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Foreword

Each of the three chapters collected in this book is concerned with various aspects — important ones
in several respects — of Hodge theory. The text is an expanded version, including substantial
additions, of lectures presented on the occasion of the meeting “I'Etat de la Recherche” devoted to
Hodge theory, that has been held at Université Joseph Fourier in Grenoble from Friday November
25, 1994 till Sunday November 27, under the auspices of the SMF (Société Mathématique de
France). The authors wishes would be fulfilled if, in accordance with the general goals of sessions
“I'Etat de la Recherche”, this book could help the nonexpert reader to get a precise idea of the
current status of Hodge theory.

The three main subjects developed here (L? Hodge theory and vanishing theorems, Frobenius and
Hodge degeneration, Variations of Hodge structures and mirror symmetry) cover a wide range of
techniques: elliptic PDE theory, complex differential geometry, algebraic geometry in
characteristic p, cohomological and sheaf-theoretic methods, deformation theory of complex
varieties, Calabi-Yau manifolds, a few aspects of singularity theory ... This accumulation of tools
arising from various fields probably makes the access to the theory rather uneasy for newcomers.
We hope that the present book will greatly facilitate this access: a special effort has been made to
approach various themes by their most natural starting point, each of the three chapters being
supplemented with a detailed introduction and numerous references. The reader will find precise
statements of quite a number of open problems which have been the subject of active research in
the last years.

The authors are grateful to SMF and MESR (Ministére de 1'Enseignement Supérieur et de la
Recherche) for their decisive action — both psychological and financial — without which the
Grenoble session “Hodge theory” would probably never have taken place. They address special
thanks to the Scientific Committee of Sessions I'Etat de la Recherche, in behalf of its two
successive directors Pierre Schapira and Colette Meeglin, as well as to Mich¢le Audin, Editor in
Chief of the Journal “Panoramas et Synthéses”, for her strong encouragement to publish the present
manuscript. Finally, they express their gratitude to the referee for his careful reading of the
manuscript and a large number of invaluable suggestions.

November 27, 1995
José Bertin*, Jean-Pierre Demailly*. Luc Illusie**, Chris Peters*
* Université de Grenoble I, Institut Fourier,
BP 74, 38402 Saint-Martin d'Heres. France
** Université de Paris-Sud, Département de Mathématiques,
Batiment 425, 91405 Orsay. France
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0. Introduction

The aim of these notes is to describe two fundamental applications of L? Hilbert
space techniques to analytic or algebraic geometry: Hodge theory, and the theory
of L? estimates for the 9 operator. The point of view adopted here is essentially
analytic.

The first part is focussed on Hodge theory and it is intended to be rather in-
troductory. Thus the reader will find here only the most elementary topics, mostly
those due to W.V.D. Hodge himself [Hod41] or to A. Weil [Wei57]. Hodge the-
ory, as first conceived by its creator, consists of the study of the cohomology of
Riemannian or Kéahlerian manifolds, by means of a description of harmonic forms
and their properties. We refer to the treatment of J. Bertin-Ch. Peters [BePe95]
and L. Hlusie [I1195] for a presentation of more advanced topics and applications
(variation of Hodge structure, application of periods, Hodge theory in characteristic
p> 0 ...). We consider a Riemannian manifold X and a Euclidean or Hermitian
bundle E over X. We assume that E is equipped with a connection D compatible
with the metric: A connection is by definition a differential operator analogous to
exterior differentiation, acting on forms of arbitrary degree with values in E, and
satisfies Leibniz rule for the exterior product. The Laplace-Beltrami operator is
the self-adjoint differential operator of second order A = D D%}, + Dy, Dy, where
D3, is the Hilbert space adjoint of Dg. One easily shows that Ag is an elliptic
operator. The finiteness theorem for elliptic operators shows then that the space
H?(X, E) of harmonic g-forms with values in E is finite dimensional if X is com-
pact (we say that a form u is harmonic if Agu = 0). If we assume in addition that
the connection satisfies D% = 0, the operator D acting on forms of all degrees
defines a complex called the de Rham complex with values in the local system of
coefficients defined by E. The corresponding cohomology groups will be denoted by
HJ . (X, E). The fundamental observation of Hodge theory is that any cohomology
class contains a unique harmonic representative, since X is compact. It leads then
to an isomorphism, called the Hodge isomorphism

(0.1) Hpg (X, E) ~ Hpg (X, E).

When the manifold X and the bundle E are holomorphic, there exists a unique
connection Dg called the Chern connection, compatible with the Hermitian metric
on E and has the following properties: Dg splits into a sum Dy = D% + DY,
of a connection D%, of type (1,0) and a connection D%, of type (0,1), such that
D2 = D¥? = 0 and Di;D%. + D%D% = ©O(E) (Chern curvature tensor of the
bundle). The operator DY acting on the forms of bidegree (p,q) defines then for
fixed p, a complex called the Dolbeault compler. When X is compact, the Dolbeault
cohomology groups HPY(X, E) satisfy a Hodge isomorphism analogous to (0.1),
namely

(0.2) HP(X,E) ~ H"Y(X, E),

where HP9(X, E) denotes the space of harmonic (p,q)-forms with values in E,
relative to the anti-holomorphic Laplacian A}, = DE D" + Dy DY.. By utilizing
this latter result, one easily proves the Serre duality theorem

(0.3) HP(X,E)* ~ H*P"4(X,E*), n=dimcX,
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which is the complex version of the Poincaré duality theorem. The central theorem
of Hodge theory concerns compact Kéhler manifolds: A Hermitian manifold (X, w)
is called Kibhlerian if the Hermitian (1,1)-form w =i}, wjrdz; A dz satisfies
dw = 0. A fundamental example of a compact K&hlerian manifold is given by the
projective algebraic manifolds. If X is compact Kéhlerian and if F is a local system
of coefficients on X, the Hodge decomposition theorem asserts that

(0.4) HEL (X, E) = @ H??(X,E) (Hodge decomposition)
p+a=k
(0.5) Hr4(X,E) ~ H"P(X, E*). (Hodge symmetry)

The intrinsic character of the decomposition will be shown here in a somewhat orig-
inal way, via the utilization of the Bott-Chern cohomology groups (99-cohomology
groups). It follows from these results that the Hodge numbers hP¢ =
dim¢ HP?7(X, C) satisfy the symmetry property h?>? = h9P = h*~ P4 = pn—0n—P,
and that they are connected to the Betti numbers b, = dimc HER (X, C) by the
relation by = Ep gt PO A certain number of other remarkable cohomological
properties of compact K&hler manifolds are obtained by means of the primitive
decomposition and the hard Lefschetz theorems (which in turn is a result of the ex-
istence of an sl(2,C) action on harmonic forms). These results allow us to describe
in a precise way the structure of the Picard group Pic(X) = H!'(X,0*) in the
Kahlerian case. In a more general setting, we discuss the Hodge-Frolicher spectral
sequence (the spectral sequence connecting Dolbeault to de Rham cohomology), and
we show how one can utilize this spectral sequence to obtain some general results
on the Hodge numbers hP'¢ of compact complex manifolds. Finally, we establish
the semi-continuity of the dimension of the cohomology groups H?(Xy, E;) of bun-
dles arising from a proper and smooth holomorphic fibration ¥ — S (result due
to Kodaira-Spencer), and we deduce from it that the Hodge numbers h?9(X}) are
constant if the fibers X; are Kahlerian (invariance of the h”*? under deformations);
the holomorphic nature of the Hodge filtration FPH*(X;,C) = &,>,H"*~"(X;,C)
relative to the Gauss-Manin connection is proven by means of the theorem on the
coherence of direct images, applied to the relative de Rham complex 2%, /s of X —» S.

In the second part, after recalling some of the relevant concepts of positivity and
pseudoconvexity, we establish the Bochner-Kodaira-Nakano identity connecting the
Laplacians Ay and A%. The identity in question furnishes an explicit expression
of the difference A% — A, in terms of the curvature @(E) of the bundle. Under
adequate hypothesis (weak pseudoconvexity of X, positivity of the curvature of E),
one arrives a priori at the estimate

IDull? + |1 Dfull? > /X A2V (2)

where A is a positive function depending on the eigenvalues of curvature. The
inequality is valid here for any form wu of bidegree (n,q), n = dim X, ¢ > 1, with
values in E, u belonging to the Hilbert space domains of D% and D%*. By an
argument of Hilbert space duality one deduces from this the following fundamental

theorem, essentially due to Hérmander [H6r65] and Andreotti-Vesentini [AV65]:

0.6. THEOREM. Let (X,w) be a Kdihler manifold, dim X = n. Assume that
X is weakly pseudoconvex. Let E be a Hermitian line bundle and suppose that the
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eigenvalues of the curvature form i©(E) with respect to the metric w at each point
x € X, satisfy

(@) <0 < ).

Further, suppose that the curvature is semi-positive, i.e. y; > 0 everywhere. Then
for any form g € L*(X,A™T% ® E) such that

D%g=0 and / (y1 4+ 7)) Hgl?dV, < +oo,
X
there exists f € L*(X,A™97'T% ® E) such that

Dgf=g and /|f|2deS/(71+---+7q)’1|9|2de-
X X

An important observation is that the above theorem still remains valid when
the metric h of E acquires singularities. The metric h is then given in each chart
by a weight e 2¢ associated to a plurisubharmonic function ¢ (by definition ¢
is psh if the matrix of second derivatives (0%¢/0z;0%;), calculated in the sense of
distributions, is semi-positive at each point). Taking into account Theorem (0.6), it
is natural to introduce the multiplier ideal sheaf J(h) = J (), made up of the germs
of holomorphic functions f € Ox,, such that [}, [f|*e~2% converges in a sufficiently
small neighbourhood V' of . A recent result of A. Nadel [Nad89] guarantees that
J(¢) is always a coherent analytic sheaf, whatever the singularities of ¢. In this
context, one deduces from (0.6) the following qualitative version, concerning the
cohomology with values in the coherent sheaf O(Kx ® E) ® J(h) (Kx = A"T%
being the canonical bundle of X).

0.7. NADEL VANISHING THEOREM ([Nad89|, [Dem93b]). Let (X,w) be a
weakly pseudoconver Kdhler manifold, and let E be a holomorphic line bundle over
X equipped with a singular Hermitian metric h of weight . Suppose that there
exists a continuous positive function € on X such that the curvature satisfies the
inequality 10,(E) > ew in the sense of currents. Then

HYX,0Kx ® E)Y® J(h)) =0 forall ¢ > 1.

In spite of the relative simplicity of the techniques involved, it is an extremely
powerful theorem, which by itself contains many of the most fundamental results of
analytic or algebraic geometry. Theorem (0.7) also contains the solution of the Levi
problem (equivalence of holomorphic convexity and pseudoconvexity), the vanish-
ing theorems of Kodaira-Serre, Kodaira-Akizuki-Nakano and Kawamata-Viehweg
for projective algebraic manifolds, as well as the Kodaira embedding theorem char-
acterizing these manifolds among the compact complex manifolds. By its intrinsic
character, the “analytic” statement of Nadel’s theorem appears useful even for
purely algebraic applications. (The algebraic version of the theorem, known as the
Kawamata-Viehweg vanishing theorem, utilizes the resolution of singularities and
does not give such a clear description of the multiplier sheaf 7 (h).) In a recent work
[Siu96], Y.T. Siu has shown the following remarkable result, by utilizing only the
Riemann-Roch formula and an inductive Noetherian argument for the multiplier
sheaves. The technique is described in §16 (with some improvements developed in
[Dem96)).



5 0. INTRODUCTION

0.8. THEOREM [Siu96], [Dem96]). Let X be a projective manifold and L an
ample line bundle (i.e. has positive curvature) on X. Then the bundle K}ef ® L®™

is very ample for m > mo(n) =2+ (**1!

" ), where n = dim X .

The importance of having an effective bound for the integer mg(n) is that
one can also obtain embeddings of manifolds X in projective space, with a precise
control of the degree of the embedding. As a consequence of this, one has a rather
simple proof of a significant finiteness theorem, namely “Matsusaka’s big theorem”
(cf. [Mat72], [KoM83], [Siu93], [Dem96]):

0.9. MATSUSAKA’S BiG THEOREM. Let X be a projective manifold and L an
ample line bundle over X . There ezists an explicit bound m; = my(n, L™, K x-L™ 1)
depending only on the dimension n = dim X and on the first two coefficients of the
Hilbert polynomial of L, such that mL is very ample for m > mq.

From this theorem, one easily deduces numerous finiteness results, in particular
the fact that there exist only a finite number of families of deformations of polarized
projective manifolds (X, L), where L is an ample line bundle with given intersection
numbers L™ and Kx - L?~ L.



PART I: L2 HODGE THEORY

1. Vector bundles, connections and curvature

The goal of this section is to recall some basic definitions of Hermitian differ-
ential geometry with regard to the concepts of connection, curvature and the first
Chern class of line bundles.

1.A. Dolbeault cohomology and the cohomology of sheaves. Assume
given X a C-analytic manifold of dimension n. We denote by AP¢T% the bundle
of differential forms of bidegree (p,q) on X, i.e. differential forms which can be
written

u = Z urgdz AZy, dzp:=dzy N--Ndz,, dzy:=dz; N---Ndzj,,
[I1=p, |T]=q

where (z1,...,2,) are local holomorphic coordinates, and where I = (iy,... ,ip)

and J = (j1,...,J,) are multi-indices (increasing sequences of integers in the in-

terval [1,...,n], with lengths |I| = p, |J| = ¢). Let AP be the sheaf of germs of
differential forms of bidegree (p, ¢) with complex valued C'*° coefficients. We recall
that the exterior derivative d decomposes into d = d' + d" where

ou
du = Z al’Jde/\dZ[/\de,
T=p|J|=g1<h<n O
Our,y
d'v = ——dz, Adzr ANdZ
Z oz, 7k 1 J

[I|=p,|J|=q,1<k<n

are of type (p+1,¢q), (p,¢+1) respectively. The well known Dolbeault-Grothendieck
Lemma asserts that all d"-closed forms of type (p, q¢) with ¢ > 0 are locally d"-exact
(this is the analogue for d" of the usual Poincaré Lemma for d, see for example
[Hor66]). In other words, the complex of sheaves (AP*,d") is exact in degree
g > 0: and in degree ¢ = 0, Kerd" is the sheaf Q% of germs of holomorphic forms
of degree p on X.

More generally, if E is a holomorphic vector bundle of rank r over X, there
exists a natural operator d"’ acting on the space C* (X, AP1T% ® E) of C* (p, q)-
forms with values in E. Indeed, if s = ), ., ., saex is a (p,¢)-form expressed in
terms of a local holomorphic frame of E, we can define d"s := Y_(d"sy)®ey; by first
observing that the transition matrices corresponding to a change of holomorphic
frame are holomorphic, and which commute with the operation of d”. It then
follows that the Dolbeault-Grothendieck Lemma still holds for forms with values in
E. For every integer p =0, 1,...,n, the Dolbeault cohomology groups H??(X, E)
are defined as being the cohomology of the complex of global forms of type (p,q)
(indexed by q):

(1.1) HP(X,E) = HY(C® (X, AP*T} ® E)).

There is the following fundamental result of sheaf theory (de Rham-Weil Isomor-
phism Theorem): Let (£®,4) be a resolution of a sheaf F by acyclic sheaves, i.e. a
complex (L£*,d) given by an exact sequence of sheaves

. o .
0 F L0yt s pe & pott 5

6



7 1. VECTOR BUNDLES, CONNECTIONS AND CURVATURE

where H?(X,L£?) =0 for all ¢ > 0 and s > 1. (To arrive at this latter condition of
acyclicity, it is enough for example that the £? are flasque or soft, for example a
sheaf of modules over the sheaf of rings C*.) Then there is a functorial isomorphism

(1.2) HY(D(X,L%) — HY(X, F).

We apply this in the following situation. Let AP'?(E) be the sheaf of germs of C*°
sections of AP9T% ® E. Then (AP*(E),d") is a resolution of the locally free Ox-
module Q% ® O(FE) (Dolbeault-Grothendieck Lemma), and the sheaves AP4(E) are
acyclic as C*°-modules. According to (1.2), we obtain

1.3. DOLBEAULT ISOMORPHISM THEOREM (1953). For all holomorphic vector
bundles E on X, there exists a canonical isomorphism

HP(X,E) ~ H"(X, 0% @ O(E)).

If X is projective algebraic and if E is an algebraic vector bundle, the theorem
of Serre (GAGA) [Ser56] shows that the algebraic cohomology groups H?(X, Q% ®
O(E)) computed via the corresponding algebraic sheaf in the Zariski topology are
isomorphic to the corresponding analytic cohomology groups. Since our point of
view here is exclusively analytic, we will no longer need to refer to this comparison
theorem.

1.B. Connections on differentiable manifolds. Assume given a real or
complex C'*° vector bundle E of rank 7 on a differentiable manifold M of class C.
A connection D on E is a linear differential operator of order 1

D:C*(M,\N Ty @ E) —» C>®(M, Aq+1TJ’(4 ®E)
such that D satisfies Leibnitz rule:
(1.4) D(fAu)=df ANu+ (=1)48 f A Du

for all forms f € C°(M,APT},), u € C*(X,A"T} @ E). On an open set Q@ C M
where E admits a trivialization 7 : E|, = Q x C", a connection D can be written

Du~, du+T Au

where T' € C*°(Q, AT}, ® Hom(C",C")) is a given matrix of 1-forms and where d
acts componentwise on © >~ (ux)1<i<,. It is then easy to verify that

D*u~, (d0 +TAT)Auon Q.

Since D? is a globally defined operator, there exists a global 2-form

(1.5) O(D) € C*(M,A\*T}; ® Hom(E, E))

such that D?u = ©(D) Au for any form u with values in E. This 2-form with values
in Hom(E, E) is called the curvature tensor of the connection D.

Now suppose that E is equipped with a Euclidean metric (resp. Hermitian) of
class C*° and that the isomorphism Ej, ~ Q x C" is given by a C*° frame (ey).
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We then have a canonical bilinear pairing, (resp. sesquilinear).

(1.6)
O (M, APT}; @ E) x C°(M, AT}, ® E) — C° (M, AP*1T3, ® C)
(u,v) = {u,v}

given by

{u,v}:ZuA AT, ex, eu), u:ZuAG@e}\, v:Zvu®eu.

A

The connection D is called Hermitian if it satisfies the additional property
d{u,v} = {Du,v} + (=1)9%8*“{u, Dv}.

By assuming that (ey) is orthonormal, one easily verifies that D is Hermitian if and
only if I'* = —TI'. In this case ©(D)* = —0(D), therefore

i0(D) € C™°(M,A*T}; ® Herm(E, E)).

1.7. A particular case. For a complex line bundle L (a complex vector
bundle of rank 1), the connection form I' of a Hermitian connection D can be taken
to be a 1-form with purely imaginary coefficients ' = iA (A real). We then have
©(D) = dl’ =idA. In particular i©(L) is a closed 2-form. The first Chern class of
L is defined to be the cohomology class

ci(L)p = {%@(D)} € Hig(M,R).

This cohomology class is independent of the choice of connection, since any other
connection D, differs by a global 1-form, Dyu = Du + B A u, so that O(D;) =
O(D) + dB. Tt is well-known that c; (L)g is the image in H?(M,R) of an integral
class ¢1(L) € H*(M,Z). Indeed if A = C* is the sheaf of C*° functions on M,
then via the exponential exact sequence

02— A0 A5 5o,

c1(L) can be defined in Cech cohomology as the image of the cocycle {g;1} €
H'(M, A*) defining L by the coedge map H'(M, A*) — H?*(M,Z). See for example
[GHT78] for more details.

1.C. Connections on complex manifolds. We now study those properties
of connections governed by the existence of a complex structure on the base mani-
fold. If M = X is a complex manifold, any connection D on a complex C'*° vector
bundle E can be split in a unique manner as a sum of a (1,0)-connection and a
(0,1)-connection, D = D' 4+ D". In a local trivialization 7 given by a C'* frame,
one can write

(1.8") D'u ~; du+T'Au,
(1.8") D'u ~, d'u+T" Au,
with T'=T" + I'"". The connection is Hermitian if and only if I’ = —(T'"")* relative

to any orthonormal frame. As a consequence, there exists a unique Hermitian
connection D associated to a (0, 1)-connection prescribed by D".
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Now suppose that the bundle E is endowed with a holomorphic structure. The
unique Hermitian connection whose component D" is the operator d” defined in
§1.A is called the Chern connection of E. With respect to a local holomorphic
frame (ey) of Ej,, the metric is given by the Hermitian matrix H = (hy,) where
han = (ex,eu). We have

{u,v} = Y haur AT, = uf AHT,
At

where u' is the transpose matrix of u, and an easy calculation gives

d{u,v} = (du)" A HT 4 (—1)4°8%u A (dH AT + Hdv)

= (du+H "dH At AHT+ (1)t A (dv + T dH Av),

by using the fact that dH = d'H + d'H and H = H. Consequently the Chern
connection D coincides with the Hermitian connection defined by

_1 ,—
Du ~,du+H dHAu,
(1.9) { u u + u

D'~ d+H dHANe=H 'd(Hs), D"=d"

These relations show that D'? = D"? = 0. Consequently D? = D'D" + D" D', and
the curvature tensor ©(D) is of type (1,1). Since d'd" + d"d" = 0, we obtain

(D'D" +D"D'yun~, B dEANd" v+ d"(H dHAu) =d"(H 'dH) A
1.10. PROPOSITION. The Chern curvature tensor O(E) := O(D) satisfies
i0(F) € C®(X,A"'T% ® Herm(E, E)).

If T : Ejq = Q x C" is a holomorphic trivialization and if H is the Hermitian
matriz representative of the metric along the fibers of Ejq, then

i0(E) ~, id"(H 'dH) on Q. 0
If (21,...,2,) are holomorphic coordinates on X and if (ex)i1<a<r is an orthog-

onal frame of E, one can write

(L11) i0(F) = > Cikandzj Ndz ® eX @ ey,
1<7,k<n, 1<\, u<r

where (¢jra, (2)) are the coefficients of the curvature tensor of E at any point € X.

2. Differential operators on vector bundles

We first describe some basic concepts concerning differential operators (symbol,
composition, ellipticity, adjoint), in the general context of vector bundles. Assume
given M a manifold of differentiable class C*°, dimgp M = m, and E, F given K
vector bundles on M, over the field K = R or K = C such that rank F = r, rank
F ="
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2.1. DEFINITION. A (linear) differential operator of degree d from E to F'is a
K-linear operator P : C*°(M,E) — C*(M,F), u+ Pu of the form

Pu(z) = Z aq(z)D%u(x),

lor|<&

where Fig ~ QO x K", Flo ~ Q X K™ are local trivializations on an open chart
Q0 C M with local coordinates (zi,...,Z,), and the coefficients a,(x) are r' x
r matrices (Gaxu(®))1<r<r,1<u<r with C° coefficients on 2. One writes here
D® = (0/0x1)* -+ (0/0xym)*™ as usual, and the matrices u = (uy)1<u<r, D%u =
(D%uy)1<pu<r are viewed as column vectors.

If t € Kis a parameter and f € C®°(M,K), u € C*°(M, E), an easy calculation
shows that e~t/(#) P(etf(#)y(z)) is a polynomial of degree § in ¢, of the form

e @ Pt @y (x)) = Pop(x,df (x)) - u(z) + terms ¢;(z)t of degree j < 4,

where op is a homogeneous polynomial map T3, — Hom(E, F) defined by

(2.2) Trre 2 &= op(x,§) € Hom(E,, F,), op(z,§) = Z aq (z)E°.
|a|=6

Then op(z,€) is a C function of the variables (z,£) € T4, and this function
is independent of the choice of coordinates or trivialization used for E, F. op is
called the principal symbol of P. The principal symbol of a composition @ o P of
differential operators is simply the product.

(2.3) oqor(z,§) = oq(z,§)op(z,§),

calculated as a product of matrices. The differential operators for which the symbols
are injective play a very important role:

2.4. DEFINITION. A differential operator P is said to be elliptic if op(z,&) €
Hom(E,, F) is injective for all z € M and ¢ € Ty, ,\{0}.

Let us now assume that M is oriented and assume given a C*° volume form
dV(z) = y(z)dzy A- - - Adxp,, where y(x) > 0is a C*° density. If E is a Euclidean or
Hermitian vector bundle, we can define a Hilbert space L?(M, E) of global sections
with values in E, being the space of forms u with measurable coefficients which are
square summable sections with respect to the scalar product

(2.5) mwzﬂmwmwm

(2.5) KWMZ&meMﬂW%umHﬂME-

2.6. DEFINITION. If P : C*° (M, E) — C*° (M, F) is a differential operator and
if the bundles E, F' are Euclidean or Hermitian, there exists a unique differential
operator

P*: C™(M, F) - C®(M, E),
called the formal adjoint of P, such that for all sections u € C*°(M,E) and v €
C° (M, F) one has an identity

({(Pu,v)) = ({(u, P*v)), whenever Supp u NSupp v CC M.
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PrOOF. The uniqueness is easy to verify, being a consequence of the density
of C* forms with compact support in L?(M, E). By a partition of unity argu-
ment, we reduce the verification of the existence of P* to the proof of its local
existence. Now let Pu(z) = ¥4 |<5aq(x) D*u(x) be the description of P relative to
the trivializations of E, F' associated to an orthonormal frame and to the system
of local coordinates on an open set 2 C M. By assuming Supp u N Supp v CC 2,
integration by parts gives

(Pu, v)) / S e DU (@)0r () (@)t - o

|| <8,

:/ S (=1)loluy () DO (@) aargr @, -

ol <A

Z/Q(u, Y (1) ly (@) D (v(@)alo(@)))dV (x).

loe| <o

We thus see that P* exists, and is defined in a unique way by

(2.7) Po(z) = Y (=1)*y(z)"' D* (y(2)alv(2)). O

lor| <&

Formula (2.7) shows immediately that the principal symbol of P* is given by

(2.8) op-(z,6) = (-1)° Y @l = (—1)’op(z,&)".

|a|=6

If rank E = rank F', the operator P is elliptic if and only if op(z,£) is invertible
for £ # 0, therefore the ellipticity of P is equivalent to that of P*.

3. Fundamental results on elliptic operators

We assume throughout this section that M is a compact oriented C'* manifold
of dimension m, with volume form dV. Let E — M be a C'*° Hermitian vector
bundle of rank r on M.

3.A. Sobolev spaces. For any real number s, we define the Sobolev space
W#(R™) to be the Hilbert space of tempered distributions u € §'(R™) such that

the Fourier transform 4 is a LZ _ function satisfying the estimate

(31) i = [ A+ PP < +ox.

If s € N, we have

luft~ [ S Dt u@)PaA),
|la|<s

therefore W?#(R™) is the Hilbert space of functions u such that all the derivatives
D%y of order |a| < s are in L?(R™).

More generally, we denote by W#(M, E) the Sobolev space of sections u : M —
E whose components are locally in W#¥(R™) on all open charts. More precisely,
choose a finite subcovering (Q;) of M by open coordinate charts Q; ~ R™ on
which F is trivial.
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Consider an orthonormal frame (e; \)i1<x<r of Eiq, and write u in terms of its
7y SAS 1Q;
components, i.e. u =) u;xe;x. We then set

ul2 =" [ljujall?
By

where (¢;) is a “partition of unity” subordinate to (€;), such that Y ¢7 = 1.
The equivalence of norms || ||s is independent of choices made. We will need the
following fundamental facts, that the reader will be able to find in many of the
specialized works devoted to the theory of partial differential equations.

3.2. SOBOLEV LEMMA. For an integer k € N and any real numbers s > k+ 3,
we have W*(M,E) C C*(M, E) and the inclusion is continuous. O

It follows immediately from the Sololev lemma that

() W*(M,E) = C>(M, E),

5>0
| w*(M,E) =D'(M, E).
5<0
3.3. RELLICH LEMMA. For all t > s, the inclusion
WHM,E) — W*(M,E)
is a compact linear operator. O

3.B. Pseudodifferential operators. If P =}, o5 aa(z)D® is a differential
operator on R™ the Fourier inversion formula gives

Pu(a) = [ Y aa()@rig)a(©e N, Yu e DE™),
*7 Jal<s
where 4(€) = [ u(z)e > Ed\(x) is the Fourier transform of u. We call
U(ZL’,&) = Z aa(w)(Qﬂ'if)a’
laf<s
the symbol (or total symbol) of P.

A pseudodifferential operator is an operator Op, defined by a formula of the
type

(3-4) Opg (u)(x) = /mU(w,ﬁ)@(€)62”i“'5d>\(€), u € D(R™),

where o belongs to a suitable class of functions on T3,.. The standard class of
symbols S°(R™) is defined as follows: Assume given § € R, S?(R™) is the class of
C* functions o(z, ) on T . such that for any o, 8 € N™ and any compact subset
K C R™ one has an estimate

(3.5) ID2Dlo(x,8)| < Cap(1+ €)1, V(z,6) € K xR™,

where § € R is regarded as the “degree” of . Then Op,(u) is a well defined C'*
function on R™, since @ belongs to the class S(R™) of functions having rapid decay.
In the more general situation of operators acting on a bundle F and having values
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in a bundle F' over a compact manifold M, we introduce the analogous space of
symbols S®(M; E, F). The elements of S°(M; E, F) are the functions

Ty 3 (2,8) = o(x,€) € Hom(E,, Fy)

satisfying condition (3.5) in all coordinate systems. Finally, we take a finite trivial-
izing cover (2;) of M and a “partition of unity” (¢;) subordinate to Q; such that
> ¢35 =1, and we define

Ops(u) = ijOpo(wju), ue C(M,E),

in a way which reduces the calculations to the situation of R™. The basic results
pertaining to the theory of pseudodifferential operators are summarized below.

3.6. Existence of extensions to the spaces W?*. If o € S°(M; E, F), then
Op, extends uniquely to a continuous linear operator

Ops : W*(M,E) — W= (M, F). O

In particular if o € S™°(M; E,F) := (S°(M; E, F), then Op, is a continuous
operator sending an arbitrary distributional section of D'(M, E) into C*(M, F).
Such an operator is called a reqular operator. It is a standard result in the theory
of distributions that the class R of regular operators coincides with the class of
operators defined by means of a C* kernel K (z,y) € Hom(E,, F;). That is, the
operators of the form

R:D'(M,E) - C*®(M,F), wu+~ Ru, Ru(a:):/MK(m,y)-u(y)dV(y).

Conversely, if dV (y) = y(y)dy: - - - dym on Q; and if we write Ru = ) R(6;u), where
(0;) is a partition of unity, the operator R(f;e) is the pseudodifferential operator
associated to the symbol o defined by the partial Fourier transform

o(z,€) = (V)0 (WK (z,y)), (,§), o0 €S *(M;E,F).

When one works with pseudodifferential operators, it is customary to work modulo
the regular operators and to allow operators more generally of the form Op, + R
where R € R is an arbitrary regular operator.

3.7. CoMPOSITION. If ¢ € S*(M;E,F) and o' € S (M;F,Q@), 4, & € R,
there exists a symbol o’ $o € S‘”‘V(M; E,G) such that Op, 0 Op, = Opyr e Mmod
R. Moreover

o' —o' -0 e SN M E,G).

3.8. DEFINITION. A pseudodifferential operator Op, of degree § is called el-
liptic if it can be defined by a symbol o € S%(M, E, F) such that
jo(@,€) - ul > cl¢’lul, V(x,6) € Ty, Vue€ B,
for || large enough, the estimate being uniform for x € M.

If E and F have the same rank, the ellipticity condition implies that o(z,§) is
invertible for large £. By taking a suitable truncating function 6(¢) equal to 1 for
large £, one sees that the function o'(z,¢) = 8(¢)o(z,£) ! defines a symbol in the
space S7°(M; F, E), and according to (3.8) we have Op, 0 Op, = Id + Op,, p €
S~L(M;E, E). Choose a symbol T asymptomatically equivalent (at infinity) to the
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expansion Id — p 4 p®2 +--- 4+ (=1)7p®J 4 ... Tt is clear then that one obtains an
inverse Op,¢o of Op, modulo R. An easy consequence of this observation is the
following:

3.9. Garding inequality. Assume given P : C*°(M,E) — C*°(M,F) an
elliptic differential operator of degree §, where rank E = rank F' = r, and let P

be an extension of P with distributional coefficient sections. For all u € W°(M, E)
such that Pu € W*(M, F), one then has u € W*+9(M, E) and

llulls+s < Cs(IIPulls +lullo),
where C is a positive constant depending only on s.

Proor. Since P is elliptic, there exists a symbol o € S=%(M; F, E) such that
Opy; o P = Id+ R, R € R. Then ||Ops(v)|[s+s < C|[v|[s by applying (3.6).

Consequently, in setting v = Pu, we see that u = Op,(Pu) — Ru satisfies the
desired estimate. O

3.C. Finiteness theorem. We conclude this section with the proof of the
following fundamental finiteness theorem, which is the starting point of L? Hodge
theory.

3.10. FINITENESS THEOREM. Assume given E, F Hermitian vector bun-
dles on a compact manifold M, such that rank E = rank F = r; and given
P:C>®(M,E)— C*(M,F) an elliptic differential operator of degree 6. Then:

i) Ker P is finite dimensional.
ii) P(C>*(M, E)) is closed and of finite codimension in C°(M, F); moreover, if
P* is the formal adjoint of P, there exists a decomposition.
C*(M,F)=P(C*(M,E)) ® Ker P*

as an orthogonal direct sum in W°(M, F) = L?>(M, F).

ProoF. (i) The Garding inequality shows that ||u|ls+s < Cs||u||o for all u €
Ker P. By the Sobolev Lemma, this implies that Ker P is closed in W°(M, E).
Moreover, the || ||o-closed unit ball of Ker P is contained in the || ||5-ball of radius

Cy, therefore it is compact according to the Rellich Lemma. Riesz Theorem implies
that dim Ker P < +o00.

(ii) We first show that the extension
P:W**(M,E) - W*(M,F)

has closed image for all s. For any € > 0, there exists a finite number of elements
v1,...,on € W (M, F), N = N(e), such that

N

(3.11) llullo < ellullsss + D 1((u,05))ol-

j=1

Indeed the set:

N
K;) = {“ € WM, F) 5 ellullsrs + D 1((u,05))ol < 1},

j=1
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is relatively compact in WO°(M, F) and ﬂ(v K(,;) = {0}. It follows that there

are elements (v;) such that K, are contained in the unit ball of W°(M, E),
as required. Substituting the main term ||ul|o given by (3.11) in the Garding
inequality; we obtain

~ N
(1= C0lullrs < Ca [1Pull + 3 Kl -

Define T' = {u € W*T9(M,E) ; u L v;, 1 <j <n} and put e = 1/2C;. It follows
that
[lul|s+s < 2Cs||Pulls, VYu€T.

This implies that P(T') is closed. As a consequence

P(W*t(M,E)) = P(T) + Vect(P(vi),...,P(un))
is closed in W#(M, E). Consider now the case s = 0. Since C*°(M, E) is dense in
WO (M, E), we see that in W°(M, E) = L?>(M, E), one has

1

1
<15(W5(M, E))) = (P(COO(M, E))) = Ker P*.
We have thus proven that
(3.12) WO(M,E) = P(W°(M, E)) @ Ker P*.

Since P* is also elliptic, it follows that Ker P~ is finite dimensional and that
Ker P* = Ker P* is contained in C* (M, F). By applying the Garding inequal-
ity, the decomposition formula (3.12) gives

(3.13) W ( = (W3+5 M, E)) & Ker P*,
(3.14) C>(M, E = P(C*>(M,E)) & Ker P*.

We finish this section by the construction of the Green’s operator associated to
a self-adjoint elliptic operator.

3.15. THEOREM. Assume given E a Hermitian vector bundle of rank r on a
compact manifold M, and P : C®(M,E) — C>®(M,E) a self-adjoint elliptic dif-
ferential operator of degree 6. Then if H denotes the orthogonal projection operator
H :C>*(M,E) — Ker P, there exists a unique operator G on C(M, E) such that

PG + H=GP + H = 1d,

moreover G is a pseudo-differential operator of degree —9, called the Green’s oper-
ator associated to P.

PRrROOF. According to Theorem 3.10, Ker P = Ker P* is finite dimensional and
Im P = (Ker P)*1. Tt then follows that the restriction of P to (Ker P) is a bijective
operator. One defines G' to be 0 @ P! relative to the orthogonal decomposition
C>®(M,E) = Ker P @ (Ker P)*. The relations PG + H = GP + H = 1d are then
obvious, as well as the uniqueness of G. Moreover, G is continuous in the Fréchet
space topology of C*°(M, E), according to the Banach theorem. One also uses
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the fact that there exists a pseudo-differential operator (Q of order —§ which is an
inverse of P modulo R, i.e. PQ =1d+ R, R € R. It then follows that

Q=(GP+H)Q=GId+R)+HQ=G+GR+ HQ,

where GR and HG are regular. (H is a regular operator of finite rank defined by the
kernel Y ps(x) @ pi(y), if (¢s) is a basis of eigenfunctions of Ker P C C*°(M, E).)
Consequently G = @ mod R and G is a pseudodifferential operator of order —4§. O

3.16. COROLLARY. Under the hypotheses of 3.15, the eigenvalues of P form a
real sequence A such that limy_, o |A\x| = +00, the eigenspaces Vy, of P are finite
dimensional, and one has a Hilbert space direct sum

L*(M,E) = @kvxk.

For any integer m € N, an element u =, uj, € L>(M, E) is in W™ (X, E) if and
only if | \e]?™||ur||? < +o0.

PRrOOF. The Green’s operator extends to a self-adjoint operator
G :L*(M,E) - L*(M, E)

which factors through W (M, E), and is therefore compact. This operator defines
an inverse to P : WO(M,E) — L?*(M,E) on (Ker P)*. The spectral theory of
compact self-adjoint operators shows that the eigenvalues uj of G form a real
sequence tending to 0 and that L?(M, E) is a direct sum of Hilbert eigenspaces.
The corresponding eigenvalues of P are A, = u,;l if pur # 0 and according to the
ellipticity of P — A;Id, the eigenspaces V), = Ker(P — A\;Id) are finite dimensional
and contained in C*(M, E). Finally, if u = >, ux € L*(M,E), the Géarding
inequality shows that v € W9 (M, E) if and only if P™u € L*(M, E) = W°(M, E),
which easily gives the condition 3~ [Ag|?™||uk]|? < +o0.

4. Hodge theory of compact Riemannian manifolds

The establishment of Hodge theory as a well developed subject, was carried
out by W.V.D Hodge during the decade 1930-1940 (see [Hod41], [DR55]). The
principal goal of the theory is to describe the de Rham cohomology algebra of a
Riemannian manifold in terms of its harmonic forms. The principal result is that
any cohomology class has a unique harmonic representative.

4.A. Euclidean structure of the exterior algebra. Let (M, g) be an ori-
ented Riemannian C*° manifold of dimension m, and let £ — M be a Hermit-

ian vector bundle of rank r on M. We denote respectively by (&1,...,&y,) and
(e1,...,e,) orthonormal frames of T and of E on a coordinate chart Q C M, and
let (&F,..-,&5), (ef,... ,er) be the corresponding dual coframes of T;, E* re-

spectively. Further, let dV be the Riemannian volume element on M. The exterior
algebra AT}, is endowed with a natural inner product (e, e), given by
(4.1) (Wi A= Aup,v1 A--- Avp)y = det({uj, ve))1<jk<p, Uj V% € Thy

for all p, with A*T3;, = € APT;; an orthogonal direct sum. Thus the family of
covectors & = & A= A&, i <dp < -o- <, defines an orthonormal basis of
A*T};. One denotes by (e, e) the corresponding inner product on A*T5; ® E.
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4.2. Hodge star operator. The Hodge-Poincaré-de Rham % operator is the
endomorphism of A*T}; defined by a collection of linear maps such that

*: NPTy — A™PTy,  uAv = (u,v)dV, VYu,ve APTy;.

The existence and uniqueness of this operator follows easily from the duality
pairing
APTR x A™7PTy = R

(4.3) (u,v) HuAv/dV:Ze(I,UI)ung,

where u = 37,5, uréf, v = 3 52, vs€7, and where €(7,C1) is the sign of the
permutation (1,2,...,m) ~ (I,CI) defined by I followed by the complementary
(ordered) multi-indices CI. From this, we deduce

(4.4) w= > I,CNvrgg;.
[I|=p

More generally, the sesquilinear pairing {e, e} defined by (1.6) induces an operator
* on the vector-valued forms, such that

(4.5) * i APTH @ B — A" PTH @ B, {s,xt} = (s, t)dV,
(4.6) st =Y eI,bDtraég; ®er, Vst € ATy & F,
[T|=p,\

for t = S tr A& @ ey Since e(I,CD)e(CI,T) = (—1)P(m=P) = (=1)P(m=1) | we imme-
diately obtain

(4.7) *xxt = (=1)Pm=V¢ on APTS, ® E.

It is clear that * is an isometry of A*T}; ® E. We will also need a variant of the x
operator, namely the antilinear operator

#: NPT} @ E — A™ T @ E*

defined by s A #t = (s,t)dV, where the exterior product A is combined with the
canonical pairing £ x E* — C. We have

(4.8) #t=Y_ eI,LDEr &, ® €.
[T]=p,\

4.9. Contraction by a vector field. Assume given a tangent vector 6 € Ty,
and a form u € APT},. The contraction 6u € AP~1T}; is defined by

O u(m, ... ,mp—1) =u@,m,... ,0p=1), n; € Tnr.
In terms of the basis (§;), e.e is the bilinear operator characterized by

.. o i 1 {ir,... ip},
NE )—{(—1)’“—1*/\---3‘---5* if | = ip.

ip

§a(&, A NG

i i
This same formula is also valid when (&;) is not orthonormal. An easy calculation
shows that 6.e is a derivation of the exterior algebra, i.e. that

Oa(uAv) = (Bou) Av+ (=1)%8 y A (Bw).
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Moreover, if = (»,8) € Ty,, the operator 6_e is the adjoint of BN, ie.,
(4.10) (0ou,v) = (u,0 Av), Yu,v € A*Ty;.

Indeed, this property is immediate when 8 = ¢, v = &7, v =¢5.

4.B. Laplace-Beltrami operator. Let E be a Hermitian vector bundle on
M, and let Dg be a Hermitian connection on E. We consider the Hilbert space
L*(M,APT}; ® E) of p-forms on M with values in E, with the given L? scalar
product

(s,1)) = /M<s,t>dv

already introduced in (2.5). Here (s,t) is the specific scalar product on APTy; @ E
associated to the Riemannian scalar product on APT}, and the Hermitian pairing
on E.

4.11. THEOREM. The formal adjoint of Dg acting on C*°(M,APTy, ® E) is
given by
Dy = (=1)"""' %« Dp *.
PROOF. If s € C®°(M,APT;,;® E) and t € C°° (M, AP T}, ® E) have compact
support, we have

(Drs,t)) = [

M

:/ d{s,*t}—(—l)p{s,DE*t}:(—1)”“/ (5, D 5t}
M M

(Dps, t)dV = /M{DES,*t}

by an application of Stokes theorem. As a consequence, (4.5) and (4.7) imply
(D5, ) = (1P (=17 [ fswx Dipet) = (<177 (s, 4D 1)
M
The desired formula follows. O

4.12. REMARK. In the case of the trivial connection d on £ = M x C, the
formula becomes d* = (—1)™*! x dx. If m is even, these formulas reduce to

d*=—%dx, Dp=—xDgx.

4.13. DEFINITION. The Laplace-Beltrami operator is the second order differ-
ential operator acting on the bundle, APT}; ® E, such that

Ag = DED*E + D)]E‘DE

In particular, the Laplace-Beltrami operator acting on APT}, is A = dd* + d*d.
This latter operator does not depend on the Riemannian structure (M, g).

It is clear that the Laplacian A is formally self-adjoint i.e. ((Ags,t)) =
({(s, Agt)) whenever the forms s,t are C* and that one of them has compact
support.
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4.14. Calculation of the symbol. For every C* function f, Leibnitz rule
gives et/ D (et’s) = tdf A s+ Dgs. By definition of the symbol, we therefore find

opp(,6) - s =ENs, VEETy,, Vs€AT; ®E.

From formula (2.8), we obtain op: = —(op,)*, therefore
opy(2,€) -5 = —Eas

where £~ € Ty is the adjoint tangent vector of {. The equality oa, = op,0op: +
OD% 0Dy implies that

oap(T,8) s = —EA(€as) — Eu(E A s) = =(£a8)s,

O-AE('T7€) t5 = _|€|2S'
In particular, Ag is always an elliptic operator. In the special case where M is
an open subset of R™ with the constant metric g = Y., dz?, all these operators

d, d*, A have constant coefficients. They are completely determined by their
principal symbol (no term of lower order can appear). One easily computes:

s = Zslda:[, ds = Z ?da?j/\dxl,

T=p T=p,j 7
881 8
d's = — — —dxy,
;j al‘j al‘j
82
I j Tj

Consequently A has the same expression as the elementary Laplacian operator, up
to a minus sign.

4.C. Harmonic forms and the Hodge isomorphism. Let E be a Hermit-
ian vector bundle on a compact Riemannian manifold (M, g). We assume that E is
given a Hermitian connection D such that ©(Dg) = D% = 0. Such a connection
is said to be integrable or flat. It is known that this is equivalent to such an E
given by a representation 7 (M) — U(r). Such a bundle is called a flat bundle or
a local system of coefficients. A standard example is the trivial bundle E = M x C
with its obvious connection D = d. Our assumption implies that Dg defines a
generalized de Rham complex

COO(MaE) % COO(M,AITJT/[(@E) BN COO(M,APT;\} ®E) &)

The cohomology groups of this complex are denoted by HY,p(M, E).
The space of harmonic forms of degree p relative to the Laplace-Beltrami op-
erator Ag = DgD3, + D3, DE is defined by

HP(M,E) = {s € C(M,A"T}; ® E) ; Ags =0}.

Since ((Ags,s)) = ||Des||? + ||Dys||?, we see that s € HP(M, E) if and only if
Dgs = Dys=0.
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4.16. THEOREM. For all p, there exists an orthogonal decomposition
C*®(M,APTy; ® E) = HP(M,E) ® ImDg & ImD},, where
ImDg = Dg(C®(M,AP~'Ty; ® E)),
ImD}, = D (C®(M, AP Ty ® E)).

PrROOF. It is immediate that H? (M, E) is orthogonal to the two subspaces
ImDpg and ImD3%,. The orthogonality of these two subspaces is also obvious, as a
result of the hypothesis D% = 0, namely:

((Dps, Dgt)) = ((Ds, 1)) = 0.

We now apply th. 3.10 to the elliptic operator Ag = A}; acting on the p-forms, i.e.
the operator Ag : C®°(M,F) — C*°(M, F') acting on the bundle F = APT}, ® E.
We obtain

ImAp =Im(DpDj, + Dy Dg) C ImDg 4+ ImD7,.

Further, since InDg and ImD?%, are orthogonal to HP(M, E), these spaces are
contained in ImAg. 0

4.17. HODGE ISOMORPHISM THEOREM. The de Rham cohomology groups
HP (M, E) are finite dimensional; moreover HEp (M, E) ~ HP(M, E).
Proor. From the decomposition in (4.16), we obtain
B]%R(Mv E) = DE(COO(Mv Ap_lTJT/I ® E))7
Z8 o (M, E) = Ker Dg = (ImD})*" = HP(M, E) ® ImDp.
This shows that any de Rham cohomology class contains a unique harmonic repre-

sentative. 0

4.18. Poincaré duality. The pairing
HEL(M,E) x HIZ P(M,E*) — C, (s,t) r—)/ SAt
M

is a non-degenerate bilinear form, and thus defines a duality between HEg (M, E)
and HIP(M, E*).

PROOF. First observe that there is a naturally defined flat connection D g+
such that for all s € C°(M,A*T}; ® E), t € C(M,A*T}; ® E*), one has

(4.19) d(s ANt) = (Dgs) At + (—1)9%8%s A Dp-t.

It then follows from Stokes theorem that the bilinear map (s,t) — [,, s At factors
through the cohomology groups. For s € C°°(M,APT;; ® E), the reader can easily
verify the following formulas (use (4.19) in a similar way to that which was done
for the proof of th. 4.11):

(4.20)

Dp-(#s) = (-1)"#Dgs, (Dp-)"(#s) = (—1)""'#Dps, Ap-(#s) = #A%.
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Consequently #s € H™ P(M, E*) if and only if s € HP(M, E). Since

/ sA#szf sV = [|s] 2,
M M

it follows that the Poincaré duality pairing has trivial kernel in the left factor
HP(M,E) ~ HEp (M, E). By symmetry, it also has trivial kernel in the right. This
completes the proof. O

5. Hermitian and Kahler manifolds

Let X be a complex manifold of dimension n. A Hermitian metric on X
is a positive definite Hermitian C'* form on Tx. In terms of local coordinates
(21,-.-,2n), such a form can be written

hz)= Y hir(2)dz; ® dz,
1<j,k<n
where (hj;) is a positive Hermitian matrix with C'° coefficients. The fundamental
(1,1)-form associated to h is

i _ .
w = —Imh = §Zhjkdzj/\dzk, 1<j,k<n.

5.1. DEFINITION.
a) A Hermitian manifold is a pair (X,w) where w is a positive definite C*° (1, 1)-
form on X.

b) The metric w is said to be Kéahler if dw = 0.
c) X is called a Kdhler manifold if X has at least one Kahler metric.

Since w is real, the conditions dw = 0, d'w = 0, d"w = 0 are all equivalent. In
local coordinates, we see that d'w = 0 if and only if
8h]’k . Ohy
82, - aZj ’

A simple calculation gives

1< j k0 <n.

Y = det(hyr) N\ <%dzj A d@) = det(hj)dzy Adyy A -+ Aday A dyn,

n!
1<j<n
where z,, = z,, + iy,. Consequently the (n,n) form

1 n

is positive and coincides with the Hermitian volume element of X . If X is compact,
then [y w" = n!Vol,(X) > 0. This simple observation already implies that a
compact Kihler manifold must satisfy certain restrictive topological conditions:

5.3. CONSEQUENCE.

a) If (X,w) is compact Kihler and if {w} denotes the cohomology class of w in
H?(X,R), then {w}™ # 0.

b) If X is compact Kdhler, then H**(X,R) # 0 for 0 < k < n. Indeed, {w}* is a
non-zero class of H**(X,R).
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5.4. ExamMpLE. Complex projective space P" is endowed with a natural K&hler
metric w, called the Fubini-Study metric, defined by

. i
prw = o-d'd"log(|G* + G " + -+ [Gal?)

where (o, (1, .- . ,(, are coordinates of C**! and where p : C**1\{0} — P™ is the
projection. Let z = (¢1/Co, - .- ,(n/Co) be the non-homogeneous coordinates of the
chart C* C P™. A calculation shows that

_ L ! gt 2\ _ L n _
w= 2ﬂ_d d"log(l+ |2|°) = 27r@(O(l)), /nw =1
Since the only non-zero integral cohomology groups of P" are H??(P",Z) ~ Z for
0 < p < n, we see that h = {w} € H?>(P",Z) is a generator of the cohomology ring
H*(P",7Z). In other words, H*(P",Z) ~ Z[h]/(h"") as rings.

