of X. We argue by
contradiction, so we add the hypothesis that the image of f is Zariski
dense.

If so, by Theorem 6.9 we infer that

∫
X

T [f ] ∧ c1(TF) = 0, as well as∫
X

{T [f ]}2 = 0. This implies that the Lelong numbers of the diffuse

part R of T [f ] are equal to zero; by Theorem 6.14, we infer that∫
X

R ∧ c1(NF) ≥ 0.

The next step is to show the inequality∫
X

T [f ] ∧ c1(NF) ≥
∫
X

R ∧ c1(NF(−C)).

We follow the presentation in [3]: we have∫
Cj

c1(NF) =

∫
X

c1(Cj)
2 + Z(Cj,F)

where Z(Cj,F) is the multiplicity of the singularities of F along the
curve Cj. We clearly have

Z(Cj,F) ≥
∑
j 6=k

c1(Cj) ∧ c1(Ck)

and thus we obtain∑
j

∫
X

νjc1(Cj) ∧ c1(NF) ≥
∑
j,k

∫
X

νjc1(Cj) ∧ c1(Ck).
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The preceding inequality implies that∫
X

T [f ] ∧ c1(NF) ≥
∫
X

R ∧ c1(NF) +

∫
X

(T [f ]−R) ∧ c1(C)

and given that T [f ] is nef, we get the desired inequality. As a conse-
quence we obtain ∫

X

T [f ] ∧ c1(NF) ≥ 0.

Since c1(NF) + c1(TF) = c1(X), the inequalities above imply that∫
X
T [f ] ∧ c1(KX) ≤ 0. This is absurd since KX is big and T [f ] is

nef. �

6.4.3. Intersection with the normal bundle, II. We will offer here a few
comments about the following beautiful result, due to M. Brunella [3].
The context is as follows: X is a compact complex surface, endowed
with a holomorphic foliation F and f is a parabolic curve tangent to
F .

Theorem 6.16. [3] If the curve f : Y → X has a Zariski dense image,
then we have

(70)

∫
X

T [f ] ∧ c1(NF) ≥ 0.

We remark that a similar statement appeared in the preceding subsec-
tion, but it was obtained in a very indirect way, under the assumption
that the canonical bundle of X is big (and as part of an argument by
contradiction...).

M. Brunella’s arguments involve many considerations from dynam-
ics, including a study at Siegel points of Fsing. They seem difficult to
accommodate to higher dimensional case. Nevertheless, this is very
strong statement; in order to illustrate it, we note that Theorem ??
has the following generalization.

Corollary 6.17. Let L be a line bundle on X, such that

H0(X,SmT ?X ⊗ L) 6= 0.

Then we have

(71)

∫
X

T [f ] ∧ c1(L) ≥ 0.

Proof. Indeed, if the inequality (71) above does not hold, then given a
section u of SmT ?X⊗L we have u(f ′⊗m) ≡ 0, by the vanishing theorem.
Let Γ ⊂ P(TX) be the set of zeros of u, interpreted as a section of the
bundle O(m)⊗ π?(L), where π : P(TX)→ X is the natural projection.
The natural lift of the curve f is contained in one of the irreducible
components of Γ; let Xm be a desingularization of the component con-
taining the image of f .
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In conclusion, we have a projective surface Xm, endowed with a
holomorphic foliation Fm, a generically finite morphism p : Xm → X,
and a curve fm : Y → Xm, such that f = p ◦ fm.

Let um := p?(u) be the section of SmT ?Xm⊗p
?(L) obtained by taking

the inverse image of u. We decompose the set Zm := (um = 0) ⊂
P(TXm) as follows

(72) Zm =
∑
j

mjΓj

where Γj ⊂ P(TXm) are irreducible hypersurfaces, and mj are positive
integers.

The image of the lift of fm to P(TXm) is contained in Zm, and it is
equally contained in the graph of Fm. Since the curve fm is supposed to
be Zariski dense, its lift can be contained in at most one hypersurface
of P(TXm). We will henceforth assume that the graph of the foliation
Fm coincides with Γ1.

Numerically, we have

(73) Γj ≡ νjO(1) + π?m(Lj)

where πm : P(TXm) → Xm is the projection, νj are positive integers,
and Lj are line bundles on Xm. This is a consequence of the structure
of the Picard group of P(TXm).

The relations (72), (73) show that we have

p?(L) ≡
∑

mjLj.

Since the lift of the curve fm is not contained in any Γj for j ≥ 2, we

have

∫
X

T [f ′m] ∧ c1(Γj) ≥ 0. The tautological inequality states that∫
X

T [f ′m] ∧ c1

(
O(1)

)
≤ 0. so we obtain

(74)

∫
Xm

T [fm] ∧ c1(Lj) ≥ 0

for each index j ≥ 2.
But we have assumed that (71) does not hold, so we infer that

(75)

∫
Xm

T [fm] ∧ c1(L1) < 0

which contradicts Theorem 6.16. �

In particular, this gives a proof of the Green-Griffiths conjecture for
minimal general type surfaces X such that c2

1(X) > c2(X) without
using any consideration about the tangent bundles of foliations! Indeed,
under this hypothesis we have

H0(X,SmT ?X ⊗ A−1) 6= 0
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where A is ample, and m� 0 is a positive integer (by a result due to
F. Bogomolov, []), so if f is Zariski dense, we obtain a contradiction
by the corollary above, given the strict positivity of A.

Given the aforementioned consequence of Brunella’s theorem, it is very
tempting to formulate the following problem.

Conjecture 6.18. Let k,m be two positive integers, and let L → X
be a line bundle, such that

H0
(
X,Ek,mT

?
X ⊗ L

)
6= 0.

If f : Y → X is a Zariski dense parabolic curve of finite Euler charac-
teristic, then we have

(76)

∫
X

T [f ] ∧ c1(L) ≥ 0.
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