5.5. EXAMPLE. A complex torusis a quotient X = C" /T’ of C" by a lattice I of
rank 2n. This gives a compact complex manifold. Any positive definite Hermitian
form w =1 hjrdz; A dZ;, with constant coefficients on C" defines a K&hler metric
on X.

5.6. EXAMPLE. Any complex submanifold X of a Kahler manifold (Y,w') is
Kahler with the induced metric w = w’T x- In particular, any projective manifold
is Kéahler (by definition, a projective manifold is a closed submanifold X C P" of
projective space). In this case, if w' denotes the Fubini-Study metric on P", we
have the additional property that the class {w} := {w'};x € H3g (X, R) is integral,
i.e. is the image of an integral class of H?(X,Z). A Kihler metric w with integral
cohomology class is called a Hodge metric.

5.7. ExampPLE. Consider the complex surface
X = (C\{oh/T
where I' = {\" ; n € Z}, A € ]0,1[, is viewed as a group of dilations. Since C*>\{0}
is diffeomorphic to R%. x S%, we have X ~ S* x $3. As a consequence, H*(X,R) =0
by an application of the Kiinneth formula, and property 5.3 b) shows that X is not

Ké&hler. More generally, one can take for [' an infinite cyclic group generated by
the holomorphic contractions of C2, of the form

21 A1zt z1 21
<ZQ>'_)<>\QZQ>, resp- <22>H<>\2’2+Z{)>’

where A\, A1, Ay are complex numbers such that 0 < [A1] < |A2] < 1, 0 < |A| < 1,
and p a positive integer. These non-Ké&hler surfaces are called Hopf surfaces. O

The following theorem shows that a Hermitian metric w on X is K&hler if and
only if the metric w is tangent to order 2 to a Hermitian metric with constant
coefficients at any point of X.

5.8. THEOREM. Let w be a positive definite C* (1,1)-form on X. For w to be
Kabhler, it is necessary and sufficient to show that at any point xog € X, there exists
a holomorphic coordinate system (21,...,zn) centered at xo such that

(5.9) w=i Y wmdz AdZm,  wWim = 0m + O(|2]%).

1<l,m<n
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If w is Kdhler, the coordinates (z;)1<j<n can be chosen so that

0 0

> = Oim — Z CikimZjZk + O(|Z|3)7
1<5,k<n

where (cjrim) are the coefficients of the Chern curvature tensor

o\" 0
(5.11) @(Tx)mo = Z cjklmdzj ANdzZ, ® <a—21> ® %

Jsk,lm

associated to (T'x,w) at xo. Such a system (z;) is called a geodesic coordinate
system at xg.

Proor. It is clear that (5.9) implies d,,w = 0, consequently the condition is
sufficient. Assume now that w is Kéhler. Then one can choose local coordinates
(Ciy---,Cn) such that (dCi,...,d(,) are a w-orthonormal basis of 77 X. As a
consequence

w=1 Z QimdG A dC,,, where
1<l,m<n
(5.12)

Bim = Om + O(IC]) = 0t + D (jimGG + ;) + O(IC).

1<j<n

Since w is real, we have a;-lm = @jm. Furthermore, the Kéhler condition Ow;., /0(; =
Ow;jm [0¢ at zo implies that ajim = aijm. Now put

Zm = G + %%ajlijCla 1<m<n.
Then (z,,) is a local coordinate system at xq, and
dom = dCn + S ajim GG,
jil
i) deg AdZp =1 dn AdC,, +1Y ) ajimdG A dC,
m m jilm
+1 Y @mCydlm A dG, + O(IC))
Jilsm

=Y GmdG AdC,, +O(IC]°) = w+ O(|2]*).

l,m

Thus we have shown condition (5.9). Now let us assume the coordinates ((p)
were chosen initially so that (5.9) is satisfied for ({,;). By continuing the Taylor
expansion (5.12) to order two, we arrive at

Wim = 6lm + O(|C|2))

(5.13) = Oim + Z(ajklijZk + @1 G G + a;'IklijZk) +O(I¢I).
jk

The new coefficients introduced satisfy the relation

! _ ! " =l = _ .
Aikim = Ckjim>  Yjkim = Cjkmi>  Ajklm = Qkjml-
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The Kihler condition 0wy, /0C; = Owjm /0¢ at ¢ = 0 furnishes the equality a’y,;,,, =
!

Qp.jms in particular a’y,,, is invariant under all permutations of j, k,l. If one puts

1
Zm:Cm-i-gZa;'klijCkCl) 1§m§n,
Jk,l

then from (5.13) one finds

A2 = dlm + Y @ GGdG, 1<m <,
Jik,l

w=1i Z dzm N dZp, + 1 Z Wjkim G CrdG A dC,, + O(IC),

1<m<n Jik,lm
(5.14)

w=1 Z dzpm NdZ,, +1i Z ajklijfdel/\dfm+O(|Z|3).
1<m<n Jik,lm

It is now easy to calculate the Chern curvature tensor ©(Tx )z, in terms of the
coefficients ajxin, and to verify that cjrim = —ajrm- We leave this as an exercise
for the reader.

6. Fundamental identities of Kahlerian geometry

6.A. Hermitian geometric operators. Assume given (X,w) a Hermitian
manifold and let z; = z; +iy;, 1 < j < n, be C-analytic coordinates about a point
a € X, such that w(a) =1)_ dz; Adz; is diagonalized at this point. The associated
Hermitian form is h(a) = 2 dz; ® dz; and its real part is the Euclidean metric
23" (dz;)? + (dy;)?. It follows that |dz;| = |dy;| = 1/V/2, |dz;| = |dZ;| = 1, and
that (0/0z1,...,0/0z,) is an orthonormal basis of (7 X,w). Formula (4.1) for
uj, v in the orthogonal sum (C® T'x)* = Tx & T% defines a natural inner product
on the exterior algebra A*(C ® T'x)*. The norm of a form

u = ZUI,JdZI NdzZj € A.((C ® Tx)*.
7

at a point a is then given by

(6.1) lw(@)* =" |ur.s(a).
1,J

The Hodge * operator (4.2) can be extended to the complex-valued forms by the
formula
(6.2) u AX0 = {u,v)dV.

It follows that x is a C-linear isometry

w0 APITS — AP 0n—PT.
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The standard Hermitian geometric operators are the operators d, § = — % dx, the

Laplacian A = dd + dd already defined, and their complex analogues

d=d +d",
(6.3) S=d*+d"™, d* =) =—xd"*% d™*=(d") =—xdx,
A = d'd* +d*d A" = d'd" 4+ d"d".

We say that an operator is of pure degree r if it transforms a form of degree
k to a form of degree k + r, and similarly an operator of pure bidegree (s,t) is
an operator which transforms the (p, ¢)-forms to forms of bidegree, (p + s,q + t).
(Its total degree is then of course r = s +t.) Thus d', d”, d"™*, d'", A', A"
are of bidegree (1,0), (0,1), (-1,0), (0,—1), (0,0), (0,0) respectively. Another
important operator is the operator L of bidegree (1, 1) defined by

(6.4) Lu=wAu,
and its adjoint A = L* = %! Lx of bidegree (—1,—1):
(6.5) (u, Av) = (Lu,v).

We observe that the unitary group U(T'x) ~ U(n) has a natural action on the space
of (p, q)-forms, given by

U(n) x APIT% 3 (g,v) = (g7 1) *v.

This action makes A”9T% a unitary representation of U(n). Since the metric w is
invariant, it is clear that L and A commute with the action of U(n).

6.B. Commutivity identities. If A, B are endomorphisms (of pure degree)
of the graded module M* = C*(X,A**T%), their graded commutator (or graded
Lie bracket) is defined by

(6.6) [A,B] = AB — (-1)**BA

where a, b are the degrees of A and B respectively. If C is another endomorphism
of degree ¢, one has the following formal Jacobi identity.

(6.7) (=D)[A,[B,C]] + (1) [B,[C, A]] + (-1)"[C,[4, B]] = 0.

For all o € AT, we will still denote by « the associated endomorphism of type
(p,q), operating on A**T% by the formula u — a A u.

Let v € ALYT% be a real (1,1)-form. There exists a w-orthogonal basis

(¢1,C2, ... ,Cn) of Tx which diagonalizes the two forms w and v simultaneously:
w=i Y GAG, v=i Y %GNG, v ER
1<j<n 1<j<n

6.8. PROPOSITION. For any form u =y u;r(} /\Z;(, one has

[v, AJu = Z(Z%‘ +> -y %‘)uJ,KG ACk.

JK NjeJ jeK 1<j<n
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Proor. If u is of type (p, q), a brutal calculation gives

Au=i(-1)" Y usk(GaCs) A (GaC), 1<1<n,

I K,
YAu=i(=1)F Y Ytk A A, Al,, 1<m<n,
J,K,m
A= 3 gmiisk ((c; A CnsC) A (T A ConsC))

JK,l,m

~ (6ol AG) A CsGE ATH) )

= Y (g;; A (GnaC3) A Tie

J,K,m
AT A CoiCl) — A Z;)

S (S mt X am- X mJuanGi ATk 0
JK

meJ meK 1<m<n

6.9. COROLLARY. For all uw € AP'T%, one has [L,Alu = (p + ¢ — n)u.

PRrROOF. Indeed, if v = w, the eigenvalues of v are y; = --- =7, = L. d

We introduce the operator B = [L, A] which satisfies Bu = (p + ¢ — n)u for u
of bidegree (p, q). Since L has degree 2, one immediately obtains [B, L] = 2L, and
similarly [B, A] = —2A. This suggests introducing the Lie algebra s/(2, C) (matrices
with zero trace, with the usual commutator bracket [a, 5] = a8 — Ba of matrices),
for which the basis of 3 matrices

(6.10) e=(00) 2=(50) o= (3 Y)

satisfies the commutivity relations
[6,A] =D, [bf]=2¢, [b,A]=-2\

6.11. COROLLARY. There is a natural action of the Lie algebra sl(2,C) on the
vector space A**T5%, i.e. a morphism of Lie algebras p : sl(2,C) — End(A**T%),
given by p({) = L, p(A) = A, p(b) = B.

We now mention the other very important commutivity identities. Let us first
assume that X = Q C C” is open in C" and that w is the standard Kahler metric,

w=1i Z de A d?j.
1<j<n
For any form u € C*°(Q, A*?T%) one has

Our, g

12 'y =

(6.12) du=">Y" B, dzi, Adzr A dzZy,
I,J.k

(6.12") d'u = Z a;g]’:d?k Ndzr Ndzy.

I,J.k
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Since the global L? scalar product is given by

/ ZUI JU] JdV
Q

1,J

some elementary calculations similar to those of the example in 4.12 show that

8u1J 0
! e,
(6.13") d*u = I}J:k Tz g (A Nz,
BU[J 0
" M
(6.13") d IEJk—aZk 75 (dz; AdZj).

We first state a lemma due to Akizuki and Nakano [AN54].
6.14. LEMMA. In C", one has [d"™,L] =id'.

Proor. Formula (6.13") can more succinctly be written

1y, —

We then obtain

ou
UES
[d"™, Llu = E 77, <asz/\“)>+W/\E 77, <—32k>-

Since w has constant coefficients, one has %(w Au)=wA —" and consequently
k Zk

70 > I o Ouy a9 Ou
[d", Lju = %j(asz(wAaZk) wA(aszaZk))

However, it is clear that %Jw = idzy, therefore

[d", Llu = 12 dz, /\ = id'u. O

We are now ready to establish the basic commutivity relations in the situation
of an arbitrary Kéhler manifold (X, w).

6.15. THEOREM. If (X,w) is Kdhler, then

[d*,L] = id,  [d* L] = -id"
A, d"] = —id*,  [Ad] = id"™.
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PRrOOF. It suffices to establish the first relation, since the second is the conju-
gate of the first, and the relations in the second line are the adjoint of the relations
in the first line. If (z;) is a geodesic coordinate system at a point zo € X, then for
all (p, q)-forms v, v with compact support in a neighbourhood of g, (5.9) implies

that
((U,U»:/ (ZUIJ51J+ Z aIJKLuIJFKL>dV,
M

IJ I,J,K,L

with aryrr(2) = O(|z]?) at zo. An integration by parts analogous to that used to
obtain (4.12) and (6.13") gives

ou 0
d"™u = Z a[JaT_l dZ] /\d_J Z brixrurydzi ANdzy,,
gk 9k I,LK,L

where the coefficients by sk, are obtained by differentiation of a;jx . Consequently
we have bryrr, = O(|z|). Since Ow/dz, = O(|z|), the proof of lemma 6.14 above
implies [d"*, LJu = id'u + O(|z]). In particular the two terms coincide at the given
point g € X. O

6.16. COROLLARY. If (X,w) is Kdhler, the complex Laplace-Beltrami opera-

tors satisfy
1

A'=A"=_A.
PROOF. We first show that A" = A’. On2€ has
A" =[d",d"] = —i[d",[A,d].
Since [d',d"] = 0, the Jacobi identity (6.7) implies that
—[d",[A,d] + [d,[d",A]] =0,
hence A” = [d', —i[d", A]] = [d',d'*] = A’. Furthermore,
A=[d+d",d*+d™)=A"+A" +[d,d"™]+[d",d"].
It therefore suffices to prove:
6.17. LEMMA. [d',d"*] =0, [d",d*]=0
PrROOF. We have [d',d"*] = —i[d',[A,d']] and (6.7) implies that
—[d, A ] + [A [ d,d] + [d,[d',A]] =0,
hence —2[d’,[A,d']] = 0 and [d',d"*] = 0. The second relation [d”,d*] = 0 is the
adjoint of the first. O

6.18. THEOREM. If (X,w) 4s Kahler, A commutes with all the operators
*, dl, dl’, dl*, dll*, L, A'

ProoF. The identities [d',A'] = [d™*,A'] = 0, [d",A"] = [d'"*,A"] = 0 and
[A, %] = 0 are immediate. Moreover, the equality [d’', L] = d'w = 0, combined with
the Jacobi identity, implies that

[L,A") = [L,[d,d*]] = —[d,[d*,L]] =ild,d"] =0
Taking adjoints, we obtain [A’, A] = 0. O
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6.C. Primitive elements and the Lefschetz isomorphism theorem. To
establish the Lefschetz Theorem, it is convenient to use the representation of s[(2, C)
exhibited in Cor. 6.11. We first recall that if g is a Lie sub-algebra (real or complex)
of the Lie algebra sl(r,C) = End(C") of complex matrices and if G = exp(g) C
GL(r,C) is the associated Lie group, a representation p : g — End(V") of the Lie
algebra in a complex vector space V induces by exponentiation a representation
p: G — GL(V) of the group G. Conversely, a representation p : G — GL(V)
induces by differentiation a representation p : g — End(V') of Lie algebras; there is
therefore an identification between these two notions. If G is compact, a classical
lemma of H. Weyl shows that all representations of g are broken down into a direct
sum of irreducible representations (one says that g is reductive): the Haar measure
of G indeed allows the construction of an invariant Hermitian metric on V', and
one exploits the fact that the orthogonal complement of a sub-representation is a
sub-representation. In particular the Lie algebra su(r) of the compact group SU(r)
is reductive. It is the same as for si(r, C), which is the complexification of su(r).
We will need the following well-known lemma, from representation theory.

6.19. LEMMA. Let p: sl(2,C) — End(V) be a representation of the Lie algebra
sl(2,C) on a finite dimensional complex vector space V', and let

L=p(t), A=p(\), B=pb)cEnd(V)

be the endomorphisms of V' associated to the basis elements of sl(2,C). Then:

a) V = ®,ezV, is a (finite) direct sum of eigenspaces of B, whose eigenvalues p
are integers. An element v € V), is said to be an element of pure weight p.

b) L and A are nilpotent, satisfying L(V,) C Vyyo, AM(V,) C Vs for all p € Z.

c) We denote by P = Ker A = {v € V ; Av = 0}, the set of primitive elements.
One then has a direct sum decomposition

V=L(p).

reN

d) V is isomorphic to a finite direct sum @,,enS(m)®% of irreducible represen-
tations, where S(m) ~ S™(C?) is the representation of sl(2,C) induced by the
m-th symmetric product of the natural representation of SL(2,C) on C?, and
Q= dim P, is the multiplicity of the isotypic component S(m).

e) If P, =PnNV,, then P, =0 for p >0 and P = ®,ez,u<oPy. The endomor-
phism L" : P_,, — Viyo, is injective for r < m and zero for r > m.

£) Vi=@,en o LT (Pu—2r), where L7 : Py_op — L7 (Py—»,) is bijective.

g) For any r € N, the endomorphism L" : V_. — V,. is bijective.

Proor. We first observe the following fact: If v € V,,, then Lv has pure weight
1+ 2 and Av has pure weight p — 2. Indeed, one has

BLv = LBv+ [B,Llv = L(uv) + 2Lv = (i + 2) Lo,
BAv = ABv + [B,Alv = A(uv) — 2Av = (p — 2)Aw.

Now suppose V' # 0 and let v € V,, be a non-zero eigenvector. If the vectors
(A*v)ken were all non-zero, one would have an infinite number of eigenvectors of
B with p — 2k distinct eigenvalues, which is impossible. Therefore there exists an
integer > 0 such that A"v # 0 and A¥v = 0 for k¥ > r. Consequently A"v is a
non-zero primitive element of pure weight u' = p — 2r. Thus we conclude that for
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some p € C, there exists w € P, a non-zero element of pure weight . The same
reasoning as above applied to the powers L*w shows that there exists an integer
m > 0 such that L™w # 0 and L™ 'w = 0. The vector space W of dimension
m + 1 generated by wy = L*¥w, 0 < k < m is stable under the action of si(2, C).
Indeed one has Bwy = (u + 2k)wy, Lwy = wyy1 by definition, while

Awp = AL*w = LFAw— > LFT7YLAILw
0<j<k—1

=0-> L/ 'Bliw=- Y (u+2j)LF w
0<j<k—1

=k(—p—k+ 1)wg—1.

By applying this relation to the indice £ = m + 1 for which wy,4+1 = 0, it follows
that one must necessarily have p = —m < 0. We remark that Bw is diagonal-
izable (the eigenvectors of W being the vectors wy of integral weight 2k — m),
and that the primitive elements of W are reduced to the line Cw, such that
W = @®L"(Cw). Properties (a,b,c,d) mentioned above are then easily obtained
by induction on dim V. By considering the quotient representation V/W one can
argue by induction that the eigenvalues of B are integers and that L, A are nilpo-
tent. It is easy to verify that W ~ S™(C?) as a representation of SL(2,C). (If
e1, es are two basis vectors of C2, the isomorphism sends w = wq to e and wy, to
Lre = m(m —1)---(m — k + 1)ekel™%.) The fact that one has a direct sum of
representations V = V' @ W (with V! = WL C V for a certain SU(2, C)-invariant
metric) involves the diagonalizability of B, by induction on dim V', as well as the
formula V = @L"(P) and the decomposition in d).

e) The relation [B, A] = —2A shows that P = Ker A is stable under B, consequently

P=Prnv,) = P..

The above calculations show that the non-zero primitive elements w are of weight
—m < 0, so that P, = 0 if g > 0. The latter assertion of e) follows from the fact
that for 0 # w € P_,,, one has L"w # 0 if and only if » < m.

f) An immediate consequence of e) and the decomposition V = @®,enL"(P), if one
restricts only to elements of pure weight . One can only have L"(P,_s,) # 0 if
either r <m = —(u—2r), or r > p.

g) It suffices to verify the assertion in the case of an irreducible representation
V ~ S™(C?). In this case, the result is clear, since the weights 2k —m, 0 <k <m

are distributed symmetrically in the interval [—-m,m] and that V is generated by
(Lk’u})ogkgm for any non-zero vector w of V_,,. O

We now interpret these results in the case of a representation of sl(2,C) on
V = A**T%. The component A*(C®Tx)* = ®piq—r AP?T% can then be identified
with the eigenspace V,, of B of weight u = k —n = p + ¢ — n (by definition of B,
see (6.9)).

6.20. DEFINITION. A homogeneous form u € A*¥(CF @ T'x)* is called primitive
if Au = 0. The space of primitive forms of total degree k is denoted by

sk D N T ok
Prim"Ty = @ Prim”T%.
p+a=k
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Since the operator A commutes with the action of U(T'x) ~ U(n) on the exterior
algebra, it is clear that PrimP?T% C AP1T% is a U(n)-invariant subspace. One
further sees (prop. 6.24) that PrimP9T% is in fact an irreducible representation of
U(n). Properties (6.19 e, f, g) successively imply

6.21. PROPOSITION. We have Prim*T5% = 0 for k > n. Moreover, if u €
Prim*T%, k <n, then L"u =0 forr >n — k.

6.22. Primitive decomposition formula. For any u € A¥(C ® Tx)*, there
exists a unique decomposition

u= Z L' ug_op, uk_Q,nEPrimk_QrT)*(.
r>(k—n)4

Consequently, one obtains a decomposition into a direct sum of representations of

U(n)

MCoTx) = @ L'Prim* Ty,
r>(k—n)4
APICoTx)" = @  L'PrimP 17Tk,
r>(pta—n)+

6.23. LEFSCHETZ ISOMORPHISM THEOREM. The linear operators

Lnfk . Ak((c ® TX)* N A2nfk((c ® TX)*,
L0 APAT — AP0 PT

are isomorphisms for all integers k < n and (p,q) satisfying p+ q < n.

6.24. PROPOSITION. For any (p,q) € N? satisfying p+q < n, Prim??T% is an
irreducible representation of U(n); more precisely, it is the irreducible representation
associated to the highest weight €1 + -+ + €5 — (€n—pt1 + -+ + €5), where (¢;) is
the canonical basis of characters of the maximal commutative subgroup U(1)" C
U(n). The primitive decomposition of AP4T% or of A¥(C ® Tx)* is the same as
the decomposition into irreducible components under the action of U(n).

ProOOF. First observe that Prim”?T% # 0, since for example
d21 AN---A de A d§p+1 AN---A dfp+q € Prim’”qT)*(.
Further, the primitive decomposition gives

p.q* r imP—"ra—r*
APITy = P L"Prim T%
0<r<m

with m = min(p, ¢), which shows that the U(n)-module AP9T% has at least m + 1
non-trivial irreducible components, to account for each of the terms Prim?="¢""T%,
0 < r < m. To see that these are irreducible , it suffices to show that the U(n)-
module APYT% has no more than (m + 1) irreducible components. However, by
complexification of the representation of U(n), one obtains a representation isomor-
phic to that of GL(n,C) on APT% ® AYTx given by g- (u®¢&) = (¢7')*u® g.&. The
representation theory of linear groups shows that the irreducible components of a
representation are in bijective correspondence with the eigenvectors associated to
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the action of the Borel subgroup B,, of upper triangular matrices. We leave it to
the reader to show that these eigenvectors correspond precisely to the (p, ¢)-forms

L™ (dzp—ptr+1 A== ANdzp NdZy A+~ NdZg—y), 0< 7 <m,

for which the weight under the action of U(1)" ise€; +---+€q—r — (€n—prrt1 +-- -+
€n)- O

7. The groups HP4(X, E) and Serre duality

We now arrive at some holomorphic consequences of Hodge theory. A large
part of this theory was developed by K. Kodaira, S. Lefschetz and A. Weil. The
reader can profitably consult the Completed Works of Kodaira [Kod75] and the
book by A. Weil [Wei57]; see also [Wel80] for a more recent account.

Let (X,w) be a compact Hermitian manifold and E a Hermitian holomorphic
vector bundle of rank r over X. We will denote by Dg the Chern connection of E,
D3, = — x Dp* the formal adjoint of Dg, and D%, D% the components of D}, of
type (—1,0) and (0, —1). A similar calculation to that done in 4.14 shows that

O-D%(aj’g)-szgml/\s’ é—eRT)*( :HOHIR(T)(,]R), SEE-T?

where £V is the type (0,1) part of the real 1-form ¢. Consequently, we see that
the principal part of the operator A}, = DY.D'* + D'* DY, is given by

1
UA%’; (l’,f) "8 = _|£071|28 = _§|€|257

and there is a similar result for A%;. In particular oar = oar = %O'AE and A
is a self-adjoint elliptic operator on each of the spaces C*° (X, AP?T% ® E). Using
D}? =0, one arrives at the following result, in the same way as obtained in §4.C.

7.1. THEOREM. For any bidegree (p,q), there exists an orthogonal decomposi-
tion
C®(X,A"T% ® E) = H?*(X,E) ® Im D}, & Im D%
where HP1(X, E) is the space of AY-harmonic forms in C*°(X,AP1T% @ E).

The above decomposition shows that the subspace of g-cocycles of the complex
(C®(X,AP*T% ® E),d") is H?1(X,E) ® Im D¥,. From here, we deduce the

7.2. THEOREM (Hodge isomorphism). The Dolbeault cohomology groups
HP9(X, E) are finite dimensional, and there is an isomorphism

HP(X,E) ~ HP(X, E).

Another interesting consequence is a proof of the Serre duality theorem for
compact complex manifolds. See Serre [Ser55] for a proof in a somewhat more
general context.

7.3. THEOREM (Serre duality). The bilinear pairing
HPA(X, B) x H™P"=1(X,E*) 5 C, (5,) > / At
M

is a non-degenerate duality.
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PROOF. Let 51 € C®°(X, AP T4 QE), 55 € C°(X,A" P 11T ® E). Since
s1 A so is of bidegree (n,n — 1), we have

(74) d(Sl A 82) = d"(51 A 82) = d”Sl A 82 + (—1)p+q81 A d”SQ.

Stokes theorem implies that the bilinear pairing above can be factored through the
Dolbeault cohomology groups. The operator # defined is §4.A satisfies

#:C®(X,APIT @ E) —» C®(X,A""P"71T% @ E).
Moreover, (4.20) implies

Dip-(#s) = (1) #(Dg)*s, (Dg.)*(#s) = (~1)5* ' #Di's,
where Dg- is the Chern connection of E*. Consequently, s € HP4(X, E) if and

only if #s € H" P~ 9(X, E*). Theorem 7.3 is then a consequence of the fact that
the integral ||s||* = [y s A #s is non-vanishing if s # 0.

8. Comohology of compact Kahler manifolds

8.A. Bott-Chern cohomology groups. Let X be a complex manifold, for
the moment not necessarily compact. The following “cohomology groups” are useful
for describing certain aspects of the Hodge theory of compact complex manifolds,
which are not necessarily Kéhler.

8.1. DEFINITION. The Bott-Chern cohomology groups of X are given by
HEA(X,C) = (C°(X,APT%) NKerd)/d'd"C>® (X, AP 17 1T%).

The cohomology HRS(X,C) has a bigraded algebra structure, which we call the
Bott-Chern cohomology algebra of X.

Since the group d'd"C>(X,AP~1¢71T%) is also contained in the group of
coboundaries d"C> (X, A% 1T%) of the Dolbeault complex as well as that in
coboundaries of the de Rham complex dC* (X, APt4~1(C® Tx )*), there are canon-
ical morphisms

(8.2) HEA4(X,C) - HP(X, C),
(8.3) HEA(X,C) — HPM(X,0),

of the Bott-Chern cohomology to the Dolbeault or de Rham cohomology. These
morphisms are C-algebra homomorphisms. It is also clear from the definition that
we have the symmetry property HEE(X,C) = HES(X,C). One can show from
the Hodge-Frolicher spectral sequence (see §10) that HEZ(X,C) is always finite
dimensional if X is compact.

8.B. Hodge decomposition theorem. We assume from now on that (X, w)
is a compact Kahler manifold. The equality A = 2A" shows that A is homogeneous
with respect to bidegree and that there is an orthogonal decomposition

(8.4) H(X,0) = @ HM(X,0).

p+q=k
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Since A” = A’ = A", one has the equality H%?(X,C) = HP¢(X,C). By apply-
ing the Hodge isomorphism theorem for de Rham cohomology and for Dolbeault
cohomology, one obtains:

8.5. THEOREM (Hodge Decomposition). On a compact Kahler manifold, there
are canonical isomorphisms

HER(X,C) ~ @ H?1(X,C) (Hodge decomposition),
ptq=k
H*?(X,C) ~ Hr1(X,C) (Hodge symmetry).

The only point that is not a priori obvious is that isomorphisms are independent
of the choice of Kdhler metric. To show that this is indeed the case, one can use
the following lemma, which will allow us to compare the three types of cohomology
groups considered in §8.A.

8.6. LEMMA. Let u be a d-closed (p,q)-form. The following properties are
equivalent:
a) u is d-exact;
b') w is d'-ezact;
b") u is d''-exact;
c) u is d'd"-exact, i.e. u can be written u = d'd"v.
d) wu is orthogonal to HP1(X,C).

ProOOF. It is evident that c¢) implies a), b’), b"”), and that a) or b") or b")
implies d). It suffices therefore to prove that d) implies c¢). Since du = 0, we have
d'v = d"u = 0, and since u is assumed orthogonal to #?-7(X, C), th. 7.1 implies that
u=d"s, s € C®°(X,AP?"1T%). The analogous theorem to th. 7.1 for d’ (which can
be deduced by complex conjugation) shows that one can write s = h + d'v + d™*w,
where h € HP17H(X,C), v € C®°(X,AP~1H171T%) and w € C®°(X, APHHI=1T).
Consequently

U= d”d,U + dlldl*w — _dld”U _ dl*dllw
by an application of Lemma 6.16. Since d'u = 0, the component d"*d"w orthogonal
to Ker d' must be zero. O

From Lemma 8.6 we deduce the following corollary, which in turn implies that
the Hodge decomposition does not depend on the choice of Kahler metric.

8.7. COROLLARY. Let X be a compact Kahler manifold. Then the natural
morphisms

ng’é](Xa(C) _)Hp’q(Xa(C)a @ H]gg(X,C) _)HIISR(Xa(C)
p+q=k
are isomorphisms.

ProorF. The surjectivity of H54(X,C) — HP(X,C) follows from the fact
that any class in HP4(X,C) can be represented by a harmonic (p, ¢)-form, there-
fore by a d-closed (p, q)-form; the injectivity property is nothing more than the
equivalence (8.5b") < (8.5¢). Therefore HEA(X,C) ~ HP1(X,C) ~ HP1(X,C),
and the isomorphism

@ HEAX,C) — Hin(X,0)
pt+a=Fk
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is a consequence of (8.4). O

We now mention two simple consequences of Hodge theory. The first concerns
the calculation of the Dolbeault cohomology of P". Since H??(P", C) contains the
non-zero class {w”} and since HZ%, (P*,C) = C, the Hodge decomposition formula
implies:

8.8. Consequence. The Dolbeault cohomology groups of P” are

H»?(P",C)=C for 0<p<n, HPIP",C)=0 forp#q. O

8.9. PROPOSITION. Any holomorphic p-form on a compact Kdhler manifold
X is d-closed.

Proor. If u is a holomorphic form of type (p,0) then d"u = 0. Moreover d"*u
is of type (p,—1), hence d"*u = 0. Consequently Au = 2A"u = 0, which implies
that du = 0. O

8.10. ExaMPLE. Consider the Heisenberg group G C Gl3(C), defined by the
subgroup of matrices

1
M=10 , (2,y,2) € C.
0

O =8
— QW

Let T" be a discrete subgroup of matrices with the property that the coefficients
x,y, z belong to the ring Z[i] (or more generally in the ring of imaginary quadratic
integers). Then X = G/T is a compact complex manifold of dimension 3, called a
Twasawa manifold. The equality

0 dxr dz-—zdy
M*dM=(0 0 dy ,
0 O 0

shows that dz, dy, dz — xdy are left invariant 1-forms on G. These forms induce
holomorphic 1-forms on the quotient X = G/I'. Since dz — zdy is not d-closed, one
concludes that X cannot be Kéhler.

8.11. REMARK. For simplicity of notation we work here with constant coef-
ficients, but the reader can easily verify that one has analogous results for coho-
mology with values in a local system of coefficients (flat Hermitian bundle), as in
§4.C. Tt is enough to replace everywhere in the proof the operator d = d' + d'' by

Dg = D'+ DY, and to observe that one still has Ay, = A}, = 1A (proof identical

to that of Cor. (6.16)). One can then deduce the existence of isomorphisms
HEY(X,E) » H"(X,E), @ HELX,E) - Hg(X,E)
pt+q=k
and a canonical decomposition
Hig(X,E)= @ HP(X,E).
p+q=k
In this context, the symmetry property of Hodge becomes

HP(X, E) ~ H"P(X, E7),
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via the antilinear operator # considered in §4 and §7. These observations are useful
for the study of variations of Hodge structure.

8.C. Primitive decomposition and hard Lefschetz theorems. We first
introduce some standard notation. The Betti numbers and the Hodge numbers of
X are by definition

(8.12) by, = dime H*(X,C), hP? = dim¢c HP?(X, C).
According to the Hodge decomposition, the numbers satisfy the relations

(813) bk = Z hp7q, h?P — phP:9q,
pFa+k

Consequently, the Betti numbers bsry1 of a compact Kihler manifold are even.
Note that the Serre duality theorem gives the additional relation h?*? = R~ P77
provided that X is compact. As we will see, the existence of the primitive decom-
position implies many other interesting characteristic properties of the cohomology
algebra of a compact Kéhler manifold.

8.14. LEMMA. If u = Zr>(k7n)+ L™u, is the primitive decomposition of a
harmonic k-form wu, then all the components u, are harmonic.

PRrROOF. Since [A, L] =0, one obtains 0 = Au = ) L" Au,, therefore Au, =0
according to the uniqueness of the decomposition. O

Denote by 2, (X,C) = @, ,— Horim (X, C) the space of primitive harmonic
k-forms and let h2?  be the dimension of the component of bidegree (p, q). Lemma

prim
(8.14) gives

(8.15) H(X, 0= P LHRTT(X,0),
r>(p+q—n)4
(8.16) A D i

r>(ptg—n)+
Formula (8.16) can be written as

fp+gq<mn, WP =hol +h) 0 4

(8.16")
If p+q>n, Wt =pI;ON"P 4 proa=tn=p=l

prim prim

8.17. COROLLARY. The Hodge and Betti numbers satisfy the following in-
equalities.
a‘) Ifk =p+gq S n, then hP1 2 hpil’qila bk 2 bk72;
b) If k =p+q > n, then h?9 > hPTHITL b > by s, O

Another important result of Hodge theory (that is in fact a direct consequence
of Cor. 6.23) is the

8.18. HARD LEFSCHETZ THEOREM. The cup product morphisms

"% HY(X,C) - H*™*(X,0), k<n,
Lnipiq : HP7Q(X, (C) - H”*‘Ln*P(X, C)) p + q S n)
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are isomorphisms. a

Another way of stating the hard Lefschetz Theorem is to introduce the Hodge-
Riemann bilinear form on HEL (X, C), defined by

(8.19) Q(u,v) = (-1)’@“@*1)/2/ uhvAwk,
X

The hard Lefschetz Theorem combined with Poincaré duality says that @ is non-
degenerate. Moreover @ is of parity (—1)* (symmetric if & is even, alternating if k is
odd). When w is a Hodge metric, that is a Kihler metric such that {w} € H*(X,Z),
it is clear that @ takes integer values when restricted to H*(X,Z)/(torsion). The
Hodge-Riemann bilinear form satisfies the following additional properties: For p +
q==k,

(8.20") QHP,H ") =0 if (p,¢) # (a,p),
(8.20")
If0#ue HY (X,0), then i* 7Q(u,u) = |[u|]*> > 0.

prim
In fact (8.20") is clear and (8.20") will be shown if we can check that any (p,q)-
primitive form wu satisfies

(—1)kk=1/2ip=a =k A7 = 7,

Since Prim??T% is an irreducible representation of U(n), it suffices to verify the
formula for a conveniently chosen (p,q)-form u. One can take for example u =
dzi A+ ANdzp NdZpy1 A -+ - ANdZp4q from an orthonormal basis for w. The necessary
verification is easy for the reader to work out as an exercise.

8.D. A description of the Picard group. Another important application
of Hodge theory is a description of the Picard group H'(X,O*) of a compact Kihler
manifold. We assume here that X is connected. The exponential exact sequence
0—>7Z—0O— O —1 gives

(8.21) 0— HY(X,Z)— HY(X,0) —» HY(X,0*) < H*(X,Z) —» H*(X, ),

taking into account the fact that the map exp(2rie) : H°(X,0) = C — H°(X,0*) =
C* is surjective. One has H'(X,0) ~ H%'(X,C) by the Dolbeault isomorphism
theorem. The dimension of this group is called the irreqularity of X and it is usually
denoted by

(8.22) q=q(X)=h""=nt"
Consequently we have by = 2¢ and
(8.23) H'(X,0)~C?, H°X,0%)=H""(X,C)~C".
8.24. LEMMA. The image of HY(X,Z) in H (X, O) is a lattice.
ProoF. Consider the morphism
HY(X,Z)— H'(X,R) - H(X,C) - H'(X, 0)

induced by the inclusions Z ¢ R ¢ C C O. Since the Cech cohomology groups
with values in Z or R can be calculated by a finite covering of open sets for which
each is diffeomorphic to an open convex set, and the same for all their mutual
intersections, it is clear that H!(X,Z) is a Z-module of finite type and that the
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image of the H'(X,Z) in H'(X,R) is a lattice. It suffices therefore to show that
the map H'(X,R) — H'(X,0) is an isomorphism. However, the commutative
diagram

0 - C o> A & 4 & 2 5.

i 3 i i

d” d”
0 - O — A% — A% 5 A02 ...

shows that the map H'(X,R) — H'(X,0) corresponds, for de Rham and Dol-
beault cohomology, to the composite map

Hll)R(Xa ]R) - Hll)R(Xa C) - HO,l(Xa (C)

Since H%(X,C) and H%!(X,C) are complex conjugate subspaces in the com-
plexification Hjg (X, C) of Hpg (X, R), we can easily deduce that Hhg (X, R) —
H%'(X,C) is an isomorphism. ad

As a consequence of this lemma, H'(X,7Z) is of rank 2¢, i.e. H'(X,7Z) ~ 7Z>4.
The complex torus of dimension ¢

(8.25) Jac(X) = HY(X,0)/H (X, 7Z)

is called the Jacobian variety of X. It is isomorphic to the subgroup of H'(X, O*)
corresponding to the line bundles with zero first Chern class. In other words, the
kernel of the arrow

H*(X,7) - H2(X,0) = H**(X,C),

which defines the integral cohomology classes of type (1,1), is equal to the image of
the morphism ¢ (o) in H?(X,Z). This subgroup is called the Néron-Severi group
of X, and is denoted by NS(X). Its rank p(X) is called the Picard number of X.
The exact sequence (8.21) then gives

(8.26) 0 = Jac(X) = HY(X,0") =5 NS(X) — 0.

The Picard group H'(X, 0*) is therefore an extension of the complex torus Jac(X)
by the Z-module of finite type N.S(X).

8.27. COROLLARY. The Picard group of P™ is HY(P", O*) ~ Z with O(1) as
generator, i.e. any line bundle over P™ is isomorphic to one of the line bundles
Ok), keZ.

ProoOF. We have H¥(P* O) = H%*(P? C) = 0 for k > 1 by applying conseq.
8.8, therefore Jac(P") = 0 and NS(P") = H?(P",Z) ~ Z. Moreover, c¢;(O(1)) is a
generator of H?(P",Z). ad

9. The Hodge-Frolicher spectral sequence

Assume given X a complex manifold (i.e. not necessarily compact) of dimen-
sion n. We consider the double complex KP4 = C*°(X,AP9T%) with its total
differential d = d' + d". The Hodge-Frélicher spectral sequence (or Hodge to de
Rham spectral sequence) is by definition the spectral sequence associated to this
double complex.
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We first recall the algebraic machinery of spectral sequences, which applies to
an arbitrary double complex (K79 d'+d") of modules over a ring. We assume here
for simplicity that K?? =0 if p < 0 or ¢ < 0. One first associates to K** the total
complex (K*,d) such that K' = @&, KP?, equipped with the total differential
d=d +d". Then K* admits a decreasing filtration formed from the subcomplexes
FPK* where

(9.1) FPK = @ K.
p<j<l

One obtains an induced filtration on the cohomology groups H!(K*®) of the total
complex by setting

(9.2) FPH'(K®) :=Im(H'(FPK*) - H'(K*)),

and one denotes by GPH'(K*) = FPH'(K*)/FP*'H!(K*) the associated graded
module. The theory of spectral sequences (see for example [God57]) says that
there exists a sequence of double complexes E?*, r > 1, equipped with differen-
tials d, : EP'? — EPTHa=r+1l of bidegree (r, —r + 1) such that E..; = H*(E,) is
calculated recursively as the cohomology of the complex (E2*,d,), and where the
limit E%9 = lim,_, o EP? is identified with the graded module G*H*(K*), more
precisely E2:4 = GPHPT(K*). The E) terms are defined as the cohomology groups
of the partial complex d" : KP4 — KP4*! by passing to the second differential,
that is

(9.4 Y = HI((KP*,d")),
and the differential d; : E? — EP™? is induced by the first differential d’:
(9.5) d:HI((KP*,d")) — HI((KPh*,d")).

In fact, one has E?¢ = 0 unless p,q > 0, and the limit F,, = lim E, is stationary,
more precisely

EPM=FEP! =...=EP when r>max(p+1,q+2),

as one sees by considering the indices in which d, can be non-zero. One says that
the spectral sequence converges to the graded filtered module H*(K*), and it is
customary to represent this situation by the notation

EP? = GPHPTU(K®).
A careful examination of the terms of small degree leads to the exact sequence
(9.6) 0— EX° - HY(K®) - E9' 2 B2° 5 H2(K*).

One says that the spectral sequence degenerates at E,, if d, =0 for all r > ro and
for all bidegree (p,q). In this case one has En® = E2% | = - = E3°.

In the case of the Hodge-Frolicher spectral sequence, the F; terms are the
Dolbeault cohomology groups EV'? = HP4(X,C), and the cohomology of the total
complex is precisely the de Rham cohomology HYp (X, C). One therefore obtains
a spectral sequence

(9.7) EY? = H™(X,C) = GPHEL(X,C)
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of the Dolbeault cohomology to the de Rham cohomology. The corresponding filtra-
tion FPHE. (X, C) of cohomology groups is called the Hodge(-Frélicher) filtration.
Now assume that X is compact. All the terms E?-¢ are then finite dimensional
vector spaces. Since E,;, = H*(E,), the dimensions dim EP-? are decreasing (or
stationary) with r, therefore dim E%? < dim EP*?, and equality takes place if and
only if the spectral sequence degenerates at F,.. In particular, the Betti numbers
b = dim H'(X,C) and the Hodge numbers hP¢ = dim E}*? satisfy the inequality

(9.8) b= Y dimERI< Y dimEPI= Y mP,

p+aq=l p+aq=l p+g=l

and equality is equivalent to the degeneration of the spectral sequence at Ef. As a
consequence, we have the

9.9. THEOREM. If X is a compact Kdhler manifold, the following properties
are equivalent:

a) The Hodge-Frolicher spectral sequence degenerates at E7.

b) One has the equality by =3_ . _, h"? for all I.

c) There exists an isomorphism GP HERY (X, C) ~ HP9(X,C) for all p,q.
If one of these conditions is satisfied, the isomorphism c) is given in a canonical
way.

We can now again interpret the results of §8.B as follows.

9.10. THEOREM. If X is a compact Kdahler manifold, the Hodge-Frélicher
spectral sequence degenerates at E1 and there is a canonical decomposition

Hpr(X,0) = @ H(X,0), H""(X,C) = HP1(X,C).
ptaq=l

In terms of this decomposition, the filtration F”H]ZDR(X, C) is given by

FPHLR(X,C) = @@ H' (X, 0).

Jjzp

In particular, the conjugate filtration F'H]IDR is opposed to the filtration F'H{DR,
i.€.

Hig(X,C) = FPHLR(X,C) @ Fi-p+1HL (X, C).

9.11. DEeFINITION. If X is a compact complex manifold, we say that X admits
a Hodge decomposition if the Hodge-Frolicher spectral sequence degenerates at Ej

and if the conjugate filtration F'* Hl is opposed to F*HLg,ie Hbhp = FPHL, &
Fi-pt1HL L for all p.

If X admits a Hodge decomposition in the sense of def. 9.11 and if p+ ¢ = [,
then it is immediate from the equality Hhyp = FPY HL & FiHL, that

FPHpp = FP™ Hpg @ (FPHpg N FOHpg).
Therefore one obtains a canonical isomorphism

(9.12) H"(X,C) ~ FPHL, /[FP™ Hiyg ~ FPHLp N F9HL L C Hbg.
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We deduce from this that there are canonical isomorphisms

HJZDR(Xa(C) = @ Hp,g(Xa(C)a Hg,p(Xa(C) = HPJ](X,(C)’
pt+g=l

as expected. Note that (9.12) furnishes another proof of the fact that the Hodge
decomposition of a compact Kahler manifold does not depend on the choice of
Kahler metric (all the groups and morphisms concerned in (9.12) are intrinsic).
In fact, we have shown that a compact K&hler manifold satisfies a still stronger
property, that will be convenient to call a strong Hodge decomposition, since this one
trivially implies the existence of a Hodge decomposition in the sense of Definition
9.11.

9.13. DEFINITION. If X is a compact complex manifold, we say that X admits
a strong Hodge decomposition if the morphisms

HEA(X,C) - H™(X,0), P HEL(X,C) —» Hpg(X,0)
p+aq=l

are isomorphisms.

9.14. REMARK. Deligne [Del68, 72] has given an algebraic criterion for the
degeneration of the Hodge spectral sequence, including the case of the relative situa-
tion. More recently, Deligne and Illusie [Del87] have given a proof of the degenera-
tion of the Hodge spectral sequence which does not use analytic methods (their idea
is to work in characteristic p and to relate the result in characteristic 0). It is neces-
sary to observe that the degeneration of the Hodge-Frolicher spectral sequence does
not automatically imply the Hodge symmetry property H??(X,C) = HP4(X,C)
nor the existence of a canonical decomposition of de Rham groups. In fact, it is
not difficult to show that the Hodge-Frolicher spectral sequence of a compact com-
plex surface always degenerates at E1; however if X is not K&hler, then b; is odd,
and one can show using the index theorem of Hirzebruch that A%' = A9 4+ 1 and
by = 2h10 4+ 1 (see [BPV84]). One can show that the existence of a Hodge decom-
position (resp. strong Hodge) is preserved by contraction morphisms (replacement
of X by X', if u: X — X' is a modification); this is an easy consequence of the ex-
istence of a direct image functor . acting on all the cohomology groups concerned,
such that p,.u* = Id. In the analytic context, u. is easily constructed by calculating
cohomology with the aid of currents, since one has on those a natural direct image
functor. As any Moishezon manifold admits a projective algebraic modification,
we deduce that Moishezon manifolds also admit a strong Hodge decomposition. It
would be interesting to know if there exists examples of compact complex manifolds
possessing a Hodge decomposition without having a strong Hodge decomposition
(there are indeed immediate examples of abstract double complexes having this
property). O

In general, when X is not Kéhler, a certain amount of interesting information
can be deduced from the spectral sequence. For example, (9.6) implies

(9.15) by > dim E3° + (dim B2 — dim E2°), .
In addition, 1521 0 is the cohomology group defined by the sequence

dy=d :E° - E° - B,
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and since E? ¥ is the space of global holomorphic functions on X, the first arrow
dy is zero (by the maximum principal, the holomorphic functions are constant on
each connected component of X). Therefore dim Ey® > h'0 — 120, Similarly, EJ'
is the kernel of the map E}*" — E}*', therefore dim Ey'' > h%' —h"!. From (9.15)
we deduce

(9.16) by > (BM0 = h*0) 4 (Bt — AV — 1>0) .

Another interesting relation concerns the topological Euler-Poincaré characteristic
Xtop(X) =bo — b1 + -+ = bap_1 + bap.

We utilize the following simple lemma.

9.17. LEMMA. Let (C*,d) be a bounded complex of finite dimensional vector
spaces over a field. Then the Euler characteristic

X(C*) =) (~1)?dim C*
s equal to the Fuler characteristic X(H'(C")) of the cohomology module.
PROOF. Set
g =dimC?, 2z, =dim Z/(C*®), b, =dimBY(C*), hy=dim HI(C*).
Then

Cq =2¢ + g1, hg =24 —bg
Consequently we find

In particular, if the term E? of the spectral sequence of a filtered complex K*
is a bounded complex of finite dimension, one has

X(E7) = x(Epyy) = --- = x(EL) = x(H*(K*®))
because Er,; = H*(E?) and dim E) = dim H'(K*®). In the Hodge-Frélicher spec-
tral sequence one additionally has dim E! = Zp+q:l hP:?, therefore:

9.18. THEOREM. For any compact complex manifold X, the topological Euler
characteristic can be written

Xtop(X): Z (—l)lbl: Z (_1)P+th,q_

0<I<2n 0<p,q<n

We now translate the Hodge-Frolicher spectral sequence in terms of the spectral
sequence of hypercohomology associated to the holomorphic de Rham complex.
First let us briefly explain what this spectral sequence consists of. Assume given
a bounded complex of sheaves of abelian groups A® over a topological space X.
Then the hypercohomology groups of A® are defined as the groups

H' (X, A*) = HY(D(X, £*)),

where L® is a complex of acyclic sheaves (flasque sheaves or sheaves of C*> modules
for example) chosen so that one has a quasi-isomorphism A* — £* (a morphism
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of complexes of sheaves inducing an isomorphism H*(A*) — H*(L£*) on the coho-
mology of sheaves). It is easy to see that hypercohomology does not depend up
to isomorphism on the complex of acyclic sheaves £*® chosen. Hypercohomology
is a functor from the category of complexes of sheaves of abelian groups to the
category of graded groups. By definition, if A®* — B*® is a quasi-isomorphism, then
H* (X, A®) — HF(X,B*) is an isomorphism; moreover hypercohomology reduces
to the usual cohomology H*(X, &) of the sheaf £ for a complex A® reduced to a
single term A° = £. Suppose that one has for each term AP of the complex A°®
a resolution AP — LP* by acyclic sheaves £P?, giving rise to a double complex
of sheaves (LP7,d' 4+ d'"). Then the associated total complex (£*,d) is an acyclic
complex quasi-isomorphic to A®, and one therefore has

H* (X, A%) = H¥(T(X, £*)).
Further, the double complex KP7 = I'(X, £P?) defines a spectral sequence such
that
P = HY(KP*,d") = H(X, A7),
converges to the associated graded cohomology of the total complex H*(K®) =

H* (X, A®). One therefore obtains a spectral sequence called the hypercohomology
spectral sequence

(9.19) EPY = HI(X, AP) = GPHPH (X, A°).

The filtration FP of hypercohomology groups is by definition obtained by taking
the image of the morphism

HF (X, FPA®%) — HF (X, A%),
where FPA® denotes the complex truncated to the left
e300 AP 5 AP s AN

Consider now the case where X is any given complex manifold and where A®* = Q%
is the holomorphic de Rham complex (with the usual exterior differential). The
holomorphic Poincaré Lemma shows that Q% is a resolution of the constant sheaf
Cx, i.e., one has a quasi-isomorphism of complexes of sheaves Cx — %, where
Cx denotes the complex reduced to a single term in degree 0. By definition of
hypercohomology, one therefore has

(9.20) H*(X,Cx) = HF (X,Q%),

and the exact sequence of hypercohomology of the complex Q% furnishes a spectral
sequence

(9.21) EP? = HY(X,0%) = GPHP*1(X,Cx).

Because the groups HF (X, %) can be calculated by using the resolution of Q% by
the Dolbeault complex £P4 = C*(AP1T%) (these sheaves are certainly acyclic!),
one then sees that the hypercohomology spectral sequence (9.21) is precisely the
Hodge-Frolicher spectral sequence previously defined.
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10. Deformations and the semi-continuity theorem

The purpose of this section is to study the dependence of the groups H?>?(X;, C)
or more generally the cohomology groups H%(X;, E;), when the pair (X, F;) de-
pends holomorphically on a parameter ¢ in a certain complex space S. Our ap-
proach is to adopt the point of view of Kodaira-Spencer, such as is developed in
their original work on the theory of deformations (see for example the complete
works of Kodaira [Kod75]). The method of Kodaira-Spencer exploits the continu-
ity properties or semi-continuity of proper spaces of Laplacians as a function of the
parameter t. Another approach furnishing more precise results consists of utilizing
the theorem of direct images of Grauert [Gra60].

10.1 DEFINITION. A deformation of compact complex manifolds is given by a
proper analytic morphism o : X — S of connected complex spaces, for which all
the fibers X; = 0~1(t) are smooth manifolds of the same dimension n, and satisfy
the following local condition:

(H) Any point ¢ € X admits a neighbourhood U such that there exists a biholo-
morphism ¢ : U x V — U where U is open in C"* and V is a neighbourhood of

t = o((), satisfying 0 oy = pro : U x V = V (second projection).

We say that (X};):es is a holomorphic family of deformations of any given fiber X;,,
and that S is the base of the deformation. A holomorphic family of vector bundles
(resp. sheaves) E; — X is given by a family of bundles (resp. sheaves) obtained
from a global bundle (resp. global sheaf) £ — X, by restriction to the fibers X;.

If S is smooth, the hypothesis (H) is equivalent to assuming that o is a holo-
morphic submersion, as a consequence of the theorem of constant rank. There are
nevertheless situations where one must necessarily consider also the case of a sin-
gular base S (for example when one seeks to construct the “universal deformation”
of a manifold). In a topological setting (differentiable or smooth), we have the
following lemma, known as Ehresmann’s Lemma.

10.2. EHRESMANN’S LEMMA. Let o : X — S be a smooth and proper differen-
tiable submersion.
a) If S is contractible, then for any to € S, there exists a commutative diagram

x5 X, xS

pri \ ' o
S

where ® is a diffeomorphism.
b) For any given base S, X — S is a locally trivial bundle (differentiable). In
particular, if S is connected, the fibers are all diffeomorphic.

PROOF. a) Let H : S x [0,1] — S be a differentiable homotopy between
H(e,0) = Ids and H(e, 1) = constant map S — {to}. The fiber product

X ={(zx,s,t) € xS x[0,1]; o(x) = H(s, 1)}

with projection 6 = pry X prs : £ — S x [0, 1] is still a differentiable submersion, as
one can easily verify. One deduces that there exists a vector field £ on X which lifts
the vector field % on S x [0,1], i.e. 0.& = %. (There exists a local lifting by the
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submersive property, and one glues together these liftings by means of a partition
of unity.) Let ¢; be a flow of this lifting: Then, if (z,s,0) € -%er{o} ~ X, one has
by construction ¢¢(z,s,0) = (?,s,t), therefore ® = ¢ defines a diffeomorphism of
j:er{o} ~ X on Jiirgx{l} ~ X, x S, commuting with the projection on S.

b) is deduced immediately from a). O

It follows from b) that the bundle ¢ — H* (X, C) is a locally trivial bundle of C-
vector spaces of finite dimension. Furthermore, in each fiber we have a free abelian
subgroup ImH*(X;,Z) ¢ H*(X;,C) of rank b, which generates H*(X;,C) as a C-
vector space. The transition matrices of this locally constant system are in SLy, (7).
Since the transition matrices are locally constant, the bundle ¢ — HF(X;, C) is
equipped with a connection D such that D? = 0: This connection is called the
Gauss-Manin connection. The following lemma is useful.

10.3. LEMMA. Leto : X — S be a smooth and proper differentiable submersion
and £ a C* vector bundle over X. Consider a family of elliptic operators

Pt : COO(Xt,Et) — COO(Xt,Et)

of degree §. We assume that P; is self-adjoint semipositive relative to a metric hy
on E; and a volume form dV; on Xy, and that the coefficients of Py, hy and dV; are
C™ on X. Then the eigenvalues of Py, computed with multiplicity, can be arranged
i a sequence
Ao(t) S Ai(t) <0 < Ag(t) = 400,

where the k-th eigenvalue \i, (t) is a continuous function of t. Moreover, if X is not in
the spectrum {\i(to) }ken of P, the direct sum W, C C*(Xy, E;) of eigenspaces
of P with eigenvalues \i(t) < X defines a C wector bundle, t — Wi, in a
neighbourhood of tg.

PROOF. Since the results are local over S, one can assume that X = X;, x S
and £ = pr} Ey,, that is, their fibers X; and E; are independent of ¢ (but the forms
dV; on X; and the metrics hy on E; are in general dependent on t). Let IIy; be
the orthogonal projection operator on Wy ; in L?(Xy, ;) ~ L?(Xy,, Ey,). I T(0,))
denotes the circle with center 0 and with radius A in the complex plane, Cauchy’s

formula gives

1
H,\’t = — (ZId — Pt)*ldz,
271'1 F(O,A)

where the integral is viewed as an integral with vector values in the space of bounded
operators on L?(My,, Ey,). (It suffices to verify the formula on the eigenvectors of
P, which is elementary.) The arguments made in §3 show that there exists a family
of pseudodifferential operators @; of order —¢, for which the symbol depends in a
C* manner with ¢ (and with uniform estimates by differentiation in ¢), such that
P,Q; = Id + R; for regular operators Ry, for which the kernel also depends in a C'*
manner in . Since @ is a family of compact operators on L?(Xy, E;) which depend
in a C'*° manner in ¢, the eigenvalues of (); depend continuously in ¢. Up to changing
Q@+, on a subspace of finite dimension, one can assume that @, is an isomorphism
of L?(Xy,, Ey,) onto WO (X;,, Ey,). Tt will be the same for (; in a neighbourhood of
to, and consequently zId — P; is invertible if and only if (21d — P;)Q¢ = Id+ R; + 2Q;
is invertible. If A is not in the spectrum of P, it follows that for all z € T'(0, \),
the inverse (zId — P;) ™! = Q¢(Id + R; + 2Q:) ! depends in a C* way in t. This
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implies that ¢ — Wy, is a locally trivial C*° fibration in a neighbourhood of ty.
The continuity of the eigenvalue A\ (t) of P, follows from the constant rank of W ;
in a neighbourhood of to, for A = Ag(to) L €. O

10.4. SEMI-CONTINUITY THEOREM (Kodaira-Spencer). If X — S is a smooth,
proper C-analytic morphism and if £ is a locally free sheaf on X, the dimensions
hi(t) = h1(Xy, &) are upper semi-continuous functions. More precisely, the alter-
nating sums

RI(t) —hI7L(t) + -+ (=1)?A°(t), 0<g¢g<n=dimX,
are upper semi-continuous functions.

PrROOF. Let E; the holomorphic vector bundle associated to &. Equip £ and
X with arbitrary Hermitian metrics. According to the Hodge isomorphism for the
d"-cohomology, one can interpret H?(X;, &) as the space of harmonic forms for the
Laplacian A}? acting on C*°(X;, AT%, @ E;). Fix a point to € S and a real A > 0
which does not belong in the spectrum of the operators Agloq, 0<q¢g<n=dimX,.
Then

Wi =W, = direct sum of eigenspaces of A}? with eigenvalues < A

defines a C°° bundle W7 in a neighbourhood of t,. Moreover the differential dy’
commutes with Al and thus sends the eigenspaces of A}? into the eigenspaces
of A}"™ associated to the same eigenvalues. This shows that (W2, dY) is a sub-
complex of finite dimension of the Dolbeault complex (C*°(Xy, ATk, © E;),d}).
The cohomology of this subcomplex coincides with H?(X}, E;) since the relation
dydy* + di*d} = A} shows that ﬁdg’* is a homotopy operator on the subcomplex
formed from the eigenspaces with eigenvalue A\ when A; # 0. If Z] denotes the
kernel of the morphism d}/? : W — W/ ™", then 29(t) := dim Z/ is an upper semi-
continuous function in the Zariski topology, as one can easily see by considering the
rank of the minors of the matrix defining the morphism d"? : W4 — W4+t From
the truncated complex

0=W W= oo W5 2850
having for the cohomology the groups H’(X;, E;) with indices 0 < j < ¢, one
obtains
BE) = BTN (E) 4 oo (Z1)TRO(E) = 27(8) = T T e (1) T

where w? denotes the rank of W?. The upper semi-continuity of the term on the
left follows, and that of h9(¢) is then immediate by induction on g. O

10.5. Invariance of the Hodge numbers. Let X — S be a smooth and
proper C-analytic morphism. We assume that the fibers X; are K&hler manifolds.
Then the Hodge numbers hP7(X;) are constant. Moreover, in the decomposition

Hk(Xta(C) = @ Hp’q(Xta(C)a
p+e=k

the bundles ¢t — HP7(X;,C) define C* subbundles (in general, not holomorphic
subbundles) of the bundle t — H*(X;,C).
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PROOF. Lemma 10.2 implies that the Betti numbers b, = dim H*(X;,C) are
constant. Since, according to th. 10.4, h?(X;,C) = h?(X;, Q%) is upper semi-
continuous, and

hP(X,) = by — > A" (Xy),
r+s=k,(r,s)#(p.q)
these functions are likewise lower semi-continuous. Consequently they are contin-
uous and therefore constant. A theorem of Kodaira [Kod75] shows that if a fiber
X;, is Kéhler, then the neighbouring fibers X; are Kéhler and the Kdhler metrics
wy can be chosen so that they depend in a C'*° way with ¢. The spaces of harmonic

(p, q)-forms therefore depend in a C* way with ¢ according to th. 10.4, and one
deduces that ¢t — HP4(X;,C) is a C* subbundle of H*(X;, C). ad

It is possible to obtain more precise and general results by means of the theorem
of direct images of Grauert [Gra60]. Recall that if we are given a continuous map
f: X =Y between topological spaces and a sheaf £ of abelian groups on X, then
one can define the direct image sheaf R¥ f,£ on Y, as being the sheaf associated to
the presheaf U — H*(f~1(U), &), for all open U in Y. More generally, being given
a complex of sheaves A®, we have the direct image sheaves R? f,.A®, obtained from
the hypercohomology presheaves

U H (f71(U), A*).

The proof of the theorem of direct images as given by [FoK71] and [KiV71] (also
see [DoV'72]) furnishes the following fundamental result.

10.6. THEOREM OF DIRECT IMAGES. Let 0 : X — S be a proper morphism
of complezx analytic spaces and A® a bounded complex of coherent sheaves of Ox-
modules. Then
a) The direct image sheaves Rt o, A* are coherent sheaves on S.

b) Any point of S admits a neighbourhood U C S on which there exists a bounded
complex W* of sheaves of locally free Og-modules in which the cohomology
sheaves H* (W?*) are isomorphic to the sheaf RF o, A®.

c) If the fibers of o are equidimensional (“geometrically flat morphism?”), the hy-
percohomology of the fiber X; = o~ 1(t) with values in A = A*®p, Ox, (where
Ox, = Ox/o*mg) is given by

H*(Xy, A}) = HE (W),

where (W) is the complez of finite dimensional spaces WE = Wr®ep, ,Osi/mg.
d) Under the hypothesis of c), if the hypercohomology spaces HF (X, A?) of the
fibers are of constant dimension, the sheaves R¥o, A® are locally free on S.
The same results are true in particular for the direct images R*o.E of a coherent
sheaf €& on X, and the cohomology groups H*(X;, &) of the fibers.

One notes that property d) is in fact a formal consequence of c), because the
hypothesis guarantees that the holomorphic matrices defining morphisms W* —
WHHL are of constant rank at each point ¢ € S. From (10.6b) one then deduces the
following result due to [Fle81] with an identical argument to that in th. 10.4.

10.7 SEMI-CONTINUITY THEOREM. If X — S is a proper analytic morphism
with equidimensional fibers and if £ is a coherent sheaf on X, then the alternating
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() = W17 (0) 4 - (~D)R0(),

with dimensions h*(t) = h*(Xy, &), are upper semi-continuous functions of t in the
analytic Zariski topology (topology of whose closed are the analytic sets).

Let 0 : X — S be a Ganalytic proper and smooth submersion. One assumes
that the Hodge spectral sequence of the fibers X; degenerates at E; for all t € S
(according to (10.7) this is in fact an open property for the analytic Zariski topology
on S). If U C S is open and contractible, then o1 (U) ~ X; x U for any fiber over
t € U. If Zx,Cx, denotes the locally constant sheaves with base X and with fibers
Z, C, one obtains

L(U,R*0,Z%) = H*(c7'(U),Z) = H*(X,,7),

I'(U, R*0.Cy) = H* (07" (U),C) = H*(X},0),

so that R¥0,Zx and R¥o,Cx arelocally constant sheaves on S, with fibers H* (X;,7)
and H*(X;,C). The bundle t — H*(X;,C), equipped with the flat connection D
(Gauss-Manin connection), possesses a canonical holomorphic structure induced by
the component D%! of the Gauss-Manin connection. The flat bundle &5 H*(X;, C)
is called the Hodge bundle of the fibration X — S.

Now consider the relative de Rham complex (Q;/S, dx/s) of the fibration X —
S. This complex furnishes a resolution of the sheaf o0=!0g (“purely sheafified”
inverse image of Og), consequently

(10.8) Rf0.0% /5 = Rfo. (071 Os) = (R*0.Cx) ®c Os.

The latter equality is obtained immediately by an argument using Og(U) linearity
for the cohomology calculated on the open set o~ 1(U) (the complex structure of
o~Y(U) does not intervene here). In other words, RF 0813 /5 is the locally free

Os-module associated to the flat bundle ¢t — H?(X;,C). One has a relative hyper-
cohomology spectral sequence

EPY = R10,0% ¢ = GPRI10,0% g = GPRM 16, Cy

(the relative spectral sequence is obtained simply by a “sheafification” of the ab-
solute hypercohomology spectral sequence (9.19) of the complex Q% /s over the
open set 0~1(U)). Since the cohomology of Qge/s on the fiber X; is precisely the
space H?(X;, Q% ) of constant rank, th. 10.6d) shows that the direct image sheaves
RPo.(Y; g are locally free. In addition, the filtration FPH*(X,,C) Cc H*(X,,C) is
obtained on the level of locally free Os-modules associated with taking the image
of the Og-linear morphism

RF o, FPQ% /g = RF0.90% s,
which is therefore a coherent subsheaf (and likewise a locally free subsheaf, accord-

ing to the property of constant rank on the fibers X;). From (10.8) one deduces
the
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FPH*(X,;,C) Cc H*(X;,C) defines a holomorphic subbundle relative to the holo-
morphic structure defined by the Gauss-Manin connection.

One sees that in general there is no reason for H?(X,;,C) = FPH*(X;,C) N
F1H*(X;,C) to be a holomorphic subbundle of H*(X;,C) for any p + q¢ = k,
although HP9(X;,C) possesses a natural holomorphic bundle structure (obtained
from the coherent sheaf Rqo*ﬂg/s, or as a quotient of FPH*(X;,C)). In other
words, this is the Hodge decomposition which is not holomorphic.

10.10 ExamMPLE. Let S = {r € C; Im 7 > 0} be the upper half plane and
X — S the “universal” family of elliptic curves over S, defined by X, = C/(Z +
7Z7). The two basis elements of the Hodge fiber H'(X,,C), dual to the basis
(1,7) of the lattice of periods, are « = dz — Re 7/Im 7dy and 3 = (Im 7)~'dy
(z =z + iy € C denotes the coordinates on X;). These elements therefore satisfy
Da = DB = 0 and define the holomorphic structure of the Hodge bundle; the
subbundle H*9(X,,C) generated by the 1-form dz = a+ 713 is clearly holomorphic
(as it should be!), however one sees that the components 8* = —1(Im 7)1dz and
B%! = —1(Im 7)~'dz are not holomorphic in 7.

49
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PART II: L2 ESTIMATIONS AND VANISHING THEOREMS

11. Concepts of pseudoconvexity and of positivity

The statements and proofs of the vanishing theorems brings into play many
concepts of pseudoconvexity and positivity. We first present a summary, by bringing
together the concepts that we deem necessary.

11.A. Plurisubharmonic functions. The plurisubharmonic functions were
introduced independently by Lelong and Oka in 1942 in the study of holomorphic
convexity. We refer to [Lel67, 69] for more details.

11.1. DEFINITION. A function u : Q@ — [—o00,+0o[ defined on an open set
2 C C" is called plurisubharmonic (abbreviated psh) if

a) w is upper semi-continuous;

b) for any complex line L C C", ujonr, is subharmonic on Q N L, that is, for any
a € Q and ¢ € C" satisfying |¢| < d(a,0f), the function u satisfies the mean
inequality

1 2w .
u(a) < %/0 u(a + €©¢)ds.

The set of psh functions on § is denoted by Psh(2).

We give below a list of some fundamental properties satisfied by the psh func-
tions. All these properties come about easily from the definition.

11.2. Fundamental properties.
a) Any function v € Psh(Q) is subharmonic in the 2n real variables, i.e. satisfies
the mean value inequality on the Euclidean ball (or sphere):

1
u(a) S Wn/n' L(a,r) U(Z)dA(Z)
for all @ € Q and all » < d(a,0Q). In this case, one has either u = —oo or

u € Lj,. on every connected component of Q.

b) For any decreasing sequence of psh functions u € Psh(Q), the limit u = lim uy,
is psh on Q.

c) Assume given u € Psh() such that u # —oo on all connected components of

Q. If (p.) is a family of regular kernels, then u x p. is C* and psh on
Q. = {z € Q; d(z,0Q) > €},

the family (u * p¢) is increasing in €, and lim,_,o u * pe = u.

d) Assume given wuq,...,up, € Psh(Q) and x : R® — R a convex function such
that x(t1,...,tp) is increasing in each variable t;. Then x(u1,...,up) is psh
on Q. In particular uy + - - - +up, max{u,...,up}, log(e” +---+e"») are psh
on . O

11.3. LEMMA. A function u € C*(Q,R) is psh on Q if and only if the Hermit-
ian form Hu(a)(§) = 3 21<jr<n 0?u/0z;0zk(a)&;E,, is semi-positive at every point
a€Q. o
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ProoF. This is an easy consequence of the following standard formula

L[ © 2 [dt

> [ uwla+eTHdd —ula) =— [ — Hu(a + ¢§)(§)dA(C),

27 Jo mJo t Jic|<t
where dA is the Lebesque measure on C. Lemma 11.3 strongly suggests that
plurisubharmonicity is the complex analog of the property of linear convexity in
the real case. d

For nonregular functions, one obtains an analogous characterization of plurisub-
harmonicity by means of a process of regularization.

11.4. THEOREM. Ifu € Psh(Q) with u Z —oco on every connected component
of Q, then for every € € C"

mE= Y 2L e

0z:0Z
1<jkb<n IOk

is a positive measure. Conversely, if v € D'(Q) is given such that Hv(§) is a positive
measure for all £ € C*, then there exists a unique function u € Psh(Q) which is
locally integrable on Q0 and such that v is the distribution associated to u. a

In order to obtain a better geometrical comprehension of the notion of plurisub-
harmonicity, we assume more generally that the function u lives on a complex man-
ifold X of dimension n. If ® : X — Y is a holomorphic map and if v € C?(Y,R),
we have d'd" (v o ®) = &*d'd"v, therefore

H(v o ®)(a,€) = Ho(®(a), ¥'(a).£).

In particular Hu, viewed as a Hermitian form on Tx, is independent of the choice
coordinates (z1,...,2,). Consequently, the notion of a psh function makes sense
on any complex manifold. More generally, we have

11.5. PROPOSITION. If ® : X — Y is a holomorphic map and v € Psh(Y),
then vo & € Psh(X). O

11.6. EXAMPLE. It is well known that log|z| is psh (i.e. subharmonic) on C.
Therefore log|f| € Psh(X) for any holomorphic function f € H°(X,Ox). More
generally

log(|f1|** +--- +f4]**) € Psh(X)

for any choice of functions f; € H°(X, Ox) and real a; > 0 (apply property 11.2d
with u; = a;log|f;|). We will be interested more particularly with singularities of
this function along the variety of zeros f; = --- = f, = 0, when the «; are rational
numbers. O

11.7. DEFINITION. One says that a psh function v € Psh(X) has analytic
singularities (resp. algebraic) if u can be written locally in the form

(07
u=glog(lfil*+ -+ |fxl) +v,

with holomorphic functions (resp. algebraic) f;, o € Ry, (resp. a € Q4), and
where v is a bounded function.
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We introduce then the ideal J = J(u/a) of germs of holomorphic functions h
such that there exists a constant C' > 0 for which |h| < Ce™/| i.e.

bl < CUful+-- -+ | fn])-

One therefore obtains a global sheaf of ideals defined on X, locally equal to the
integral closure J of the sheaf of ideals 3 = (fi, ..., fn); consequently J is coherent
on X. If (g1,... ,gn') are the local generators of J, we still have

«
w=Slog(lgnf> + -+ + low ) + O(1).

From an algebraic point of view, the singularities of v are in bijective correspondence
with the “algebraic data” (J,a). We will later see another even more significant
way to associate to a psh function, a sheaf of ideals.

11.B. Positive currents. The theory of currents was founded by G. de Rham
[DR55]. We mention here only the most basic definitions. The reader can consult
[Fed69] for a much more complete treatment of this theory. In the complex sit-
uation, the important characteristic concept of a positive current was studied and
emanated by P. Lelong [Lel57,69].

A current of degree ¢ on a differential manifold M, is nothing more than a
differential g-form © with distribution coefficients. The space of currents of degree
q on M will be denoted by D'?(M). Alternatively, one can consider the currents of
degree ¢ as the elements © of the dual D,(M) := (D?(M))’ of the space DP(M) of
C* differential forms of degree p = dim M — ¢ with compact support; the duality
pairing is given by

(11.8) (0,a) = /MG/\a, a € DP(M).

A fundamental example is the current of integration [S] on a compact oriented
submanifold S (possibly with boundary) of M:

(11.9) ([S], ) = /Sa, dega = p = dimg S.

Then [S] is a current with measurable coefficients, and Stokes theorem shows that
d[S] = (=1)771[8S]. In particular d[S] = 0 if and only if S is a submanifold
without boundary. Because of this example, the integer p is called the dimension
of © € D,(M). One says that the current © is closed if d© = 0.

On a complex manifold X, we have the analogous concept of bidegree and of
bidimension. As in the real case, we denote by

DPIX) =D\, (X), n=dimX,

the space of currents of bidegree (p, ¢) and bidimension (n—p,n—q) on X. Following
[Lel57], a current O of bidimension (p, p) is called (weakly) positive if for any choice
of C* (1,0)-forms a,...,ap on X, the distribution

11.10 O Alag A@y A--- ANy, A@, is a positive measure.
P P P
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11.11. Exercise. If O is positive, show that the coefficients © ; of © are
complex measures, and that they are dominated up to a constant by the trace
measure

. . .
70=ON 6= 273 @, where f = %d’d”|z|2 = % Y dzAdz,

1<j<n
is a positive measure.

Indication. Observe that > Oy r is invariant under a unitary change of coordi-
nates, and that the (p, p)-forms ia; A@y - - - ANl A@, generate APPTE, as a C-vector
space. (|

One easily sees that a current © =1}, .., ©;rdz;j A dzy of bidegree (1,1)

is positive if and only if the complex measure >~ Aj\;© ;1 is a positive measure for
any n-tuple (A1,...,\,) € C".

11.12. ExampLE. If u is a psh function (not identically —oc) on X, one can
associate to u a closed positive current ©® = i99u of bidegree (1,1). Conversely,
any closed positive current of bidegree (1,1) can be written in this form on any
open subset @ C X satisfying H3g (2, R) = H'(Q,0) = 0, for example on open
coordinate charts biholomorphic to a ball (exercise for the reader). O

It is not difficult to show that a product ©; A --- A O, of positive currents of
bidegree (1,1) is positive whenever the product is well defined. (This is certainly
the case if all but one of the ©; are C'*°.) Other much finer conditions exist, but
we will not pursue this subject here.

We now discuss another very important example of a closed positive current.
For any closed analytic set A in X, of pure dimension p, one associates a current
of integration

(11.13) (Aa)= [ o aeDrr(x),
Areg

obtained by integrating « on the set of regular points of A. To check that (11.13)
gives a legitimate definition of a current on X, it should be shown that A,. is
locally of finite area in a neighbourhood of each point of Ag,g. This result which
due to [Lel57], can be shown as follows. Suppose (after a change of coordinates)
that 0 € Aging. From the local parameterization theorem for analytic sets, one
deduces that there exists a linear change of coordinates on C* such that all the
projections

(21,0 52n) = (Ziy, -0 5 23,)
define a finite ramified covering over the intersection A N Ay of A with a small
polydisk Ay = A} x AY of C* = CP x C" P, over the polydisk A} of CP. Let ny be
the number layers of each of these coverings. Then, if A = NAj, the p-dimensional
area of AN A is bounded above by the sum of the areas of its projections computed
with multiplicities, i.e.

Surface Area(A N A) < Z nrVol(Af}).

The fact that [A] is positive is easy. In fact, in terms of local coordinates (w1, . .. , wp)
on Areg, one has

iy A@p A - Aay A, = | det(agr)[*iwy AWy A -+ iw, AW,
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if aj =) ajrdwg. This shows that such a product of forms is > 0 by comparison
to the canonical orientation defined by iwy AW A -+ Adwp, AW,. A deeper result,
also proven by P. Lelong [Lel57], is that [A] is a d-closed current on X, in other
words, the set Agjng (which is of real dimension < 2p — 2) does not contribute to
the boundary current d[A]. Finally, in connection with example 11.12, we have the
important

11.14. Lelong-Poincaré equation. Let f € H°(X,Ox) be a nonzero holo-
morphic function, Zy = Y~ m;Z;, m; € N, the divisor of zeros of f, and [Z;] =
Y- m;[Z;] the associated current of integration. Then

i —
~0Dlog|f| = 2]

PROOF (OUTLINE). It is clear that id'd" log|f| = 0 in a neighbourhood of each
point & ¢ Supp(Z;) = UZ;, consequently it suffices to verify the equation in a
neighbourhood of any point of Supp(Zy). Let A be the set of singular points of
Supp(Zy), i.e. the union of the intersections Z;NZ;, and of their singularities Z; sing;
we then have dim A < n — 2. In a neighbourhood of any point z € Supp(Zy)\A
there exists local coordinates (z1,...,2,) such that f(2) = 2, where m; is the
multiplicity of f along the component Z; which contains x, and where z; =0 is a
local equation of Z; near z. Since 1d'd"log|z| = Dirac measure dy in C, we find
1d'd"log|z1| = [hyperplane z; = 0], therefore

Ld'd" log|f| = mj—d'd" log || = m;[Z;]
m ™

in a neighbourhood of z. This shows that the equation is valid on X\ A. Con-
sequently, the difference 2d'd"log|f| — [Z;] is a closed current of degree 2 with
measurable coefficients for which the support is contained in A. This current is
necessarily zero because A is of too small a dimension for to be able to carry its
support. (A is stratified into submanifolds of real codimension > 4, whereas the
current itself is of real codimension 2.) O

To conclude this section we now revisit the de Rham and Dolbeault cohomology
in the context of the theory of currents. A basic observation is that the Poincaré
and Dolbeault-Grothendieck Lemmas are still valid for currents. More precisely, if
(D',d) and (D'(F)P4,d") denotes the complexes of sheaves of currents of degree
q (resp. currents of bidegree (p, q) with values in a holomorphic vector bundle F'),
one still has resolutions of de Rham and of Dolbeault sheaves

0—>R—-D"* 0-0%20(F)—D(F)P".
As a result, there are canonical isomorphisms
(11.15) HEL (M,R) = HY((T(M,D'*),d)),
H™(X, F) = H((D(X, D/ (F)"*),d")).

In other words, one can attach a cohomology class {©} € HJ (M, R) to any closed
current O of degree ¢, resp. a cohomology class {@} € H?I(X, F) for any d"-closed
current of bidegree (p, ¢). By replacing if necessary the respective currents by their
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C° representatives of the same cohomology class, one sees that there exists a well
defined cup product pairing, given by the exterior product of differential forms

HU (M,R) x -+ x H™(M,R) — HU "+ (M R),
({01},...,{6:}) = {O1}A---A{O,}.

In particular, if M is a compact oriented manifold and if g1 + -+ + g, = dim M,
one obtains a well defined intersection number

{91}-{92}-----{em}sz{@l}A---A{@m}.

We note however that the specific product ©1 A--- A 0, does not exist in general.

11.C. Positive vector bundles. Let (E,h) be a Hermitian holomorphic vec-
tor bundle on a complex manifold X. Its Chern curvature tensor

O(E) = Z Cikandzj NdZp ® €} ® e,
1<) k< L<Au<r

can be identified with a Hermitian form on Tx ® E, viz.

(11.16) O(E)(¢ ®v) = > Cian&i€rATus  Cikan = Chjpr-

1<, k<n, 1<, u<r

This leads us naturally to the concept of positivity, in the following definitions
introduced by Kodaira [Kod53], Nakano [Nak55] and Griffiths [Gri66].

11.17. DEFINITION. The Hermitian holomorphic vector bundle E is called

a) positive in the sense of Nakano if:
O(E)(r) > 0 for any non-zero tensor 7 = 3. 7;,0/0z; @ ex € Tx @ E.
b) positive in the sense of Griffiths if:
O(E)(€ ® v) > 0 for any non-zero decomposable tensor £ ® v € Tx @ E.
The corresponding concepts of semi-positivity are defined by replacing the strict
inequalities by the broader inequalities.

11.18. The particular case of rank 1 bundles. Suppose that F is a line
bundle. The Hermitian matrix H = (h;;) associated to a trivialization 7 : F)q ~
Q x C is then simply a positive function, and it will be convenient to denote it by
e”2%, o € C®(,R). In this case, the curvature form ©(E) can be identified with
the (1, 1)-form 2d'd" ¢, and

L oE) = Ldd'p=dd°p, whered = —(d" —d)

27 m 2T
is a real (1,1)-form. Therefore F is semipositive (in the sense of Nakano or in the
sense of Griffiths) if and only if ¢ is psh, resp. positive if and only if ¢ is strictly
psh. In this context, the Lelong-Poincaré equation can be generalized as follows:
Let o € H°(X, E) be a non-zero holomorphic section. Then

(11.19) dd° log ||o|| = [Z,] - i@(E).

Formula (11.19) is immediate if one writes ||o|| = |7(0)|e” % and if one applies the
Lelong-Poincaré equation to the holomorphic function f = 7(0). As we will see
later, it is important for applications to consider the case of singular Hermitian
metrics (cf. [Dem90b]).
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11.20. DEFINITION. A singular (Hermitian) metric on a line bundle E is a
metric given in any trivialization 7 : Fq = QxC by

€l = [7(&)|e #®), z€Q, £€E,

where ¢ € L{ (Q) is an arbitrary function, called the weight of the metric with

respect to the trivialization 7.

If ' : Eqr — Q' x C is another trivialization, ¢’ the associated weight and
g € O*(2N Q') the transition function, then 7/(§) = g(z)7 (&) for all £ € Ex, and
therefore ¢’ = ¢ + log|g| on @ N Q'. The curvature form of E is then formally
given by the current of degree (1,1), #@(E) = dd°p on Q; moreover the hypoth-
esis p € L () guarantees that O(E) exists in the sense of distributions. As in
the C° case, the form %@(E) is globally defined on X and independent of the
choice of trivializations, and its de Rham cohomology class is the image of the first
Chern class ¢; (E) € H*(X,Z) in H3g (X, R). Before going further, we discuss two

fundamental examples.

11.21. EXAMPLE. Let D =" a;D; be a divisor with coefficients o; € Z and
let E = O(D) be the associated invertible sheaf, defined as the sheaf of meromorphic
functions u such that div(u) + D > 0. The corresponding line bundle can be given
a singular metric defined by ||u|| = |u| (modulus of the meromorphic function ).
If g; is a generator of the ideal of D; on an open set Q C X, then 7(u) = v ][] g;-”
defines a trivialization of O(D) on €, thus our singular metric is associated to the
weight ¢ = 3" ajlog|g;|. The Lelong-Poincaré equation implies that

Lo(0(D)) = dd°p = [D),

™
where [D] = ) a;[D;] denotes the current of integration on D. O
11.22. EXAMPLE. Suppose that o1,... ,0n are non-zero holomorphic sections

of E. One can then define a natural (possibly singular) Hermitian metric on E*,
by setting
15117 = Y 1€ 05(@)* for g € By
1<j<n
The dual metric of E is given by

(O

¥ 11" = |T(o1(2))]2 + -+ + |7 (on(2))|?

with respect to any local trivialization 7. The associated weight function is therefore
given by ¢(z) = log(3, < jcn |7(0; (z))[2)'/2. In this case ¢ is a psh function,
therefore i©(E) is a closed positive current. Denote by ¥ the linear system defined
by 01,...,0n and By = 00;1(0) its base locus. One has a meromorphic map

Py : X\Bs = PV g [o1(2) o) - on ()]

With this notation, the curvature ;- ©(FE) restricted to X\ By, is identified with the
inverse image by ®y of the Fubini-Study metric wps = 5-d'd” log(|21]*+- - -+|2n/|?)
on PN-!. Tt is therefore semi-positive. O
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11.23. Ample and very ample line bundles. A holomorphic line bundle

E on a compact complex manifold X is called
a) very ample if the map @5 : X — PN-1 associated to the complete linear
system |E| = P(H°(X, E)) is a regular embedding. (This implies in particular

that the base locus is empty, i.e. B|g = 0.)

b) ample if there exists a multiple mE, m > 0, which is very ample.

We adopt here the additive notation for Pic(X) = H'(X, O*), the symbol mE
representing the line bundle E®™. By refering to example 11.22, it follows that
any ample line bundle £ has a C'°° Hermitian metric, having a positive definite
curvature form. Indeed, if the linear system |mE| gives an embedding in projective
space, then one obtains a C°° Hermitian metric on E¥™, and the m-th root gives
a metric on E such that i@(E) = %(I)TmE\‘*’FS' Conversely, Kodaira’s embedding
theorem [Kod54] says that any positive line bundle E is ample (see exercise 15.11
for a direct analytic proof of this fundamental theorem).

12. Hodge theory of complete Kidhler manifolds

The goal of this section is primarily to extend to the case of complete Kihler
manifolds the results of Hodge theory already proven in the compact case.

12.A. Complete Riemannian manifolds. Before treating the complex situ-
ation, we will need to discuss some general results on the Hodge theory of complete
Riemannian manifolds. Recall that a Riemannian manifold (M, g) is said to be
complete if the geodesic distance §, is complete, or what amounts to the same
thing (Hopf-Rinow Lemma below), if the closed geodesic balls are all compact. We
will need the following more precise characterization.

12.1. LEMMA (Hopf-Rinow). The following properties are equivalent:

) (M, g) is complete;

b) the closed geodesic balls B,(a,r) are compact;

c) there exists an exhaustive function ¢ € C°(M,R) such that |dy|, < 1;

d) there exists in M an exhaustive sequence (K, ), en of compact sets and functions
6, € C®°(M,R) such that

Q

6, =1 on a neighbourhood of K,,, Supp 0, C K,
0<6,<1and|db,|, <27".

PROOF. a) => b). The point = being fixed, one denotes by ro = ro(x), the

supremum of the real numbers r > 0 such that Pg(a,r) is compact. Suppose
ro < +0o. Being given a sequence of points (z,) in B,(a,ry) and € > 0, one
chooses a sequence of points z,, . € B(a,ro — €) such that 0,(z,,z,.) < 2. By
compactness of By(a,ry —€), one can extract from (z,,) a convergent subsequence
for each ¢ > 0. By applying a diagonal process, one easily sees that one can
extract from (z,) a Cauchy subsequence. Consequently this sequence converges
and B,(a,ro) is compact. The local compactness of M implies that B,(a,ro + 1)
is still compact for n > 0 small enough, which is a contradiction if ro < +o0.
b) = c¢). Suppose M is connected. Choose a point g € M and set o(z) =
+6(zo,z). Then ¢y is exhaustive, and this is a Lipschitz function of order i,
therefore v is differentiable almost everywhere on M. One obtains the sought for
function v by regularization.
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c) => d). Let ¢ be as in a) and let p € C°(R,R) be a function such that p =1
on]—o00,1.1], p=0on [1.99,+00[ and 0 < p' <2 on [1,2]. Then

K, ={z € M; ¢(z) <2"7'}, 0,(x) = p(27" " "(z))

satisfies the desired properties.

d) = c). Set ¢y => 2" 1(1-6,).

¢) = b). The inequality |dy|, < 1 implies |¢(z) — ¥ (y)| < d,(x,y) for any
x,y € M, therefore the geodesic ball By(a,r) C {z € M; 0,(x,a) < (a) + 1} is
relatively compact.

b) = a). This is obvious! O

Let (M, g) be a Riemannian manifold, not necessarily complete for the moment,
E a Hermitian vector bundle on M, with a given Hermitian connection D. One
considers the unbounded operator between Hilbert spaces, still denoted by D

D : L*(M,A’T;; ® E) — L*(M,A\P"'T}; @ E),

for which the domain Dom D is defined as follows: A section u € L? is said to
be in Dom D if Du calculated in the sense of distributions is still in L2. The
domain thus defined is always dense in L%, because Dom D contains the space
D(M,APT},E) of C*™ sections with compact support, which is itself dense in L?.
Moreover, the operator D thus defined, albeit not bounded, is closed, that is to say
its graph is closed; this follows at once from the fact that the differential operators
are continuous in the weak distribution topology. In the same way, the formal
adjoint D* admits an extension to a closed operator

D* : L*(M,AP"'T}, @ E) — L*(M,A?, Ty, ® E).

Some well-known elementary results of spectral theory due to Von Neumann guar-
antees, in addition, the existence of a closed operator D}, with dense domain, called
the Hilbert space adjoint of D, defined as follows: An element v € L?(M, AP T,
E) is in Dom Dj, if the linear form L? — C, u — ((Du,v)) is continuous. It is
thus written u — ((u,w)) for a unique element w € L?(M, AP, T}, ® E). One sets
Djv =w, so that Dj, is defined by the usual adjoint relation

((Du,v)) = ((u, D3,v)) Vu € Dom D.

(Note that the formal adjoint D*, itself, is defined by requiring only the validity
of their relation for u € D(M,A?, Ty, ® E).) It is clear that one always has Dom
D3, C Dom D* and that D3, = D* on Dom Dj,. In general, however, the domains
are distinct (this is the case for example if M =]0,1[, g = d2®, D = d/dz !). A
fundamental observation is that this phenomenon cannot occur if the Riemannian
metric is complete.

12.2. PROPOSITION. If the manifold (M, g) is complete, then:
a) The space D(M,A*T} E) is dense in Dom D, Dom D* and Dom D NDom D*
respectively, for the norms of the graphs

we (Jul| + [|Dull,  w e ful] + [[D%], v ful] + [[Dul] + || D]

b) Dj, = D* (i.e. the two domains coincide), and D} = D** = D.
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c) Let A = DD* + D*D be the Laplacian calculated in the sense of distributions.
For anyu € Dom A C L*(M,A*T;® E), one has (u, Au) = ||Dul|>+||D*ul|?.
In particular

Dom A € Dom D NDom D*, KerA = Ker D N Ker D*,

and A is self adjoint.
d) If D? = 0, there is an orthogonal decomposition

L*(M,A*T}; ® E) = H}:(M,E) ®Tm D @ Tm D*,
KerD =H}.(M,E) ®Im D,

where Hyo(M,E) = {u € L*(M,A*T}; ® E); Au = 0} is the space of L?
harmonic forms on M.

PROOF. a) It is necessary to show for example that any element v € Dom D
can be approximated in the norm of the graph of D by C'* forms with compact
support. By assumption, u and Du are in L2. Let (8,) be a sequence of truncating
functions as in Lemma 12.1 d). Then §,u — w in L*(M,A*T}; ® E) and D(f,u) =
0,Du + df, N u where

|dB, A ul < |dOy||u] <277 |ul.

Consequently df, A u — 0 and D(f,u) — Du. By replacing u by 6,u, one can
assume that u has compact support, and with the aid of a partition of unity, one
is reduced to the case where Supp u is contained in a coordinate chart of M on
which E is trivial. Let (p¢) be a family of regular kernels. A classical lemma in the
theory of PDE (Friedrich’s Lemma), shows that for any differential operator P of
order 1 with C' coefficients, one has ||P(p. x u) — pPu||z2 — 0, as € tends to 0
(u being an L? section with compact support in the coordinate chart considered).
By applying this lemma to P = D, P = D* respectively, one arrives at the desired
properties of density.

b) is equivalent to the fact that

({(Du,v)) = {{u, D*v)), Vu € Dom D, Vv € Dom D*.
However, according to a), one can find u,, v, € D(M,A*T}; ® E) such that
u, >u, v, —v, Du,— Du and D*v, - D*v in LQ(M, ATy @ E).

The desired equality is then the limit of the equality ((Du,,v,)) = ({uy,, D*v,)).
c) Let u € Dom A. Since Au € L? and that A is an elliptic operator of order
2, one obtains u € W2 _ by applying the local version of the Garding inequality.

loc

In particular Du, D*u € Wil C L2 _, and we can apply integration by parts as
needed, after multiplying the respective forms by C* functions 6, with compact
support. Some simple calculations then give

|6, Dul? + |16, D*ul|* =
— (62D, Du) + ((u, D(62D"u))
D(#%,u), Du)) + ((u,02DD*u)) — 2((8,d8, A u, Du)) + 2({u,8,df, A D*u))
92u ,Au))y — 2((df, Au,8,Du)) + 2((u,dd, A (,D;})))
o, Au)) + 277 (216, Dul|[ul] + 2116, D*u|||ul])
92u , Au)) + 277 (|16, Dul)* + |10, D*ul|* + 2|[u||?).
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Consequently

1
1-2v

18, Dul? + (16, D"ul? < ({62, A + 21~ u ).
By letting v tend to +o00, one obtains ||Du||? + ||D*u||* < {(u, Au)), in particular
Du, D*u are in L?. This implies

((u, Av)) = ((Du, Dv)) + ((D*u, D*v)), Vu,v € Dom A,

because the equality holds for 8,4 and v, and that 6,4 — u, D(6,u) - Du and
D*(8,u) — D*u in L%, Tt follows from this that A is self-adjoint.

d) If P is a closed operator with dense domain on a Hilbert space H, then Ker P
is closed and Ker P* = (Im P)1. Consequently (Ker P*)+ = (Im P)1+ = Im P.
Since Ker P* itself is also closed, we have

H = Ker P* @ (Ker P*)* = Ker P* @ Tm P.
This result applied to P = A gives
Hi2(M,E) =KerA @Im A,

and it is clear according to (12.2 ¢) that Im A C Im D @& Im D*. Furthermore, one
easily sees that Ker A, Im D and Im D* are pairwise orthogonal by using (12.2
a,c). Property d) follows as in the case where M is compact. O

12.3. DEFINITION. Assume given a Riemannian manifold (M,g) and a Her-
mitian bundle E with a flat Hermitian connection D. We denote by Hf ¢ ;. (M, E),

the L? de Rham cohomology groups, namely the cohomology groups of the complex
(K*,D) defined by

K? ={u € L*>(M,A\’Ty; ® E); Du € L*}.

In other words, one has Hf , ,.(M, E) = Ker D/Im D, where D is the L? exten-

sion of the connection calculated in the sense of distributions. Since H7,(M,E) =
Ker D/Im D according to (12.2 d), it follows that:

12.4. PROPOSITION. There is a canonical isomorphism
HY (M, E) ~ HSRLZ (M, E)sep
between ’H’L’2 (M, E) and the separated space associated to the L de Rham cohomol-
0gy.

In general the space Hfy ;.(M,E) is not always separated, but it is in the
important case where the L? cohomology is finite dimensional:

12.5. COROLLARY. If (M, g) is complete and if H, ;.(M, E) is finite dimen-
sional, then this space is separated and there is a canonical isomorphism

MY (M, E) ~ Hy 2(M, E).
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PrOOF. The space KP can be considered as the Hilbert space with norm u —
(||u||z2 + || Dul|z2)'/2. Tt is a question of seeing that Tm D = D(KP~') is closed in
Ker D, Ker D being itself closed in K?. Now D : K?~! — Ker D is continuous and
its image is of finite codimension by hypothesis. The fact that the image is closed
is then a direct consequence of the Banach Theorem. a

12.6. Remark. For L? de Rham cohomology, observe that one obtains the
identical cohomology groups when working with the subcomplex of global L? C'>°-
forms, that is

K? = {u € C®(M,A\’T}; ® E); u€ L* and Du € L*} C K”.

For that, it suffices to construct an operator K* — K*® which is a homotopic inverse
to the inclusion. This can be done by using a regularization process by flows of
vector fields tending to 0 sufficiently quickly, near infinity.

12.B. Case of Hermitian and complete Kahler manifolds. The pre-
ceding results admit of course complex analogs, with almost identical proofs (the
details will be therefore left to the reader). One says that a Hermitian or Kéahler
manifold (X, w) is complete if the underlying Riemannian manifold is complete.

12.7. PROPOSITION. Let (X,w) be a complete Hermitian manifold and E a
Hermitian holomorphic vector bundle over X. There is a canonical isomorphism

MY (M, E) ~ HPY (M, E)sep

between the space of L? harmonic forms and the separated L? Dolbeault cohomology
group, this latter space being itself equal to HY3' (M, E) if the Dolbeault cohomology
is finite dimensional.

12.8. COROLLARY. Let (X,w) be a Kdhler manifold and E a flat Hermitian
bundle over X.
a) Without further assumptions, there is, for any k, an orthogonal decomposition

Hi.(M,E)= @ Hy{(M,E), HPI(M,E)=HiP(M,E").
pt+q=k
b) If moreover (X,w) is complete, there are canonical isomorphisms

Hf>(M,E)sep ~ @@ HU (M, E)sep, HLI(M, E)sep ~ HEP (M, E*)gep.
p+a=k

¢) If (X,w) is complete, and if the L*> de Rham and Dolbeault cohomology groups
are finite dimensional, there are canonical isomorphisms

Hf>(M,E)~ P HY/(M,E), HYY(M,E)~HLP(M,E").
pt+e=k

12.C. Hodge theory of weakly pseudoconvex Kahler manifolds. The
weakly pseudoconvex K&hler manifolds furnish an important example of complete
Kahler manifolds.
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12.9. DEFINITION. A complex manifold X is said to be weakly pseudoconvex
if there exists a C* psh exhaustion function ¢ on X. (Recall that a function
is said to be exhaustive if for any ¢ > 0 the level set X, = ¢~!(c) is relatively
compact, i.e. ¥(z) tends to +0o when z tends towards infinity, according to the
stratification of the complements of compact parts of X.)

In particular, the compact complete manifolds X are weakly pseudoconvex
(take ¢ = 0), as well as the Stein manifolds. For example the affine algebraic
subvarieties of CV (take ¢(z) = |2|?), the open balls X = B(z,r) (take ¢(z) =
1/(r — |z — 20]%)), the open convex sets, and so on. A basic observation is the
following;:

12.10. PROPOSITION. Any weakly pseudoconvex Kdhler manifold (X,w) has a
complete Kahler metric @.

PRrROOF. For any increasing convex function x € C*(R,R), we will consider
the closed (1,1)-form

wy = wHidd" (Yo ) = w+ X (W) dd) + X" ()i d Ad".

Since the three terms are positive or zero, this is a K&hler metric. The presence
of the third term implies that the norm of x”(1/)*/?dy by comparison to wy is less
than or equal to 1, therefore if p is a choice of (x")'/? we have |d(p o ¥)|., < 1.
According to (12.1 c¢), w, will be complete as long as p o ¢ is exhaustive, that is,
as long as lim, o, p(t) = +o0o0. We therefore obtain the sufficient condition

+o00
/ Y ()/?dt = +o0,

to

which is realized, for example, for the choice x(t) =t? or x(t) =t —logt, t > 1.0

We have now established a Hodge decomposition theorem for weakly pseu-
doconvex Kihler manifolds having “sufficiently many strictly pseudoconvex direc-
tions”. Following Andreotti-Grauert [AG62], we introduce the:

12.11. DEFINITION. A complex manifold X is said to be ¢-convex (resp. abso-
lutely ¢-convex) if X has an exhaustion function (resp. a psh exhaustion function)
1, which is strongly ¢-convex on the complement X'\ K of a compact part, i.e. such
that i d'd""¢ has at least n — £ + 1 positive eigenvalues at any point of X\ K, where
n = dim¢ X.

12.12. EXAMPLE. Let X be a smooth projective variety such that there exists
a surjective morphism F : X — Y onto another smooth projective variety Y. Let
D be a divisor of Y and let X = X\F~}(D), Y = Y\D. We assume that F induces
a submersion X \F~1(D) — Y\D and that O(D)p is ample. Then X is absolutely
¢-convex for £ = dim X —dim Y +1. Indeed, the hypothesis of ampleness of O(D)p
implies that there exists a Hermitian metric on O(D) for which the curvature is
positive definite in a neighbourhood of D, that is on an open set of the form Y\ K’
where K' is a compact part of Y\D. Let ¢ € H°(Y,O(D)) be the canonical
section of the divisor D. Then —log|o|? is strongly psh on Y\ K’, consequently
th = —log|o o F|? is psh and strongly f-convex on X\K, where K = F~}(K'). In
addition, v clearly defines an exhaustion on X. Nothing is known of ¢ on K, but
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it is enough to truncate ¢ by taking a maximal regularized ¥ ¢ = max, (1, C') with
a constant C' > supy v to obtain an everywhere psh function ¢ on X.

We now can state the Hodge decomposition theorem for absolutely ¢-convex
manifolds. This result is due to T. Ohsawa [Ohs81, 87]; we present here a simplified
description of a proof of it in [Dem90a]. A purely algebraic approach of these
results was obtained by Bauer-Kosarew [BaK089,91] and [Kos91].

12.13. THEOREM (Ohsawa [Ohs81,87], [OT88]). Let (X,w) be a Kdihler
manifold and n = dim¢ X, and assume that X is absolutely (-convex. Then, in
suitable degrees, there is a Hodge decomposition and symmetry:

HEL(X,C) EB HP4(X,C), HP4(X,C) ~ H*?(X,C), k>n+{,
p+q=k

Hfg (X,0) ~ @ HPU(X,0), HPI(X,C)~H!P(X,C), k<n-—{,
pt+a=Fk
all these groups being finite dimensional (H]ISRC(X, C) and H?1(X,C) denotes here
the cohomology groups with compact support). Moreover, there is a Lefschetz iso-
morphism

WP e HP(X,C) —» H" ™" P(X,C), p+g<n-—L

PROOF. The finiteness of the de Rham cohomology groups concerned is easily
obtained by means of Morse theory. Recall briefly the argument: a suitably small
perturbation of a strongly /-convex exhaustion function gives a Morse function 1)
which is still strongly ¢-convex on the complement X'\ K of a compact set. The real
Hessian D%y of 9 at a critical point induces a Hermitian form on the complexified
tangent space C ® T'x, and its restriction to T;(’0 is identified with the complex
Hessian i d'd"+. Since the complex Hessian has by assumption at least n — £ + 1
positive eigenvalues on X\ K, it follows from this that D?¢ has at most 2n — (n —
¢+ 1) = n+ ¢ — 1 negative eigenvalues on X\ K, without which the positive and
negative eigenvalues of D%t would have a non-trivial intersection. Consequently
all the critical points of index > n + £ are located in K and their number is finite.
This implies that the groups HE (X, C) of degree k > n + ¢ are finite dimensional.
The finiteness of the Dolbeault cohomology groups H”(X,C) = HY(X,0%) is
a result of the theorem of Andreotti-Grauert [AG62] (all the cohomology groups
of higher degree than { with values in a given coherent sheaf are separated and
finite dimensional if the manifold is £-convex). Tt is noted however, that the /-
convexity, although sufficient to ensure the finiteness of the various groups involved,
is not sufficient to guarantee the existence of a Hodge decomposition, nor even
the Hodge symmetry. The reader will find a simple counterexample in Grauert-
Riemenschneider [GRT70].

Now let w be a Kédhler metric on X and v a strongly /-convex psh exhaus-
tion function on X\K. As one can see, the existence of a Hodge decomposition
follows directly from the fact that one has such a decomposition for the L? har-
monic forms. The key point resides in the observation that any L2 . form of degree
k > n+{ becomes globally L? for a suitable choice of metric w, = w+1i d'd" (x o).
The groups HER(X,C) and HP(X,C) could then be considered as the induc-
tive limit of L? cohomology groups. In the sequel, we will use notation such as
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Lgx (X, APIT%), Hp’qw (X,C), to denote the spaces of L?>-forms (resp. harmonic
forms) relative to w,. Since wy is Kéhler, one has

o (M.©) = P Hp, (M,0), H}T, (M,C) =Hj¥ , (M,0),
p+q=k

(12.14)  HE,
with an isomorphism #¥, o (M, C) =~ HY, wy (M, C)sep as long as wy is complete.
In the sequel, we always assume that w, is complete. It is enough, for example, to

impose x"(t) > 1 on [0, +oo].

12.15. LEMMA. Let u be a form of bidegree (p,q) with L2 . coefficients on X.
Ifp+qg>n+{, thenu € Lf,x (X,APIT%) as long as x grows sufficiently quickly
near infinity.

PROOF. At a fixed point € X, there exists an orthogonal basis (8/9z1, ...,
0/0zy,) of T'x , for which

w(r) =1 Z dz; NdZj, wy(z) =1 Z Aj(z)dz; A dzj,
1<<n 1<5j<n

where A; < --- < X, are the eigenvalues of w, relative to w. Then the volume
elements dV,, = w"/2"n! and dV,,, = w}/2"n! are bound by the relation

AV, = A1+ ApdV,,
and for a (p, ¢)-form u = ZI,J uy,ydzr A dz; we find that
-1
|u|3x = Z (H >\k H >\k> |U,]7,]|2.
|I|=p,|J|=q “keT keJ
In particular, it follows that

AL An A,JH

jul? v v = 75

“Ox = )\ “ApAr -
In addition, one has upper bounds
N <1+0X (W), 1<j<n=1, X <140 (@) + Cox"(¥)

where C1 () is the largest eigenvalue of i d'd"v(z) and Ca(z) = |0¢(z)|?. For to
obtain the first n — 1 inequalities, one need only apply the minimum principal on
the kernel of 9¢. Since i d’'d"v has at most £ — 1 zero eigenvalues on X\ K, the
minimum principal also gives lower bounds

| 12 dV,,.

where ¢(z) > 0 is the ¢-th eigenvalue of i d'd"¢(z) and ¢(x) > 0 on X\K. If we
assume x’ > 1, then we can easily deduce

ull, dVe, _ (L+CX @)™ P (L + Cix' (%) + Cox"(¥))
lulZdVe, — (1+ cx’(zp))q_Hl
<G (@) X)X (#) ) on X\K.
For p + ¢ > n + ¢, this is smaller or equal to
Cs (X' ()~ +X"()X (V) 72),




65 12. HODGE THEORY OF COMPLETE KAHLER MANIFOLDS

and it is easy to show that this quantity can be made arbitrarily small towards
infinity on X as x grows sufficiently quickly to infinity on R. a

PROOF OF THE THEOREM (12.13), CONCLUSION. A well-known result of the
Andreotti-Grauert [AG62] guarantees that the natural topology of the cohomology
groups H?(X, F) of any given coherent sheaf F on a {-convex manifold is separated
for ¢ > . If F = O(E) is the sheaf of sections of a holomorphic vector bundle, the
groups H9(X, O(E)) are algebraically and topologically isomorphic to the cohomol-
ogy groups of the Dolbeault complex of forms of type (0,¢) with L . coefficients for
which the d"'-differential has L? coefficients in terms of the Fréchet topology defined
by the semi-norms u — ||u||z2(k) + ||d"u||L2(k)- To see this, one can begin again
word for word the proof of Theorem (1.3), by observing that the L . complex still
furnishes a resolution of O(FE) by the (acyclic) sheaves of C*°-modules. It follows

from what proceeds this that the morphism
LiX(X, APITS) D KerD:jX — H"(X,C) = HY(X, Q%)

is continuous and with closed kernel. Consequently this kernel contains the image
Im D , and we obtain a factorization

HE(X,©) = Ker D /Tm D= H™ (X, 0).

The proof of proposition (12.2) further shows that Im DJj coincides with the image
of D" (D(X,APT%)) in Lix (X, AP9T%). Consider the limit morphism

(12.16) lim H57 (X, C) — HP(X,0),
X

where the inductive limit is extended to the set of increasing C*° convex functions
X, such that x"(¢) > 1 on [0, +oo[, with the order relation

X1 2 X2 <= x1 < x2 and Lim (X,APIT%) C Lim (X,APIT%) for k =p+q.

It is easy to see that this order is filtered by again taking the arguments used
for Lemma (12.15). Furthermore, it is well-known that the de Rham cohomology
groups are always separated in the induced topology from the Fréchet topology on
the space of forms, consequently one has a limit morphism

(12.16pR) lim#% (X,C) — Hfip(X,0)
X

analogous to (12.16). The decomposition formula of Theorem (12.13) follows now
from (12.14), and from the following elementary lemma.

12.17. LEMMA. The limit morphisms (12.16), (12.16)pr are bijective for k =
p+qg>n+L.

PROOF. Let us treat for example the case of the morphism (12.16), and let u
be a L}, . d"-closed form of bidegree (p,q), p+¢q > n+£. Then there exists a choice
of x for which u € Lf)X, therefore u € Ker D}; and (12.16) is surjective. If a class
{u} € HEY (X,C) is sent to zero in HP7(X,C), one can write u = d"v for a certain

form v with L} . coefficients and of bidegree (p,q — 1). In the case p+¢q > n+ ¢,
we will have v € Lix for x = xo large enough, therefore the class of u = Dng in

Hg’Xq(X, C) is zero and (12.16) is injective. When p + ¢ = n + ¢, the form v does
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not necessarily belong anymore to one of the spaces LEJX, but it suffices to show
that u = d"v is in the image of Im D], for x large enough. Let § € C*°(R,R) be a
truncating function such that 6(¢t) =1 for t < 1/2, 6(¢t) =0 for t > 1 and |#'| < 3.
Then
d" (0(ep)v) = O(ep)d"v + €8 (epp)d"p A v.

According to the proof of lemma (12.15), there exists a continuous function C'(z) >
0 such that |U|3dewX < C(1+X"()/X (¥))|v|2dV.,, whereas |d”1/]|3x < 1/x"(®)
according to the same definition of w,. We see therefore that the integral

/ 8/ (e)d"p Auf2_dV, < / C(L/X" () + 1/x () oV
X X

is finite for x large enough, and by dominated convergence d'' (8(ey)v) converges to
d"v=win L7, (X,APITg). a

Poincaré and Serre duality show that the spaces H§R7C(X, C) and H??(X,C)

with compact support are dual to the spaces Hig *(X,C) and H" »"4(X,C)
since the latter are separated and of finite dimension, which is very much the case
if k =p+ q <n—~{. We therefore obtain a dual Hodge decomposition

(12.18) H}(X,C)~ @ HP'(X,C), HPY(X,C) ~HIP(X,C), k<n-L
pt+e=k

In addition, it is easy to prove that the Lefschetz isomorphism

(12.19) WU N e HEI(X,C) = M PP (X, )

given in the limit is an isomorphism between the cohomology with compact support
and cohomology without supports (this result is due to Ohsawa [Ohs81]). Indeed,
if p+ g <n — /¢, the natural morphism

(12.20) HP(X,C) = Ker Dij/Im Di — Ker D/} /Tm DJj_~ H2(X)

is dual to the morphism H7 7"7%(X,C) — H" P"74(X,C), which is surjective
for x large enough according to Lemma (12.17) and the finiteness of the group
H"P"=4(X C). Therefore (12.20) is injective for x large, and after composition
with the Lefschetz isomorphism (12.19), we obtain an injection

WP N 0 = WP e HP(X,C) = Hi5 TP (X, C)ep ~ HI (X, 0),

(The equality w™ P~7 A e = w? P~7 A e follows from the fact that w, has the same
cohomology class as w.) By taking the inductive limit on y and in combination
with the limit isomorphism (12.16), we obtain an injective map

(1221) W™ P TAe : HPIX,C) —» H' " P(X,C), p+q<n-—L

Since the two groups have the same dimension by the Serre duality theorem and
Hodge symmetry, the map is necessarily an isomorphism. a
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12.22. REMARK. Since the Lefschetz isomorphism (12.21) can be factored
through H?7(X,C) or through H?»~ %" P(X,C), we deduce from this that the nat-
ural morphisms

H?(X,C) -» H?1(X,C)
are injective for p+ ¢ < n — £ and surjective for p 4+ g > n + £. Of course, there are
entirely analogous properties for the de Rham cohomology groups.

13. Bochner techniques and vanishing theorems

Let X be a complex manifold with a given Kéahler metric w = )" wjrdz; A dZy.
Let (E,h) be a Hermitian holomorphic vector bundle over X. We denote by D =
D' + D" the Chern connection and ©(FE) the associated curvature tensor.

13.1. Basic commutivity relations. Let L be the operator Lu = w A u
acting on the vector valued forms, and let A = L* be its adjoint. Then

[D"*,L]=id, [D" L]=-id",
[A,D"]=—id*, [A,D']=id".

PRrROOF (OUTLINE). This is a simple consequence of the commutivity relation
(6.14) already shown for the trivial connection d = d' +d"” on E = X x C. Indeed,
for any point zg € X, there exists a local holomorphic frame (ex)i<a<r of E such
that

(ex,en) = o + O(|2).
(The proof is identical to that of Theorem 5.8.) For s = D sy ® ey with sy €
C>(X,APIT%), we obtain

D"s = Zd”S)\ ®ex+ O(|z]), D"s= Zd”*S)\ ®ex + O(|z])-

The stated relations follow easily. O

13.2. The Bochner-Kodaira-Nakano identity. If (X,w) is a Kdhler man-
ifold, the complex Laplacians A’ and A" acting on the forms with values in E
satisfy the identity

A" =A"+[i ©(E), Al

PRrOOF. The latter equality (13.1) gives D"* = —i[A, D'], therefore
A" =[D",D"] = —i[D",[A, D']].
The Jacobi identity implies
[D",[A,D']] = [A,[D',D"]] + [D',[D",A]] = [A,©(E)] +i[D', D",

which is based on the fact that [D’,D"] = D? = ©(E). The stated identity fol-
lows. O

Assume that X is compact and let u € C®°(X,A”9T% ® E) be an arbitrary
(p, @)-form. Integration by parts gives

(A'w,u) = ||D"ul]* + || D™ ul]* > 0,
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and one has an analogous equality for A”. From the Bochner-Kodaira-Nakano
identity, one deduces a priori the inequality

(13.3) D" ul|2 + || D" ul 2/([i O(B), Alu, u)dV.,.
X

This inequality is the well-known Bochner-Kodaira-Nakano inequality (see [Boc48],
[Kod53], [Nak55]). When « is A”-harmonic, we obtain

/ (i O(E), Alu, w)dV’ < 0.
X

If the Hermitian operator [i ©(E), A] is positive on each fiber of AP1T% ® E, then
one sees that w is necessarily zero, therefore

H"(X,E) = H"(X,E) =0

according to Hodge theory. In this approach, the essential point is to know how
to calculate the curvature form ©(E) and to find sufficient conditions for which
the operator [i ©(FE), A] is positive definite. Some elementary (albeit somewhat
agonizing) calculations yields the following formula: If the curvature of E is written
in the form (11.16) and if

’U,:Z’U,,LK)\dZ]/\dEJ@C}\, [J|=p, |[K|=¢q, 1<A<Tr
is a (p, ¢)-form with values in E, then

(13-4) ([i G(E)aA]uau>: Z CikApWJ,jSANUT kS, 1
Gk A, J, S

+ E CikA,uUkR,KAUFR, Ky
kAR K

- E, CijAnUJ, K AUT K s
hxwJ, K

where the summations are extended to all the indices 1 < j,k <mn, 1 < A\, u <rand
all the multi-indices |J| = p, |K| =¢, |R| =p—1, |S| = q— 1. (Here the notation
u K is applied to some not necessarily increasing multi-indices. Also, it is agreed
that the sign of this coefficient is alternating, under the action of permutations.)
Taking into account the complexity of the curvature term (13.4), the sign of this
term is in general difficult to elucidate, except in some very particular case.

The simpler case is the case p = n. All of the terms of the extra second sum-
mation in (13.4) are then such that j = k and R = {1,... ,n}\{j}. Consequently
the second and third summations are equal. It follows that

(1 OE),Alu,u) = Y Cipantus,is\Tris
Gk TS

is positive on the (n, ¢)-forms under the hypothesis that E is positive in the sense
of Nakano. In this case, X is automatically Kahler since

w = TrE(i @(E)) =i Z CjkA)\de ANdz =1 @(det E)
7.k,

therefore defines a Kéhler metric.
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13.5. NAKANO VANISHING THEOREM (1955). Let X be a compact complex
manifold and let E be a positive vector bundle in the sense of Nakano on X. Then

H"(X,E)=HYX,Kx®E)=0 forall¢g>1. O

Another approachable case is the case where FE is a line bundle (r = 1). Indeed,
at each point z € X, we can then choose a coordinate system, which simultaneously
diagonalizes the Hermitian forms w(z) and ©(E)(z), in such a way that

wz) =1 Z dzj Ndzj, O(E)(z) =1 Z vidzi N dZ;

1<j<n 1<j<n

with 77 < --- < 4,. The eigenvalues of curvature v; = 7;(z) are then defined
in a unique way and depend continuously in z. In the former notation, we have
v; = ¢jjin and all the other coefficients cjx, are zero. For any (p,¢)-form u =
Z ujrdzy NdzZi ® ey, this gives

G Om Ay = Y (szw— Zw)mm‘z

|7 |=p,| K|=q “jET jeK 1<j<n
(13.6) > (v + g = Yamprr == )

Assume that i ©(E) is positive. It is then natural to provide X with the particular
Kéhler metric w =1 ©(E). Then v; =1for j =1,2,...,n and we obtain

(i ©(E),Alu,u) = (p+ ¢ —n)|ul”.
As a consequence:

13.7. KODAIRA-AKIZUKI-NAKANO VANISHING THEOREM ([AN54]). If E is
a positive line bundle over a compact complexr manifold X, then

HP(X,E) = H(X,0% @ E) =0 forp+q>n+1. 0

More generally, if E is a positive vector bundle in the sense of Griffiths (or
ample), of rank » > 1, Le Potier [LP75] has proven that H?9(X,FE) = 0 for
p+q>n+r. The proof is not a direct consequence of the Bochner technique. A
simple enough proof has been obtained by M. Schneider [Sch74], by utilizing the
Leray spectral sequence associated to the projection on X of the projective bundle
P(E) - X.

13.8. EXERCISE. It is significant for various applications to formulate vanish-
ing theorems which are also valid in the case of semi-positive line bundles. There
is, for example, the following result due to J. Girbau [Gir76] : Let (X,w) be a
compact K&hler manifold, assume that E is a line bundle and that i ©(E) > 0 has
at least n — k positive eigenvalues at each point, for a certain integer £ > 0. Then
HP¢(X E)=0forp+qg>n+k+1.

INDICATION. Use the Kéhler metric we =1 O(E) 4 ew with small € > 0.
A more natural and powerful version of this result has been obtained by A.

Sommese [Som78, ShSo085] : Following these authors, we say that E is k-ample
if a certain multiple mFE is such that the canonical map

(I>|mE\ : X\B|mE‘ — pN-1
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has all its fibers of dimension < k and dim B),,,g| < k. If X is projective and if F
is k-ample, then H?9(X,E)=0forp+qg>n+k+ 1.

INDICATION. Prove the dual result, that H?4(X, E~!) = 0for p+q<n—k—1,
by induction on k. First show that E is 0-ample if and only if E is positive. Then
use some hyperplane sections Y C X to prove the induction step, by considering
the exact sequences

0> M RE'0(-Y) =05 @E~! - (O @ E7l);y =0,
00 OEY = (B @E )y - 0 @ By} —0. O

14. L? estimations and existence theorems

The starting point is the following L? existence theorem, which is essentially
due to Hérmander [H6r65, 66], and Andreotti-Vesentini [AV65]. We only sketch
the principal ideas, while referring for example to [Dem82] for a detailed exposition
of the techniques considered in the situation here.

14.1. THEOREM. Let (X,w) be a complete Kihler manifold, and let E be a
Hermitian vector bundle of rank r on X, such that the curvature operator A =
AR, = [ ©(E),Ay] is semi-positive on all the fibers of AP'Tx ® E, q¢ > 1. Let
g € L*(X,APT% ® E) be a form satisfying

D"g=0 and / (A7 1g, g)dV,, < +oo.
X

(At the points where A is not positive definite, we assume as a precondition that
A~lg exists almost everywhere. We then choose the preconditional term A~1g of
minimal norm, orthogonal to Ker A.) Then there exists f € L*(X,AP T} ® E)
such that

D"f=g and /IfIQdeS/M_lg,g)de-
X X

PRrROOF. Letu € L*(X,APT% ® E) be a form such that D"u € L? and D"*u €
L? in the sense of distributions. Lemma (12.2 a) shows (under the indispensable
hypothesis that w is complete) that u is the limit of a sequence of C*° forms u,, with
compact support in such a way that v, — v, D"u, — D"u and D'"*u,, — D"*u in
L?. Tt follows that a priori the inequality (13.3) extends to arbitrary forms u such
that u, D"u, D"*u € L?. Now, since Ker D" is weakly (and therefore strongly)
closed, we obtain an orthogonal decomposition of the Hilbert space L?(X, AP4T% ®
E), namely

L*(X,APIT% @ E) = Ker D" @ (Ker D).

Let v = v; + v2 be the corresponding decomposition of a C* form v € DP9(X, E)
with compact support (in general, vy, vy do not have compact support!). Since
(Ker D")* = Im D"* C Ker D"* by duality and g, v; € Ker D" by hypothesis, we
obtain D"*vy = 0 and

(g, 0) 2 = [{g,0n)* < /X (A~ g, )V, /X (Avy,v1)dV,
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by applying the Cauchy-Schwartz inequality. The inequality (13.3) a priori, applied
to u = vy gives

/X<Av1av1>de <|ID" o1 [[? + [|D"01][* = [|D"*va]|* = || D"*v]|*.
Combining these two inequalities we find that

o0 < ([ (47 gt ) 1ol

for any C* (p,q)-form v with compact support. This shows that there is a well-
defined linear form

w=D"v (v,g), L*(X,AP""'T% ® E)> D"*(D"(E)) = C

on the image of D"*. This linear form is continuous in the L? norm, and its norm

is < C with
1/2
C= ( / <A—1g,g>de) |
X

According to the Hahn-Banach Theorem, there exists an element
feL*(X,AP"!'T: ® E)

such that ||f|| < C and (v, g) = (D"*v, f) for any v, consequently D" f = g in the
sense of distributions. The inequality || f|| < C is equivalent to the latter estimation
in the theorem. a

The preceding L? existence theorem can be applied in the general context
of weakly pseudoconver Kahler manifolds (see definition (12.9)), and the same if
the Kéahler metric considered w is not complete. Indeed, according to Proposition
(12.10), we arrive at complete Kéhler metrics by setting

we=w+é dd"p? =w+ 22 pd'd"Y +idp Ad'p)

with a C™ psh exhaustion function 1 > 0. As a consequence, the L? existence
theorem (14.1) applies to each Kéhler metric w.. Indeed one can show (the calcula-
tions being left to the reader!) that the quantities |g|2dV,, and ((A%’:Iw)’lg,g)wde
are decreasing functions of w when p = n = dim¢ X. For a D"-closed form g of
bidegree (n, q), we therefore obtains solutions f. of the equation D" f. = g satisfying

/ 2, AV, < / (AT ) g, g)u.dVe, < / (ALY, g) V.
X X X

These solutions f. can be uniformly bounded in the L? norm on any compact set.
Thus we can extract a weakly convergent subsequence in L?. The limit f is a
solution of D" f = g and satisfies the required L? estimation relative to the metric
w initially given (which, to repeat, is not necessarily complete). A particularly
important case is the following;:
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14.2. THEOREM. Let (X,w) be a Kdihler manifold, dim X = n. Assume that
X is weakly pseudoconvex. Let E be a Hermitian line bundle and let

Yi(x) <o <)

be the eigenvalues of curvature (i.e. the eigenvalues of i ©(E) with respect to the
metric w) at any point x. Assume that the curvature is semi-positive, i.e. v > 0
everywhere. Then for any form g € L*(X,A™T% ® E) satisfying

D'g=0 and /X('n bt ) glPdV, < oo,

(one assumes therefore g(z) = 0 almost everywhere at all points where vy, (z)+-- -+
v4(z) = 0), there exists f € L*(X, A"~ 'T% ® E) such that

D'f=g and 2/X|f|2deS/X(%+---+7q)_1|gl2de-

PROOF. Indeed, for p = n, formula (13.6) shows that
<A’U,,’U,> Z (’Yl +t 7q)|u|27

therefore (A~ u,u) > (71 + -+ + ) " Hul? O

An important observation is that the above theorem still applies when the
Hermitian metric of F is a singular metric with positive curvature in the sense of
currents. Indeed, by a process of regularization (convolution of psh functions by
regular kernels), the metric can made C* and the solutions obtained by means
of Theorems (14.1) or (14.2), since the regular metrics have limits satisfying the
desired estimates. In particular, we obtain the following corollary.

14.3. COROLLARY. Let (X,w) be a Kdhler manifold, dim X = n. Assume that
X is weakly pseudoconvex. Let E be a holomorphic bundle provided with a singular
metric for which the local weight is denoted by ¢ € Ll . Assume that

loc*
iOFE)=2idd"¢>ew

for a certain € > 0. Then for any form g € L*(X,A™T% ® E) satisfying D" g = 0,
there exists f € L*>(X,AP17'T% ® E) such that D" f = g and

1
/ fPe2edv, < - / lgl2e22dV,. 0
X qge€ Jx

We denoted here somewhat incorrectly the metric in the form |f|? e=2%, as
if the weight ¢ were globally defined on X (certainly, this is not possible if E is
globally trivial). By abuse of notation, we will nevertheless use this same notation
because it clearly underlines the dependence of the L? norm on the psh function
associated to the weight.

15. Vanishing theorems of Nadel and Kawamata-Viehweg

We begin by introducing the concept of multiplier ideal sheaves, following A.
Nadel [Nad89]. The principal idea in fact goes back to the fundamental work of
E. Bombieri [Bom70] and H. Skoda [Sko72].
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15.1. DEFINITION. Let ¢ be a psh function on an open set & C X. We
associate to , the sheaf of ideals 7 () C Ogq formed from the germs of holomorphic
functions f € Oq, such that |f|?e™2¢ is integrable with respect to the Lebesgue
measure in the local coordinates x. This sheaf will be called the multiplier ideal
sheaf associated to the weight .

The variety of zeros V(7 (¢)) is therefore the set of points in a neighbourhood
for which e~2¢ is non-integrable. Of course, such points cannot appear where ¢
has logarithmic poles. The precise formulation is the following.

15.2. DEFINITION. We say that a psh function ¢ has a logarithmic pole with
coefficient v at a point x € X if the Lelong number

= liminf —2&)
v(p,z) = llgrggf og |2 — |

is non-zero and if v(p,z) = 7.

15.3. LEMMA. (Skoda [Sko72]). Let ¢ be a psh function on an open set

QC C" and let x € Q.

a) If v(p,x) < 1, then e 2% is integrable in a neighbourhood of x, in particular
j(‘P)m = OQ,.T'

b) If v(p,x) > n+s for a certain integer s > 0, then e=2¢ > Clz —z|™2""%° in a
neighbourhood of © and J(¢)s C mflfxl, where mq , denotes the mazimal ideal
Of 09795.

PROOF. The proof rests on some classical estimations of complex potential
theory, see H. Skoda [Sko72]. O

15.4. PropPOSITION ([Nad89]). For any psh function ¢ on Q C X, the sheaf
J (@) is a coherent sheaf of ideals on Q.

PROOF. Since the result is local we can assume that €2 is the unit ball in C*. Let
H,(Q) be the set of the holomorphic functions f on Q such that [, |f|[?e 2?d\ <
+00. According to the strong Noetherian property of coherent sheaves, the set
H,(Q) generates a coherent sheaf of ideals J C Oq. It is clear that J C J(p);
for to show equality, it suffices to verify that J, + J (). N mf;rml = J(p), for any
integer s, by virtue of Krull’s lemma. Let f € J(p), be a germ defined on a
neighbourhood V of z and let # be a truncating function with support in V', such
that # = 1 in a neighbourhood of . We can solve the equation d"u = g := d"(0f)
by means of L? estimations of Hormander (14.3), where E is the trivial line bundle
Q x C provided with the strictly psh weight

¢(2) = p(2) + (n + 5)log|z — o] + |2,

We obtain a solution u such that [, [ul?e~2¢|z — 2| ~2("*$)dX\ < oo, therefore F =
0 f — u is holomorphic, F € H,(Q) and fo — F, = ug € T () N m‘;fxl This proves
our assertion. O

The multiplier ideal sheaves satisfy the following essential functorial property,
relative to the direct images of sheaves by modifications.
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15.5. PROPOSITION. Let u : X' — X be a modification of non-singular com-
plex varieties (i.e. a proper holomorphic map that is generically 1 : 1), and let ¢
be a psh function on X. Then

1 (O(Kx) @ J(pop) =O0(Kx)®T(p).

PRrROOF. Let n = dim X = dim X’ and let S C X be an analytic subvariety
such that p: X'\S" — X\S is a biholomorphism. By definition of multiplier ideal
sheaves, O(Kx) ® J(p) is identified with the sheaf of holomorphic n-forms f on
some open set U C X, satisfying i?” fAfe~2¢ € L} .(U). Since ¢ is locally bounded
above, we can likewise consider the forms f which a priori are defined only on U\ S,
because f is in L (U), and thus automatically extends through S. The change of
variables formula gives

/ i”2f A fe 2% = / i”2,u*f A p* fe 2eom,
o u=1(U)

therefore f € T'(U, O(Kx) ® J(¢)) if and only if p*f € T(u= 1 (U),0(Kx) ® J(po
1t)). This proves Prop. 15.5. O

15.6. REMARK. If ¢ has algebraic or analytic singularities (cf. definition 11.7),
the calculation of J (i) is reduced to a purely algebraic problem.

The first observation is that J(¢) is easily calculated if ¢ = ) o log |g;| where
D; = g;l(O) are smooth irreducible divisors with normal crossings. Then [J () is
the sheaf of holomorphic functions h on the open set U C X, satisfying

/ Bf* T 1g;12*dV < +oo.
U

Since the g; can be taken as coordinate functions in suitable local coordinate sys-
tems (z1,...,2,), the integrability condition is that h is divisible by [] g;nj, where
mj — a; > —1 for each j, i.e. m; > |a;] (where | | denotes the integral part).
Consequently

J(p) = O(=|D]) = O(=)_la;|D;)
where | D] is the integral part of the Q-divisor D = > «;D;.

Now consider the general case of algebraic or analytic singularities and assume
that

(0%
o~ S5 (1A + -+ [1n]?)

in a neighbourhood of the poles. According to the remark stated after definition
11.7, we can assume that the (f;) are generators of the sheaf of integrally closed
ideals § = J(p/a), defined as the sheaf of holomorphic functions h such that |h| <
Cexp(p/a). In this case, the calculation is done as follows.

Let us first choose a smooth modification p : X — X of X such that p*J is an
invertible sheaf O(—D) associated to a divisor with normal crossings D = > A; D;,
where (D;) are the components of the exceptional divisor of X. (Consider the
blow-up X' of X along the ideal J, so that the inverse image of J on X' becomes
an invertible sheaf O(—D’), then blow-up X' again so as to render X' smooth and
D' with normal crossings, by invoking Hironaka [Hi64].) We then have Ky =



75 15. VANISHING THEOREMS OF NADEL AND KAWAMATA-VIEHWEG

pw*Kx + R where R = ) p;D; is the divisor of zeros of the jacobian J, of the
blow-up map. From the direct image formula 15.5, we deduce

T () = 1 (O(K g — 0" Kx) ® T (¢ 0 ) = 1« (O(R) ® T (@ 0 ).
Now the (f; o ) are generators of the ideal O(—D), therefore

pour~a Xloglgl

where the g; are local generators of O(—D;). We are thus reduced to calculating
the multiplier ideal sheaf in the case where the poles are given by a Q-divisor with
normal crossings > aX;D;. We obtain J (¢ o ) = O(—=>_|aA;]D;), therefore

JT(@) = 105 (> (pj — lar;])D;). O

15.7. EXERCISE. Calculate the multiplier ideal sheaf J(y) associated to the
psh function ¢ = log(|z1|*" + --- + |2p|*?), for arbitrary real numbers a; > 0.

INDICATION. By using Parseval’s formula and polar coordinates z; = rjei@f,
show that the problem is equivalent to determining for which p-tuples (f1,...,0p) €

NP the integral

/ rfﬁl .. -rzﬁprldrl erpdr, / t5,6’1+1)/a1 .. -t;’g”ﬂ)/a” dt, dt,
XTI i I P 0.1 ti 4+t t t

is convergent. Deduce from this that 7 () is generated by the monomials 2" - - - zfj"
such that > (8p + 1)/ap > 1. (This exercise shows that the analytic definition of
J () is also sometimes very convenient for calculations). O

Let E be a line bundle over X with a given singular metric A with curvature
current O (E). If ¢ is the weight representing the metric h on an open set Q C X,
the sheaf of ideals J(y) is independent of the choice of the trivialization. It is
therefore the restriction to Q of a global coherent sheaf on X that we will denote
by J(h) = J(p), by abuse of notation. In this context, we have the following
fundamental vanishing theorem, which is probably one of the most central results
in algebraic or analytic geometry. (As we will see later, this theorem contains the
Kawamata-Viehweg vanishing theorem as a special case.)

15.8. NADEL VANISHING THEOREM ([Nad89], [Dem93b]). Let (X,w) be a
weakly pseudoconvexr Kdhler manifold, and let E be a holomorphic line bundle on
X with a given singular Hermitian metric h of weight ¢. Assume that there exists
a positive continuous function € on X such thati On(E) > ew. Then

HY(X,0(Kx + E)® J(h)) =0 forallg>1.

PROOF. Let L7 be the sheaf of germs of (n,q)-forms u with values in E and
with measurable coefficients, for which |u|?e™2¢ and |d"u|?e 2% are simultaneously
locally integrable. The operator d'’ defines a complex of sheaves (£*,d") which is
a resolution of the sheaf O(Kx + E) ® J(¢): Indeed, the kernel of d” in degree
0 consists of the germs of holomorphic n-forms with values in E which satisfy the
integrability condition. Therefore the coefficient function belongs to J(¢), and the
exactness at degree ¢ > 1 arises from Corollary 14.3 applied to arbitrary small balls.
Since each sheaf £7 is a C*°-module, L® is a resolution by acyclic sheaves. Let
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be a C* psh exhaustion function on X. We apply Corollary 14.3 globally on X,
with the initial metric of E multiplied by the factor e™X°% where y is an increasing
convex function of arbitrary growth at infinity. This factor can be used to ensure
convergence of integrals at infinity. From Corollary 14.3, we then deduce that
HY(T'(X,L*)) =0 for ¢ > 1. The theorem follows by virtue of the de Rham-Weil
Isomorphism Theorem (1.2). O

15.9. COROLLARY. Let (X,w), E and ¢ be given as in Theorem 15.8, and
assume given T1,...,xrN isolated points of the variety of zeros V(J(¢)). Then
there exists a surjective map

H(X,0(Kx + E)) — P OKx +E).; ® (0x/J(p))
1<G<N

Tj

ProoF. Consider the long exact cohomology sequence associated to the short
exact sequence 0 — J(¢) - Ox — Ox/J(p) — 0, twisted by O(Kx + E), and
apply Theorem 15.8 to obtain the vanishing of the first group H'. The stated
surjective property follows. O

15.10. COROLLARY. Let (X,w), E and ¢ be given as in Theorem 15.8. As-
sume that the weight function ¢ satisfies v(p,x) > n+s at a given point © € X for
which v(p,y) < 1, for y # x close enough to x. Then H°(X,Kx + E) generates
all the s-jets of sections at the point x.

PRrROOF. Skoda’s Lemma 15.3 b) shows that e~2¢ is integrable in a neighbour-
hood of any point y # z sufficiently close to z, therefore [J(¢), = Ox,,, whereas
J(p)z C m?}c according to 15.3 a). Corollary 15.10 is therefore a special case of
15.9. g

The philosophy of the results (which can be regarded as generalization of the
Hormander-Bombieri-Skoda Theorem [Bom?70], [Sko72,75]), is that the problem
of constructing holomorphic sections of Ky + E can be solved by constructing
suitable Hermitian metrics on E such that the weight ¢ has isolated logarithmic
points at the given points z;.

15.11. EXERCISE. Assume that X is compact and that L is a positive line bun-
dleon X. Let {z1,... ,xn} be a finite set. Show that there exists constants a,b > 0
depending only on L and N such that for any s € N, the group H°(X,O(mL)) gen-
erates the jets of order s at any point z;, for m > as +b.

InDIcATION. Apply Corollary 15.9 to E = —Kx + mL, with a singular metric
on L of the form h = hoe ¥, where hg is C* with positive curvature, € > 0 small,
and ¢(z) ~ log|z — ;| in a neighbourhood of z;. Deduce from this the Kodaira
embedding theorem:

15.12. KODAIRA EMBEDDING THEOREM. If L is a line bundle on a compact
complex manifold, then L is ample if and only if L is positive. O
An equivalent way to state the Kodaira embedding theorem is the following:

15.13. Kodaira criterion for projectivity. A compact complex manifold
X is projective algebraic if and only if X contains a Hodge metric. That is, a
Kahler metric with integral cohomology class.
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ProoF. If X C PV is projective algebraic, then the restriction of the Fubini-
Study metric to X is a Hodge metric. Conversely, if X has a Hodge metric w, the
cohomology class representative {w} in H2(X,Z) defines a complex topological (i.e.
C®) line bundle, say L. Since w is of type (1,1), the exponential exact sequence
(8.20)

H'(X,0%) = H*(X,Z) - H*(X,0) = H**(X,C)
shows that the line bundle L can be represented by a cocycle in H'(X,0%). In
other words, L is endowed with a complex structure. Moreover, there exists a
Hermitian metric A on L such that %@h(L) = w. Consequently, L is ample and
X is projective algebraic.

15.14. EXERCISE (Riemann conditions characterizing Abelian varieties). A
complex torus X = C" /T is called an Abelian variety if X is projective algebraic.
Show by using (15.13) that a torus X is an Abelian variety if and only if there
exists a positive definite Hermitian form H on C* such that Im H (v, v2) € Z for
all 71,7 in the lattice I'.

INDICATION. Use a process of averaging to reduce the proof to the case of
Kahler metric invariant by translations. Observe that the real torus Z~y; + Z-y- de-
fines a system of generators of the homology group H>(X,Z) and that fZ71 1Y =

w(v,72).

15.15. EXERCISE (solution of the Levi problem). Show that the following two
properties are equivalent.

a) X is strongly pseudoconvex, i.e. X admits a strongly psh exhaustion function.

b) X is a Stein, i.e. the global holomorphic functions separate points, furnishing

a system of local coordinates at every point, and X is holomorphically convex.

(By definition, this means that for any discrete sequence (z,) in X, there exists

a function f € H°(X, Ox) such that |f(z,)] — 00.) ad

15.16. REMARK. As long as one is interested only in the case of forms of
bidegree (n, q),n = dim X, the L? estimates extend to the complex spaces acquiring
arbitrary singularities. Indeed, if X is a complex space and ¢ a psh weight function
on X, one can still define a sheaf Kx () on X, such that the sections of Kx (¢)
on an open set U are the holomorphic n-forms f on the regular part U N X,
satisfying the integrability condition i"” f A fe=2 € L (U). In this context, the
functorial property 15.5 can be written (or is written)

s (K xr (p o p)) = Kx (i),

and it is valid for arbitrary complex spaces X, X', u : X’ — X being a modification.
If X is non-singular, one has Kx(¢) = O(Kx) ® J(p), however, if X is singular,
the symbols Kx and J(¢) do not have to be dissociated. The statement of the
Nadel vanishing theorem becomes H?(X, O(E) ® Kx(p)) = 0 for ¢ > 1, under the
same hypothesis (X Ké&hler and weakly pseudoconvex, curvature of E > ew). The
proof is obtained by restricting all the situations to X;es. Although in general Xieq
is not weakly pseudoconvex (a necessary condition being codimXging = 1), Xyeg
is always Kéhlerian complete (the complement of an analytic subset in a weakly
pseudoconvex Kéhler space is Kdhlerian complete, see for example [Dem82]). As a
consequence, the Nadel vanishing theorem is essentially insensitive to the presence
of singularities. d
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We now deduce an algebraic version of the Nadel vanishing theorem obtained
independently by Kawamata [Kaw82] and Viehweg [Vie82]. (The original proof
relies on a different method using cyclic coverings to reduce to the case situation of
the ordinary Kodaira Theorem.) Before stating the theorem, we need a definition.

15.17. DEFINITION. A line bundle L on a compact complex manifold is called
large if its Kodaira dimension is equal to n = dim X, that is, if there exists a
constant ¢ > 0 such that

dim H°(X, O(kL)) > ck™, k> k.

15.18. DEFINITION. A line bundle L on a projective algebraic manifold is
called numerically effective (nef for short) if L satisfies one of the following three
equivalent properties:

a) For any irreducible algebraic curve C' C X, one has L-C = [, ¢1(L) > 0.
b) If A is an ample line bundle, then kL + A is ample for all £ > 0.
c) For any € > 0, there exists a C* Hermitian metric h, on L such that ©,_(L) >

—ew, where w is a fixed Hermitian metric on X.

The equivalence of properties 15.18 a) and b) is well-known and we will omit it
here (see for example Hartshorne [Har70] for the proof). It is clear in addition that
15.18 c) implies 15.18 a), while 15.18 b) implies 15.18 ¢). Indeed if w = ;-O(A)
is the curvature of a metric of A with positive curvature, and if hj is a metric on
L inducing a metric with positive curvature on kL + A, it becomes ki@(L) +
+0(A) > 0, where 5-0(L) > —fw. Now, if D = 3" a;D; > 0 is an effective Q-
divisor, we define the multiplier ideal sheaf [J(D) to be the sheaf 7 () associated
to the psh function ¢ = )" ajlog|g;| defined by the generators g; of O(—D;).
According to remark 15.6, the calculation of J(D) can be done algebraically by
making use of desingularizations i : X — X such that g*D becomes a divisor with
normal crossings on X.

15.19. KAWAMATA-VIEHWEG VANISHING THEOREM. Let X be a projective
algebraic manifold, and let F be a line bundle on X such that a multiple mF of F
can be written in the form mF = L + D, where L is a nef and large line bundle,
and D an effective divisor. Then

HY(X,0(Kx +F)® J(m'D)) =0 for ¢>1.

15.20. COROLLARY. If F is nef and large, then HI(X,O(Kx + F)) = 0 for
q=>1.

PROOF. Let A be anon-singular very ample divisor. There is an exact sequence
0— H°(X,0(kL — A)) — H°(X,0(kL)) — H°(A,O(kL)a),

and dim H°(A,O(kL);4) < Ck™! for a certain constant C' > 0. Since L is large,
there exists an integer ko > 0 such that O(kgL — A) has a non-trivial section. If
E is the divisor of this section, we have O(koL — A) ~ O(E), therefore O(koL) ~
O(A+E). Now, for k > ko, we arrive at O(kL) = O((k—ko)L+ A+ E). According
to 15.18 b), the line bundle O((k — ko)L + A) is ample, therefore it comes with
a C'°° Hermitian metric hy = e ¥*, and with positive definite curvature form
wg = ﬁ@((k — ko)L + A). Let op = > «ajlog|g;| be the weight of the singular
metric on O(D) described in example 11.21, such that %ﬁ@(@(D)) =[D], and in a
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similar way, let g be the weight such that -0 (O(E)) = [E]. We define a singular
metric on O(kL) = O((k — ko)L + A + E) by means of the weight ¢y + ¢g, and
then we obtain a singular metric on O(mF) = O(L+ D), by considering the weight
+(pr + ¢E) + ¢p. Finally, we obtain a metric on F of weight

1 1
vr =—(or +vp) + —vp.
The corresponding curvature form is
L O(F) = 2 (wp + [E]) + ~[D] > ——uwy > 0.
2r km m ~ km

Moreover @F has algebraic singularities, and by taking k sufficiently large we have
1 1 1
J(pr) = j(—E+ —D> = j(—D).
km m m
Indeed, J (¢r) is calculated by taking the integral part of a Q-divisor with normal
crossings, obtained by the means of a suitable modification (as was explained in
remark 15.6). The divisor £ E + L D furnishes therefore the same integral part as

%D when £ is large. The Nadel Theorem then implies the desired vanishing result
for all ¢ > 1. O

16. On the conjecture of Fujita

Given an ample line bundle L, a fundamental question is of determining an
effective integer mg such that mL is very ample for m > mg. The example where
X is a hyperelliptic curve of genus g and where L = O(p) is associated to one of the
2g+2 Weierstrass points, shows that my must be at least equal to 2g+1 (additionally
it is checked rather easily that mo = 2¢g+1 always answers the question for a curve).
It follows from this that my must necessarily depend on the geometry of X, and
cannot depend only on the dimension of X. However, when mL is replaced by the
“adjoint” line bundle Kx + mL, a simple universal answer seems likely to emerge.

16.1. FuJsrtA’s cONJECTURE ([Fuj87]). If L is an ample line bundle on a
projective manifold of dimension n, then
i) Kx + (n+ 1)L is generated by its global sections;
ii) Kx + (n+ 2)L is very ample.

The bounds predicted by the conjecture are optimal for (X, L) = (P" O(1)),
since in this case Kx = O(—n — 1). The conjecture is easy to verify in the case
of curves (exercise!), and I. Reider [Rei88] has solved the conjecture in the affir-
mative in the case n = 2. Ein-Lazarsfeld [EL93] and Fujita [Fuj93| arrived at
establishing part i) in dimension 3, and a very thorough refinement of their tech-
nique allowed Kawamata [Kaw95] to also arrive at the case of dimension 4'. The
other cases of the conjecture, namely i) for n > 5 and ii) for n > 3, remain for the
time being unsolved. The first step in the direction of this conjecture for arbitrary
dimension n has been realized in 1991 (work published 2 years later in [Dem93]),
by means of an analytic method relying on a resolution of a Monge-Ampere equa-
tion. Similar results were obtained by Kollar [Kol92] employing entirely algebraic

IThe technique of Fujita [Fuj93] and Kawamata [Kaw95] has just been simplified consider-
ably and clarified by S. Helmke [Hel96].
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methods. We refer to [Laz93] for an excellent article devoted to the synthesis of
these developments, as well as [Dem94] for the analytic version of the theory.

This section is devoted to the proof of some results dependent on Kujita’s con-
jecture in arbitrary dimension. The principal ideas of interest here are inspired by
some recent work of Y.T. Siu [Siu96]. Siu’s method, which is naturally algebraic
and relatively elementary, consists of combining the Riemann-Roch formula with
the Kawamata-Viehmeg vanishing theorem (however, it will be much more con-
venient to use this Nadel’s formulation of the theorem, using the multiplier ideal
sheaves). Subsequently, X will denote a projective algebraic manifold of dimen-
sion n. The first useful observation is the following classical consequence of the
Riemann-Roch formula:

16.2. Particular case of the Riemann-Roch formula. Let J C Ox be a
coherent sheaf of ideals on X such that the variety of zeros V(J) is of dimension
d (with possibly some components of lower dimension). Let ¥ = )" \;Y; be the
effective algebraic cycle of dimension d associated to the components of dimension
d of V(J) (the multiplicities A; taking into account the multiplicity of the length
of the ideal J along each component). Then, for any line bundle E, the Euler
characteristic x(X, O(E +mL) ® Ox/O(J)) is a polynomial P(m) of degree d and
with leading coefficient L - Y/d! a

The second useful fact is an elementary lemma concerning the numerical poly-
nomials (polynomials with rational coefficients, defining a map of Z into Z).

16.3. LEMMA. Let P(m) be a numerical polynomial of degree d > 0 and with
leading coefficient aq/d!, aq € Z, aq > 0. We assume that P(m) > 0 for all
m > mg. Then

a) For all N > 0, there exists m € [mg, mo + Nd| such that P(m) > N.
b) For all k € N, there exists m € [mg, mg + kd] such that P(m) > a kd/2d L
c) For all N > 2d?, there exists m € [mg,mo + N| such that P(m) > N

PRrROOF. a) Each one of the N equations P(m) =0, P(m) =1,...,P(m) =
N —1 has at most d roots, therefore there is necessarily an integer m € [mg, mg+dN]|
which is not a root of these equations.
b) By virtue of Newton’s formula for the iterated differences AP(m) = P(m+1) —
P(m), we obtain

AP(m) = Z (1) <;Z>P(m +d—j)=aq, VmeLZ.

1<j<d

Consequently, if j € {0, 2,4,...,2] d/2J} C [0,d] is the even integer realizing the
maximum of P(mg + d — j) on this finite set, we obtain

2771 P(mo +d — j) = ((g) + (g) +"'>P(m0+d—j) > aq,

whereby we obtain the existence of an integer m € [mg, mg + d] with P(m) >
aq/2%"t. The result is therefore proven for k = 1. In the general case, we apply
this particular result to the polynomial Q(m) = P(km — (k — 1)my), for which the
leading coefficient is agzk?/d!
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c) If d = 1, part a) already gives the result. If d = 2, a glance at the parabola
shows that

{ asN?/8 if NV is even,

P(m) >
(M) 2 (V2 Z1)/8 i N is odd:

max

mé&[mo,mo+N]

therefore max,,,c(mq,mo+n] P(m) > N whenever N > 8. If d > 3, we apply b) with

k equal to the smallest integer satisfying k?/29°1 > N, i.e. k = [2(N/2)'/9], where
[2] € Z denotes the greater integer. Then

kd < (2(N/2)Y? +1)d < N

so long as N > 2d?, as one sees after a short calculation. O

We now apply the Nadel vanishing theorem in an analogous way to that of
Siu [Siu96], with some simplifications in the technique and some improvements for
the bounds. Their method simultaneously gives a simple proof of a fundamental
classical result due to Fujita.

16.4. TueoreM (Fujita). If L is an ample line bundle on a projective manifold
X of dimension n, then Kx + (n + 1)L is nef.

Using the theory of Mori and the “base point free theorem” ([Mor82], [Kaw84]),
one can show in fact that Kx + (n + 1)L is semi-ample, and that there exists a
positive integer m such that m(Kx + (n + 1)L) is generated by its sections (see
[Kaw85] and [Fuj87]). The proof is based on the observation that n + 1 is the
maximum length of the extremal rays of smooth projective varieties of dimension
n. Their proof of (16.4) is different and was obtained at the same time as the proof
of th. (16.5) below.

16.5. THEOREM. Let L be an ample line bundle and let G be a nef line bundle
over a projective manifold X of dimension n. Then the following properties hold.
a) 2Kx +mL + G simultaneously generates the jets of order s1,...,sp € N at
arbitrary points x1,... ,z, € X, i.e., there exists a surjective map

H(X,002Kx +mL+G)) » @ ORKx +mL+G)® Oxa,/mi L,
1<j<p

s0 long asm > 2437, ;e (3n+isj_1)-
In particular 2K x +mL + G is very ample for m > 2+ (*"F).

b) 2Kx + (n + 1)L + G simultaneously generates the jets of order si,...,s, at

arbitrary points z1,... ,x, € X so long as the intersection numbers LY. Y of
L on all the algebraic subsets Y of X of dimension d are such that
2d-1 3n+2s; — 1
Lty > —— J .
[n/d]? Z ( n
1<j<p

ProoF. The proofs of (16.4) and (16.5a, b) are completely parallel, that is
why we will present them simultaneously (in the case of (16.4), it is simply agreed
that {@1,...,2,} = 0). The idea is to find an integer (or a rational number) mg
and a singular Hermitian metric hg on Kx + moL for which the curvature current
is strictly positive, ©p, > ew, such that V(J(ho)) is of dimension 0 and such
that the weight ¢ of hg satisfies v(pg, ;) > n + s; for all j. Since L and G are
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nefs, 15.18 c¢) implies that (m — mg)L 4+ G has for all m > mg a metric b’ for
which the curvature ©, has an arbitrarily small negative part, say Op > —fw.
Then O, + O > Sw is positive definite. An application of Cor. 15.9 to F' =

Kx +mL+G= (K; +moL) + ((m —mo)L + G) with metric hg ® h' guarantees
the existence of sections of Kx + F = 2Kx + mL + G producing the desired jets
for m > mg.

Fix an embedding @, : X — PN, 1> 0, given by the sections Ao, ..., Ay €
HO(X,uL), and let hy, be the associated metric on L, with positive definite cur-
vature form w = O(L). To obtain the desired metric hg on Kx + moL, one fixes
an integer a € N* and one uses a process of double induction to construct singu-
lar metrics (hg,,),>1 on aKx + by L, for a decreasing sequence of positive integers
by > by >---> b >---. Such a sequence is necessarily stationary and mg will be
precisely the stationary limit mg = lim by /a. The metrics hy,, are chosen to be the
type that satisfy the following properties:

a) hg, is an “algebraic” metric of the form

|7 ()]
Tlga+1),u (U?“ . A;a—i—l)bk —ami)

2 _
||£||hk7u - 2)1/(a+1)u’

(Z1gi§u,0§jgN |

defined by the sections o; € H (X, (’)((a+1)KX+miL)), m; < Ly, 1<i<

a
v, where £ — 71,(£) is an arbitrary local trivialization of aKx + biL. Observe

that o}" -Agaﬂ)brami is a section of
ap((a+1)Kx + m;L) + ((a + 1)b, — am;)ul = (a + 1)p(aKx + b L).

B) ordg;(0;) > (a+ 1)(n + s;) for all i, j;
v) J(hkwt1) D T(hgy) and J(hgv+1) # T (hi,) as long as the variety of zeros

V(T (hi,v)) is positive dimensional.

The weight ¢, = —2(ai1)u log Y |T,§a+1)“(a?“-)\gﬁl)b’“_“m")
harmonic and the condition m; < ‘Ha'l by, implies (a + 1)by, — am; > 1, therefore
the difference g, — m log >~ |7(A;)|? is also plurisubharmonic. Consequently
O, (aKx + bL) = 1d'd"¢py,, > ﬁw. Moreover, condition /) clearly im-
plies that v(pg ., 2;) > a(n + s;). Finally, condition 7) combined with the strong
Noetherian property of coherent sheaves guarantees that the sequence (hk7,,),,21
will eventually produce a subscheme V(7 (hg,.)) of dimension 0. One can check
that the sequence (hy,,),>1 terminates at this point, and we set hy = hi, to be
the final metric thus reached, such that dim V(7 (h)) = 0.

For k = 1, it is clear that the desired metrics (hi,,),>1 exist if by is chosen
large enough. (For example, such that (a + 1)Kx + (by — 1)L generates the jets
of order (a + 1)(n + maxs;) at every point. Then the sections o4,...,0, can be
chosen such that m; = --- =m, = b; —1.) We assume that the metrics (hx,)u>1
and hy, are already constructed, and proceed with the construction of (Ag41,0)v>1.
We use again induction on v, and assume that hy41,, is already constructed and
that dim V(7 (hg41,,)) > 0. We begin our induction with v = 0, and let us declare
in this case that J(hg+1,0) = O (this corresponds to an infinite metric of weight
identically equal to —oo). By virtue of the Nadel vanishing theorem applied to

F,, =aKx + mL = (aKx + by L) + (m — by) L for the metric hy @ (hy)®™ ", we

% of hy,y is plurisub-
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obtain
HYX,0(a+1)Kx +mL)® J(h)) =0 forg>1,m > by.

Since V(J (ht)) is of dimension 0, the sheaf Ox/J (ht) is a skyscraper sheaf and
the exact sequence 0 — J(hy) = Ox — Ox/J(ht) — 0 twisted by the invertible
sheaf O((a + 1)K x + mL) shows that

HY(X,0((a+1)Kx +mL)) =0 forqg>1, m > by.
Analogously, we find
HY(X,0((a+1)Kx +mL) ® J(hgt+1,)) =0 for g > 1, m > by
(it is therefore true for v = 0, since J (hgy1,0) = 0), and when
m > max(bg, br+1) = b,
the exact sequence 0 = J(hgt1,0) = Ox = Ox /T (hg41,v) — 0 implies
HY(X,0((a+1)Kx + mL) ® Ox /T (ht41,)) =0 forg>1, m > by.

In particular, since the group H! above is zero, any section u' of (a + 1)K x +mL
on the sub-scheme V(7 (hg4+1,,)) has an extension u to X. Fix a basis uf,... ,uy
of sections of this sheaf on V(7 (hg+1,,)) and take arbitrary extensions uq,... ,un
to X. Consider the linear map allotting to each section u on X the collection of
jets of order (a + 1)(n + s;) — 1 at the points z;, i.e.

u= Z aju; — @ Jgg;‘,*l)(”“f)*l(u).

1<G<N

Since the rank of the bundle of s-jets is (":s), the target space is of dimension

5= 3 <n+(a+1)T(Ln+Sj)—1>‘

1<j<p

To obtain a section 0,41 = u satisfying condition 3) and having a non-trivial re-
striction 0y, to V(J (hg+1,.)), We need at least N = § + 1 independent sections
u},...,ul. This condition will be realized by applying Lemma (16.3) to the nu-
merical polynomial

P(m) = x(X,0((a + 1)Kx + mL) @ Ox /T (hi+1,))
=h"(X,0((a+ 1)Kx + mL) ® Ox /T (his1,)) >0, m > by.

The polynomial P is of degree d = dim V(7 (hg+1,,)) > 0. We therefore obtain
the existence of an integer m € [by, by, + 1] such that N = P(m) > § + 1, for some
explicit integer n € N. (For example, 5 = n(d + 1) is always appropriate according
to (16.3 a), but it will be equally important to use the other possibilities to optimize
the choices.) We then find a section 0,1 € H°(X, (a + 1)K x + mL) having a non-
trivial restriction o, to V(J(hg41,,)), vanishing to order > (a + 1)(n + s;) at

“j;l bp11 is realized

each point x;. Now set m, 11 = m, and the condition m,; <
ifbp +71 < “j:l br+1. This shows that one can choose recursively

a

b =
e = |

(b + n)J + 1.
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By definition, hgt1,, < hgy1,p, therefore J(hgt1,041) DO J(hgs1,0). It is the
case that J(hg+1,0+1) # J(hky1,0), because J(hgy1,4+1) contains the sheaf of
ideals associated to the divisor of zeros of o,1, whereas 0,1 is not identically
zero on V(7 (hg+1,,)). Now, an easy calculation shows that the iterated sequence
bit1 = L g57(be +n)] + 1 stabilizes to the limit value by, = a(n + 1) + 1, for any
initial value b; greater than this limit. In this way, we obtain a metric ho, with
positive definite curvature on aKx + (a(n+1) + 1)L, such that dim V(7 (hs)) =0
and v(¢so,xj) > a(n + s;) at each point z;.

PROOF OF (16.4). In this case, the set {z;} is taken to be the empty set,
therefore § = 0. By virtue of (16.3 a), the condition P(m) > 1 is realized for at
least one integer m € [by, br + n], therefore one can take n = n. Since uL is very
ample, L has a metric having an isolated logarithmic pole of Lelong number 1 at
each given point (for example, the algebraic metric defined by the sections of uL
vanishing at zg). Therefore

F! =aKx + (a(n+ 1)+ 1)L + nuL

has a metric hl, such that V(J(h!)) is of dimension zero and contains {zo}. By
virtue of Cor. (15.9), we conclude that

Kx+F,=(a+1)Kx +(a(n+1)+1+np)L

is generated by its sections, in particular Kx + W%L is nef. By letting a

tend to +o00, we deduce that Kx + (n + 1)L is nef. O

PROOF OF (16.5 a). It suffices here to choose a = 1. Then

3n+2s; —1
6= Z( n] )

1<j<p

If {x;} # 0, one has § + 1 > (*"~') +1 > 2n? for n > 2. Lemma (16.3 c) shows
that P(m) > ¢ + 1 for at least one m € [by, by +n] with n = 0 + 1. We begin the
induction procedure k — k+ 1 with by = n+ 1 = § + 2, because the only necessary
property for the induction step is the vanishing property

HYX,2Kx +mL)=0 forq>1, m > by,

which is realized according to Kodaira’s vanishing theorem and the ampleness prop-
erty of Kx + byL. (We use here the result of Fujita (16.4), by observing that
by > n+1.) The recursive formula b1 = | (by+n)|+1 then gives by = n+1 = §+2
for all k, and (16.5 a) follows. O

ProOOF OF (16.5 b). Completely similar to (16.5 a), except that we choose
7 =mn,a=1and by =n+1 for all k. By applying Lemma (16.3 b), we have
P(m) > aqk?/2?~! for at least one integer m € [mg,mo + kd], where ag > 0 is
the leading degree coefficient of P. By virtue of Lemma (16.2), we have ag >
infgimy—=a L% - Y. Take k = |n/d]. The condition P(m) > d + 1 can then be
realized for an integer m € [mg, mo + kd] C [mo, mo + n], provided that

. d . d jod—1
Lnf LY [n/d|!/207 > 5,

that which is equivalent to the condition in (16.5 b). O
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The big disadvantage of the described technique is that one must necessarily
utilize multiples of L to avoid the zeros of the Hilbert polynomial, in particular it
is not possible to directly obtain a criterion of large ampleness for 2K x + L in the
statement of (16.5 b). Such a criterion can nevertheless be obtained with the aid
of the following elementary lemma.

16.6. LEMMA. Suppose that there exists an integer p € N* such that pF
simultaneously generates all the jets of order u(n + s;) + 1 at every point x; of a
subset {x1,...,2p} C X. Then Kx + F simultaneously generates all the jets of
order s; at the point x;.

PROOF. Choose the algebraic metric on F' defined by a basis o1,... ,on of
the space of sections of pF which vanish to order p(n + s;) + 1 at each point ;.
Since we are still free to choose the homogenous term of degree pu(n + s;) + 1 in
the Taylor expansion of these sections at the points z;, we see that zi,...,z,
are isolated zeros of r‘lajfl(O). If ¢ is the weight of the metric of F' about z;, we
therefore have p(z) ~ (n + s; + %) log |z — z;| in suitable coordinates. Replace ¢
in a neighbourhood of z; by

¢'(2) = max (p(2), |2)* — C + (n + s;) log |z — z;])

and we leave ¢ unchanged everywhere else (this is possible by taking C' > 0 suf-
ficiently large). Then ¢'(z) = |z|*> — C' + (n + s;)log |z — ;| in a neighbourhood
of z;, in particular ¢’ is strictly plurisubharmonic near z;. In this way, we obtain
a metric A’ on F' with semi-positive curvature everywhere on X, and has positive
definite curvature in a neighbourhood of {z1,...,z,}. The resulting conclusion
then is a direct application of the L? estimates (14.2). ad

16.7. THEOREM. Let X be a projective manifold of dimension n and L an
ample line bundle on X. Then 2K x + L simultaneously generates the jets of order
51,...,8p at arbitrary points z1,... ,x, € X so long as the intersection numbers
LY of L on all the algebraic subsets Y C X of dimension d satisfy

24-1 (n+1)(4n +2s; +1) -2

d J

L-Y>Ln/djd E ( " ), 1<d<n.
1<5<p

PROOF. Lemma (16.6) applied with FF = Kx + L and 4 = n + 1 shows that
the desired property for the jets of 2K x + L occurs if (n + 1)(Kx + L) generates
the jets of order (n + 1)(n + s;) + 1 at the points z;. Lemma (16.6) applied again
with F = pKx + (n + 1)L and u = 1 shows by descending induction on p that it
suffices that F' generates all the jets of order (n+1)(n+s;)+1+(n+1—p)(n+1)
at the points ;. In particular, for 2K x + (n + 1)L it suffices to obtain all the jets
of order (n +1)(2n +s; — 1) + 1. Th. (16.5 b) then gives the desired condition. O

We conclude by mentioning some immediate consequences of th. 16.5, obtained
by taking L = £+ Kx.

16.8. COROLLARY. Let X be a projective manifold of general type, with Kx
ample and dim X =n. Then mKx is very ample for m > mg = (3”7:L1) +4.

16.9. COROLLARY. Let X be a Fano wvariety (that is, a projective manifold
such that —Kx is ample), of dimension n. Then —mKx is very ample for m >

mo = (7).
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17. An effective version of Matsusaka’s big theorem

We encounter here the problem of finding an explicit integer mg such that mL is
very ample for m > mg. The existence of such a bound mg, depending only on the
dimension and the coefficients of the Hilbert polynomial of L, was first established
by Matsusaka [Mat72]. Further Kolldr and Matsusaka [KoM83] have shown that
one could indeed find a bound my = mg(n, L™, Kx - L™ ') dependent only on
n = dim X and on the first two coefficients. Recently, Siu [Siu93] has obtained an
effective version of the same result furnishing an explicit “reasonable” bound my
(although this bound is unfortunately still far from being optimal). We explain here
the method of Siu, starting from some simplifications and improvements suggested
in [Dem96]. The starting point is the following lemma.

17.1. LEMMA. Let F and G be nef line bundles on X. If F™ > nF"!-.G, then
any positive multiple k(F — G) admits a non-trivial section for k > ko sufficiently
large.

PROOF. The lemma can be proven as a special case of the holomorphic Morse
inequalities (see [Dem85], [Tra91], [Siu93], [Ang95]). We give here a simple
proof, following a suggestion of F. Catanese. We can assume that F' and G are very
ample (if not, it suffices to replace F and G by F' = pF + A and G' = pG + A with
A very ample and sufficiently positive to ensure large ampleness of any sum with an
nef bundle, then to choose p > 0 large enough for which F' and G’ satisfy the same
numerical hypothesis as F' and G). Then O(k(F —G)) ~ O(kF -G, —---—G},) for
arbitrary elements G,... , Gy of the linear system |G|. If we choose such elements
G; in general position, the lemma follows from the Riemann-Roch formula applied
to the restriction morphism H°(X,O(kF)) — @ H°(G;,0(kFq,). ad

17.2. COROLLARY. Let F and G be nef line bundles over X. If F is big and if
m >nF"1-G/F", then O(mF — G) can be given a (possibly singular) Hermitian
metric h, having a positive definite curvature form, i.e. such that ©p(mF — G) >
ew, € >0, for a Kdihler metric w.

ProoOF. In fact, if A is ample and ¢ € Q; is small enough, Lemma (17.1)
implies that a certain multiple k(mF — G — €A) admits a section. Let E be the
divisor of this section and let w = O(A) € ¢1(A) be a Kahler metric representing
the curvature form of A. Then mF — G = €A + %E can be given a singular metric
h with curvature form ©,(mF — G) = €Q(A) + £[E] > ew. O

We now consider the problem of obtaining a non-trivial section of mL. The
idea of [Siu93] is to obtain a more general criterion for the ampleness of mL — B
when B is nef. In this way, we will be able to subtract from mL any undesired
multiple of Kx that would be added to L, by application of the Nadel Vanishing
Theorem (for this, we simply replace B, by B plus a multiple of Kx + (n + 1)L).

17.3. PROPOSITION. Let L be an ample line bundle on a projective manifold
X of dimension n, and let B be an nef line bundle on X. Then Kx + mL — B
admits a non-zero section for an integer m satisfying
Ln—l

< B
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ProOF. Let mgy be the smaller integer > nLn;'B. Then mgL — B can be

given a singular Hermitian metric A with positive definite curvature. By virtue of
the Nadel vanishing theorem, we obtain

HY(X,O(Kx +mL—-B)® J(h))=0 forq>1,

therefore P(m) = h°(X,O(Kx + mL — B) ® J(h)) is a polynomial for m > my.
Since P is a polynomial of degree n which is not identically zero, there exists an
integer m € [mg, mo + n] which is not a root. Therefore there exists a non-trivial
section of

H°(X,0(Kx +mL — B)) D H*(X,0(Kx +mL — B) ® J(h))
for some m € [mg,mo + n], as stated. O

17.4. COROLLARY. If L is ample and B is nef, then mL — B has a non-zero
section for at least one integer

Ln—l _B+Ln—1 'KX
m<n In

+n+1>.

PROOF. According to the result of Fujita (16.4), Kx + (n + 1)L is nef. We
can therefore replace B by B + Kx + (n + 1)L in Prop. (17.3). Corollary (17.4)
follows. O

17.5. REMARK. We do not know if the bound obtained in the above corollary
is optimal, but it is certainly not very far from being it. Indeed, even for B = 0, the
multiplicative factor n cannot be replaced by a number smaller than n/2. To see
this, take for example for X a product C; x --- x C), of curves C; of large enough
genus g;, and L = O(a1[p1]) ® --- ® Olan[pn]), B = 0. Our sufficient condition
so that |[mL| # ) becomes in this case m < ) (2g; — 2)/a; + n(n + 1), while for a
generic choice of p; the bundle mL admits sections only if ma; > g; for all j. The
inaccuracy of our inequality thus plays more on one multiplicative factor 2 when
ap = =a, =1land g1 > g2 > -+ > g, — +00. In addition, the additive
constant n + 1 is already the best possible when B = 0 and X = P". O

Up to this point, the method was not really sensitive to the presence of singu-
larities (Lemma (17.1) is still true in the singular case as is easily seen by passing
to a desingularization of X). In the same way, as we observed with remark (15.16),
the Nadel vanishing theorem still remains essentially valid. Prop. (17.3) can then
be generalized as follows:

17.6. PROPOSITION. Let L be an ample line bundle on a projective manifold X
of dimension n, and let B be an nef line bundle on X. For any (reduced) algebraic
subvariety Y of X of dimension p, there exists an integer

< L -B.Y +p+1

m<p—_—"-

R T

such that the sheaf wy @ Oy (mL — B) has a non-zero section. O

By applying a suitable induction procedure relying on the results above, we
can now improve the effective bound obtained by Siu [Siu93] for Matsusaka’s big
theorem. Our statement will depend on the choice of a constant A, such that
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m(Kx +(n+2)L)+G is very ample for m > A, and all nef line bundles G. Theorem
(0.2 ¢) shows that A, < (*"*') — 2n (a more elaborate argument concerning the
recent results of Angehrn-Siu [AS94] allows us in fact to see that A, < n*—n?—n—1
for n > 2). Of course, one expects with this that A, = 1 for all n, if one believes
that the conjecture of Fujita is true.

17.7. EFFECTIVE VERSION OF MATSUSAKA’S BiG THEOREM. Let L and B
be nef line bundles on a projective manifold X of dimension n. Assume that L is
ample and let H = \,,(Kx + (n+2)L). Then mL — B is very ample for

3=1_1)2 (L' (B + H))(B"_1+1)/2(Ln71 _H)S"_Q(n/273/4)71/4
(Ln)3"*2(n/2—1/4)+1/4 :

m > (2n)

In particular mL is very ample for
1 _KX>3"2(n/2+3/4)+1/4

ny\3" "2
m > Cp(L"™) n+2+ n

with Cp, = (2n)3" 7 =D/2(),)3" 7 (n/2+3/4)+1/4,

Proor. We utilize Th. (3.1) and Prop. (17.6) to construct by induction a
sequence of algebraic subvarieties (not necessarily irreducible) X =Y, D Y,—; D
-+ D Yy D Y; such that Y, = U;Y} ; is of dimension p, Y,_; being obtained for
each p > 2 as the union of the set of zeros of the sections

Op,j € HO(Yp,ja Oy, ,;(myp,;L — B))

for suitable integers m, ; > 1. We proceed by induction on the decreasing values
of the dimension p, and we seek to obtain with each step an upper bound m, for
the integer m, ;.

By virtue of Cor. (17.4), we can find an integer m,, such that m,L — B admits
a non-trivial section o,, for

n—1 n—1
mnSnL (B+IL<2(+(n+1)L)SnL L(E+H)‘

Now suppose that the sections oy,,... ,0p41,; have already been constructed. One
then obtains by induction a p-cycle Y, = 3, ;Yp; defined by Y, = sum of the
divisors of zeros of the sections 0,11 ; on the components Yy j, where the multi-
plicity pp,;j of Yy ; C Yp41 1 is obtained by multiplying the corresponding multiplic-
ity pp+1,1x by the order of vanishing of 11, along Y, ;. We obtain the equality of
cohomology classes

Y, = Z(mp-i-l,kL = B) - (kp1 6 Yp+1,) < mppa L= Yoy

By induction, we then obtain the numerical inequality

Y, <mpyr - om, LMTP.
Now, for each component Y}, ;, Prop. (17.6) shows that there exists a section of
wy, ; ® Oy, ;(my ;L — B) for a certain integer
LP~1.B.Y,

2Ly p4 1 < pmps-m L B4 p+ 1.

Mp,j S p Lr-Y. .
p,J
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We have used here the obvious lower bound LP~! - Y, , > 1 (this bound is besides
undoubtly one of weak points of the method...). The degree Y, , by comparison to
H admits the upper bound

Opj :=HP Y, ; <mpy1 - -myHP - L"7P.
The Hovanski-Teissier concavity inequality gives
(L7 - Hp)%(Ln)lfi < vl

([Hov'79], [Tei79, 82], also see [Dem93]), which makes it possible to express our
bounds in terms of only the intersection numbers L™ and L"~' - H. We then obtain

(L=t Hy

Op,j < Mpy1 - -my (Ln)p—1

We have need of the following lemma, which will be proven shortly.

17.8. LEMMA. Let H be a very ample line bundle on a projective algebraic
manifold X, and let Y C X be an irreducible algebraic subvariety of dimension p.
If § = HP .Y is the degree of Y with support in H, the sheaf Hom (wy, Oyv((6—p—
2)H)) has a non-trivial section.

According to Lemma, (17.8), there exists a non-trivial section of
HO’ITL (wa.j ? OYP,J‘ ((6P7j —DP— 2)H)) -

By combining this section with the section of wy, ; ® Oy, ;(m, ;L — B) already
constructed, we obtain a section of Oy, ;(mp ;L — B + (6p; —p — 2)H) on Y, ;.
We do not want H appearing at this stage, which is why we will replace B by
B+ (d,,;—p—2)H. We obtain then a section o, ; of Oy, ;(m,, ;L — B) for a certain
integer my, ; such that

Mp,j < PMpy1 -+ -mu Lt (B+(6pj—p—2H)+p+1
< pipar - mndp L (B + H)

< p(mpi1---mp)
Consequently, by setting m = nL"~!- (B + H), we obtain the descending inductive
relation
(Ln—l _H)p

(Lm)p=t

on the basis of the initial value m,, < M/L™. Let (Mm,) be the sequence of num-
bers obtained by this inductive formula by replacing the respective inequalities by
equalities. Thus we have m, <m, with m,_; = M3(L"~' - H)"~'/(L")" and

Ln
My = ————m>. .,
P In-1.H p+17"'p+1

mp < M (Mpt1-+-my)? for2<p<n—1,

for 2 < p <n — 2. Then by induction

gnp (Ln—l _H)s"*f’*l(n—3/2)+1/2
(Ln)3" 7 H(n=1/2)+1/2

mp <My =M
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We now show that moL — B is nef for
mo = max(ms,m3, ... ,Mp, Mo ---mp,L" - B).

Indeed, let C' C X be an arbitrary irreducible curve. Alternatively, C = Y; ; for
a certain j, or else there exists an integer p = 2,... ,n such that C is contained
in Y,\Y,—1. If C C Y, ;\Y,—1, then o, ; is not identically zero on C. Therefore
(myp ;L — B))c is of positive degree or zero and

(moL —B)-C > (mp;L—-B)-C >0.
In addition, if C' =Y ;, then
(mgL—B)-CZmO—B-f’lZmo—m2---an”_1-B20.

According to the definition of A,, (and the proof where such a constant exists, cf.
(0.2¢)), H + @ is very ample for any nef line bundle G, in particular H +moL — B
is very ample. We again replace B by B + H. This substitution has the effect of
replacing M by the new constant m = n(L"~! - (B + 2H)) and mg by

mo = max(m’namn—la cee M2, Mo ann71 ! (B + H))
The latter term being the largest estimation of m, implies

3n71_1)/2 (Lnil.H)(3n—271)(n73/2)/2+(n72)/2Ln*1.(B_;’_H))

(
mo< M (L™) B~ 2=D)(n=1/2)/2+(n—2)/2+1

e n—1 B~ 141)y/2,7n-1 3" =2(,/2-3/4)—1/4
(3™~ t-1)/2 (L"" - (B+H)) (L™ "-H)
< (277,) (Ln)3"~2(n/2-1/2)+1/4 O

PRrROOF OF LEMMA (17.8). Let X C PV be the embedding given by H, so
that H = Ox(1). There exists a projective linear map P" — PP*! for which the
restriction 7 : Y — PP*! to Y is a finite and birational morphism of ¥ onto an
algebraic hypersurface Y’ of degree § in PP*L. Let s € H°(PP*L, O(§)) be the
polynomial of degree § defining Y'. We claim that for any small Stein open subset
W C PPt! and any holomorphic p-form u, L? on Y'NW, there exists a holomorphic
(p+ 1)-form @, L? on W, with values in O(d), such that @y nw = uAds. In fact,
this is precisely the conclusion of the L? extension theorem of Ohsawa-Takegoshi
[OT87], [Ohs88] (also see [Man93] for a more general version of this result). One
can equally invoke standard arguments in local algebra (see Hartshorne [Har77],
th. II1-7.11). Since Kpp+1 = O(—p — 2), the form @ can be considered as a section
of O(6 —p —2) on W, consequently the morphism of sheaves u — u A ds extends
to a global section of Hom (wy+, Oy+(§ —p—2)). The inverse image of 7* furnishes
a section of Hom(m*wy, Oy ((6 —p—2)H)). Since 7 is finite and generically 1: 1,
it is easy to see that 7*wy+ = wy. The lemma follows. O

17.9. REMARK. In the case of surfaces (n = 2), we can take A, = 1 according
to the result of I. Reider [Rei88], and the arguments developed above ensure that
mL is very ample for
(L-(Kx +4L))?

L2 )
By working through the proof more carefully, it can be shown that the multiplicative
factor 4 can be replaced by 2. In fact, Fernandez del Busto has recently shown that

m >4
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mL is very ample for

1[(L-(Kx +4L) + 1)*
m>§ IE + 3|,

and an example of G. Xiao shows that this bound is essentially optimal (see
[FdB94]).

Matsusaka’s big theorem yields a number of other important finiteness results.
One of the prototypes of these results is the following statement.

17.10. COROLLARY. There exists only a finite number of families of deforma-
tions of polarized projective manifolds (X, L) of dimension n, where L is an ample
line bundle for which the intersection numbers L™ and Kx - L™~ are fized.

PRrooF. Indeed, since L™ and Kx - L™ ! are fixed, there in fact exists a cal-
culable integer mg such that mgL is very ample. We then obtain an embedding
® = &, : X — PV such that ®*O(1) = £moL. The image Y = ®(X) is of
degree

deg(Y) = /Ycl (O(l))n = /Xcl(ﬂ:moL)” =mgL".

This implies that Y is a point of one of the components of the Chow scheme of
algebraic subvarieties Y of a given dimension and degree in PYV for which O(1)y
is divisible by mg. More precisely a point of an open set corresponding to a non-
singular subvariety. Since the open set in question is a Zariski open set, it can have
only a finite number of irreducible components, whence the corollary. O

We can also show from Matsusaka’s Theorem (or even directly from Cor. (16.9))
that there is only a finite number of families of deformations of Fano varieties of a
given dimension n. We use for this a fundamental result obtained independently
by Kollar-Miyaoka-Mori [KoMM92] and Campana [Cam92], showing that the
discriminant K% is bounded by a constant C',, dependent only on n. The effective
bound obtained for very ample line bundles furnishes then (at the expense of some
effort!) an effective bound for the number of Fano varieties.
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97 0. INTRODUCTION

In [D-I], the Hodge degeneration theorem and the Kodaira-Akizuki-Nakano vanishing theorem
for smooth projective varieties over a field of characteristic zero are shown by methods of algebraic
geometry in characteristic p > 0. These present notes will serve as an introduction to the subject,
with the intention of keeping the non-specialist in mind (who will be able to also consult the
presentation of Oesterlé [O]). Thus we will assume known by the reader only some rudiments
of the theory of schemes (EGA I 1-4, [H2] II 2-3). On the other hand, we require of the reader
a certain familiarity with homological algebra. The results of [D-I] are expressed simply in the
language of derived categories. Although it is possible to avoid there the recourse, see for example
[E-V], we prefer to place it in its context, which appears more natural. However, to help the
beginner, we recall in n°4 the basic definitions and some essential points.

0. Introduction

Let X be a complex analytic manifold. By the Poincaré Lemma, the de Rham
complex 2% of holomorphic forms on X is a resolution of the constant sheaf C. As
a result, the augmentation C — Q% defines an isomorphism (for all n)

(0.1) H"(X,C) = Hpp(X) = H™(X,0Q%),

where the second term, called the de Rham cohomology of X (in degree n), is the
n-th hypercohomology group of X with values in Q%. The first spectral sequence
of hypercohomology abuts to the de Rham cohomology of X

(0.2) EP" = HY(%,0%) = HR (%),

which is called the Hodge to de Rham spectral sequence (or Hodge-Frélicher) (cf.
[De] n°9). Let us assume X is compact. Then, by the finiteness theorem of Cartan-
Serre, the H?(%, %), and therefore all the terms of the spectral sequence (0.2) are
finite dimensional C-vector spaces. If we set

b, = dim Hpg (X) = dim H" (%, C)
(n-th Betti number of X) and
WP = dim HY(X, Q%)
(Hodge number), we have
03) bo< Y W,
ptg=n

with equality for all n if and only if (0.2) degenerates at E;. Suppose in addition that
X is Kdhler. Then by Hodge theory, the Hodge spectral sequence of X degenerates
at Ey : this is the Hodge degeneration theorem ([De] 9.9). Denote by

0=F""'CF"C...CFP=FPHRz(X)C--- C F" = HR (%)

the resulting filtration of the Hodge spectral sequence (Hodge filtration). By de-
generation, one has a canonical isomorphism

(0.4) EPY = HY(%,08) ~ EPI = FP/FrHt,
We put
HP = FP N F",

where the bar denotes complex conjugation on HAg (%), defined by means of (0.1),
and the isomorphism H"(X,C) ~ H"(X,R) ® C. It follows that

HP?1 = Ha:p,
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Further, Hodge theory furnishes the following results ([De] 9.10):
(a) the composite homomorphism

HP —y FPHBM(X) - FP/FPH!

is an isomorphism (i.e. HP*? is a complement of FP*! in F?); whence, by composing
with (0.4), determines an isomorphism

(0.5) HP? ~ HY(X,0%);

(b) one has, for all n,

(0.6) Hip(¥)= P H™,
ptq=n

(Hodge decomposition). These results apply in particular to the complex analytic
manifold X associated to a smooth projective scheme X over C. The difference
between (a) and (b), which is of a transcendental nature, utilizes complex conju-
gation in an essential way. The Hodge degeneration can in this case be formulated
in a purely algebraic manner. The de Rham complex of X is indeed the complex
of analytic sheaves associated to the algebraic de Rham complex Q% of X over C
(a complex of sheaves in the Zariski topology, for which the components are locally
free coherent sheaves). The canonical morphism (of ringed spaces) X — X induces
homomorphisms on the Hodge and de Rham cohomologies

(0.7) H(X, Q%) — HO(X,98),
(0.8) Hpg(X) = Hpg(X),

where Hp (X) = H™(X,Q%). We make use of the Hodge to algebraic de Rham
spectral sequence

(0.9) EP' = HY(X, Q%) = HbR'(X),

and a morphism of (0.9) in (0.2) inducing (0.7) and (0.8) respectively on the initial
terms and the abutment. By the comparison theorem of Serre [GAGA], (0.7) is
an isomorphism, and therefore the same holds for (0.8). Consequently, the degen-
eration at E; of (0.2) is equivalent to that of (0.9). In other words, if one sets

WP(X) = dim H9(X,0%), h"(X) = dim HZg (X),

the Hodge degeneration theorem for X is expressed by the (purely algebraic) relation

(0.10) hU(X) = ) BPUX).

p+g=n
More generally, if X is a smooth and proper scheme over a field k, one can consider
the de Rham complex Q;(/k of X over k, and one still has a Hodge to de Rham
spectral sequence

(0.11) EY' = H(X,0% ) = HB (X/k)

(where H3p (X/k) = H*(X, Q;(/k)), formed of finite-dimensional k-vector spaces.
If k£ is of characteristic zero, the Hodge degeneration theorem implies the degener-
ation of (0.11) at F; : standard techniques (cf. n°6) indeed make it possible to go
back initially to & = C, then with the aid of Chow’s Lemma and of the resolution
of singularities one reduces the proper case to the projective case ([DO]). There
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are those who have long sought for a purely algebraic proof of the degeneration of
(0.11) at E; for k of characteristic zero. Faltings [Fal] was the first to give a proof
of it independent of Hodge theory?. A simplification of crystalline techniques due
to Ogus [Og1], Fontaine-Messing [F-M] and Kato [Kal] led, shortly thereafter, to
the elementary proof presented in [D-I]. We refer to the introduction of [D-I] and
to [O] for a broad overview. We only indicate that the degeneration of (0.11) (for
k of characteristic zero) is proven by reduction to the case where k is of charac-
teristic p > 0, where, however, it can happen that the degeneration is automatic!
This proof is based however on the help of some additional hypothesis on X (upper
bound of the dimension, liftability) which is sufficient for our purposes (see 5.6 for
a precise statement). We explain in n°6 the well-known technique which allows us
to go from characteristic p > 0 to characteristic zero. The degeneration theorem
in characteristic p > 0 to which we have just alluded follows from a decomposition
theorem (5.1), relying on some classical properties of differential calculus in charac-
teristic p > 0 (Frobenius endomorphism and Cartier isomorphism), which we recall
in n°3, after having summarized, in n°1 and 2, the formalism of differentials and
smoothness on schemes. The aforementioned decomposition theorem furnishes at
the same time an algebraic proof of the Kodaira-Akizuki-Nakano vanishing theorem
for the smooth projective varieties over a field of characteristic zero (6.10 and [De]
11.7). The last two sections are of a more technical nature: We outline the evolu-
tion of the subject since the publication of [D-I], and, in the appendix, we describe
some complementary results due to Mehta-Srinivas [Me-Sr] and Nakkajima [Na].

1. Schemes: differentials, the de Rham complex

We recall here the definition and basic properties of differential calculus over
schemes. The reader will find a complete treatment in (EGA IV 16.1-16.6); also
see [B-L-R] 2.1 and [H2] II 8 for an introduction.

1.1. We say that a morphism of schemes i : Top — T is a thickening of order 1
(or by abuse, that T is a thickening of order 1 of Tj) if i is a closed immersion defined
by an ideal of Or of square zero. If T' and T} are affine, with rings A and Ay, such a
morphism corresponds to a surjective homomorphism A — Ay for which the kernel
is an ideal of square zero. The schemes T and T, have the same underlying space,
and the ideal a of i, annihilated by a, is a quasi-coherent Og, ( = Or/a)-module.

Let j : X — Z be an immersion, with ideal I (by definition, j is an isomorphism
of X onto a closed subscheme j(X) of a larger open subset U of Z, and I is the
quasi-coherent sheaf of ideals of U defining j(X) in U, (EGA I 4.1, 4.2)). Let Z;
be the subscheme?® of Z, with the same underlying space as X, defined by the ideal
I%. Then j factors (in a unique way) into

X2z My

2The purists observe that this proof, which rests on the existence of the Hodge-Tate decom-
position for p-adic étale cohomology of a smooth and proper variety over a local field of unequal
characteristic, is not entirely “algebraic”, in the sense of where it uses the comparison theorem
of Artin-Grothendieck between étale cohomology and Betti cohomology for smooth and proper
varieties over C.

3At the expense of some abuse of notation, we will allow ourselves the flexibility of inter-
changing “immersion” (resp. “closed immersion”) and “subscheme” (resp. “closed subscheme”);
that amounts here to neglecting the isomorphism of X onto j(X).
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where h; is an immersion, and j; is a thickening of order 1, with ideal I/I?; one
says that (ji,h1), or more simply Z;, is the first infinitesimal neighbourhood of j
(or of X in Z). The ideal I/I? (which is a quasi-coherent Ox-module) is called the
conormal sheaf of j (or of X in Z). We denote it by Nx /.

1.2. Let f: X — Y be a morphism of schemes, and let A : X — 7 := X xy X
be the diagonal morphism. This is an immersion (closed if and only if X is separated
over V) (EGA I 5.3). The conormal sheaf of A is called the sheaf of Kdhler 1-
differentials of f (or of X over V) and is denote by Q;,/Y; we sometimes write
Q% , instead of Q% sy if Y is affine with ring A. Thus we have a quasi-coherent
Ox-module, defined by

(1.2.1) Oy =1/17,

where I is the ideal of A. Let X =% Z; — Z be the first infinitesimal neighbour-
hood of A. The two projections of Z = X xy X on X induce, by composition with
Zy — Z, two Y-morphisms py,ps : Z; — X, which retract A;. The sheaf of rings
of the scheme Z;, which has the same underlying space as X, is called the sheaf
of principal parts of order 1 of X over Y, and is denoted by ’P}(/Y_ We have, by
construction, an exact sequence of abelian sheaves

(1.2.2) 0= Q%/y = Px/y = Ox =0,

split by each of the ring homomorphisms jq,j2 : Ox — P}( n% induced from pq, ps.
The difference jz — j; is a homomorphism of abelian sheaves of Ox in Qﬁ(/y, which
is called the differential, and which is denoted by

(1.2.3) dxyy (ord): Ox = Qyy.

If M is an Ox-module, a Y-derivation of Ox in M is any homomorphism of sheaves
of f~1(Oy)-modules D : Ox — M (where f~! denotes the inverse image functor
for abelian sheaves) such that

D(ab) = aDb+ bDa

for all local sections a,b of Ox. We denote by Dery(Ox, M), the set of Y-
derivations of Ox in M, which is in a natural way an abelian group. The differential
dx/y is a Y-derivation of Ox in Q}(/Y. One shows that it is universal, in the sense
that for any Y-derivation D of Ox in an Ox-module M (not necessarily quasi-
coherent), there exists a unique homomorphism of Ox-modules u : Qk,/y - M
such that uwodx,y = D, i.e. the homomorphism

(1.2.4) Hom(Qk/Y,M) — Dery (Ox, M), uwuodx/y

is an isomorphism. The sheaf ’Hom(Qk/Y, Ox) is called the tangent sheaf of f (or
of X over Y), and is denoted by

(1.2.5) Tx/v

(or sometimes ©x/y). For any open subset U of X, (1.2.4) gives an iso-
morphism I'(U, Tx/y) ~ Dery(Oy, Oy). Recall that one calls a Y-point of X a
Y-morphism T' — X. By definition, X xy X “parameterizes” the set of pairs of
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Y-points of X (i.e. represents the corresponding functor on the category of Y-
schemes). The geometric significance of the first infinitesimal neighbourhood Z; of
the diagonal of X over Y is that it parameterizes the pairs of Y -points of X neigh-
bouring of order 1 (i.e. congruent modulo an ideal of square zero): More precisely,
if i : To — T is a thickening of order 1, with ideal a, where T is a Y-scheme, and
if t1, to : T — X are two Y-points of X which coincide modulo a (i.e. such that
t1i = toi = to : To — X), then there exists a unique Y-morphism h : T — Z;
such that pih = t; and pah = t2. Moreover, if t, t5 : Ox — to.Or * are the
homomorphisms of sheaves of rings associated to ¢; and t2, t5 —t] is a Y-derivation
of X with values in tg,a, such that

(1.2.6) (5 — t5)(s) = h*(ds)

for any local section s of Ox, where h* : Qk/y — tga is the homomorphism of Ox-
modules induced by h (on the corresponding conormal sheaves of X in Z; and Ty
in T). If f is a morphism of affine schemes, corresponding to a ring homomorphism
A — B, then Z = Spec B®4 B, A corresponds to the ring homomorphism sending
by ® by onto by by, with kernel J =T'(Z,I). We have I'(X, P}(/Y) = (B®a B)/J?,
and we set

The B-module Q}),/A = J/J?, for which the associated quasi-coherent sheaf is Qk/y,
is called the module of Kdhler 1-differentials of B over A. The map d = dg/s =
[(X,dx/y): B — 9}3/,4 is an A-derivation, satisfying a universal property that we
leave to the reader to formulate. The homomorphisms ji,j> : B — (B ®4 B)/J?
of 1.1 are given by 71b = class of b® 1, job = class of 1 ® b. Since .J is generated
byl®b—-0b®1, Q}3/A is generated, as a B-module, by the image of d. It follows
from this that if f is any given morphism of schemes, Q% /v is generated, as an
Ox-module, by the image of d.

1.3. Any commutative square

X 5 X
(1.3.1) i f
oLy

defines in a canonical way, a homomorphism of Ox -modules
(1.3.2) 9"V y = Uy,

which sends 1 ® g~"(dx,ys) onto dx:/y/(1® g~'(s)). (If E is an Ox-module, by
definition g*E = Ox'®4-1(0,)9 * (E).) This is an isomorphism if the square (1.3.1)
is cartesian, i.e. if the morphism X' — Y’ xy X is an isomorphism. Moreover, in
this case, the canonical homomorphism

(1.3.3) iy @ g° Uy = Uxryy
is an isomorphism.

4Recall that T and Tp have the same underlying space.
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1.4. Let
xLyds
be morphisms of schemes. Then the canonical sequence of homomorphisms
(1.4.1) f*Q%,/S - Qk/s - Qk/y =0
is exact.
1.5. Let '
X 5 Zz
i vy
Y

be a commutative triangle, where i is an immersion, with ideal I. The differential
dz/y induces a homomorphism d : NX/Z — i*le/Y, and the sequence

(1.5.1) Nxjz = Q) = Qx )y =0
is exact.

1.6. Let X = A} =Y[Ty,...,T,] be the affine space of dimension n over Y.
The Ox-module Qk/y is free, with basis dT; (1 <14 < mn). If Y is affine, with ring
A, and if s € A[Ty,...,Ty], then ds = > (0s/0T;)dT;, where the 0s/JT; are the
usual partial derivatives.

Properties 1.3 to 1.6, for which the verification is completely standard, are
fundamental. It is by virtue of these that we can “calculate” the modules of differ-
entials. For more details, see the indicated references above.

1.7. Let f: X — Y be a morphism of schemes. For i € N, we denote by
Qg{/y = AiQ%{/Y

the i-th exterior product of the Ox-module Q% . (It is agreed that Q% - = Ox.)

One shows that there exists a unique family of maps d : Qg(/y — Q?'/IY satisfying

the following conditions:

(a) disaY-anti-derivation of the exterior algebra €9 Qg(/y, i.e. dis f~1(Oy)-linear
and d(ab) = da A b+ (—1)%a A db for a homogenous of degree i,

(b) @* =0,

(c) da =dx;y(a) for a of degree zero.

The corresponding complex is called the de Rham complex of X over Y and is

denoted by

(1.7.1) Yy

(or (%4 if Y is affine with ring A). Tt depends functorially on f : A square (1.3.1)
gives a homomorphism of complexes (which is also a homomorphism of algebras)

However, one must be aware that even if for each i, the homomorphism Qg( v

g*Qg(,/Y, is the adjoint of a homomorphism Q*Qg(/Y — Qg(,/y,, one cannot in
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general define a complez g*Q% /v for which the differential is a Y'-anti-derivation
compatible with that of Q;(,/Y,.

2. Smoothness and liftings

There are a number of ways of presenting the theory of smooth morphisms.
We follow (or rather, summarize) here the presentation of EGA, where smoothness
is defined by the existence of infinitesimal liftings (EGA IV 17). In addition to its
elegance, this definition has the advantage of transposing itself to other contexts,
for example that of the geometric logarithm (cf. [I6]). Other points of view are
adopted in (SGA 1 IT and IIT), where the emphasis is placed on the notion of an
étale morphism, and [B-L-R] 2.2, where this is the jacobian criterion (cf. 2.8),
which is taken as the starting point.

2.1. Let f : X — Y be a morphism of schemes. We say that f is locally
of finite type (resp. locally of finite presentation) if, for any point z of X, there
exists an affine open neighbourhood U of x and an affine open neighbourhood V'
of y = f(z) such that f(U) C V and that the homomorphism of rings A — B
associated to U — V makes B an A-algebra of finite type (i.e. a quotient of an
algebra of polynomials A[t1,... ,%,]) (resp. of finite presentation (i.e. a quotient of
an algebra of polynomials A[t,... ,t,] by an ideal of finite type)). If Y is locally
Noetherian, “locally of finite type” is equivalent to “locally of finite presentation”,
and if it is, then it follows that X is locally Noetherian.

If f: X — Y is locally of finite presentation, the Ox-module Qg(/y is of finite
type for all i, therefore coherent if Y is locally Noetherian.

2.2. Let f: X — Y be a morphism of schemes. We say that f is smooth (resp.
net (or non-ramified), resp. étale) if f is locally of finite presentation and if the
following condition is satisfied:

For any commutative diagram

X
(2.2.1) 90 Lf
To 5T =Y

where i is a thickening of order 1 (1.1), there exists, locally in the Zariski topology
on T, a (resp. at most one, resp. a unique) Y-morphism g : T — X such that
gi = go. It follows immediately from the definition that the composite of two smooth
morphisms (resp. net, resp. étale) is smooth (resp. net, resp. étale), and that if
f: X = Y is smooth (resp. net, resp. étale), it is the same with the morphism
f'+ X' - Y induced by a base change Y/ — Y. Iffor i = 1,2, f; : X; —» YV is
smooth (resp. net, resp. étale), the fiber product f = fi Xy fo: X1 Xy Xo = YV
is therefore smooth (resp. net, resp. étale). Additionally it is immediate that the
projection of the affine line Al. = Y[t] — Y is smooth, and it is therefore the same
for the projection of the space A} — Y.

REMARKS 2.3. (a) Because of the uniqueness which allows a gluing together,
we can omit in the definition of étale, locally in the Zariski topology. On the other
hand, we cannot do it in the definition of smooth. There exist a cohomological
obstruction that we will later specify, to the existence of a global extension g of gq.
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(b) If n is an integer > 1, we say that a morphism of schemes i : Tp — T is a
thickening of order n if ¢ is a closed immersion defined by an ideal I such that
It = (. If T}, denotes the closed subscheme of T defined by I™*!, i itself factors
into a sequence of thickenings of order 1 :

To—-T,— - =>Ty = Thny1 = --- =T,

In Definition 2.2, we can therefore replace thickening of order 1 by thickening of
order n.

The following proposition summarizes the essential properties of differentials
associated to smooth morphisms (resp. net, resp. étale).

PROPOSITION 2.4. (a) If f : X — Y is smooth (resp. net), the Ox-module
Qk/y is locally free of finite type (resp. zero).
(b) In the situation of 1.4, if [ is smooth, the sequence (1.4.1) extended by a zero
to the left

(2.4.1) 0= f*Qy/s = Vy/s = Vx/y =0

is exact and locally split. In particular, if f is étale, the canonical homomor-
phism f*Q%,/S - Q%{/S is an isomorphism.

(c) In the situation of 1.5, if f is smooth, the sequence (1.5.1) extended by a zero
to the left

(2.4.2) 0= Nxjz =00y = Qx/y =0

is exact and locally split. In particular, if f is étale, the canonical homomor-
phism NX/Z — i*QIZ/Y is an isomorphism.

2.5. The verification of 2.4 is not difficult (EGA IV 17.2.3), but unfortunately
somewhat scattered in (EGA Opy 20). Here is an outline.

The key ingredient is the following. If f : X — Y is a morphism of schemes
and I a quasi-coherent Ox-module, we call a Y-extension of X by I, a Y-morphism
i : X — X' which is a thickening of order 1 with ideal I. Two Y-extensions
i1 : X = X7 and iy : X — X5 of X by I are said to be equivalent if there exists a
Y-isomorphism g of X; onto X5 such that gi; = i» and that g induces the identity
on I. An analogous construction to this is the “Baer sum” for extensions of modules
over a ring associated to the set

Exty (X, I)

of equivalence classes of Y-extensions of X by I with a structure of an abelian
group, with neutral element the trivial extension defined by the algebra of dual
numbers Ox @ I.

Assertion (c) follows immediately from the definition: The smoothness of f
indeed implies that the first infinitesimal neighbourhood i, of ¢ retracts locally onto
X, and the choice of a retraction r permits the splitting (2.4.2) (by the derivation
associated to Idz, — i1 or, cf. (1.2.6)).

Assume f is smooth. If [ is a quasi-coherent O x-module and ifi: X — Z is a
Y-extension of X by I, the sequence (2.4.2) is therefore an extension of O x-modules
e(i) of Q%{/y by I. One can show that ¢ — e(i) gives an isomorphism

(2.5.1) Exty (X, 1) = Exto, (%), 1)
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(cf. [I1] I, chap. II, 1.1.9. We define an inverse of (2.5.1) by associating to an
extension M of Qk/y by I, the Y-extension Z of X defined in the following way:
Identify, via j;, the sheaf of principal parts P)l(/y (1.2.2) with the ring of dual
numbers Ox @ Qk/y, and denote by F' = Ox © M the ring of dual numbers over
M; the extension M makes F' an f~'(Oy)-extension of Py, by I. That is, if
E=F XpL ., Ox is the “pull-back” of F' by the homomorphism js = ji + dx/y :
Ox — P%(/y: then F is a f~1(Oy)-extension of Ox by I, which defines the Y-
extension Z). Since f is smooth, any Y-extension of X by I is locally trivial, and
therefore by virtue of (2.5.1), it follows from this that the sheaf Exty (QY nard
(associated to the presheaf U — Ext}gu (Qb/y, I ;7)) is zero, and therefore also that
M}DU (Qb/y, J) = 0 for all open subsets U of X and all quasi-coherent Oy -modules
J. Since Qk/y is of finite type (2.1), it follows that Qk/y is locally free of finite
type, which proves the part of (a) relative to the smooth case. (The relative part
of the net case is immediate: For any Y-scheme X, if ¢ : X — Z is the trivial
Y-extension of X by a quasi-coherent Ox-module I, the set of Y-retractions of Z
on X is identified with Hom(ﬂk,/y, I) by r = r — rg, where ro corresponds to the
natural injection of Ox in Ox @1, cf. (1.2.6).) In particular, it follows from (a) and
(2.5.1) that if X is an affine scheme and is smooth over Y, we have Exty (X,I) =0
for any quasi-coherent O x-module I. Finally, we arrive at (b), by using, for X, Y, S
affine, and any given f, the natural exact sequence (EGA Ory 20.2.3)

(2.5.2) 0 — Dery (Ox,I) = Ders(Ox,I) — Derg(Oy, f«I) —

D Exty (X, I) = Bxts(X,I) — Extg(Y, f.1),
where the arrows other than 0 are the obvious arrows of functoriality, and 0 asso-
ciates to an S-derivation D : Oy — f,I the Y-extension defined by the ring of dual
numbers Ox @ I and the homomorphism a — f*a + Da of Oy in f,(Ox & 1).

Observe that if f : X — Y is a morphism locally of finite presentation of affine
schemes (i.e. corresponding to a homomorphism of rings A — B making B an
A-algebra of finite presentation), then, for that f is smooth, it is necessary and
sufficient that for any quasi-coherent Ox-module I, we have Exty (X,I) = 0 (the
sufficiency rises from the definition, and the necessity was already noted above).

Assertions 2.4 (b) and (c) have converses, which furnish a very convenient crite-
ria of smoothness. Their verfication is easy, starting from previous considerations.

PROPOSITION 2.6. (a) In the situation of 1.4, assume gf smooth. If the se-
quence (2.4.1) is exact and locally split, then f is smooth. If the canonical homo-
morphism f*Q%//S — Qk/s is an isomorphism, then f is étale.

(b) In the situation of 1.5, assume g smooth. If the sequence (2.4.2) is exact and
locally split, then f is smooth. If the canonical homomorphism NX/Z — i*QIZ/Y is
an isomorphism, then f is étale.

2.7. Let f: X = Y be a smooth morphism, assume given z a point of X, and

denote by k(x) the residue field of the local ring Ox . Let sq, ..., sy, be sections of
Ox in a neighbourhood of # for which the differentials form a basis of Q% Jy at z,

i.e., chosen such that the images (ds;), of ds; in Qk/y’z form a basis of this module
over Ox ., or such that the images (ds;), of ds; in Qk,/y ® k(x) form a basis of
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this vector space over k(z). Since Qk,/y is locally free of finite type, there exists an
open neighbourhood U of x such that the s; are defined over U and that the ds;
form a basis of Q§/Y‘U. The s; then define a Y-morphism of U in the affine space
of dimension n over Y:

$=(81,-.-,8n): U =AY =YTt1,...,tn]

According to 1.6 and 2.6 (a), s is étale. We say that the s; form a local coordinate
system of X on Y over U (or, if U is not specified, at z). A smooth morphism is
therefore locally composed of an étale morphism and of the projection of a standard
affine space.

2.8. Now assume given the situation of 1.5, by assuming g is smooth, and let
x be a point of X. According to 2.4 (c¢) and 2.6 (b), for that f to be smooth
in a neighbourhood of z, it is necessary and sufficient that there exists sections
$1,--.,8r of I in a neighbourhood of z, generating I, and such that the (ds;)(x)
are linearly independent in 0}, /Y(a:) =, Jy ® k(z) (where k(z) is the residue field
of Oz, which is also that of Ox ;). For this reason, 2.6 (b) is referred to as the
jacobian criterion.

Suppose f is smooth in a neighbourhood of = (or at z, like one says sometimes),
and let sq,..., s, be sections of I generating I in a neighbourhood of z. Then, for
that the s; defines a minimal system of generators of I, (i.e. induces a basis of
I ® k(z) = I,/m,I,, or still forms a basis of I/I? = N,z in a neighbourhood
of ), it is necessary and sufficient that the (ds;)(z) are linearly independent in
Q) /Y(m)s. Therefore, wherever this is the case, if we supplement the s; by sections
sj (r+1 < j <r+n) of Oz in a neighbourhood of z such that the (ds;)(z) (1 <i <
r+n) form a basis of le/y(a:), then the s; (1 <i < n) define an étale Y-morphism
s from an open neighbourhood U of x in Z into the affine space A%, such that
U N X is the inverse image of the linear subspace with equations t; =--- =t, = 0:

UnX — U

3 Lf
+
AV - AP
In algebraic geometry, this statement plays the role of the implicit function theorem.

2.9. Let k be a field and let f: X — Y = Speck be a morphism. Assuming f
smooth, then X is regular (i.e. for any point z of X, the local ring Ox , is regular,
i.e. its maximal ideal m, can be generated by a regular sequence of parameters);
moreover, if z is a closed point, k(x) is a finite separable extension of k, and the
dimension of Ox , is equal to the dimension dim, X of the irreducible component
of X containing z and of the rank of Qk /y at . Conversely, if k is perfect, and if
X is regular, then f is smooth.

More generally, we have the following criterion, left as an easy verification from
2.7 and 2.8 :

50r still that the sequence (s;) is Oz-regular at z, i.e. that the corresponding Kozul complex
is a resolution of Ox in a neighbourhood of z (cf. (SGA 6 VII 1.4) and (EGA IV 17.12.1)).
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PROPOSITION 2.10. Let f : X — Y be a morphism locally of finite presentation
(2.1). The following conditions are equivalent :
(i) f is smooth;
(ii) f is flat and the geometric fibers of f are regular schemes.

(We say that f is flat if for any point = of X', Ox , is a flat module over Oy ¢ (,).
A geometric fiber of f is the reduced scheme of a fiber X,, = X xy Speck(y) of f at
a point y by an extension of scalars to an algebraic closure of k(y).) If f: X = YV
is smooth, and z is a point of X, the integer

dim,(f) := dimy(,) Qk/y ® k(z) = rgox,mﬁk/y’ac

is called the relative dimension of f at x. By the classical theory of dimension
(EGA TV 17.10.2), this is the dimension of the irreducible component of the fiber
X (x) containing z. Since Q% /v is locally free of finite type, it is a locally constant
function of z. It is zero if and only if f is étale, in other words, f is étale if and
only if f is locally of finite presentation, flat and net (it is this criterion which is
taken as the definition of an étale in (SGA 11)).

If f is smooth and of pure relative dimension r, i.e. of constant relative di-
mension equal to the integer r, then the de Rham complex Q;(/Y (1.7.1) is zero in
degree > r, and Qg(/y is locally free of rank (:), in particular, Q”X/Y is an invertible
O x-module.

Smooth morphisms occupy a central place in the theory of infinitesimal defor-
mations. The following two propositions summarize this. They are however of a
more technical nature than the preceeding statements, and as they will be useful
only in the proof of 5.1, we will advise the reader to refer to it at that time there.

PROPOSITION 2.11. Assume given a diagram (2.2.1), with f smooth. Let I be
the ideal of i.
(a) There exists an obstruction

c(go) € Ext' (g5 y, 1)

for which the vanishing is necessary and sufficient for the existence of a Y -
morphism (global) g : T — X extending go (i-e. such that gi = go).

(b) If c(go) = 0, the set of extensions g of go is an affine space under
Hom(ggﬂk/y,f).

Since Qg(/y is locally free of finite type, there is a canonical isomorphism
(211.1) Ext' (95 Qx/y» 1) = H' (To, Hom(g5 2y, T))

(and ’Hom(ggﬁk/y, I) ~ g5Tx)y ® I, where Ty is the tangent sheaf (1.2.5)). Set
G = Hom(ga‘ﬂﬁ(/y,f). According to (1.2.6), if U is an open subscheme of T" with
corresponding Up over Ty, two extensions of ggy, to U “differ” by a section of G
over Uy (and being given an extension, one can modify it by “adding” a section of
G). Since go locally extends by definition of the smoothness of f, we then conclude
that the sheaf P over Tp associating to Up the set of extensions of ggy, to U, is a
torsor under G. Assertions (a) and (b) follow from this: ¢(go) is the class of this
torsor. More explicitly, if (U;);cr is an open covering of T' and ¢; an extension of
go over Uj, then, over U; N Uj, g; — g; is a Y-derivation D;; of Ox with values in
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9o «(ljy;nv;), i-e. a homomorphism of Qg(/y into go «(jv;nv;), i.e. finally a section
of G over U; N Uy, and the (g;;) form a cocycle, for which the class is ¢(go).
Note that if T (or what amounts to the same Tp) is affine, then

H'(Ty, Hom(g5Qx v, 1)) =0
and consequently gy admits a global extension to 7'.

PROPOSITION 2.12. Assume given i : Yo — Y a thickening of order 1 with
ideal I, and fo : Xog = Yo a smooth morphism.
(a) There exists an obstruction

w(fo) € Ext*(x, /vy, fo 1)

for which the vanishing is necessary and sufficient for the existence of a smooth
lifting Xo over Y, i.e. by definition, of a smooth Y -scheme X equipped with a
Yy-isomorphism Yy xy X ~ X,5.

(b) If w(fo) = 0, the set of isomorphism classes of liftings of Xo over Y is an
affine space under Extl(Qﬁ(O/YO,f(;‘I) (where by definition, if X; and X» are
liftings of Xo, an isomorphism of X, onto X5 is a Y -isomorphism of X; on
X inducing the identity on X ).

(¢) If X is a lifting of Xo over Y, the group of automorphisms of X (i.e. Y-
automorphisms of X inducing the identity on Xo) is naturally identified with
Hom (Y .. f31)-

Since Q&,O /Yo is locally free of finite type, there is, for all ¢ € Z, a canonical
isomorphism

(2.12.1) Ext'(Q, /v, fo 1) = H'(Xo, Hom(Qx, /v, fo 1))

(and ’Hom(Qk,O/YO, fol) = Tx, v, ® fgI). If X is affine, the second term of (2.12.1)

is zero for i > 1, and consequently there exists a lifting of X¢ over Y, and two such
liftings are isomorphic.

2.13. Here is an outline of the proof of 2.12. The data of a lifting X is equiv-
alent to that of a cartesian square

X, - X
fol lf
Yo 5y,

with f smooth. let J be the ideal of thickness j. The flatness of f (2.10) implies
that the homomorphism f§I — .J induced from this square is an isomorphism.
(It is moreover easy to verify that conversely, if X is a Y-extension of Xy by J
such that the corresponding homomorphism f§I — J is an isomorphism, then X
is automatically a lifting of Xy.) Assertion (c) is therefore a particular case of 2.11
(b). The identification consists of associating with an automorphism u of X the
“derivation” u—Idx. Similarly, if X; and X are two liftings of Xg, 2.11 (a) implies
that X; and X5 are isomorphisms if X, is affine, and that the set of isomorphisms

61In this section, when we speak of a lifting of a smooth Yp-scheme, it will be implicit, unless
mentioned to the contrary, that we are thinking of it as a smooth lifting.
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of X, over X5 is then an affine space under Hom(ﬂﬁ(o/yo, foI). Assertions (a) and
(b) come about formally. The verification of (b) is analogous to that of 2.11: If
X, and X, are two liftings of X, the “difference” of their isomorphism classes is
the class of the torsor under 7—lom(9§(0 vor ol ) of the local isomorphisms of X
on X,. (We also observe that the classes of Y-extensions X; and X, of Xy by
f§I differ by a unique Yp-extension of Xo by fiI, and invoke (2.5.1).) Finally,
we indicate the construction of the obstruction w(fy), by assuming for simplicity
that Xy is separated. First of all, by the jacobian criterion (2.8), the existence
of a global lifting is assured in the case where X, and Y are affine, and fy is
associated to a homomorphism of rings Ay — By, where By is the quotient of an
Ap-algebra of polynomials Ag[t1,...,t,] by the ideal generated by a sequence of
elements (g1,...,¢,) such that the dg; are linearly independent at every point x
of Xy (to arbitrarily lift the g;). Since (always according to (2.8)) fo is locally of
the preceding form, we can choose an open affine covering U = ((U;)o)icr of Xo,
and for each i, a lifting U; of (U;)p over Y. Since Xy has been assumed separated,
each intersection (U;;)o = (Ui)o N (Uj)o is affine, and consequently, we can choose
an isomorphism of liftings u;; of Uy v,;), over Ujjw,;),- On a triple intersection
(Uijk:)o = (Ui)o N (Uj)() N (Uk)(), the automorphism Uik = u,;ilujkuij of Uil(Ui]‘k)g
differs from the identity by a section
Cijk = u;‘jk —1Id

of the sheaf Hom(Q, y., fiI). One verifies that (cijx) is a 2-cocycle of U with
values in Hom(QY, y., f5T), where the class of this cocycle in

H2(X07H0m(ﬂ}(07Y07f())kI))

does not depend on the choices, and that it vanishes if and only if on a refine-
ment covering, the u;; can be modified in a way in which they glue on the triple
intersection, and also define a global lifting X of X,. This is the stated obstruction.

REMARK 2.14. The theory of gerbes [Gi] and that of the cotangent complex
[I1], one or the other, allows us to get rid of the separation assumption made above,
and especially gives a more conceptual proof of 2.12.

3. Frobenius and Cartier isomorphism

The general references for this section are (SGA 5 XV 1) for the definitions and
basic properties of Frobenius morphisms, absolute and relative, and [K1] 7 for the
Cartier isomorphism (cf. also [I2] 0 2 and [D-I] 1).

In this section, p denotes a fixed prime number.

3.1. We say that a scheme X is of characteristic p if pOx = 0, i.e. if the
morphism X — SpecZ factors (necessary in a unique way) through SpecF,. If
X is a scheme of characteristic p, we define the absolute Frobenius morphism of
X (or, simply Frobenius endomorphism, if there is no fear of confusion) to be the
endomorphism of X which is the identity over the underlying space of X, and the
raising to the p-th power on Ox. We denote it by Fx. If X is affine with ring A, F'x
corresponds to the Frobenius endomorphism F4 of A,a +— aP. Let f: X = Y be
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a morphism of schemes. Then there is a commutative square

x I x
(3.1.1) fi Lf
y ooy

Denote by X(?) (or X', if there is no ambiguity) the scheme (Y, Fy) xy X induced
from X by the change of base Fy. The morphism Fx defines a unique Y-morphism
F = Fx;y : X — X', giving rise to a commutative diagram

x I x 5 X
(3.12) N Lf
vy oy,

where the upper composite is Fx and the square is cartesian. We call F’ the relative
Frobenius of X over Y. The morphisms of the upper line induce homeomorphisms
on the underlying spaces (Fy is a “universal homeomorphism”, i.e. a homeomor-
phism and the remainder after any change of base). If YV is affine with ring A,
and X is the affine space A% = Spec B, where B = A[ty,... ,t,], then X' = AR7,
and the morphisms F : X — X' and X’ — X correspond respectively to the
homomorphisms ¢; — ¥ and at; — a?t; (a € A).

PROPOSITION 3.2. Let Y be a scheme of characteristic p, and f : X =Y a
smooth morphism of pure relative dimension n (2.10). Then the relative Frobenius
F : X — X' is a finite and flat morphism, and the Ox -algebra F.Ox is locally
free of rank p™. In particular, if [ is étale, F is an isomorphism, i.e. the square
(3.1.1) is cartesian.

We first treat the case where n = 0, which requires some commutative algebra:
The point is that F' is étale, because according to 2.6 (a), an étale Y-morphism
between Y-schemes is automatically étale, and that a morphism which is both étale
and radical® is an open immersion ((SGA 11 5.1) or (EGA IV 17.9.1)). Then the
case where X is the affine space A} is immediate: The monomials [] ¢, with
0 <m; < p—1form a basis of F,Ox over Ox.. The general case is deduced from
2.7.

REMARKS 3.3. (a) Since, according to 2.10, Qg(/y is locally free over Ox of
rank (?), it follows from 3.2 that F Q&/Y is locally free over Ox/ of rank p" (’;)
(b) The statement of 3.2 relative to n = 0 admits a converse: If Y is of characteristic
p and if X is a Y-scheme such that the relative Frobenius Fx,y is an isomorphism,
then X is étale over Y (SGA 5 XV 1 Prop. 2). When Y is the spectrum of a field,
this is “Mac Lane’s criteria”.

Tt is not true in general that X and X' are isomorphic as Y-schemes, it is the exceptional
case here.

8 A morphism g : ' — S is said to be radical if ¢ is injective and, for any point ¢ of T, with
image in S, the residue field extension k(s) — k(t) is radical.
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3.4. Let Y be a scheme of characteristic p and f : X — Y a morphism. Set
d=dx;y(1.2.3). If s is a local section of Ox, one has d(s?) = ps?~'ds = 0. Since
d(sP) = F%(ds) = F*(1 ®ds), it follows that
(a) the canonical homomorphisms (1.3.2) associated to (Fx, Fy) and F,

FxQx/y = Oy, FQkx )y = Qx)y
are zero;
(b) the differential of the complex F, Q% /v is Ox--linear; in particular, the sheaves
of cycles Z!, with boundaries B? and the cohomology H! = Z¢/B' of the complex
F*Q}/Y are Oxs-modules, and the exterior product acting on the graded Ox-
module @ ZiF*Q}/Y (resp. D H'F, Q;(/Y) is a graded anti-commutative algebra.

These facts are at the source of miracles of differential calculus in characteristic
p. The principal result is the following theorem, due to Cartier [C] :

THEOREM 3.5. Let Y be a scheme of characteristic p and f : X — Y a
morphism.
(a) There exists a unique homomorphism of graded Ox -algebras

v: P %)y = PHFO)y,
satisfying the following two conditions :
(i) fori =0, ~y is given by the homomorphism F* : Ox: — F,Ox;
(ii) fori =1, « sends 1®ds to the class of s~ ds in ’HIF*QB(/Y (where 1 ®ds
denotes the image of the section ds of Qg(/y in Q&,,/Y.
(b) If f is smooth, 7y is an isomorphism.

In case (b), v is called the Cartier isomorphism, and is denoted by C'~t. Its
inverse, or the composite

@ Z'F.0% )y — @ Do)y

of its inverse with the projection of @ Z¢ onto @ H*, where Z* denotes the sheaf
of cycles of F.Q% /Yy in degree i, is denoted by C. It is this latter homomorphism
which was initially defined by Cartier, and which we sometimes call the Cartier
operation. The adopted presentation in 3.5 is due to Grothendieck (handwritten
notes), and detailed in [K1] 7.

When Y is a perfect scheme, i.e. such that Fy is an automorphism, for ex-
ample if YV is the spectrum of a perfect field, one of the most significant cases for
applications is this: If f is smooth, C~! gives by composition with the isomorphism

D %y = PF)x 2y
(where (Fy)x; X' — X is the isomorphism induced from Fy by change of base) an
isomorphism

Coms : P )y > P H Fx 0%y
that we call the absolute Cartier isomorphism.

COROLLARY 3.6. Let Y be a scheme of characteristic p and f : X - Y a
smooth morphism. Then for any i, the sheaves of Ox:-modules

F.Q%y, Z'F.Q%y, B'FO%)y, H'FQ%)y
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are locally free of finite type (where Z' resp. B' denotes the sheaf of cycles resp.
boundaries in degree i).

Taking into account 3.3 (a) and the exactness of F, it suffices to apply 3.5 (b),
while proceeding by descending induction on 1.

We briefly indicate the proof of 3.5, according to [K1] 7. For (a), it amounts
to the same, taking into account (1.3.2), to construct the composite of v with the
homomorphism @Q&/Y — D(Fy)x *Qﬁ(,/y, i.e. a homomorphism of graded
Ox-algebras

“Vabs * @le/y — @HlFX * 3(/3/

satisfying the analogous conditions to (i) and (ii), i.e. given in degree zero by
F%, and in degree 1 sending ds to the class of sP~'ds. However the map of
Ox in H'Fx *Q;(/Y sending a local section s of Ox onto the class of sP~lds
is a Y-derivation (this is a result of the identity p~!((X + Y)? — XP — YP) =
Yo<icp P () XPTIY T in Z[X,Y]). By (1.2.4), it defines the desired homomor-
phism (7abs)!. Since the exterior algebra € Q% /y 18 strictly anti-commutative
(“strictly” means to say that the elements of odd degree are of square zero), it is like-
wise of its sub-quotient @ HFx 0% /Y and consequently there exists a unique ho-
momorphism of graded algebras 7aps extending the homomorphisms (Vabs)®? = F%
and (vabs)!. For (b), one can assume, according to 2.7, that f factors into

X4 An by,

where h is the canonical projection and g is étale. Given the square (3.1.1) relative
to g, being cartesian according to 3.2, it is likewise the same of the analogous square
with the relative Frobenius to Y

X - X'
(3.6.1) gl Lg'
z 5 7

where one sets for abbreviation A} = Z. According to 2.4 (b), the homomorphism
g*QiZ/Y — Qg(/y is an isomorphism. The square (3.6.1) being cartesian and F
finite, thus furnishes an isomorphism of complexes of Ox-modules

Since ¢' is étale, therefore flat, the homomorphism
(3.6.3) g H'F.QYy — H'F.Q% )y

induced from (3.6.2) is an isomorphism. Since on the other hand g’*QiZ,/Y — Q&,/Y
is an isomorphism (¢’ being étale), it follows (by functoriality of ) that it suffices
to prove (b) for Z. By analogous arguments (extension of scalars and Kiinneth) one
can easy reduce to Y = SpecF, and n =1, i.e. Z = SpecF,[t]. Then Z' = Z, the
monomials 1,%,...,t?~! form a basis of F,Oz over Oz, and since the differential
d: F.0z7 — F.QL = (F.Ogz)dt sends t* onto it'~!dt, one concludes that HOF*Q'Z/FP
(resp. HIF*Q'Z/FP) is free over O with basis 1 (resp. t?~1dt), and therefore that
v is an isomorphism.



113 3. FROBENIUS AND CARTIER ISOMORPHISM

3.7. There is a close link between Cartier isomorphism and Frobenius lifting.
This was known by Cartier, and it serves as motivation for its construction. The
decomposition and degeneration theorems of [D-I] originates from this, see n°5. It
consists of the following.

Let i : Ty — T be a thickening of order 1 and gg : So — Tp a flat morphism.
By lifting to a Tp-scheme Sy over T one extends a flat T-scheme over S equipped
with a Tp-isomorphism Ty x7 S ~ Sy, i.e. a cartesian square

Ss L s
go 4 lg
T, & T

with g flat. If T (resp. J) is the ideal of thickening ¢ (resp. j), the flatness of g
implies that the canonical homomorphism g/ — J is an isomorphism (cf. 2.13).

Take for i the thickening SpecF, — SpecZ/p*Z, of the ideal generated by p.
Let Yy be a scheme of characteristic p, and let Y be a lifting of Yy over Z /p?Z. The
ideal of Yy in Y is therefore pOy, and the flatness of Y over Z/p?Z implies that
multiplication by p induces an isomorphism

(371) p: OYO l) pOy.
Now let fy : Xo — Yy be a smooth morphism of [F,-schemes. Denote by
Fy: Xo — X(I)

the Frobenius of X relative to Y. Assume given a (smooth) lifting X (resp. X')
of Xy (resp. X{) over Y and a Y-morphism F' : X — X' lifting Fp, i.e. such that
the square

Xo — X

ol L F

Xy - X
commutes. (We have seen that there exists obstructions to the existence of X, X',
and F, cf. 2.11 and 2.12, and that these objects, whenever they exist, are not
unique. We will return to this later.)

PrOPOSITION 3.8. Let fo : Xo = Yy and F' : X — X' be given as in 3.7.
Then:

(a) multiplication by p induces an isomorphism

p: Qg(o/yo — PQ§/Y-
(b) the image of the canonical homomorphism

F* . Q}X’/Y — F*Q,l)(/Y

is contained in pF*Qk/Y.
(¢) Denote by
PFE Q;g/yo — FO*QAl)(()/YO
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the homomorphism “induced from F* by division by p”, i.e. the unique homo-
morphism rendering the square commutative

F*
QAl)(r/Y — pFO *Q§/y
+ Tp

Q e d Fp 2

1 1
Xé/YO XO/YO :

Then the image of g is contained in the kernel of the differential of the de

Rham complex, i.e. in the sheaf of cycles Z'Fy *sto/Yo’ and the composite of

or with the projection on H!'Fy *QB(O/YO is the Cartier isomorphism C~! in

degree 1 (c¢f. 3.5).

Assertion (a) is trivial, (b) follows from 3.4 (a), and (c) is immediate from (a),
(b) and the characterization of the Cartier isomorphism. Indeed, if @ is a local
section of Ox, with reduction ap module p, and a’ lifts in Ox/ the image ay of ag
in Ox:, we have

o]
F*a' =a” +pb

for a local section b of Ox. (This is because the reduction modulo p of F*a' is
Fjaj = af.) Consequently

F*(d') = pa?~'da + pdb,
hence
(3.8.1) or(dah) = ab " dag + dby,
for which (c) follows at once.

3.9. Suppose, as is in practice, and one of the more important cases, that Yj
is the spectrum of a perfect field & of characteristic p. Then the spectrum Y of the
ring W (k) of Witt vectors of length 2 over k lifts Yy over Z/p?Z (besides, due to
an isomorphism, it is the unique (flat) lifting of Y5). Recall that W (k) is the set of
pairs (a1, az) of elements of k, equipped with addition and multiplication given by

(al,a2) + (bl,bg) = ((ll + b1,52((],,b)),
(a1,a2)(b1,b2) = (a1b1, P2(a, b)),

where

Saa,b) = az + by +p~ (a7 + W71 = (a1 + br)P),
Ps(a,b) = blas + baal.

The homomorphism W5(k) — k is given by (a1,az) — a1. If K = F,, then W5 (k) ~
Z|p*Z, the isomorphism being given by (ay,as) — 7(ay) + pr(az), where 7 denotes
the multiplicative section of Z/p*Z — F,. (For an overall discussion of the theory
of Witt vectors, see [S] IT 6, [D-G] V.)

In this case, if Xy is a smooth Yj-scheme (i.e. a smooth k-scheme), and since
the absolute Frobenius of Yj is an automorphism, lifting Xo over Y = Spec W (k)
is equivalent to lifting X, and according to 2.12, the obstruction to the existence



115 4. DERIVED CATEGORIES AND SPECTRAL SEQUENCES

of such a lifting is found in Ext*(Q ,Ox,) ~ H?(Xo,Tx,) °. If this obstruc-
tion is zero, one can choose a lifting X' of X} and a lifting X of Xy, and then
the obstruction to a lifting F : X — X' of the relative Frobenius Fj is found in
Extl(FgQ}(é,OXO) ~ Extl(Qﬁ(é,Fo +0x,) (2.11)!° In every case, these two ob-
structions are locally zero, and even as soon as Xy is affine. The choice of a lifting
F' furnishes then, according to 3.8, a relatively explicit description of the Cartier
isomorphism in degree 1 (and therefore in every degree, by multiplicativity).

4. Derived categories and spectral sequences

There are many reference sources on this subject at various levels. The reader
with pressing obligations can consult [I3], which can be used as an introduction
and contains a broad bibliography. We will limit ourselves here by recalling some
fundamental points which we will use in the following section.

4.1. Let A be an abelian category (in practice, A will be the category of Ox-
modules of a scheme X). We denote by C(A) the category of A-complexes, with
differential of degree 1, and further denote by L® (or L) for such a complex

s P L

We say that L is with lower bounded degree (resp. upper, resp. with bounded degree)
if L' = 0 for i sufficiently small (resp. sufficiently large, resp. outside of a bounded
interval of Z). We denote by Z'L = Kerd : L' — Li*!, BIL = Im d : L'"! —
Li, H'L = Z'L/B'L, respectively the objects of cycles, boundaries and cohomology
in degree i. If A is the category of Ox-modules, we write C'(X) in place of C'(A4),
and often H'L instead of H!L for an object of C(X) (in order to indicate that it
acts on the cohomology sheaf in degree i, and not on the global cohomology group
HY(X,L)).

For n € 7, the naive truncation L<" (resp. L=Z") of a complex L is the quotient
(resp. the subcomplex) of L which coincides with L in degree < n (resp. > n) and
has zero components elsewhere. The canonical truncation 7<,,L (resp. 7>,L) is the
subcomplex (resp. quotient) of L with components L? for i < n, Z'L for i = n
and 0 for i > n (resp: L' for i > n, L*/B'L for i = n and 0 for i < n). One sets
T<nl = T<p—1 L. The inclusion 7<, L < L induces an isomorphism on Hi fori < n.
The projection L —» 7>, L induces an isomorphism on H' for i > n. For n € Z, the
translate Ln] of a complex L is the complex with components L[n]? = L™ and
with differential d,) = (=1)"dr. A complex L is said to be concentrated in degree
7 (resp. in the interval [a,b]) if L' = 0 for i # r (resp. i ¢ [a,b]). An object E of A
is often considered as a complex concentrated in degree zero. The complex E[—n]
is then concentrated in degree n, with component E in this degree.

9We omit here, for abbreviation, /Yy in the notation of differentials.

100ne can show ([Me-Sr] Appendix) that the obstruction to a choice of (X,X’,F)
such that X’ is the inverse image of X by the Frobenius automorphism of Wa(k) is found in
Extl(QX{) s BIF*QS(0 ); more precisely, such a triplet (X, X', F') exists if and only if the extension
class

0 B'F.Q%, - Z'F.0%, 5 2, =0

(particular case ¢ = 1 of the Cartier isomorphism 3.5) is zero. See [Sr] for an application to
another proof of the principal theorem of [D-I].
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A homomorphism of complexes u : L — M is called a quasi-isomorphism if
H'iy is an isomorphism for all i. We say that a complex K is acyclic if H'K = 0
for all 4.

If u: L — M is a homomorphism of complexes, the cone N = C(u) of u is the
complex defined by N? = Li+! @ M, with differential d(z,y) = (—dpz, uz + dary).
For that u to be a quasi-isomorphism, it is necessary and sufficient that C'(u) is
acyclic.

4.2. Denote by K(A) the category of complexes of A up to homotopy, i.e.
the category having the same objects as C(A) but for which the set of arrows of
L in M is the set of homotopy classes of morphisms of L into M. The derived
category of A, denoted by D(A), is the category induced from K(A) by formally
reversing the (homotopy classes of) quasi-isomorphisms: The quasi-isomorphisms
of K(A) become isomorphisms in D(A) and D(A) is universal for this property.
When A is the category of Ox-modules over a ringed space X, we write D(X)
instead of D(A). The categories K(A) and D(A) are additive categories, and one
has canonical additive functors

C(A) > K(A) — D(A).

The category D(A) has the same objects as C(A). Its arrows are calculated “by
fractions” from those of K(A): An arrow u : L — M of D(A) is defined by a couple
of arrows of C(A) of the type

LEL LM oor LS M E M,

where s and ¢ are quasi-isomorphisms. More precisely, one shows that the homo-
topy classes of quasi-isomorphisms with source M (resp. target L) form a filtered
category!! (resp. the opposite of a filtered category) and that one has

HomD(A) (L,M) = lim HOHIK(A) (L,M’) = lim HOHIK(A) (LI,M)
tMS MY sLISL
as t (resp. s) runs over the preceeding category (resp. its opposite). If L, M are
complexes, we set, for i € Z,

Ext’(L, M) = Hompa)(L, M[i]) = Hompa)(L[—i], M).

The functors H' and the canonical truncation functors 7<;, 7>; on C(A) naturally
extend to D(A). On the other hand, it is not the same as the naive truncation
functors.

4.3. We denote by D*(A) (resp. D~ (A), resp. D’(A)) the full subcate-
gory of D(A) formed from complexes L cohomologically bounded below (resp. above,
resp. bounded), i.e. such that H'L = 0 for i small enough (resp. large enough,
resp. outside a bounded interval). If A contains sufficiently many injectives (i.e. if
any object of A embeds in an injective), for example if A is the category of Ox-
modules over a scheme X, then any object of D*(A) is isomorphic to a complex,
with bounded below degree, formed from injectives, and the category D*(A) is
equivalent to the full subcategory of K(A) formed from such complexes.

LA category I is said to be filtered if it satisfies the following conditions (a) and (b):
(a) For any two arrows f,g : i — j, there exists an arrow h : j — k such that hf = hg.
(b) Assume given any objects 4 and j, there exists an object k and arrows f:i —k, g:j — k.
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4.4. The categories K(A) and D(A) are not in general abelian, but possess a
triangle category structure, in the sense of Verdier [V]. This structure is defined by
the family of distinguished triangles. A triangle is a sequence of arrows T = (L —
M — N — L[1]) of K(A) (resp. D(A)). A morphismof TinT' = (L' - M' —
N'"— L'[1])isatriplet (u: L - L', v: M — M’', w: N — N') such that the three
squares formed with u, v, w, u[l] commute. A triangle is said to be distinguished
if it is isomorphic to a triangle of the form

L% M5 C®w) B L),

where u is the cone of a morphism of complexes u, and i (resp. p) denotes the
obvious inclusion (resp. the opposite of the projection). Any short exact sequence
of complexes 0 - E =% F — G — 0 defines a distinguished triangle D(A), by
means of the natural quasi-isomorphism C(u) — G, and any distinguished triangle
of D(A) is isomorphic to a triangle of this type.
Any distinguished triangle T = (L - M — N — L[1]) of D(A) gives rise to a

long exact sequence

oo H'L - H'M —» HN & gL ..

-+ = Ext'(E, L) - Ext'(E, M) — Ext'(E,N) = Ext"™ (E,L) - ---,

--- = Ext'(N,E) = Ext'(M, E) — Ext'(L, E) —» Ext'™(N,E) — - - -,
for E € ob D(A). If the triangle T is associated to a short exact sequence given

explicitly above, the operator d of the first of these sequences is the usual boundary
operator (this is the reason for the convention of sign in the definition of p).

4.5. Let L be a complex of A and i € Z. The quotient 7<;L/7<;_1 L is mapped
quasi-isomorphically onto HL[—i]. Therefore there is a canonical distinguished
triangle from D(A)

T<ioi L — 17<;L = H'L[—i] = T<;—1 L[1].

We similarly define a canonical distinguished triangle
H7'L—i+ 1] = 75i-1L = 7>;L — H"™'L[—i + 2].
Finally,
i1l = T>i—17<;L = 7<;7>;-1 L = (0 = L'~ /B'L = Z'L — 0)

defines a distinguished triangle

H"™'Ll—i+1] = 11,4 L = H'L[—i] —,
which furnishes a canonical element
(4.5.1) ci € Ext’(H'L, H'7'L).

The triplet (H*"'L, H'L, ¢;) is an invariant of L in D(A). It permits its recon-
struction up to an isomorphism if L is cohomologically concentrated in degree i —1
and ¢. One can show that the ¢; universally realizes the differential dy of the spectral
sequences of derived functors applied to L (cf. Verdier’s theorem!?, or [D3]).

12Which should be appearing soon in Astérique.
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4.6. Let L be an object of D’(A). We say that L is decomposable if L is
isomorphic, in D(A), to a complex with zero differential. If L is decomposable,
and if uw : L’ — L is an isomorphism of D(A), with L' having zero differential,

then u induces isomorphisms L' — H’L. In particular L' has bounded degree and
L' =@ L'"[—i] (in C(A)) (4.1), therefore

(4.6.1) L~@HL[-i]

(in D(A)). Conversely, if L satisfies (4.6.1), L is trivially decomposable. If L is
decomposable, one calls a decomposition of L the choice of an isomorphism (4.6.1)
inducing the identity on H* for all i. There exists a finite sequence of obstructions
to the decomposability of L: The first are the classes ¢; (4.5.1); if the ¢; are zero,
there are secondary obstructions in Ext®(H'L, H* L), etc. In addition, if L is
decomposable, L admits in general many decompositions.

In the following section, we are especially interested in the case when L is
concentrated in degree 0 and 1 : L = (L° — L'). In this case:
a) the class ¢; € Ext?>(H'L, HL) is the obstruction to the decomposability of L;
b) the giving of a decomposition of L is equivalent to that of a morphism
H'L[-1] — L inducing the identity on H';
c¢) The set of decompositions of L is an affine space under Ext' (H'L, H°L) ([D-I]
3.1).

4.7. We now return for example to [H1], II for the definition of the derived

functors @%, RHom ', RHom, Rf., Lf*, RI in the derived category D(X), where
X is a variable scheme, and the description of certain remarkable relations between
these functors. We need only recall that these functors are, compared to each
argument, ezact functors, i.e. transform distinguished triangles to distinguished
triangles, and are “calculated” in the following way:

(a) For E € ob D(X), F € ob D~(X), E&F ~ E® F' if F ~ F' in D(X), with
F' having upper bounded degree (4.1) and with flat components. For given F,
there exists a quasi-isomorphism F' — F with F' of the preceding type; moreover
the homotopy classes of such quasi-isomorphisms form a coinitial system (in the
category of classes of quasi-isomorphisms with target F, cf. 4.2).

(b) For E € ob D(X), F € ob DT(X), if F ~ F', with F' having lower bounded
degree and with injective components, then RHom(E,F) ~ Hom*(E,F’') and
RHom(E,F) ~ Hom®(E,F'). For given F, there exists a quasi-isomorphism
F — F' with F' of the preceding type (and the homotopy classes of such
quasi-isomorphisms form a cofinal system).

(c) For f: X - Y and E € ob D¥(X), if E ~ E’', with E' having lower bounded
degree and with flasque components (for example, injective), then Rf.E ~ f.E'
and RT(X,FE) ~ I'(X, E'). One simply writes H'(X, F) instead of H'RT'(X, E);
and more generally, one defines in the same way, Rf. : DT (X, f1(Oy)) = DT (Y),
where D(X, f~1(Oy)) denotes the derived category of the category of complexes
of f71(Oy)-modules (the de Rham complex Q%/y is such a complex).

(d) For f: X - Y and F € ob D=(Y), Lf*F ~ f*F' if F ~ F', with F’ having
upper bounded degrees and with flat components.

I3 An error of sign slipped into the definition of the complex Hom® (L, M) in [H1] p. 64: For
u € Hom(L?, M*t"), it necessarily reads du = dou + (—1)"t!u o d.
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4.8. It can be said that spectral sequences are perhaps one of the most avoided
objects in mathematics, and yet at the same time, are one of the most useful
algebraic tools for cohomology. This is particularly true of derived categories, which
sometimes contributes to this, but they remain essential. There are many references,
the oldest ([C-E], XV) being one of the best. In these notes, we will be especially
interested in the spectral sequence called the Hodge to de Rham, for which we will
recall the definition.

Let T : A — B be an additive functor between abelian categories. Assume that
A has sufficiently many injectives. Then T' admits a right derived functor

RT : D*(A) —» D*(B),

which is calculated by RT(K) ~ T(K') if K — K' is a quasi-isomorphism with
K’ with bounded below degree and with injective components. The objects of
cohomology H? o RT : D¥(A) — B are denoted by R‘T. For K € ob D(A), with
bounded below degree, there is a spectral sequence

(4.8.1) EY = RIT(K') = R*T(K),

called the first spectral sequence of hypercohomology of T. It is obtained in the
following way: Chooses a resolution K — L of K by a bicomplex L, such that
each column L is an injective resolution of K*. If sL denotes the associated
simple complex, the resulting homomorphism of complexes K — sL is a quasi-
isomorphism, therefore RT(K) ~ T(sL) = sT(L), RT(K") ~ T(L?), and the
filtration of sT'(L) by the first degree of L given rise to (4.8.1).

Let K be a field and X a k-scheme. The group (cf. (1.7.1) and 4.7 (c))

(4.8.2) Hpg (X/k) = H'(X,9% ;) = T(Speck, R'f.(Q% 1)

(where f : X — Speck is the structure morphism) is called i-th de Rham cohomol-
ogy group of X/k. This is a k-vector space. The spectral sequence (4.8.1) relative to
the functor I'(X, e) and the complex Q% /. is called the Hodge to de Rham spectral

sequence of X/k :
(4.8.3) EY = H/(X,Q% ) = Hpgp(X/k).

This is a spectral sequence of k-vector spaces. The groups H7 (X, Qé(/k) are called
the Hodge cohomology groups of X over k. If X is proper over k ([H2] II 4) (for
example, projective over k, i.e. a closed subscheme of a projective space P}),
and since the Q% /i are coherent sheaves (2.1), the finiteness theorem of Serre-
Grothendieck ([H2] III 5.2 in the projective case, (EGA III 3) in the general case)
implies that the Hodge cohomology groups of X over k are finite dimensional k-
vector spaces. By the spectral sequence (4.8.3), it follows from this that the de
Rham cohomology groups H (X/k) are also finite dimensional over k. Moreover,
for each n, one has

(4.8.4) > dimy, HY (X, Q%)) > dimg Hg (X/k),
i+j=n

with equality for all n if and only if the Hodge to de Rham spectral sequence of X
over k degenerates at i, i.e. the differential d,. is zero for all r > 1.
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5. Decomposition, degeneration and
vanishing theorems in characteristic p > 0

In this section, as in n°3, p will denote a fixed prime number.
The main result is the following theorem ([D-I] 2.1, 3.7):

THEOREM 5.1. Let S be a scheme of characteristic p. Assume given a (flat)
lifting T of S over Z/p*Z (3.7). Let X be a smooth S-scheme, and let us denote as
in 3.1, F: X — X' the relative Frobenius of X/S. Then if X' admits a (smooth)
lifting over T, the complez of O x:-modules T<pF*93(/S (4.1) is decomposable in the

derived category D(X') of Ox/-modules (4.6).

5.2. Before beginning the proof, note that a decomposition of 7«,F Q;(/S is
equivalent to giving an arrow of D(X")

P H F.% s1-i] - F.O%
i<p

inducing the identity on #H’ for all i < p. According to Cartier’s theorem (3.5), this
data is still equivalent to that of an arrow of D(X")

(5.2.1) 0 P Yy jsl—il = FuQ% /s

i<p
inducing C~! on H? for all i < p. The proof in fact consists of associating canoni-
cally such an arrow ¢ to each lifting of X’ over T'. It includes three steps.

Step A. We start by treating the case where F' admits a global lifting.

PROPOSITION 5.3. Under the hypothesis of 5.1, assume that F : X — X'
admits a global lifting G : Z — Z', where Z (resp. Z') lifts X (resp. X') over T.
Let

(5.3.1) oo P Vi ysl—il = Fu%/s

be the homomorphism of complexes, with i-th component cpg, defined in the follow-
ing way:

W% =F*:0x = F.Ox; @& : Q%{’/S — F*Qk/s
is the homomorphism “G*/p” defined in 3.8 (c). Fori > 1, p., is composed with
Aipl, and of the product AiF*Qk/S — F*Qg(/s. Then pg is a quasi-isomorphism,

inducing the Cartier isomorphism C~' on H' for all i.
This is immediate.

Step B. This is the principal step. We show that the giving of a lifting Z' of
X' over T allows us to define a decomposition of 7<; F Q;(/S, i.e. a homomorphism

vzt Vyysl=1] = FQ%/s

of D(X') (and not C(X')) inducing C~! over H'. With this intention, we need
to compare the homomorphisms ¢, of (5.3.1) associated to any other lifting of F
with target Z'.
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LEmMA 5.4. To any pair (G : Zy — Z',Go : Zy — Z') of liftings of F is
associated canonically a homomorphism

(5.4.1) h(G1,G-) : Q%('/s — F.Ox
such that pf, — ot = dh(G1,Gy). If Gs : Zs — Z' is a third lifting of F, one has
(542) h(Gl,Gg) + h(GQ,G3) = h(Gl, G3)

Let us suppose initially that Z; and Z» are isomorphic (in the sense of 2.12
(b)). Choose an isomorphism u : Z; — Z,. Then Ghu and G lift F, i.e. extend
to Z; the composite X L, 7 <5 7'. Therefore according to 2.11 (b), they differ by
a homomorphism h,, of F*Q&,,/S in Ox, or what amounts to the same, of Qk,,/s
in F,Ox. If v is a second isomorphism of Z; onto Z>, then taking into account
3.4 (a), it follows from 2.11 (b) that u and v differ by a homomorphism “u — v” :
Q%{/s — Ox, therefore Gou and Gyv differ by the composite of “u — v” and the
homomorphism F*Q&,/S — Qk/s, which is zero, a fortiori Gou = Gyv. Therefore
h, does not depend on the choice of u. Since Z; and Z, are locally isomorphic
according to 2.11 (a), we deduce from this a homomorphism (5.4.1) characterized
by the property that if « is an isomorphism of Z; onto Zy over an open subset U of
X (recall still that Z;, Z, and X have the same underlying space), the restriction
of h(G1, G3) to U is the homomorphism h,, the “difference” between G; and Gau.
The formula ¢, — ¢, = dh(G1, Gs) follows from the explicit description of ¢,
given in (3.8.1), and formula (5.4.2) is immediate.

Now fix the lifting Z’ of X' over T. According to 2.11 (a) and 2.12 (a), we can
choose an open covering U = (U;)ier of X in such a way that we have for each i, a
lifting Z; of U; over T and a lifting G; : Z; — Z' of Fy,. We then arrange for each
1, & homomorphism of complexes

fi= <P1Gl- : Q%(//swi[_l] - F*Q;(/S\Ui14

of (5.3.1), and for each pair (,7), a homomorphism
hij = h(Gi|Uij7GﬂUij) : Q%{’/SlUi]‘ - F*Q;(/S|Ui
of (5.4.1), where U;; = U; N Uj. These datum are connected by

fi — fi=dhi; (on Uy),
hij + hjr = hi  (on Uy = U; NU; N Uy).

They make it possible to define a homomorphism of complexes of Ox-modules
Solz',(u,(ai)) : Qﬁ('/s[_l] - C(U,F*Q;(/S),

where C(U, F, Q;(/S) is the simple complex associated to the Cech bicomplex of the
covering U with values in F,Q% /8" The components of this complex are given by

C(U,F*Q}/S)": @ éb(uaF*Q()l(/s)
a+b=n

14We identify the underlying spaces of X and X’ by means of F' (3.1).
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with differential d = d; + ds, where d; is induced by the differential of the de Rham
complex and ds is, in bidegree (a,b), equal to (—1)*(>°(=1)!0%) (see [G] 5.2 or [H2]
IIT 4.2). In particular,

C(U, F.0% /)" =C' (U, F.Ox) & CO(U, F.QY 5)-

The morphism 501Z’7(u7(Gi)) is defined as having for components, (1, y2) in degree
1, with

(010)(i,3) = hij@)yrys (20)(D) = Fi(w) -
Using the fact that the f; are morphisms of complexes, together with the above for-
mulas connecting the f; and the h;;, it follows that cplz,’ U(G)) is thus a well-defined
morphism of complexes. We also has at our disposal the natural augmentation

€: F.Q% /s = CU, F.O%/s),

which is a quasi-isomorphism, because for any a, the complex C(U, F Q‘)’(/S) is a
resolution of F.Q% g (cf. [Go] or [H2] loc. cit.). We then define

to be the arrow of D(X') composed with ‘plzu(u(Gi)) and with the inverse of € (4.2).
If (U = (Ui)ier, (Gi)ier) and (V = (V})jer, (Gj)jer) are two choices of systems
of Frobenius liftings, then by considering the covering U [V, indexed by I]] J,
formed from the U; and from Vj, it follows that (), does not depend on choices
(cf. [D-I] p. 253). Moreover ¢4, induces C~! on H': The question is indeed local,
therefore we can arrange for a global lifting of F', and apply 5.3. This completes
step B.

Step C. We again fix a lifting Z’ of X', and show how to extend the decom-
position of TglF*Qs(/S defined by ¢%, (i = 0,1) to a decomposition of T<pF*Q;(/S.
We use for this the multiplicative structure of the de Rham complex. From ¢}, we
deduce, for all i > 1, an arrow of D(X")

L

L. L L L .
(7)) = 0@ @y (U s[-1)P" = (FOQ%,5)®"
Since Qk,/s is locally free of finite type, we have (4.7 (a))

L

(%) (Qxrs[=1)% = (Qxr/6) [,
and similarly, since the Fi.Q% ¢ are locally free of finite type (3.3 (a)),

L

(%) (FeQy/s)®" = (Fuy/s)®"
We then define for i < p,
Pl Ui sl=i] = R

as the composite (via () and (xx)) of the standard antisymmetrization arrow

; . i 1
QlX'/s[Z] - (ri/s)@”[—l], w1 A Aw; = a Z sgn(0)wWe(1) A -+ A Wa(s)
gEG;
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L .
(well defined because of the assumption i < p), of the arrow (¢4, )®?, and of the
product arrow (F.Q% /S)‘X’Z - F.Q% /s Since’ the antisymmetrication arrow is a
section of the projection of (Qk,/s)@?’ onto Q’X,/S, the multiplicative property of
the Cartier isomorphism results in %, inducing C~! over H¢, and this completes
the proof of the theorem.
Taking into account 3.9, we then deduce:

COROLLARY 5.5. Let k be a perfect field of characteristic p, and let X be
a smooth scheme over S = Speck. If X is lifted over T = Spec Wa(k), then
T<pF*Q;(/S is decomposable in D(X'). Moreover, if X is of dimension < p, then
F*Q;(/S 1s decomposable.

REMARK 5.5.1. According to 5.3, if X is smooth over Speck and if X and

F are lifted over Wy(k), then F.Q% ¢ is decomposable (and this is without the
assumption of dimension on X). This is the case for example if X is affine. On the
other hand, if X is proper, it is rare that X admits a lifting over W5 (k) where F
is lifted. One can show that if X and F' are lifted, then X is ordinary, i.e. satisfies

Hi(X, Biﬂk/s) =0 for all (i,7) (cf. 8.6). The notion of an ordinary variety, which

makes sense only in non-zero characteristic, was initially introduced for curves and
abelian varieties. It intervenes in rather many questions in algebraic geometry. See
[I4] for an introduction and the references cited there.

COROLLARY 5.6. Let k be a perfect field of characteristic p, and let X be a
smooth and proper k-scheme, of dimension < p. If X is lifted over Wy(k), the
spectral sequence of Hodge to de Rham (4.8.3) of X over k

EY = HY(X, Q%) = Hpp(X/k)
degenerates at E .

By virtue of the compatibility of Q¢ by a change of base (1.3.2), the absolute
Frobenius isomorphism Fg : S — S (where S = Speck) induces, for all (i, ), an
isomorphism F%H’(X, Qg(/k) = HI(X', Qg(,/k), and in particular, we have

dimy, HY (X, 0% /) = dimg H (X', Q% ).
In addition, since F': X — X' is a homeomorphism, one has canonically, for all n,

HM(X', F.Q% ) < H(X,Q%5) = Hisg (X/).

Finally, if X is lifted over W2(k), a decomposition ¢ : @ Q. /g[—i] = F.Q% /g of
F*Q;(/S in D(X") induces, for all n, an isomorphism
P H (X', 0% ) = H'(X', F.Q% ).
i+j=n
It follows from this that one has, for all n,
> dimy HY (X, QY ,,) = dimg Hjg (X/k),
i+j=n

and according to 4.8, this results in the degeneration at E; of the Hodge to de
Rham spectral sequence.
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5.7. For the remaining part to follow, the reader can consult [H2] II, III. Let
k be a ring and X a projective k-scheme, i.e. admits a closed k-immersion ¢ in a
standard projective space P = P}, = Proj,[to, ... ,ts]. Let L be an invertible sheaf
over X. Recall that:
(i) L is very ample if one has L ~ i*Op(1) for such a closed immersion i, which
means that there exists global sections s; € I'(X, L) (0 < j < r) defining a closed
immersion = — (so(x),...,s.(z)) of X in P;
(ii) L is ample, if there exists n > 0 such that L™ is very ample.
Assume L ample. Then, according to Serre’s theorem ([H2] II 5.17, III 5.2):
(a) For any coherent sheaf E on X, there exists an integer ng such that for any
n > ng, E® L®" is generated by a finite number of its global sections, i.e. a
quotient of O for suitable N.
(b) For any coherent sheaf E on X, there exists an integer ng such that for any
n > ng and all ¢ > 1, one has

H(X,E®L®") =0.

The theorem which follows is an analog in characteristic p, of the Kodaira-Akizuki-
Nakano vanishing theorem [KAN], [AkN]:

THEOREM 5.8. Let k be a field of characteristic p, and let X be a smooth

projective k-scheme. Let L be an ample invertible sheaf on X . Then if X is of pure
dimension d < p (cf. 2.10) and is lifted over Wy (k), we have

(5.8.1) H/(X,L®Q%,) =0 fori+j>d,
(5.8.2) H/(X, L9 @ Q%)) =0 fori+j<d.

This is a corollary of 5.5, due to Raynaud. The proof is analogous to that of
5.6, starting from 5.5. First of all, by the Serre duality theorem ([H2] III 7.7, 7.12),
if M is an invertible sheaf on X, and if i+4' = d = j+j', then the finite dimensional
k-vector spaces H (X, M ® Qg(/k) and HY (X, M® 1 Qg(/k) are canonically dual.
Formulas (5.8.1) and (5.8.2) are therefore equivalent. It will be more convenient to
prove (5.8.2). By Serre’s vanishing theorem (5.7 (b)), there exists n > 0 such that
Hi(X,L®"" © Qg(/k) = 0 for all j > 0 and all . By Serre duality, it follows that
HI(X,L® 7" ® Q}/k) = 0 for all j < d and all ¢, and in particular for all (i, j)
such that 7 4+ j < d. Proceeding by descending induction on n, it therefore suffices
to prove the following assertion:

(x) if M is an invertible sheaf over X satisfying H7 (X, M®P ® Qé{/k) =0 for all
(i,7) such that i + j < d, then H (X, M ® Q}/k) = 0 for all (i,7) such that
i+j<d

Note as in 5.1, X' is the scheme induced from X by the change of base by the

absolute Frobenius of S = Speck. If Fx denotes the absolute Frobenius of X,

we have a canonical isomorphism F¥M ~ M®P_ induced by the map m — m®?,

and therefore an isomorphism F' *M' ~ M®P where F : X — X' is the relative

Frobenius and M' is the inverse image of M over X'. We deduce, for all ¢, the

following isomorphisms of Ox/-modules

G0 M'® Py = F(F"M' @ Q) = (M7 © Q).
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Let us consider the spectral sequence (4.8.1) relative to the functor T' = T'(X’, e)

and on the complex K = M' ® FQ%),

EY = H(X',\M' @ F.Q% ) = H*(X',M' ® F.Q% ;).

The hypothesis and (%) imply that Efj =0 for i + j < d. Therefore
H"(X',M'® F.Q% ;) =0 forn<d.

But like, according to 5.5, F. Q2% is decomposable, we have (in D(X"))

F*Q;(/k = @ Qg(’/k[_i]a
therefore . '
H"X',M'® F.Q%) ~ @ H/(X', M @0, ),
i+j=n
and therefore . '
HI(X'\M'® Q%) =0 fori+j<d
The conclusion (x) follows from this, since we have
FHI (X, M © Q) ~ H/ (X', M' ® Q% ;)
(cf. the end of the proof of 5.6).

REMARKS 5.9. The reader will find in [D-I] many complements of the afore-

mentioned results. Here are some.

1. Let us assume given the hypothesis of 5.1. Then:

(a) X' is lifted over T if and only if 7<; F} (1% /s is decomposable in D(X")
(or, what amounts to the same, 7, F Q}/S is). Recall that there exists
an obstruction w € Ext2(9§(,/s, Ox) to the lifting of X' (2.12 (a) and
3.7.1)), and that taking into account the Cartier isomorphism, this is in
the same group that is found the obstruction ¢; to the decomposability
of <1 FL.Q% /g (4.6(a)): One can show with some convenient conventions
of signs, that w = ¢;.

(b) If X' is lifted over T, the set of isomorphism classes of liftings of X' is an
affine space under Extl(Qk,/S, Ox) (2.12 (b) and (3.7.1)), and (always
taking into account the Cartier isomorphism) the set of decompositions
of 7<1 FL Q2% 5 is an affine space under the same group (4.6(c)): One can
show that the map Z’ — ¢z constructed in the proof of 5.1 is an affine
bijection between these two spaces.

(c) In fact, there is in [D-I] 3.5 a statement covering (a) and (b), by ap-
pealing to the theory gerbes of Giraud [Gi].

2. The degeneration theorem 5.6 has a relative variant. We work under the
assumption of 5.1, and denote by f : X — S the structure morphism.
Consider then the spectral sequence (4.8.1) relative to the functor f. and
the complex Q}/S,

EY = R f.Q% s = R*f.(Q%/s);

which is called the relative Hodge to de Rham spectral sequence (of X over
S). Then if X is smooth and proper of relative dimension < p, and if X'
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is lifted over T', this spectral sequence degenerates at E; and the sheaves
RI f.Q g are locally free of finite type. ([D-I] 4.1.5).

3. The latter assertion of 5.5 and the conclusions of 5.6 and 5.8 still remain true
if one only assumes X of dimension < p ([D-1] 2.3). This is a consequence
of Grothendieck duality for the morphism F.

4. There exists many examples of smooth and proper surfaces X over an alge-
braically closed field £k of characteristic p for which the Hodge to de Rham
spectral sequence does not degenerate at F; and which does not satisfy the
vanishing property of Kodaira-Akizuki-Nakano type of 5.8. (Taking into
account (3) if p = 2, or 5.6 and 5.8 if p > 2, these surfaces are therefore
not lifted over Wy (k).) See ([D-I] 2.6 and 2.10) for a bibliography on this
subject.

5. Formulas (5.8.1) and (5.8.2) are still useful if d = 2 < p, X is liftable over
Wy (k) and L is only assumed numerically positive, i.e. satisfies L - L > 0
and L - O(D) > 0 for any effective divisor D, see [D-I] 2.

6. From characteristic p > 0 to characteristic zero

6.0. There exists a standard technique in algebraic geometry, which allows
one to prove certain statements of geometric nature'®, formulas over a base field of
characteristic zero, from analogous statements over a field of characteristic p > 0,
even a finite field. Roughly speaking, it consists of a given base field K, which is in
characteristic zero, as an inductive limit of its Z-sub-algebras of finite type A;: Data
on K, provided that they satisfy certain finiteness conditions, arise by extension of
scalars from similar data on one of the A;, say A;, = B. It is then enough to solve
the similar problem on T = Spec B, that which is seemingly more difficult. The
advantage however, is that the closed points of T are then the spectrum of a finite
field, and that in a sense which one can specify, there are many such points, so that
it is enough to check the statement posed on T after sufficient specialization to these
points. There is the business dealing with a problem of characteristic p > 0, where
one has the range of corresponding methods (Frobenius, Cartier isomorphism, etc.);
moreover one can exploit the fact of being able to choose the characteristic large
enough.

The two ingredients of the method are: (a) results of passing to the limit, pre-
sented in great generality in (EGA IV 8), allowing the “spreading out” of certain
data and properties on K, to similar data and properties on B; (b) density prop-
erties of closed points on schemes such that the schemes are of finite type over a
field or over Z (EGA IV 10).

6.1. Let ((Ai)ier, ui; : Ai = A; (i < 7)) be afiltered inductive system of rings,
with inductive limit A, and denote by u; : A; = A the canonical homomorphism.
The two very important examples are: (i) a ring A written as an inductive limit
of its sub-Z-algebras of finite type; (ii) the localization A, of a ring A at a prime
ideal p written as an inductive limit of localizations Ay (= A[1/f]) for f ¢ p.

The prototype of problems and results of type (a) above is the following. Let
(E;) = ((Bi)ier, vij + E; = Ej) be an inductive system of A;-modules, having
for inductive limit the A-module E. Let us agree to say that (E;) is cartesian if,

151 e. stable by base extension, as opposed to statements of arithmetic nature, where the
base plays an essential role.
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for any ¢ < j, v;; (which is an A;-linear homomorphism of E; into E; considered
as an A;-module via u;;) induces, by adjunction, an isomorphism (A;-linear) of
uj; B = Aj @4, E; in Ej. In this case, the canonical homomorphism v; : E; — E
induces for all 4, an isomorphism u}E; (= A ®4, E;) — E. Let ((F}); € I,w;;) be
a second inductive system of A;-modules. If (E;) is cartesian, the Homy, (F;, F;)
form an inductive system of A;-modules: The transition map for ¢ < j associated
to f; : By — Fj is the homomorphism E; — F; composed with the inverse of the
isomorphism of 4; ® E; in E; defined by v;;, from A; ® f; : A; ® E; = A; ® F;, and
from the map of A; ® F}; in F; defined by w;;. If F' denotes the inductive limit of
the F;, one has analogous maps of Hom 4, (E;, F;) into Hom 4 (E, F'), which defines
a homomorphism

(6.1.1) indlim Homy, (E;, F;) — Homa (E, F).

We can then pose the following two questions :

(1) Being given an A-module E, does there exist i9 € I and an A;,-module E;,
such that E results from FE;, by an extension of scalars of 4;, to A (or, that
which amounts to the same, does there exist a cartesian inductive system (E;),
indexed by {i € Ili > ip}, for which the limit is E) ?

(2) If there exists ig such that (E;) and (F}) are cartesian for ¢ > ig, is the map
(6.1.1) (where the inductive limit is reached for 7 > ig) an isomorphism ?
There is a positive answer to the two questions with the help of hypothesis of
finite presentation. (Recall that a module is said to be finitely presented if it is
the cokernel of a homomorphism between free modules of the finite type.) More

precisely, there is the following statement, which can be verified immediately:

LEMMA 6.1.2. With the preceding notation:

(a) If E is a finitely presented A-module, there exists ig € I and an A;,-module of
finite presentation E;, such that uj E;, ~ E.

(b) Let (E;), (F;) be two inductive systems, cartesian for i > ig, with respective
inductive limits E and F. Then if E;, is finitely presented, the map (6.1.1) is
an isomorphism.

It follows from this that if E is finitely presented, the E;, which arises by
extension of scalars is essentially unique, in this sense that if F;, is another choice
(E;, and E;, both being two finite presentations), there exists iy with i > 4; and
i2 > ip such that E;, and E;, become isomorphisms by extensions of scalars to A;, .

The S; = Spec A; form a projective system of schemes for which S = Spec A is
the projective limit. If (X;,v;; : X; = X;) is a projective system of S;-schemes, we
say that this system is cartesian for i > iq if, for ig < i < j, the transition arrow
vy; gives a cartesian square

Xj — Xz
2 2
Sj — Sl

In this case, the S-scheme induced from X;, by extension of scalars to S is the
projective limit of X;. If (Y;) is a second projective system of S;-schemes, cartesian
for i > ig, the projective limit V' (= S xs, Yi,) of the Homg,(X;,Y;) form a
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projective system, and one has an analogous map to (6.1.1):
(6.1.3) projlim Homg, (X;,Y;) - Homg(X,Y).

We can then formulate similar questions to (1) and (2) above. They have similar
answers, with the condition of replacing the hypothesis of finite presentation for
modules by the hypothesis of finite presentation for schemes (a morphism of schemes
X — Y is said to be a finite presentation if it is locally of finite presentation (2.1)
and “quasi-compact and quasi-separated”, which means that X is a finite union of
open affine subsets U, over an open affine subset V,, of Y and that the intersections
U, NUs have the same property; if Y is Noetherian, X is finitely presented over YV’
if and only if X is of finite type over Y, i.e. locally of finite type over Y (2.1) and
Noetherian):

PROPOSITION 6.2. (a) If X is an S-scheme of finite presentation, there exists
io € I and an S;,-scheme X;, of finite presentation for which X is induced by a
base change.
(b) If (X;), (Y3) are two projective systems of S;-schemes, cartesian for i > ig, and
if Xi, andY;, are finitely presented over S;,, then the map (6.1.3) is bijective.

As in the preceding, it follows from this that X;, of 6.2 (a) is essentially unique
(two such schemes become S;-isomorphic for i large enough). Moreover, the usual
properties of an S-scheme of finite presentation (or of a morphism between such)
are already determined to some extent, over S; for i large enough. Here are some,
which are useful statements in themselves (the reader will find a long list in (EGA
IV 8, 11.2, 17.7)):

PROPOSITION 6.3. Let X be an S-scheme of finite presentation. We assume
that X has one of the following properties P: projective, proper, smooth. Then
there exists io € I and an S;,-scheme X;, of finite presentation, having the same
property P, for which X is induced by base change.

The case where P is “projective” is easy: X is the closed subscheme of a
standard projective space P = P% defined by an ideal locally of finite type. It
suffices to lift P, and then the closed immersion (i.e. the corresponding quotient of
Op, cf. 6.11). The “proper” case is less immediate, but roughly, it goes back to a
classical result, namely Chow’s Lemma (cf. EGA TV 8.10.5). The “smooth” case is
a little more difficult (which uses criterion 2.10), see (EGA IV 11.2.6 and 17.7.8).
With regard to the properties of type (b) evoked in 6.0, we will only have need of
the following result:

PROPOSITION 6.4. Let S be a scheme of finite type over Z. Then:
(a) If = is a closed point of S, the residue field k(zx) is a finite field,

(b) All locally closed nonempty components Z of S contain a closed point of S.

For the proof, we refer to (EGA IV 10.4.6, 10.4.7), or in the case where S is
affine, this goes back to (Bourbaki, Alg. Com. V, by 3, n® 4) (this is a consequence
of Hilbert’s theorem of zeros).

We will need to apply 6.4 (b) to the case where Z is the smooth part of S, S
being assumed integral®® :

16 A scheme is said to be integral if it is reduced and irreducible.
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PROPOSITION 6.5. Let S be an integral scheme of finite type over Z. The set
of points x of S for which S is smooth over SpecZ is a nonempty open set of S. In
particular, if A is a Z-algebra of finite type, and integral, there exists s € A, s #0,
such that Spec A, is smooth over 7.

The openness of the set of smooth points of a morphism locally of finite presen-
tation is a general fact, which is a consequence for example of the jacobi criterion
2.6 (a), cf. (EGA IV 12.1.6.). That in the present case this open set is nonempty
follows from a local variant of 2.10 and from the fact that the generic fiber of S is
smooth over QQ at its generic point, Q being perfect.

We will finally have to use some standard results of compatability of direct
images by a base change (or, as one says sometimes, of cohomological cleanliness).
Not wanting to weigh down our exposition, we will state them only in the case
where it will be useful for us to have, for the Hodge cohomology and the de Rham
cohomology.

PROPOSITION 6.6. Let S be an affine scheme'”, Noetherian, integral, and f :
X — S a smooth and proper morphism.
(a) The sheaves ij*ﬂg(/s and R"f*QB(/S are coherent. There exists a nonempty

open set U of S such that, for any (i,j) and any n, the restrictions to U of
these sheaves are locally free of finite type.

(b) For any i € Z and for any morphism g : S' — S, if f' : X' — S denotes
the induced scheme of X by base change via g, the canonical arrows of D(S’)
(according to base change)

(6.6.1) Lg*Rf.Q% s = Rf.O%. /5
(662) Lg*Rf* .X/S — RfLQA.X’/S’

are isomorphisms. _ .
(c) Fiz i € Z and assume that for any j, the sheaf RJf*QZX/S is locally free over

S, of constant rank h'J. Then for any j, the base change arrow (induced from
(6.6.1))

(6.6.3) 9 R f.Q% s = R fiQ%. 6

is an isomorphism. In particular, ijiﬂg(,/s, is locally free of rank h.
(d) Suppose that for all n, R"f*Q;(/S is locally free of constant rank h,. Then for
all n, the change of base arrow (induced from (6.62))

(664) g*Rnf*Q;(/S — RnfiQ;(//S/
s an isomorphism. In particular, R”fiﬂ;(,/s, is locally free of rank h™.

Let us briefly indicate the proof. The fact that the R’f.Q% ¢ are coherent
is a particular case of the finiteness theorem of Grothendieck (EGA III 3) (or
[H2] IIT 8.8 in the projective case). The coherence of R"f.Q% g follows from

this by the relative Hodge to de Rham spectral sequence (5.9(2)). For the second

17The hypothesis “affine” is unnecessary; we use it only to facilitate the proof of (b).
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assertion of (a), denote by A the (integral) ring of S, K its field of fractions, which
is therefore the local ring of S at its generic point 1. We set for abbreviation
R f.Q%,s = HY, R"f.Q%,g = H". The fiber of H" (resp. H") at 1 is free
of finite type (a K-vector space of finite dimension), and is the inductive limit of
Hﬁ)(s) (resp. HlnD(s)), for s transversing A, D(s) denoting “the open complement”
of s, i.e. SpecA; = X — V(s). By 6.1.2 it follows from this that there exists
s such that ’H‘%(s) (resp. Hl’LD(s)) are free of finite type. For (b), we choose a
finite covering U of X by open affine sets, denote by U’ the open covering of X'
induced from U by base change. Since S is affine and that X is proper, therefore
separated over S, the finite intersections of open sets in I are affine and similarly the
finite intersections of open sets in U’ are (relatively) affine!® over S’. Consequently
(cf. [H2] III 8.7), Rf*ﬂg(/s (resp. Rf,ﬁﬂg(,/s,) is represented by f*CV(Z/{,Qg(/S)

(resp. fC(U', Qg(,/s,)), where we denote here by C(i, ) the alternating complex

of cochains. By the compatability of Qf by a base change, there is a canonical
isomorphism of complexes

g*f*é(ua Qg(/s) — fié(u” 93(//51)-

Since the complex f.C(U, Q% / ) is bounded and with flat components, this isomor-
phism realizes the isomorphism (6.6.1). Similarly, Rf.O% /s (resp. Rf,iQ;(,/S,))

is represented by f.C(U, Q;(/S) (resp. fIC(U', 93('/5')) (where C denotes this time

the associated simple complex of the Cech bicomplex), and one has a canonical
isomorphism of complexes

g*f*é(u,ﬂ}/s) l> fié(ul’ﬂ. ’/S’):

which realizes the isomorphism (6.6.2). Assertions (c) and (d) follow from (b) and
from the following lemma, for which we leave the verification to the reader:

LEMMA 6.7. Let A be a Noetherian ring and E a complex of A-modules such
that H'(E) are projective of finite type for any i and zero for almost all i. Then:
(a) E is isomorphic, in D(A), to a bounded complex with projective components of

finite type.

(b) If E is bounded and with projective components of finite type, for any A-algebra

B, and for all i, the canonical homomorphism

B®oas H(E) - H(B®4 E)
is am isomorphism.

REMARKS 6.8. (a) A complex of A-modules, isomorphic in D(A), to a bounded
complex with projective components of finite type is said to be perfect. One must be
aware that if E is perfect, it is not true in general, that the H'(E) are projective of
finite type. One can show that under the hypothesis of 6.6, the complexes Rf*ﬂg(/s
and Rf*Q;(/S are perfect over S (and not only over U). The notion of a perfect
complex plays an important role in numerous questions in algebraic geometry.

(b) In the statements of 6.6 concerning QY4 one can replace Q% by any locally
free Ox-module F' of finite type (even coherent and relatively flat over S): The

18 A morphism of schemes is said to be affine if the inverse image of any affine open set is
affine.
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conclusions of (a), (b) and (c) are still valid on the condition of replacing Qg(,/s,
by the inverse image sheaf F’ of F' over X'. Similarly, the complex Rf.F is perfect
over S.

We are now able to state and prove the promised application of 5.6:

THEOREM 6.9 (Hodge Degeneration Theorem). Let K be a field of character-

istic zero, and X a smooth and proper K -scheme. Then the Hodge spectral sequence
of X over K (4.8.3)

EY = HI(X, Q%) = Hpr(X/K)
degenerates at Fy .

Set dimp H?(X, QY ) = b, dim Hfj (X/K) = h". Tt suffices to prove that
foralln, h» =32, ;_, h¥ (cf. (4.8.3)). Write K as an inductive limit of the family
(Ax)rer of its sub-Z-algebras of finite type. According to 6.3, there exists o € L
and a smooth and proper S,-scheme X, (where S, = Spec A,) for which X is
induced by base change Spec K — S,. Even if it means to replace A, by A,[t™!]
for a suitable nonzero t € A,, we can assume, according to 6.5, that S, is smooth
over SpecZ. Abbreviate A, by A, S, by S, X, by X, and denote by f : X — S the
structure morphism. Again by replacing A by A[t!], we can according to 6.6 (a),
assume that the sheaves ij*ﬂge/s (resp. R”f*Q;/S) are free of constant rank,
necessarily equal then to h" (resp. h™) according to 6.6 (c) and (d). Since the
relative dimension of X over S is a locally constant function and that X is quasi-
compact, one can in addition choose an integer d which bounds this dimension at
any point of X and therefore the dimension of the fibers of X over S at any point
of S. Applying 6.4 (b) to Z = Spec A[1/N] for suitable N (say, the product of
prime numbers < d), one can choose a closed point s of S, for which the residue
field k¥ = E(s) (a finite field) is of characteristic p > d. Since S is smooth over
SpecZ, the canonical morphism Speck — S (a closed immersion) is extended (by
definition of smoothness (2.2)) to a morphism ¢ : Spec Wa(k) — S, where W1 (k) is
the ring of Witt vectors of length 2 over k (3.9). Denote by Y = X; the fiber of
X over s = Spec k and Y] the scheme over Spec W5 (k) induced from X by the base
change g. We therefore have cartesian squares:

Y -— Yi - X +« X

3 3 i 3

s — SpecWy(k) & S <« Speck.

By construction, Y is a smooth and proper k-scheme of dimension < p, lifted over
Wy (k). Therefore according to 5.6, the Hodge to de Rham spectral sequence of ¥’
over k degenerates at E1. We therefore have for all n,

> dimg HI(Y,Q5,) = dimy Hijg (Y/E).
i+j=n
But according to 6.6 (c¢) and (d), we have for all (¢,7) and for all n,
dimy, HY (Y, Q) = bV, dimy Hijg (Y/k) = h™.

Therefore 3, ;_, h¥ = R" for all n, for which the proof follows.
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THEOREM 6.10 (Kodaira-Akizuki-Nakano Vanishing Theorem [KAN], [AkN]).
Let K be a field of characteristic zero, X a smooth projective K-scheme of pure di-
mension d, and L an ample invertible sheaf on X. Then we have:

(6.10.1) H/(X,L Q% k) =0 fori+j>d,
(6.10.2) HI(X, L' @ Qi) =0 fori+j<d.

We deduce 6.10 from 5.8 just like 6.9 from 5.6. We need for this a result of
passing to the limit for modules, generalizing and clarifying 6.1.2 (cf. (EGA IV 8.5,
8.10.5.2)):

PROPOSITION 6.11. Assume given, as in 6.1, a filtered projective system of
affine schemes (S;i)icr, with limit S. Let igp € I, X;, be a S;,-scheme of finite
presentation and consider the induced projective cartesian system (X;) for i > i,
with limit X =5 xg, Xi,.

(a) If E is a finitely presented Ox-module, there exists i > ig and a Ox,-module
E; of finite presentation for which E is induced by extension of scalars. If
E is locally free (resp. locally free of rank r), there exists j > i such that
Ej = Ox; ®oy, Ei is locally free (resp. locally free of rankr). If X is projective
over S and E is an ample invertible O x -module (resp. very ample) (5.7), there
exists j > i such that X; is projective over S; and E; is ample invertible (resp.
very ample).

(b) Let E;,, F;, be finitely presented Ox -modules, and consider the systems (E;),
(F;) which are induced by extension of scalars over the X; for i > i, as well as
the modules E and F which are induced by extension of scalars over X. Then
there is a natural map

ind lim Homo, (E;, F;) — Homoy (E, F),

ZZio
which is bijective.

The proof of (b), then of the first two assertions of (a), brings us back to 6.1.2.
For the latter part of (a), it suffices treat the case where E is very ample, i.e.
corresponds to a closed immersion h : X — P = P% such that h*Op(1) ~ E. For
i sufficiently large, one lifts h by an S;-morphism h; : X; — P; = P§ and E by
invertible F; over X;. Even if it means to increase i, h; is a closed immersion and
the isomorphism h*Op(1) ~ E comes from an isomorphism h}Op, (1) ~ E;; E; is
then very ample.

Proving 6.10. Proceeding as in the proof of 6.9, and moreover applying 6.11,
one can find a subring A of K of finite type and smooth over Z, a smooth projective
morphism f: X — S = Spec A of pure relative dimension d, for which X — Spec K
is induced by base change, and an ample invertible Ox-module £ for which L is
induced by extension of scalars. By virtue of 6.6 and 6.8 (b), one can assume, even
if it means to replace A by A[t!], that the sheaves R’ f,(M®Q% /S), where M = L
(resp. L1, are free of finite type, of constant rank, necessarily equal, according
to 6.8 (b), to h¥ (L) = dimyx H/ (X, L ® Q&/K) (resp. W (L®~Y) = HI(X,L® 1 ®
QQ/K)). Let us choose then g : Spec Wa(k) — S as in the proof of 6.9. The inverse
image sheaf L of £ over Y = X is ample. According to 6.6 and 6.8 (b), one has
dimy H (Y, L ® Q’Y/k) = h¥ (L), and dimy H/(Y, L1 ® Q’Y/k) = h¥(L®1). The
conclusion then follows from 5.8.
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REMARK 6.12. In a similar manner, the Ramanujam vanishing theorem on
surfaces [Ram)] follows from the variant of 5.8 relative to the numerically positive
sheaves (cf. 5.9 (5)).

7. Recent developments and open problems

A. Divisors with normal crossings, semi-stable reduction, and loga-
rithmic structures.

7.1. Let S be a scheme, X a smooth S-scheme, and D a closed subscheme
of X. We say that D is a divisor with normal crossings relative to S (or simply,
relative) if, “locally for the étale topology on X”, the couple (X, D) is “isomorphic”
to the couple formed from the standard affine space A% = S[t1,... ,t,] and from
the divisor V'(¢; - - -t,.) of the equation #; ---t, = 0, for 0 < r < n (the case r =0
corresponds to ¢y ---t, = 1 and V(¢; ---¢,) = (). This means that there exists an
étale covering (X;);cr of X (i.e. a family of étale morphisms X; — X for which
the union of the images is X) such that, if D; = X; xx D is the closed subscheme
induced by D on X;, there exists an étale morphism X; — A% for which there is a

cartesian square

+ +

V(ti---tr) — A%

(n and r dependant on 7). In other words, that there exists a coordinate system
(1,...,2,) on X; in the sense of 2.7 (defining the étale morphism X; — A%)
such that D; is the closed subscheme of the equation x ---z, = 0. This defini-
tion is modeled after the analogous definition in complex analytic geometry (cf.
[D1]), where “locally for the étale topology” is replaced by “locally for the classical
topology”, and “étale morphism” by “local isomorphism”. A standard example of
a divisor with normal crossings relative to S = Speck, k a field of characteristic
different from 2, is the cubic with double point D = Spec k[z,y]/(y* — z%(z — 1))
in the affine plane X = Speck[z,y]. (Observe in this example that there does not
exist a system of coordinates (z;) as above on a Zariski open covering of X, an
étale extension (extraction of a square root of xz — 1) being necessary for to make
possible such a system in a neighbourhood of the origin.)

The notion of a divisor with the normal crossings D < X relative to S is stable
by étale localization over X and by base change S’ — S.

If D — X is a relative divisor with normal crossings, and if j : U = X\D — X
is the inclusion of the open complement, we define a subcomplex

(7.1.1) 0%/ s(log D)

of j*Q;]/S, called the de Rham complex of X/S with logarithmic poles along D,
by the condition that a local section w of j*Q}]/S belong to Q’X/S(log D) if and
only if w and dw have at most a simple pole along D (i.e. are such that if f is
a local equation of D, fw (resp. f dw) is a section of Qg(/s (resp. Q?/ls) (NB.
f is necessarily a nonzero divisor in Ox)). One easily sees that the Ox-modules
Qg,/s(logD) are locally free of finite type, that Qg,/s(logD) = Aiﬂk,/s(log D),
and that if as above, (z1,...,%,) are coordinates on an X' étale neighbourhood
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over X where D has for equation z;---z, = 0, Qg(/s(log D) is free with basis
(dxl/mla s ,d.CL‘T/.CL'T,d.CL‘T+1, s 7d-rn)

There is a natural variant in complex analytic geometry of the construction
(7.1.1) (cf. [D1]). If S = SpecC and D C X is a(n algebraic) divisor with normal
crossings, the complex of analytic sheaves associated to (7.1.1) on the analytic space
X3 agsociated to X,

0% /c(log D)™ = Q5an ¢ (log D™),

calculates the transcendental cohomology of U with values in C: There is a canonical
isomorphism (in the derived category D(X?* C))

(7.1.2) Rj.C =~ Q% s(log D)™,
and consequently an isomorphism
(7.1.3) HY(U*,C) ~ H'(X*,0%/5(log D)*")

(loc. cit.). Moreover, if X is proper over C, the comparison theorem of Serre
[GAGA] allows us to deduce from (7.1.3) the isomorphism

(7.1.4) HY(U*™,C) ~ H'(X,Q%/5(log D)).
Moreover the filtration F' of H*(X, Q;(/S(log D)), being the outcome of the first
spectral sequence of hypercohomology of X with values in Q% /S(log D),

(7.1.5) EP = HY(X, 0% ¢(log D) = HP (X, 0% 5(log D))

is the Hodge filtration of the natural mized Hodge structure of H*(U**,7Z) defined
by Deligne, and the spectral sequence (7.1.5) degenerates at Ey ([D2]).

Just as in the case where D = ) (6.9), this degeneration can be shown by
reduction to characteristic p > 0. Indeed, we have the following result which
generalizes 5.1 and for which the proof is analogous ([D-I] 4.2.3):

THEOREM 7.2. Let S be a scheme of characteristic p > 0, S~ a flat lifting of S
over Z./p°Z, X a smooth S-scheme and D C X a relative divisor with normal cross-
ings. Denote by F : X — X' the relative Frobenius of X/S. If the couple (X', D’)
admits a lifting (X'~ , D'™) over S™, where X'~ is smooth and D'~ C X'~ is a rel-
ative divisor with normal crossings, the complez of Ox-modules T<pF*Q;(/S(10g D)
is decomposable in the derived category D(X').

The reader will find in [D-I] various complements to 7.2 and in [E-V] another
presentation of the same results, and some applications of the theorems pertaining
to ampleness and vanishing results.

7.3. The preceeding theory extends without much change to a class of mor-
phisms which are no longer smooth, but not far from this, namely the morphisms
that are said to be “of semi-stable reduction”. Let T" be a scheme. The prototype
of such morphisms is the morphism

s AL =Txy,...,x5] = A =T[t], tz1---2, (n>1).

In other words, if S = Al., the scheme A%, considered as S-scheme by s, is the
sub-S-scheme of A% = S[zy,...,x,] = T|x1,... ,T,,t] with equation z; - - -z, = t.
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The morphism s is smooth outside 0 and its fiber at 0 is the divisor D with equa-
tion (z1 -+, = 0), a divisor with normal crossings relative to T', but not with
S (a “vertical” divisor). More generally, if S is a smooth T-scheme of relative
dimension 1 and E C S a relative divisor with normal crossings (if 7" is the spec-
trum of an algebraically closed field, E is therefore simply a finite set of rational
points of S), we say that the S-scheme X has semi-stable reduction along E if,
locally for the étale topology (over X and over S) the morphism X — S is of
the form s o g, with g smooth, s being the morphism considered above. The di-
visor D = X xg E C X is then a divisor with normal crossings relative to T
(but not to S)'?. An elementary example is furnished by the “Legendre family”
X = Speck[z,y,t]/(y*> — z(z — 1)(z — t)) over S = Specklt], (k a field of char-
acteristic # 2), which has semi-stable reduction on {0} U {1}, the fiber at each
of these points being isomorphic to the cubic with double point considered above.
The interest in the notion of semi-stable reduction comes from the semi-stable re-
duction conjecture, which roughly asserts that locally, after suitable ramification
of the base, a smooth morphism can be extended to a morphism with semi-stable
reduction. This conjecture was established by Grothendieck-Deligne-Mumford and
Artin-Winters ([G], [A-W], [D-M]) in any characteristic but relative dimension 1,
and Mumford ([M]) in characteristic zero and arbitrary relative dimension.

If f : X — S has semi-stable reduction along E, we define the de Rham complex
with relative logarithmic poles

(7.3.1) wy/s = Vx/s(log D/E),

with components  w% /g = Awk g, where  w/ ¢ is the quotient of Q4 (log D)
by the image of f*Qg/T(log E) and the differential is induced from that of
Q;(/T(log D) by passing to the quotient. This complex has locally free compo-
nents of finite type (in the case of the morphism s above, w}( /s is isomorphic to
(B Oxdz;/x;)]Ox (> dx;/x;) (therefore free with basis dz;/z;, ¢ > 2)). It in-
duces on the smooth open part U of X over S the usual de Rham complex Q;]/S,
and one can show that this is the unique extension over X of this complex which
has locally free components of finite type. Moreover, if one sets for abbreviation,
wk 7 = Vx,rlog D), w7 = QY 7 (log E), there is an exact sequence

(7.3.2) 0 = wg/p @ wiysl=1] = w7 = wi/s = 0,

where the arrow to the left is given by a®b — f*aAb. This exact sequence plays an
important role in the regularity theorem of the Gauss-Manin connection (cf. [K2]
and the article of Bertin-Peters in this volume). There also exists a variant of these
constructions in complex analytic geometry. Assume that 7' = SpecC, that S is a
smooth curve over C, E C S the divisor reduced to a point 0, and that f: X — S
is a morphism with semi-stable reduction at {0}, with fiber Y at 0. (Y is therefore
a divisor with normal crossings in X relative to C.) We consider the complex

(7.3.3) wy = Cpoy ®os wi/s»

with components the locally free sheaves of finite type wi, = Oy @0, wé(/s. Steen-
brink [St] has shown that the complex analogue wy.. over Y*" (which is also the

190ne can similarly define a notion of semi-stable reduction along E without the hypothesis
on the relative dimension of S over T, cf. [I5].
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complex of sheaves associated to wy over Y*") embodies the complez of neighbour-
ing cycles R¥(C) of f at 0, so that if moreover f is proper, H*(Y,w} ) “calculates”
H*(Xp, C) for t “close enough” to 0. Steenbrink also shows (under this extra
hypothesis) that the spectral sequences

(7.3.4) B} = R'fuf s = RV fuys
and
(7.3.5) EY" = H(Y, wf,) = Hp+q(Y, wy)

degenerate at i and that the sheaves RYf.w’ /g are locally free of finite type
and of formation compatible with any base change. These results form part of the
construction of a limiting mized Hodge structure on H*(X2",Z) for t tending to 0
(loc. cit.). They can by themselves, be proven by reduction to characteristic p > 0
([I5]). For T of characteristic p > 0, and f : X — S with semi-stable reduction
along E C S, the complexes w;(/s and

(7.3.6) wh = Op ®o, W/s

(where D = E xg X) indeed give rise to Cartier morphisms (of the type of 3.5),
and under the hypothesis of a suitable lifting modulo p?, T<pFiw /s and T<p Fiw}
decompose (in D(X"')). (See [I5] 2.2 for a precise statement, which generalizes 7.2
and other corollaries (degeneration and vanishing statements).)

7.4. The complex w}, above does not depend only on D, but on X/S. It
does depend on it however locally (in a neighbourhood of D). While seeking to
elucidate the additional structure on D necessary for the definition, J.-M. Fontaine
and the author were led to introduce the notion of logarithmic structure. This
paved the way to a theory, logarithmic geometry, as a natural extension of the
theory of schemes. Widely developed by K. Kato and his school, it makes possible
to unify the various constructions of complexes with logarithmic poles considered
above and to consider the toric varieties of Mumford et al. and the morphisms
with semi-stable reduction as particular cases of a novel notion of smoothness. See
[16] for an introduction. The preceding decomposition, degeneration and vanishing
results admit generalizations in this program, see [Ka2] and [Og2].

B. Degeneration mod p" and crystals.

7.5. The decomposition Theorem 5.1 was originally obtained as a by-product
of the work of Ogus [Og1], Fontaine-Messing [F-M] and Kato [Kal] by crystalline
cohomology (see [I4] for a panorama of this theory). The link (a small technique)
between 5.1 and the point of view of crystalline is explicit in [D-I] 2.2 (iv). We limit
ourselves to a statement of a degeneration result mod p” ([F-M], [Kal]) analogous
to 5.6:

THEOREM 7.6. Let k be a perfect field of characteristic p >0, W = W (k) the
ring of Witt vectors over k, X a smooth and proper W -scheme of relative dimension
< p. Then for any integer n > 1, the Hodge to de Rham spectral sequence

(7.6.1) EY = HI(Xn, Q% jw,) = Hpg (Xn/Wn)
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degenerates at Ey, where W, = W,,(k) = W/p"W denotes the ring of Witt vectors
of length n over k and X,, the scheme over W,, induced from X by reduction modulo
p" (i.e. by extension of scalars of W to W, ).

7.7. Forn =1, we have W,, = W, (k) = W/p"W and we recover statement 5.6,
apart from which in 7.6, we assume given a lifting of X over W (rather than over
W5)20. Under the hypothesis of 7.6, it is not true in general, for n > 2, that the de
Rham complex Q% | W (which is, a priori, only a complex of sheaves of W,,-modules
over X,, (or Xy, X,, and X; having the same underlying space)) is decomposable
in the corresponding derived category D(X1, W,,). However, the results of Ogus
([Og1] 8.20) imply that if o denotes the Frobenius automorphism of W,,, O'*Q;(H/Wn
is isomorphic in the derived category D (X, W,,) of sheaves of W,,-modules over X7,
to the complex Q% y, (p) induced from Q% y;, by multiplying the differential by p.
(NB. For n = 1, we have %, /w. (p) =6 Qg(l/k[—i].) The conclusion of 7.6 comes
about easily, like various additional properties of Hjg (Xn/W,) (structure called
“of Fontaine-Laffaille” - including in particular the fact that the Hodge filtration is
formed from direct factors), see [F-M] and [Kal].

7.8. The degeneration and decomposition results for which we discussed un-
til now carry over to de Rham complexes of schemes, possibly with logarithmic
poles. More generally, we can consider the de Rham complexes with coefficients in
modules with integrable connections. Many generalizations of this type have been
obtained: For Gauss-Manin coefficients [I5], of sheaves of Fontaine-Laffaille [Fa2],
of T-crystals [Og2] (besides these last objects providing a common generalization
of the previous two).

C. Open problems.

7.9. Let k be a perfect field of characteristic p > 0, X a smooth k-scheme
of dimension d, X' the scheme induced from X by base change by the Frobenius
automorphism of k, F : X — X' the relative Frobenius (3.1). We have seen in
5.9 (1) (a) (with S = Speck, T = Spec W»(k)) that the following conditions are
equivalent, :

(i) X' - or, that which amounts to the same here, X - is lifted (by a smooth and
proper scheme) over W (k);

(i) T<1F Q% ), is decomposable in D(X') (4.6);

(i) 7<pFuQ%/y is decomposable in D(X").

We say that X is DR-decomposable if F.Q% , is decomposable (in D(X")). As
we have observed in 5.2, this condition is equivalent, taking into account the Cartier
isomorphism (3.5), to the existence of an isomorphism

P . ju[—i] & F.O% ),
of D(X') inducing C~* on H!. The arguments of 5.6 and 5.8 show that:

201n fact, Ogus has shown — albeit more difficult — that being given n > 1 and Z smooth and
proper over W, of dimension < p, then if Z admits a lifting (smooth and proper) over Wy, 41, the
Hodge to de Rham spectral sequence of Z/W, degenerates at F1 ([Og2] 8.2.6). This result truly
generalizes 5.6.
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(a) If X is proper over k and DR-decomposable, the Hodge to de Rham spectral
sequence of X/k degenerates at Fj.

(b) If X is projective over k, of pure dimension d, and DR-decomposable, and if L
is an invertible ample sheaf over X, one has the vanishing results of Kodaira-
Akizuki-Nakano (5.8.1) and (5.8.2).

By virtue of the equivalence between conditions (i) and (ii) above, a necessary
condition for that X is DR-decomposable is that X is lifted over W2 (k). According
to [D-1], it is sufficient if d < p (5.5 and 5.9 (3)). We are unaware if it is always
true in general:

Problem 7.10. Let X be a smooth k-scheme of dimension d > p, liftable over
Wo (k). Is it the case that X is DR-decomposable ?

7.11. Recall (5.5.1) that if X and F lift over Wx(k), X is DR-decomposable;
this is the case if X is affine, or is a projective space over k. As indicated in [D-I]
2.6 (iv), if X is liftable over W5(k) and if, for any integer n > 1, the product
morphism (Qk/k)@m — 0%/, admits a section, then X is DR-decomposable (see
8.1 for a proof). This second condition is checked in particular if X is parallelizable,
i.e. if Qk/k is a free Ox-module (or, that which amounts to the same, the tangent

bundle T/, dual of Q% Ik is trivial), therefore for example if X is an abelian

variety. By a theorem of Grothendieck (cf. [Oo] and [I7] Appendix 1), any abelian
variety over k is lifted over W2 (k) (and similarly over W (k)). Therefore any abelian
variety over k is DR-decomposable. Another interesting class of liftable k-schemes
(over W (k)) is formed from complete intersections in P}, (see the expose of Deligne
(SGA 7 XI) for the definitions and basic properties of these objects). But we
do not know if those are DR-decomposable. The first unknown case is that of a
(smooth) quadric of dimension 3 in characteristic 2. We also don’t know if the
Grassmannians, and more generally, flag varieties, which are, albeit liftable over
W (k), are DR-decomposable (the only known example is projective space!).

Problem 7.10, with “liftable over Ws(k)” replaced by “liftable over W (k)”, is
also an open problem. On the other hand, we can replace “liftable over W (k)”
by “liftable over A”, where A is a totally ramified extension of W (k) ( = ring of
complete discrete valuations, finite and flat over W (k), with residue field &, and of
degree > 1 over W (k)): Lang [L] has indeed constructed in any characteristic p > 0,
a smooth projective k-surface X liftable over such a ring A of degree 2 over W (k)
such that the Hodge to de Rham spectral sequence of X/k does not degenerate at
E,.

7.12. The decomposition statements to which we referred to at the end of 7.3
apply in particular to a smooth curve S over T = Speck and with a scheme X
over S having semi-stable reduction along a divisor with normal crossings £ C S
(therefore étale over k), for which certain hypothesis of liftability modulo p? are
satisfied. More precisely, if we assume that:

(i) There exists a lifting (E~ C S™) of (E C S) over Wy = Wy(k) (with S~
smooth and E™~ a relative divisor with normal crossings, i.e. étale over W),
admitting a lifting F~ : S~ — S~ of the Frobenius (absolute) of S such that
(F~)=H(E~) =pE™ *!,

21This notation denotes the divisor induced from E™~ by the raising to the p-th power of its
local equations.
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(i) f is lifted by f~ : X~ — S~ having semi-stable reduction along E~, then
T<pFiwk g and Tep Fuwy, (where D = E x g X) are decomposable, (and there-
fore F.w% g and Fiwy, are also if X is of relative dimension < p over ).

7.13. The relative result of wf, suggests the following problem of a different
characteristic. Now denote by S the spectrum of W = W(k), and E = Speck the
closed point of S. Let X be an S-scheme. By analogy with the definition given in
7.3, we say that X has semi-stable reduction if, locally in the étale topology (on X
and on S), X is smooth over the subscheme of A% = S[z1,... ,z,] with equation
1 ---%, = p. Assume that X has semi-stable reduction. Then X is a regular
scheme, its fiber Xk at the generic point Spec K of S (K = the field of fractions
of W) is smooth, and its fiber D = E xg X at the closed point is a “divisor with
normal crossings” in X. In this situation, we define a complex w$% /s analogous
to (7.3.1), which is the unique extension, with locally free components of a finite
type of the de Rham complex of U over S, where U is the smooth open part of X
over S. If X = S[zy,...,z,]/(21 -+ 2, —p), the Ox-module ‘*’}(/s’ considered as a
subsheaf of Q&K I is identified with (D Oxdx;/x;)/Ox (. dz;/x;). The complex
wY, defined by the formula (7.3.6), has locally free components of finite type over
D, and coincides with the de Rham complex Qb/k over the smooth open part of
D. One has wg(/s = Ai‘*’%{/s and wh = Alw},. According to a result of Hyodo [Hy]
(generalized by Kato in [Ka2]), the complex w$, gives rise to a Cartier isomorphism
C~!:wh, ~ HiF,w}. The complexes w% /¢ and wy, play an important role in the
recent developments of the theory of p-adic periods (cf. [I4] for a general view).

Problem 7.14. With the notation of 7.13, let X be a semi-stable S-scheme
with fiber D at the closed point of S. Is it the case that 7, F.w}, is decomposable
(in D(D")) ?

Note that the decomposability of 7, F.wj, is equivalent to that of 7<iF.w},
(same argument as in step C of the proof of 5.1). The answer is yes according to
5.5 if X is smooth over S. (NB. What was called X (resp. S) in 5.5 is here D (resp.
E).) The answer is still yes (for trivial cohomological reasons (cf. 4.6 (a))) if X is
affine, or if X is of relative dimension < 1. But the general case is unknown.

7.15. Finally, with regard to the vanishing theorem, we cannot prove by the
methods of characteristic p > 0, the classical results of Grauert-Riemenschneider
or Kawamata-Viehmeg. Neither can we generalize 5.9 (5) in dimension > 2. See
[E-V] for a discussion of these questions.

8. Appendix: parallelizability and ordinary

In this section, k& denotes a perfect field of characteristic p > 0. We denote by
W, = W, (k) the ring of Witt vectors of length n over k. We begin by giving a
proof of the result mentioned in 7.11:

PROPOSITION 8.1. Let X be a smooth k-scheme. Assume that X lifts over Wo
and that for any n > 1, the product morphism (Qk/k)@m — Q}/k admits a section.

Then X is DR-decomposable (7.9).

We will have need of the following lemma:
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LEMMA 8.2. Let S and T be as in 5.1, X a smooth scheme over S, Z' a
(smooth) lifting of X' over T. Let
ot Ok s[-1] > Fu% s

be the homomorphism ), of D(X') defined in step B of the proof of 5.1, and for
n>1,
" (Qxrys) 2" [-n] = FQ% s

L L
the composite homomorphism o (©*)®", where m : (F*Q}/S)@m = F.Q% g is
the product homomorphism. Likewise, we denote by w : (Q&,,/S)@” — Q},/S the
product homomorphism. Then for any local section w of (Qk,/s)‘g’”, one has

H' Y™ (w) = C ' om(w),
where C~1 Q},/S — H”F*Q;(/S is the Cartier isomorphism.

PROOF. It suffices to show this for w of the form w; ® - - - ® w,,, where w; is a
local section of Qﬁ(,/s. By functoriality in the E; € D(X'), of the product

L L
HlEl®---®H1En—>H”(E1®---®En), a1 Q- -Qap = Ay -+ Qp,
one has .
H' (")) (w1 ®@ - @ wn) = (H'o")(wi) -+ (H'@") (wn)

L
in H"((F.Q%/5)®"). Since H'e' = C~1, it follows that

an/}n(wl ® ®wn) = Cil(wl) /\ /\Oil(wn)

in H"F, QB(/S, and therefore that

H'Y (w1 @+ Quwp) =C Hwi A Awp) =C L om(wr @+ ® wy)
by the multiplicative property of the Cartier morphism.

ProoOF oF 8.1. Let us choose for each n, a section s of the product = :
(Qg(/k)@m — 0%, Still let m and s be the morphisms relative to X' which result

from this. Let us choose (cf. 3.9) a lifting Z’ of X' over W3, and define ¢™ as in
8.2, with p' = ¢L,. Let

" Q},/k[—n] — F*Q}/S

be the composite morphism ¢™ o s (where s still denotes, by abuse of notation, the
corresponding section of (Qk,/k[— 1)®" — Q}/k[—n]). It is a question of checking
that H"¢™ = C~'. However, according to 8.2, if a is a local section of Q},/k, then

H""(a) = (H"Y")(sa) = O~} (msa) = O~ (a),
that which completes the proof.

COROLLARY 8.3. Let X be a smooth parallelizable k-scheme, i.e. such that the
Ox -module Qk/k is free (of finite type). Then for X to be DR-decomposable, it is

necessary and sufficient that X lifts over Ws.
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Proor. It suffices to prove the sufficiency. One can assume that k is alge-
braically closed. Let us choose a rational point x of X over k and an isomorphism
Q: Qk/k ~ f*E, where f : X — Speck is the projection and FE is the k-vector
space x*(ﬂg(/k). Via a, a section of the surjective homomorphism E®" — A"E

extends to a section of (0%, )®" — Q% ;. Now apply 8.1.

Recall (5.5.1) the following definition:

DEFINITION 8.4. Let X be a smooth and proper k-scheme. We say that X is
ordinary if for any (i,7), one has Hj(X,BQg,/k) = 0, where BQg(/k = dQ’XT/lk is
the sheaf of boundaries in degree i, of the de Rham complez.

This condition is equivalent to HY(X', F.BQY ) = 0 for any (i,j). Recall
(3.6) that F*Bﬂg(/k = BiF*Q}/k and F*ZQ}/,C = ZiF*Q}/k are locally free Ox-
modules of finite type.

8.5. For a given smooth and proper k-scheme X, there exists a link, highlighted
by Mehta and Srinivas [Me-Sr], between the properties to be DR-decomposable,
parallelizable, and ordinary. This link expresses itself by the means of a concept
close to that of DR-decomposability, introduced earlier by Mehta and Ramanathan
[Me-Ra], which is the following. We say that a smooth k-scheme X is Frobenius-
decomposable (“Frobenius-split”) if the canonical homomorphism Ox: — F.Ox
admits a retraction, i.e. the exact sequence of Ox:-modules (cf. 3.5)

(8.5.1) 0 Ox: = F.Ox % F.BQY ;= 0

is split. We first observe that if X is Frobenius-decomposable, X is liftable over W5
(or, that which amounts to the same (5.9 (1) (a)), T<pFW Q% )y, s decomposable):
The obstruction to the lifting, which is the class of the extension

0= Ox = F.Ox 5 F.29% 5 0k, — 0,
composed with (8.5.1) and the extension
(8.5.2) 0 = F.BOQY = F.ZQk ) 5 Q. = 0,

is zero. In general, we are unaware if “Frobenius-decomposable” implies “DR-
decomposable”. This is the case according to 8.3, if X is parallelizable. But the
converse is false. Indeed one has the following result ((Me-Sr] 1.1): If X is a smooth
and proper k-scheme, parallelizable, then the following conditions are equivalent:
(a) X is Frobenius decomposable;
(b) the extension (8.5.2) is split;
(c) X is ordinary;
(d) (for X of pure dimension d) the homomorphism F* : H¢(X' Ox/) — HY(X,Ox)
induced by the Frobenius is an isomorphism.
In particular, if X is ordinary and parallelizable, X lifts over Wy (Nori-Srinivas
([Me-Sr] Appendix) show in fact that for X projective, X lifts to a smooth pro-
jective scheme over W). Moreover — this is the principal result of [Me-Sr] —if k is
algebraically closed and X connected, there exists a Galois étale lifting Y — X of
order of a power of p such that Y is an abelian variety.
If X is projective and smooth over k, ordinary and parallelizable, Nori-Srinivas
(loc. cit.) show more precisely that there exists a unique couple (Z, Fz), where Z
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is a lifting (projective and smooth) of X over Wy (resp. W,, (n > 2 given), resp.
W) and Fy : Z — Z' alifting of F : X — X', where Z' is the inverse image of Z
by the Frobenius automorphism of Wy (resp. W, resp. W). The existence and
uniqueness of this lifting, said canonical, was first established by Serre-Tate [Se-Ta]
in the case of abelian varieties. As indicated in 5.5.1, this result admits a converse,
without the assumption of parallelizability.

PROPOSITION 8.6. Let X be a smooth and proper k-scheme. Assume that there

exists schemes 7 and Z' lifting respectively X and X' over Wy and a Wy-morphism
G:Z = Z'lifting F: X — X' 22, Then X is ordinary.

This result was obtained independently by Nakkajima [Na].

8.7. PROOF OF 8.6. Let G : Z — Z' be a lifting of F and ¢ = ¢g :
P Q% [—i] = F.Q% the associated homomorphism of complexes, defined in (5.3.1)
(one omits /k from the notation of differentials). This homomorphism sends Q%
into F,ZQ% (notation of 8.4) and splits the exact sequence (cf. 3.5)

(8.7.1) 0 — F.BQy — F,. 20k 5 i, — 0.
We prove, by descending induction on i, that H*(X,BQ%) = 0 (i.e. that
H"(X,BQ%) =0 for all n). For i > dim X, BQ% = 0. Fix i and assume that we
proved H*(X, BQ%) = 0 for j > i. Then we show that H*(X, BQ% ') = 0. By the
exact cohomology sequence associated to the exact sequence
(8.7.2) 0 2O - RO 5 F.BQY — 0,
the induction hypothesis implies that for any n, one has
H"(X', F.20%") = H(X, 0% ),

and therefore
(8.7.3) dim H™(X', F.ZQ5 1) = dim H™(X, Q%) = dim H™(X', Q4.
The sequence (8.7.1) (relative to 7 — 1) being split, implies that the exact sequence
of cohomology gives the short exact sequence

0— H*(X',F,BQYY) - HM(X',F.ZQ ) S HY(X',Q'ch) — 0.
The equality (8.7.3) implies that in this situation C'is an isomorphism, and therefore
that H™(X', F*Bﬂlx_l) = 0, which concludes the proof.

REMARK 8.8. The reader familiar with logarithmic structures will have ob-
served that 8.6 and its proof extends to the case where k is replaced by a loga-
rithmic point £ = (k, M) with underlying point k¥ and X by a log scheme X =
(X, L) log smooth and of Cartier type over k ([Ka2]), proper over k. If one as-
sumes that (X, F) is lifted over W5(k) (cf. [Hy-Ka] 3.1), then X is ordinary, i.e.
HI(X,Bwi) =0 for all i and all j.

22We do not assume that Z' is the inverse image of Z by the Frobenius of Wo.
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INTRODUCTION

In this article we give a rather detailed introduction to the topic of variations
of Hodge structures complemented by some brief remarks concerning more recent
developments. To motivate and illustrate this theory, we thought it appropriate
to present mirror symmetry and Calabi-Yau’s, an exciting new topic in algebraic
geometry. Of course, we emphasize only those aspects which are genuinely related
to Hodge structures and their variations. The theory of mirror symmetry, resulting
from ideas of a group of physicists, leads to remarkable predictions for the number
of rational curves traced out on a class of manifolds of dimension three.

The text is aimed mainly at students and non-specialists, having some famil-
iarity with the usual techniques from algebraic and/or complex-analytic geometry.
For instance, in the first section we adopt alternatively the viewpoint of schemes
and that of analytic manifolds. The basic language here is that of homological
algebra (cohomology sheaves and hyper-cohomology of complexes of sheaves). The
reader can find a succinct but largely sufficient exposition of these matters in the
article of Illusie in this volume.

We should mention that several excellent texts exist in the literature that can
be used as an introduction to some aspects of variations of Hodge structure, for
example the classical references [Co-G], [G-S], [P-S], the more recent text [B-Z],
and also Schmid’s fundamental article [S]. We hope however that our notes can
render occasional service parallel to these texts.

Many texts on mirror symmetry, the subject of the second part of our article,
are written in the “style of physics” and are not easily accessible to a mathematician.
We likewise hope that our notes form a useful complement to the recent articles of
M. Kontsevich [K], D. Morrison [Mor 1] and C. Voisin [V] which also treat some
mathematical aspects of the subject.

The text is divided in two parts. In part I we treat variations of Hodge struc-
tures (Sect. 1-6) while part II focuses on Calabi-Yau manifolds and mirror sym-
metry. For the convenience of the reader each section begins with a short abstract.

Let us proceed to give a more detailed description of the content of this arti-
cle. Variations of Hodge structure arise when one considers families of algebraic
manifolds. For example instead of a hypersurface given by a homogeneous equation
{f = 0}, a family of such objects is given by an equation depending on additional
free parameters. More formally by a family we mean a holomorphicmap f : X — S
such that X C P™x S and such that f, the restriction to X of the projection on S is
everywhere of maximal rank. The fibers X, = f~1(s) then are nonsingular projec-
tive manifolds, and one knows (see the article of Demailly in this volume) that each
vector space H* (X, C) carries a Hodge structure of weight w (this is a fundamen-
tal result in Hodge theory). One knows also (loc. cit. §10) that H* (X, C) is the
fiber of a holomorphic vector bundle H* on S. It is thus natural and fundamental
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to study the behavior of the Hodge structure defined on H* (X, C), when s € S
varies globally on S. In other words, we think of a class [w(s)] of a closed w-form
w(s) as depending on the parameter s. To integrate it, we take any cycle v of (real)
dimension w in a fixed fiber X, and we view it as a cycle on any nearby fiber X,
of X, by means of a local trivialization of the family. We find the period f,y w(s

as a function of s. To study this, one needs to differentiate: % ( f,y w). The cycle

being fixed, one wants to differentiate under the integral sign. This is justified by
the existence of a connection, the Gauss-Manin connection, which says how to do

this:
d/ds/ /V aw(s

where V rl is the covariant derivative in the direction of

In §10 of [Deml], it is proved that the bundle H" is assomated to the locally
constant system |J,.g H"(Xs,C), which thus is flat; the flat connection is the
Gauss-Manin connection. Moreover, if instead of the subspaces HP?(X), one
considers the subspaces FPH"(S;,C) = @,>p,H""~"(X;) of the Hodge filtration,
then these subspaces are the fibers of a holomorphic sub-bundle F? of H", defining
the filtration F* of H*. The bundle H" equipped with this Hodge filtration and
with the Gauss-Manin connection is the fundamental example of a variation of
Hodge structure, a notion which has been introduced by Griffiths ([Grifl]).

In section 1 we give a detailed construction of the Hodge bundles, as a conse-
quence of the degeneration of the Hodge to De Rham spectral sequence (see the
text of Illusie in this volume) in the general framework of (not necessarily complex)
algebraic manifolds.

In §2 we construct the Gauss-Manin connection and we prove the transversality
property. This section is rather detailed, because Griffiths’ transversality theorem
is the starting point of the whole theory, as one can easily convince oneself by
having a glance at Part II. The manipulations of the De Rham complexes and their
resolutions are in fact similar to what is done in [I11]. We prove also that the Gauss-
Manin connection is algebraic, following the computations of Katz and Oda [K-O].
It is this aspect which has become extremely important recently (§6).

In §3, we introduce Griffiths’ periods domains which are parameter spaces for
polarized Hodge structures of fixed weight and Hodge numbers. If f: X — Sis a
family, we define the period map p: § — D after restriction to primitive cohomol-
ogy (if S not is not simply connected one has to replace S by its universal covering);
the transversality property will be translated in this framework. The study of the
derivative of the period map leads to the notion of Infinitesimal Variation of Hodge
structure introduced in [C-G-G-H], and which is treated at the end of §3. This
notion is needed to justify some fundamental issues in part II.

Let us come back to the situation considered in the beginning, that of a manifold
parameterized by a compact base. In this situation in general one cannot avoid
singular fibers; it is thus natural to study the behavior of the variation around the
locus of the singular fibers. For simplicity we assume that the base is the unit disk
A, that f : X — A is of maximal rank above the points of A* = A\ {0}. One
says that f is a one parameter degeneration. Turning once around 0 induces the
local monodromy action T : H¥(X,) — H%(X,), s € A. This action preserves the
integral structure, the polarization and the Hodge filtration. The local monodromy
theorem (see [La] and [S]) says that T is quasi-unipotent, that is, for suitable
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k,m € N one has (T* — 1)™ = 0. Another important result is the local invariant
cycle theorem from [C] which says that a class a € H*(X,) is T-invariant if and only
if a is the restriction to X, of a class on X. The proof of this theorem requires the
construction of a Hodge filtration on H*(X;) different from the classical filtration
and which is better adapted to passing to the limit when s tends to zero, the limit
Hodge filtration. The monodromy operator T', also induces a filtration, the weight
filtration, and together with the limit Hodge filtration one gets a more complicated
structure on H"”(X,) which is an example of a mixed Hodge structure, in this
case the limit mixed Hodge structure. In §4 we shall briefly explain this notion
and we discuss the fundamental results of Deligne [Del4] and [Del5] concerning
the existence of such a structure on algebraic manifolds which are not necessarily
compact or nonsingular. Then we shall give a description of the limit structure by
stating some important results which one can find in the articles [S] and [C]]. §4
ends with a description of the sheaves of nearby and vanishing cycles which play an
essential role in the work of Saito [Sal] on Hodge modules and which is sketched
in §6.

In §5 we summarize some recent results of Simpson on Higgs bundles, which
form in a certain sense a generalization of variations of Hodge structures. These
Simpson used to obtain some surprising consequences about Kéihler groups, that
is, groups which can arise as the fundamental group of a compact K&hler manifold.

The complicated notion of a Hodge Module plays a central role in the recent
developments of Hodge theory. It requires the introduction of D-modules, perverse
sheaves and an understanding of the Riemann-Hilbert correspondence, which de-
scribes the link between these two notions. In §6 we briefly describe these notions
and we mention an important application to intersection cohomology as introduced
by Goresky and McPherson ([G-M]): the intersection cohomology group IHY(X)
of a complex-algebraic manifold X carries a pure Hodge structure of weight w.

Let us now describe the contents of part IIT. As said before, for some time physi-
cists working in quantum physics have put forward a new duality phenomenon. The
mathematical consequences, to a large extent still speculative, are fascinating. The
articles [F-G] and [G] describe this circle of ideas in detail in the language of
physics. Among the various manifestations of duality, mirror symmetry has at-
tracted the attention of the algebraic geometers principally because of the work
of a group of physicists [C-O-G-P], partially translated in mathematical language
by D. Morrison [Morl]. The framework of this symmetry is that of Calabi-Yau
manifolds (§7). A naive consequence (verified by inspecting millions of examples)
is that these manifolds come in pairs, a pair being formed of the manifold and its
mirror, and that the table of Hodge numbers for Calabi-Yau’s must show rotational
symmetry by 90 degrees. The symmetry predicts much more, for example that the
numbers of rational curves of “fixed degree” can be deduced from information fur-
nished by the variation of the complex structure of the mirror. To set the framework
for this assertion, we study the behavior of the periods of the holomorphic 3-forms
when the complex structure varies. Then we determine the differential equation
naturally satisfied by its periods, which is the Picard-Fuchs equation. This aspect
is treated in detail, preceded by Griffiths’ description of the cohomology of a hyper-
surface of P™. The details are in §8, and the exposition partially follows [C-G]. The
computations are given in detail because it is essentially here that one can calculate
everything. Here the (differential) geometrical context has been formalized by the
physicists under the heading “special geometry” [Str].
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In §9 and 10, we treat the famous example of the quintic hypersurface of P* and
its mirror ([C-O-G-P]). The methods of part I are employed for calculating the
Yukawa coupling. To explain this briefly, let f : X — A be a degeneration of Calabi-
Yau manifolds of dimension 3, let w(s) be a relative holomorphic 3-form (s € A) and
let finally V a H2 — H3 be the covariant derivative induced by the Gauss-Manin
connection. The transversality property implies that Vd%w(s) is a sum of terms
of type (3,0) and (2,1) and thus [y w(s) AVaw(s) =0= [y w(s)A Viiw(s).
There remains however the non zero function ’

Fioss = / w(8) AV, w(s)
D¢ ds

s

which is precisely the Yukawa coupling.

This function satisfies a differential equation related to the Picard-Fuchs equa-
tion. The crucial analysis here is that of the behavior of ksss when s tends to
zero. We shall justify the construction of a canonical parameter as a consequence
of the existence of a limit Hodge structure, an argument which is essentially due
to Morrison [Morl]. This canonical parameter is of the form ¢ = exp(27ir) where
T is the quotient of two suitable periods. This being the case, one can define the
g-expansion of k44, for s = 0 and observe that in this expansion coefficients appear
which are positive integers. These, according to the principle of mirror symmetry
give the numbers of rational curves of given degree on the generic quintic hyper-
surface. The latter are still intractable by classical algebraic geometric methods
except in small degree. This example shows clearly that the phenomenon of mirror
symmetry suggests numerous geometrical questions, as well as certain arithmetical
problems. These questions are sketched in [L-Y].

In the final section §11, following an idea of Deligne [Del6], we shall discuss
a possible approach to mirror symmetry in terms of a certain duality between
Variations of Hodge structures.

Let us close this introduction by giving some bibliographical indications which
can help the reader to penetrate this vast domain.

e The article [Grif3] can be considered as the first review article on the topic
of variations of Hodge structures. It contains many examples and concrete
computations; the problems posed in this article have inspired many people
and although several of these have now partially been solved, there still
remains a lot to do.

e Next, in [G-S] one finds among other things a relatively elementary intro-
duction to mixed Hodge theory applied to degenerations.

e The article [P-S] explains how one can use infinitesimal variations to solve
some cases of the Torelli problem: is a manifold determined (up to isomor-
phism) by the Hodge structure on the (integral) cohomology? Also, one can
find in this article an introduction to period domains and to moduli spaces.

e The monograph [Grif4] is a good introduction to the subject, it contains
rather detailed articles on variation of Hodge structures (also on infinitesimal
variations). One can also find a discussion concerning curvature properties
of the natural metric on a period domain, used in §4. We note that part of
the fundamental article [S] of Schmid can serve as an efficient introduction
to some aspects of Griffiths’ theory.
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e The article [B-Z] claims to be a review of recent results on Hodge theory.
The reader can find in it more details concerning the matter treated in §4-
6. The recent progress on the Torelli problems (see above) however is not
treated at all. For D-modules the reader should consult the articles in [Bo]
and for intersection cohomology and the relation to D-modules one can read
the nice book [Ki].

e As we have indicated before, the book [V] of C. Voisin can serve as an
introduction to the problem of mirror symmetry. One finds here not only
a treatment of some mathematical aspects but also a short introduction to
the “physical” origin of the conjecture. See also the article [F-V] and the
books [H] and [Y 2] for some hints on the physics aspect. Let us finally note
the reference [B-C-O-V] in the physics literature which the reader might
consult for astounding perspectives.

e (Added for the translation) Recently the excellent introduction [Co-K]
appeared aimed at the algebraic geometer. Here one finds the complete proof
due to Givental [Giv] of the enumerative prediction stated as Corollary 10.7.
The authors also carefully explain why the numbers that come up have to
be interpreted with care and in particular why one no longer believes that
a proof of Clemens’ conjecture will automatically give the identification of
the Gromov-Witten invariants as the number of rational curves of a generic
member of the family of Calabi-Yau threefolds in question.

The “Mirror principle” versus enumerative prediction has been given a
more solid mathematical foundation by Lian, Liu and S-T Yau in the three
articles [L-L-Y]. See also [C-K-Y-Z].

‘We want thank all those which we have helped to make this exposition more readable; in particular
Jim Carlson, Eduardo Cattani, Bernard Malgrange and Jozef Steenbrink.



PART I

Variation of Hodge Structures

§1. Hodge bundles

In this section we adopt the algebraic (and analytic) definition of the De Rham cohomology
sheaves from Illusie’s notes [Ill]. The naive filtration on the complex of relative differential forms
yields the Hodge to De Rham spectral sequence and defines the Hodge filtration on the limit, the
relative cohomology. In the case of a family of complex projective manifolds this is the Hodge
filtration [Dem], a filtration by holomorphic sub-bundles of the bundle of relative cohomology
groups. The language here is that of hypercohomology [I1l].

Let us fix the notions used in the sequel: a scheme is a scheme of finite type
over an algebraically closed field k of characteristic zero. One may suppose k = C
if one wishes. For positive characteristic we refer to [Ill]. When k£ = C, we pass
from the scheme-structure to the structure of the associated analytic space without
explicit mentioning. Likewise, if X is a smooth scheme, we’ll pass to the underlying
C*°-structure without mentioning this.

A sheaf will be a sheaf of Ox-modules or an abelian sheaf if one only considers
the C*°-structure. Cohomology, an indispensable tool for manipulating families, is
cohomology of coefficients in a sheaf (see the book [God] for example).

We shall also use the language of hypercohomology. Let (2® be a complex
(bounded from below) and Q* — I*® an injective (or flasque) resolution, i.e. one
which induces an isomorphism on the level of cohomology sheaves. Then H®*(X,2®)
by definition is the graded object h*(T'(X, I*)); likewise, if f : X — S is a continuous
application, morphism of schemes, etc., R® f.(Q°®) = h*(f.(I*)) is the graded object
formed by the higher direct images with coefficients in the complex Q°.

Consider for example the cohomology of a smooth manifold, with constant co-
efficients C. This, by definition is H*(X, C), C = the constant sheaf. The De Rham
complex A% of smooth differential forms with complex coefficients is a resolution
of the constant sheaf C (this is the Poincaré lemma), thus the classical fact:

H(X,C) = Hi(X, Ay) = H/(T(X, A%))-

If X is a complex manifold, the sheaf Q% being the sheaf of holomorphic p-forms,
the holomorphic De Rham complex Q% is a resolution of C (holomorphic Poincaré
lemma), from which we get

H{(X,C) = HY(X,0%) (hypercohomology).
If X is a smooth (non singular) scheme, one can consider the De Rham complex
Q% of algebraic differential forms. The vector spaces H HX, 0% /k) are by defini-
tion, the (algebraic) De Rham cohomology groups of X. If kK = C, and if X is pro-

jective, it results from Serre’s comparison theorems (GAGA) [Se] that H'(X, Q%)
is the same whether 2% is the algebraic, or the complex holomorphic De Rham

161
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complex. Thus if k = C, the cohomology of X for the transcendental topology, can
be computed using algebraic differential forms.

Let us pass to the relative situation. Let f : X — S be a morphism of schemes;
we assume that f is proper. One defines ([I11]) the complex of relative K&hler
forms Q% /5> Which is a complex of Ox-modules of finite type (f is of finite type),
for which the derivative dx,s is an f~1(Ogs)-linear operator. The formation of
0% /s is compatible with base change. If S, X and f are nonsingular, and if k = C,
the analytic analogue Q3 (resp. C*°, -’43(/5) is compatible with base change.
One defines the De Rham (algebraic) cohomology sheaves by ([Ill])

HE(X/S) = B £.(Q5)-

Intuitively, the fiber above s € S of H*(X/S) is H* (X, Q}s/k), where X,=f"1(s).
In addition one has the Hodge sheaves R? .. (0% /s),ie. HI(X, 958 /i) if S is reduced
to a point.

If k = C, and if one replaces the relative algebraic differential forms Q% /s by
relative holomorphic forms Q;?/"S, again the comparison theorems insure that the
result is the same.

Let us filter the complex Q% /¢ (algebraic, holomorphic,. ..) by the Hodge (or

naive) filtration
. ° >
FP( X/S) = ( X/S)_p
which is the complex which has the same term in degree i > p, and which is zero
in degree < p. Then, the spectral sequence associated to this finite filtration and
to the functor f,, is the Hodge to De Rham spectral sequence:

(HDR) EY' = R (O 5) = HPTU(X/S) = RV £,(Q% /)

There results a filtration on the limit FPH*(X/S), the Hodge filtration on the De
Rham cohomology whose associated gradeds are

EP% = GrP (HP1(X/8S)).
The essential assumption is:

1.1. AsSUMPTION. The (relative) Hodge to De Rham spectral sequence degen-
erates at Fy.

This means
B =FE = =Ex
and in particular
FPHPTI(X/S)
P _ » _
B = B (Ys) = Friiqpta(X/S)

This assumption is discussed in [Ill]. Let us only mention the following statement
which indicates the most important consequences for Hodge sheaves (see [Del3],
th. 5.5).

1.2. THEOREM. Let S be a scheme of characteristic 0; assume that the mor-
phism f : X — S is proper and smooth. Then
(i) The sheaves RP f, (05 / ) are locally free of finite type and they are compat-

ible with base change.
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(ii) The spectral sequence (HDR) degenerates at E;.

(iii) The sheaves FPHPI(X/S) are locally free of finite rank compatible with
base change.

(iv) The spectral sequence (HDR) restricted to the fiber above s € S yields the
spectral sequence corresponding to Xs.

1.3. REMARKS. If S is smooth and connected, the transcendental theory
[Dem)] says that Hodge numbers h?4(s) = dim H?%(X,) are constant. Then one
can deduce that RPf, (0% / g)s = HI(X,, 0% ). In the general case, the degenera-
tion of the Hodge spectral sequence at a point s € S leads to (i) to (iv) by general
arguments due to Grothendieck (“lemme d’échange” [Del3], th. 5.5).

Assume k = C, and as always f : X — S proper and smooth. By the
relative holomorphic Poincaré lemma, the complex Q;?/“S is a resolution of the
sheaf f~1(Og) (inverse sheaf-theoretical image). (It suffices to restrict to the fiber
Xs = f~1(s)). Then

H(X/S) = R* f.(f71(0s))
= 05 ®c R*f.C.

To justify this identification, recall the base change theorem in cohomology (with
proper supports) (see Iversen [Iv]). Consider a Cartesian square

y — 2 4+ x

I

T 258
with f proper and X, S, T, Y locally compact spaces. For any abelian sheaf F' on
X, one has a canonical isomorphism

p*RFf.F =5 RFg.q*F.

Using the projection formula (loc. cit.) one gets the above identification. In this
way one has (if k = C) a relation between De Rham cohomology and cohomology
with constant coefficients, which we make precise in §2.A.

In the sequel we use the following convention:

1.4. DEFINITION. A family of projective manifolds consists of a smooth mor-
phism f : X — S with connected fibers such that for some closed immersion
i: X — PN xS we have f = prgoi.

The morphism f is thus proper. Let us assume that the Hodge spectral se-
quence degenerates. The decreasing filtration FP(H*(X/S)), is let us recall, the
Hodge filtration. The bundles F? are sub-bundles of #*(X/S), and FP/Frtl =

RIf(Q% ).

§2. Gauss-Manin connection

To study how the De Rham cohomology classes vary in a family, it is essential to be able
to differentiate these classes with respect to local coordinates on the base S. The goal of this
section is to make this precise by explaining in detail the constructions of Katz and Oda ([Ka],
[K-O]). These use a “connection” on a resolution of the De Rham complex which, after passage
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to cohomology, leads to the Gauss-Manin connection. In this section the framework is that of

schemes.

§2.A. Local Systems.

Let S be a topological space. A locally constant sheaf V (of sets, of groups, of
vector spaces etc.) is called a local system. Thus there exists an open covering of
S such that V is constant on the open sets of this covering. One sees easily that
a locally constant sheaf is constant on a simply connected space and thus the pull
back of V to the universal covering is constant with fiber V' say; then one gets V as
quotient of S x V by the fundamental group of S which acts on S x V in a natural
way: v((8), f) = (3-v,7"'f), where v € 71 (S) acts from the right on S and from
the left on V. This action leads to a representation of 71(S) on V, the monodromy
representation.

Assume that S is a scheme (resp. analytic space, C° manifold) with structure
sheaf Og. The sheaf of Og-modules V ®¢ Ogs is called the sheaf associated to
the local system V. It is locally free, i.e. a vector bundle on S. Such a vector
bundle is characterized by the fact that there exists a trivializing open covering
such that on the intersection of two of these open sets, the transition matrix has
constant coefficients. Recall [Dem)] that a connection on F, is a k-linear operator

V:F = QL @0, F (resp. Q5™ ® F, AL @ F), which satisfies Leibnitz’ rule
V(ae) =da ® e + aVe.

One can extend V to a k-linear map V : Q% @0, F — Q&T? @0, F by forcing the
rule V(a®e) =da® e+ (—1)?a A Ve (a = p-form). Then the operator R = VV
is Og-linear; one has

R € Homp, (F, Q% @0y F) = Q%(End(F)),

the curvature operator associated to V. The connection is called integrable (or flat)
if R =0, thus if

0—oF L0LeF HOiF — -
is a complex. One calls it the associated De Rham complex, in view of the particular
case F = Og, V = d. Recall that for any vector field v on X (or on a open subset
of X), the k-linear operator V, (contraction of V with v) is called the covariant
derivative in the direction of v. The integrability condition reads

(1) [V, V] = Viyu (v, w vector fields on X),

[v,w] being the bracket of the vector fields v and w. If k = C, and if V is an
integrable connection on the vector bundle F (locally free sheaf of rank n), the
existence of local solutions for the linear differential equation Ve = 0 implies that
V = ker(V) C F is alocally constant sub-sheaf and that F = V®¢ Og is the bundle
associated to V. Then V = 1 ® d, which means that if one chooses locally a basis
{e;} of F, composed of flat sections (i.e., sections of V) one has V(3 ,a; ® ;) =
> da; ® e

Conversely, for a locally constant sheaf V on S, V = 1®d is a flat connection on
the associated bundle 7 =V ® Og, with ker V = V. Thus, there is an equivalence
of categories between flat bundles, i.e. pairs (F,V) with Ry = 0) and locally
constant sheaves of C vector spaces, the morphisms of bundles being the horizontal
morphisms. Let us come back to the geometrical situation of a family of projective
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manifolds f : X — S. We have seen [Dem)], §10, that a family is locally trivial
from the differentiable point of view and thus the abelian sheaves R* f.C, R* f.R,
RF f,7. are local systems. In this way H*(X/S) = R* f.(C) ®c Os and the Gauss-
Manin connection on the cohomology bundle #*(X/S) is the unique (holomorphic)
connection with horizontal (or flat) sections, the sections of R f,(C), i.e.

Veu(e) =0 <= e € R*f£,(C).

§2.B. The Kodaira-Spencer map.
Now k is arbitrary, and S is a smooth scheme of finite type over k. The
smoothness of f yields an exact sequence

(2) 0— f*(Qg) — O — Qs — 0.

This extension, in general non trivial, is given by a class ¢ € Ext'(Q% 15075 (Q3)),
and as Qk /s is locally free, one has

Ext' (s, [*(25)) = H' (X, Homo, (s, [*(?5)) -
The image of ¢ by the canonical map

HI(X7TI0mOx(QA1)(/S7f*(QISJ)) — HO(Xale*(TX/S@)f*(Q,lS))

_ e * 1 ||
=Tx/s ® f*(Qg) H°(X,Q% ® R'f.(Tx/s))

is called the Kodaira-Spencer class of X/S ; one can see this class as a morphism,
the Kodaira-Spencer morphism px;s : Ts — R'f.(T'x/s). The fiber (px/s)s =
ps: Tss — H'(X,,Tx,) is the Kodaira-Spencer map at s € S.

Recall ([I1)) that if ¢ € H'(X,Hom(F,@)) is the class of an extension 0 —
G - H — F — 0, the boundary morphism 8 : H1(X,F) — H?1(X,G) can be
identified as cup product with c.

The Kodaira-Spencer map at s measures how X, deforms in the family X/S in the
neighborhood of s, at least infinitesimally.

We shall come back to the Kodaira-Spencer map in §3.C.

§2.C. Algebraicity of the Gauss-Manin connection.

The sheaves H*(X/S), FPH* have an algebraic definition, via the algebraic
De Rham cohomology; we shall see that this is also true for the Gauss-Manin
connection. We shall pass to the De Rham complex Q% k= A'Q}X e This complex
is not in general “multiplicative” with respect to the two extremes. The Koszul
filtration on 0%, measures this deviation. The definition works for any extension
0—G—H—F — 0 (of locally free Ox-modules). Put

FPA*H = image(APG ® A*F[—p] — A*H).
One has clearly Gr? = FP/FP+! =2 APG @ A* F[—p], [—p] means that there is a shift
of —p in the degree. Consider the exact sequence of sheaves

0 — Gr' — F)F? — G — 0

G ® A*F[-1] ASF
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which in degree k, leads to the extension
0— GRAIF — (FO/F*) — A*F — 0.

An easy verification shows that the class ¢ € H'(X,Hom(A*F,G @ A¥~1F) is
derived from ¢ by means of interior product

I : Hom(F,G) — Hom(A*F,G @ A¥—1F)

where IO)(f1 A+ A f,) = 2 (~)F ) ® i A Afi o A fy.

=

We shall return to the geometrical situation. The Kodaira-Spencer map can be

derived from the extension class (2); we shall see that the Gauss-Manin connection
can be derived from the extension class of the complexes

0 — Gr! — FYF? — G — 0

(3) | |
(%) @ 0% /5[-1] /s

(we refer to [Il1] for a precise definition).
Consider the boundary morphism in hypercohomology

d: R¥f,(Gr%) — RFFLf,(Gr")

which after identification becomes
0 : HMNX/S) —  RFUA(f*(Q%) ®ox Q%) s[-1])

05 ®o, HF(X/S)
We arrive at the main result

2.1. THEOREM.

1. 3 is an integrable connection on the De Rham cohomology bundle H*(X/S).

2. The associated De Rham complex (H*(X/S) ® Q%,0) can be identified with
the complex Ef’k derived from the spectral sequence of Q% filtered by the
Koszul filtration relative to the functor fi.

3. If k = C, after identification of the sheaves, O coincides with V.

Before giving the details of the proof, let us indicate that (1) and (2) are
obtained easily if one takes into account the compatibility of the Koszul filtration
with respect to the exterior product F* A F/ C F+J. So one can define a pairing
on the spectral sequence

7 1 U !
EPUx PO — EPTP0H0 (g ) s ee!

such that e'e = (—=1)PT0@®' +d)ee! and d; (ee') = (dye)e’ + (—1)PT9e - dy(e'). It is
maybe more convincing to give an explicit formula for d from which the integrability
will then be an easy consequence. This is the procedure that we shall make precise
in several steps.
Step 1

The problem being local on S, one can suppose that S is affine (or Stein,
in the analytic framework). We assume from the start on that X = S x T is a
product, without supposing that 7" is projective; one can even suppose that X
is étale over A" x S. With this assumption that the family is trivial, the exact
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sequence (2) splits, and Q% = p}(Q%) ® p3(QY) (tensor product of complexes).
One can identify p3(Q2%) and Q% /5> and then the total derivative dx decomposes
as dx = ds + dx;s. Let us note that the tensor product is over Ox, and hence
the derivative is only k-linear. Locally, one can describe the situation as follows.
With S = Spec(A), T = Spec(B) we have X = Spec(A ®; B). Consider Q% =
A'Qh/k, Q5 = A'Q}B/k, which are graded algebras over A (resp. B). Then one
has Q% = Q5 ®, B® A @ Qf and Q% = Q% ®; QF with the natural structure
of an A ®; B graded algebra. The derivative is dx = dg + dr, with the usual
meaning dx (o ® ) = ds(a) ® B+ (—1)Pa @ dr (), if @ € Q%, 8 € QL. Observe
that Q% ¢ = A ®k 0%, dx/s = 1 ® dr. The quotient morphism 7 : Q% — 0%/s
admits a natural section ¢ (of groups), such that, with an abuse of notation

w(hdx/sfi N--- Ndx;sfp) = hdx;sfi A -+ Ndxys fp,

where on the right dy,s is the partial derivative from the decomposition dx =
ds +dx/s- One has

P =Pk ® et Q% = F P %/
i2p
2.2. LEMMA. There ezists a derivation I (total interior product) of the algebra
0%, i.e. I(aAB)=I(a) ANB+aAI(B), such that I(dg) = dsg. Moreover, for any
form w € Q% one has

om(w) —w = —I(w) (mod F?0%).

Proor. With the description Q% = Q% ®j 7, one takes for I, the “deriva-
tion”,
d(a A B) = pa A B if a has degree p .
Observe that I is Ox (= A ®j, B) linear.
For the second assertion, one can suppose g = a® b, (a € A, b € B), then
dxg = dsa ® b+ a ® drb with dsg = dsa ® b and dx/sg = a ® drb. One has

n
I(dxg) = dsa®b = dgg. This yields more generally I(gdg:i A---Adgp) = > gdgi A
i=1

- Adsgi A -+ A dg,.
For the last property, assume w = gdg, A--- Adsg; A --- A dgp, then

pr(w) = gdx/s91 A--- Ndx/s9p
=g(dg1 —dsg1) A--- A (gp — dsgp)
= w — I(w) (mod F?Q%) .

Step 2

m
Assume that S is affine, and choose a finite open covering X = |J U,, where
a=1
U, is supposed to be étale over A™ x S. With such a trivialization (see the appendix)
one can, as indicated in step 1, decompose the De Rham complex Q;]a /k 3S 2
tensor product Qg ®o, 7 /s> and then write the derivative dx on U, as dx/y, =
dg + d5 g Let o be the section of w : QF ~ — O, ¢ which results from this

decomposition, and let I, the corresponding interior product.
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The Gauss-Manin connection describes in a cohomological way this (local) de-
composition of Q% as a tensor product Q% ® Q% /5" Consider C*(U,Q%) (resp.

C*(U, FP), etc.), the Cech complex with coefficients in Q% (resp. ...) ([Il]). One
knows (loc. cit.) that the canonical morphism Q% — C*(U,Q%) is a quasi-
isomorphism. Note also, that since the open set U, is affine, the functor K®
C*(U,K*) is exact, and hence

C* (U, GrP(2%)) = C* (U, FP)/C* U, F**Y).

The derivative of the Cech cqmplex is denoted d + § where d is the derivative on
the level of forms, and ¢ the Cech-derivative

J

(68)(io, - - yig) = (=P Y (=1 B0, - ,ij, .- i)
=0

(if p e CP1 =C1(U,Q%)).

For any index o with hy, = dg o ¢, viewed as morphism of complexes, one has

ho : GrO(QB()|Ua — G (Q%)[1] |Ua (immediate verification). Let o5 = ¢ — ¢¥u
(mod F?) so that

Vas : G2 (Q% — Gr' (%

)|UaﬂUﬂ )|UaﬂU5.

We have tag + Vg0 = Yoy (for any (a, 3,7)), and (hg — h"‘)|UQnU,3 = dipop, which
implies
d3pa — d@Pﬂ = (d$ +d%/s)Pa — (d§ + di/s)wa — (pa — w8)dx/s
defining thus a morphism of complexes
h:Gr® — C*(U,Gr'[1])
which induces (in the derived category) a morphism
V:Gr® — Gr'[1].

The reader should compare this with the proof of lemma (5.4) in [Il].

If one passes to cohomology, V induces the Gauss-Manin connection. We shall
make a more precise construction, and deduce from it the integrability of the Gauss-
Manin connection.

Step 3
Let g € C1(U, %), set

L(B) (g, - - ,tq) = d29(Blio, - -- ,i4)) (total Lie derivative)
then
I(,B)(Z(), ce ,iq+1) = (—1)1)(11'0 — Iil)(,B(il; ce ,iq+1) (total interior product)

and
80(5)(710; s Jip) = Pig (B(ioa s aip)) .
Note that £ is of bi-degree (1,0), I of bi-degree (0, 1).
An elementary computation leads to
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2.3. LEMMA. V = L+ I is a morphism of complezes
L +1I € Hom (C*(U,Q%),C* (U, Q% [1]).

Let us note that by construction, V(C(U, F?)) C C(U, Fit'). To ensure that
on the level of cohomology, the morphism induced by V = £ + I : Gt — Gr'[1]
is indeed the Gauss-Manin connection, the following property is exactly what is
needed:

2.4. LEMMA.

(dx +d)p—p(dx/s+0) = (L+T)op (mod C*(F?)).

PRrOOF. Let 8 € C1(U, Q’;(/S) and

(dxy — ¢dx;s)(B)(io, - - »ig) = dSpiy(B(io, - .. ,ig)) -

An easy computation shows that

(&P - 806)(/8)(7’05 e aiq-i-l) = (_1)p+1(90i0 - 90i1)(ﬂ(i15 s ;iq-i-l))-
It suffices then to verify that

(1P (i, — pi) (W) = (1)’ I*¢;, () (mod F?)

for any form w € I'(U;, N Uy, Qx/s). If one puts ¢y, (w) = a, this congruence is
equivalent to ¢;, (7(a)) — a = —I;,(a) (mod F?), which results then from lemma
2. O

The integrability of the Gauss-Manin connection follows immediately from the
formula of lemma 4. Indeed

V((dx +8)p — ¢p(dx/s +8)) = V? o p (mod C*(F?))
because V is of degree 1 for the Koszul filtration and since V and dx + § commute,
(dx +68)(V o p) = (Vog)(dx/s +0) = V? o p(mod F?).

Thus V? induces the zero morphism from Gr’ to Gr?[2] (in the sense of derived
categories).

Before concluding, it is useful to stress the following point. What has been
constructed in the steps 1 to 3 (lemma 2.3) is a connection (”the Gauss-Manin
connection”) on the level of the De Rham complex (the Cech-De Rham complex).
This (not necessarily integrable) connection induces the (integrable) Gauss-Manin
connection on the level of cohomology.

To finish the proof of the theorem, it remains to verify that the above con-
struction does not depend on the choice of Y = {U,}. This is completely standard.
If k = C, it is also immediate that the above construction can be applied with S
and U, Stein, and the result is identical. To convince oneself that this construc-
tion of V coincides with the purely topological definition, one observes that the
decomposition of the De Rham complex, which is local on X in the algebraic and
analytic case, becomes local on S with the complex of C* forms. Thus one can
suppose that X — S is a fibration which is trivial in the C* sense. In this case,
one can construct the morphisms V on the level of the C* De Rham complexes,
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say V : A% — A%[1], and V = dg (relative to some decomposition). Then, it is
almost obvious that V induces in cohomology ds ® 1

V=ds®1: qu*( 3(/5) — R‘Hlf*(Grl[l]) = A}S ® ]qu*( ..X/S)-

and that R? f, (A% 5) = R? f.(Q%]s) is the constant sheaf H(T,C) on S (if X =
T x S). O

§2.D. Transversality of V.
For any complex Q°, the Hodge filtration of Q° is the naive filtration Q°=.
After shifting degrees one has

(Q°[n])2P = (Q*=P")[n].
Consider the exact sequence of complexes (cf. (3))

0 — Gr! — FYYF? — G° — 0

I I

F(9L) ®oy U 5-1] Qg — 0
and pass to the i-th level of the Hodge filtration. One has the exact sequence
0 — f7(Qh) ® Q555 [-1] — (FO/F)> — Q555 — 0

and in cohomology one gets a commutative diagram

R f.()s) 2 R f(Gr'[1]) = 2 ©o; R £.(0%5)

T T
REF(Q5Z5) D REFLA(GRIRY) = REHAL(F4(QY) @ (2325 [-1) -
|

QLIS ®os R¥ f* (Q;(Z/g_l)

The images of the vertical maps are resp. F*H¥(X/S) and Q5@ F~1Hk(X/S), and
0 =V, thus one has the transversality property for the Gauss-Manin connection:

V(FH*(X/S)) C O @ F=IHR(X/S) .

Assume that the Hodge to De Rham spectral sequence degenerates (for example if
k=C). Then E/? = qu*(ﬂg(/s) = FPHPHI(X/S)/FPHiHr+te(X/S).

Moreover, it is clear that passing to the associated graded of the Hodge filtration
on H*(X/S), V induces an Og-linear map

V: R (O )g) — Q5 @ RIT f*(Qg;/ls) )
Then V is the cup product with the Kodaira-Spencer map
px;s € H(S, Q5 @ R fu(Txs))-

Hence finally:
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2.5. THEOREM. With respect to the Hodge filtration F*H*(X/S), the Gauss-
Manin connection satisfies Griffiths’ transversality property

V(FiH?) C QL @ FI=1 (1Y) .

If the Hodge to De Rham spectral sequence degenerates (if for example k = C),
the Og-linear map which the derivation V induces on the associated Hodge bundles
coincides with cup product with the Kodaira-Spencer class.

O

2.6. NOTES.

1. All of what has been done in §1 and §2, admits an almost immediate trans-
lation in the logarithmic framework. In this set-up D C X is a divisor which is a
union of nonsingular divisors relative to the base S, and D has normal crossings
relative to S. In this context, one can define (see [Il1], §7) the complex Q5 / s(log D)
of the differential forms, regular on X \ D having logarithmic poles along D. For
the easier case of a smooth hypersurface see §8 and for the general case see [Ka].
We get a Hodge to De Rham spectral sequence

EY* = R'f.(Q% s(log D)) = R""* £,(Q% s (log D))
and a Gauss-Manin connection
V: R1f.(Q%/s(log D)) — Qs ®o; R f.(Q%/5(log D))

which satisfies the property of Griffiths’ transversality with respect to the Hodge
filtration F'*, at least if one assumes that the above spectral sequence degenerates
at By (k = C). The reader should consult the fundamental work of N. Katz [Kal]
for details.

2. Recently Hinich and Schechtman [H-S] have introduced a higher order
Kodaira-Spencer map, which can be applied to differential operators and not only
to derivations.

Appendix: “local coordinates” in algebraic geometry.

To take away any doubt concerning the local computations in §2, recall how
one works with local coordinates in algebraic geometry.

Let X/k be a scheme of finite type, smooth over the field k. Then the Ox-
module Q% Jk is locally free of finite rank n = dim X and in a neighborhood of

any point £ € X, one can find regular sections s, ... ,s, € ['(U,Ox) such that
{ds1, ... ,dsn} is a basis of Qy /, over U.
2.7. DEFINITION. One calls sy, ... ,5, a system of uniformizing coordinates

(or local parameters) on U.

On can then define the partial derivative % by means of the formula (a €

I'(U, Ox))
" da
da = ZZZI 6_S,dsz .
The relation d? = 0 is equivalent to %;j = %2851, (V(i,5)). f f: X > YV isan

étale morphism, the canonical morphism df : f*(Q3, / Q) = Q% /5 is an isomorphism.
So, if s1, ..., S, are uniformizing coordinates on V. C Y, t1 = f*(s1), ... ,tn =
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f*(sp) is a system of uniformizing coordinates on U = f~1(V). One has by con-
struction

0 Oa
—(f* = f"(=— rwv,o .
5 (@) = (5 (a € T(V,0))
If now U is an open subset of the scheme X, U is étale over A" x S, then sq, ... , s,

are natural coordinates on A". The restrictions to U of these n + m coordinates
define local coordinates on U.

§3. Variation of Hodge structures

In this section we introduce the notions of variation of Hodge structures, of period domain
and of infinitesimal variation of Hodge structures.

§3.A. Introduction to Variation of Hodge structures.

Let X C PY a smooth projective manifold of dimension n. Hr = H*(X,R)
carries a so-called real Hodge structure of weight k given by one of the following
equivalent data:

i) A (Hodge) decomposition

He := Hr ®r C = @ HP
p+q=k

with H?4 = H"?,
ii) A Hodge filtration F? = @

He=FroFH,

i>p H"/, such that HP? = FPNF! (p+q=k) and

If H and H' are the real vector spaces which carry a (real) Hodge structure
of weight k, resp. k', then it is easy to see that on H*, H ® H' and Hom(H, H')
there is a natural Hodge structure of weight —k, k + &' and k' — k. In particular
Hom(H, H) has a Hodge structure of weight 0, and

Hom(H, H)(a’b) = {/\ :H — H, \(HP?) C Hp+a,q+b}_

One can interpret a Hodge structure as a real representation of the real algebraic
group
Resc/r (C*) = Spec ]R[a:,y, (x? + yz)_l]
(restriction & la Weil of the algebraic group C* of C to R). This explains why one
can perform the operations of duality and ® on Hodge structures.
In the geometrical case, when X is Kéhler, recall that on Hc = H*(X,C) there
is a bilinear form of parity (—1)*, the Hodge-Riemann form ([Dem))

Q(a, B) = (—1)kk=1/2 / aABAWF (dim X =n)
X

(Q is symmetrical if k is even, skew if k is odd). When the real (1,1) form w is
integral, thus if X is projective algebraic, and w comes from the class of a hyperplane
section, @ is then integral on the lattice H*(X,Z)/(torsion). Recall the Hodge-
Riemann bilinear relations, the first of which reads:

(R1) Q(HP1, H? ") = 0 except if (0',¢') = (¢, p)-
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It is equivalent to say that the space Q_—_orthogonal to FP is Fk—Ptl  1In fact,
FP =@, H", Fh—ptl — Disp_pr1 H- So,if i > p, onehas j =k —i < k—p,
hence Q(F*, F¥~P+1) = 0. But

dim FP =Y " h" =Y "hi = Y~ B = codim(FFPH) .
i>p i>p J<k-p
Thus Fk—p+1 = (FP)L.
The second relation is

(R2) If 0 # ¢ € Prim™?, v=1" 'Q(£,€) > 0.

If one introduces the Weil operator, which is the real operator C € Aut¢(H),

such that
P—q
C|Hp’q =+v-1 ,

the form {a, 8) := Q(Ca, ) is a hermitian form called the Hodge form. The Hodge
form is positive on the primitive part Prim*(X,C) of H*(X,C).

A polarized Hodge structure of weight k consists of a real Hodge structure of
weight k (Hg, Hr ® C = @H?4, H”4 = H”?) and of a polarization, i.e. a lattice
Hz C Hy equipped with a non-degenerate bilinear form of parity (—1)* on Hg,
which is integral on the lattice (but not necessarily unimodular)

Q(HZ X Hz) - Z.
One demands that the two Riemann conditions (R1) and (R2) hold. In particular
(,0) =Q(Ca,a) >0 (a#0)

with C' = the Weil operator.

An isomorphism of polarized Hodge structures is an isomorphism which pre-
serves the polarizations, i.e. the integral structures and the bilinear forms.

Let now f : X = S be a family of projective manifolds. So X Cc PV x S
and f is the restriction to X of the projection on S. Let X; = f 1(s) = X n
PY x {s}. As explained in [Dem)], X, carries a real Hodge structure on each
H*(X,,C) and Prim*(X,, C) carries in addition a polarization defined by the form
wy € HY'(X,,7), deduced from the embedding X, C PV.

These real (resp. polarized) Hodge structures define a family (or variation) of
Hodge structures. One has in fact the following objects:

1. A local system of free abelian groups of finite (constant rank),

HE = R¥£.(Z)/(torsion),

idem with HE, HE).

2. A vector bundle (locally free Og module) H* = R* f, (Q}/s) (03(/5 = alge-
braic, or holomorphic forms ).

3. A decreasing filtration on H* by holomorphic subbundles {F?},—o, .. &
(Hodge filtration) (if one passes to the fiber in s € S, H¥ = H¥(X,,C) and

FP is exactly the Hodge filtration on H* (X, C)). One has FP N FrH _

P+g=Fk).

Let w € HO(S, R2f,(Z)) the image of the class of the relative hyperplane
section (a locally constant section). The section w induces at each s € S,
ws € H*(X,,7Z), the integral form (1,1) which polarizes X,. One has then
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4. A locally constant non-degenerate bilinear form @ : Hx @ HE — HZ" =7
(“the Hodge-Riemann form”).

5. An (integrable) connection V : H* — QL ® H*: the Gauss-Manin connec-
tion, such that the local system of its horizontal sections is ’H(’é.

6. Griffiths’ transversality property

V(FP) C QL @ FPL.

7. The Lefschetz operator L admits a global form; L is the cup product with
w. Observe that L is a horizontal operator and one defines H'grim as the
kernel of
Ln—k-‘rl . Hk N H2n_k+2.
The fiber above s € S of HE;  is Prim*(X,,C).
One gathers all of these data into the following definition of (polarized) variation
of Hodge structures (“VHS” in short). The following definition has been formulated
by Griffiths ([Grifl]).

3.1. DEFINITION. A family of (real) Hodge structures of weight k, on S,
consists of

1. A locally constant sheaf of real vector spaces Hg on S.

2. A finite filtration {FP?} on the vector bundle H := Hr ® Og (FP is a holo-

morphic subbundle).
With the conditions

(VHS-1) The natural connection V = 1®dg on H is such that VF? C QL Fr1

(VHS-2) For any point s € S, {FP} defines a (real) Hodge structure of weight
k on Hg)s -

A polarization consists in addition, of a locally constant sheaf Hz C Hg, of free
Z-modules of finite rank, with Hr = Hz ® R, and a locally constant non-degenerate
bilinear form

Q:HzQR@Hz — 7

which for any s € S induces a polarization on (Hg)s.
We shall only consider polarized Hodge structures.

3.2. DeErFINITION. Let {Hz,{F?},V,Q} be a variation of polarized Hodge
structures on S. The monodromy group of the locally constant sheaf Hz is called
the monodromy group of the variation (VHS).

To define this group, one fixes so € S and following the prescription of §2.A
one considers the monodromy representation

T : m1(S,s0) — Autz((Hz)s,)-

From the fact that the form @ is (locally) constant, the image of T' (i.e. the mon-
odromy group) is included in the orthogonal group Gz := Autz((Hz)s,,Q)-
Recall that the locally constant sheaf Hz is obtained as

Hz = S x Hz/m1(S, 50) (Hz = (Hz)s,)

where 7 (S, s9) acts as y(t,a) = (ty,T(y)"'a). The monodromy representation

describes how a local section of Hz changes under analytic continuation along a
loop. As one assumes S to be connected, all the fibers of Hz are isomorphic to
Hz = (Hz)s, but not canonically.
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§3.B. Griffiths’ period domain.
It is natural to describe “the set of Hodge structures” on Hr = Hz®R polarized
by the form ) on Hz and with fixed Hodge numbers h?-?. One fixes thus Hz = Z",
an abelian group, @ a form (skew or symmetrical according to the parity of the
weight k) which is integral and non-degenerate on Hyz. Further, one fixes Hodge
numbers h?? (= h%P), with . hP? = n. Note that then dim FP = Y. h%J
p+a=k i>p,itj=k
is fixed (= fP). One denotes by Gr(k,Hc) the Grassmannian of subspaces of
dimension k of H¢. Recall the Riemann relations:
1. The subspace of Hc Q-orthogonal to FP is F¥~P+1 and
2. If C'is the Weil operator with C'(€) = /—1" “¢ for € € HP9, one has Q(C¢, &) >

0if 0 # .

3.3. NOTATION.

e D = {filtrations F* = {FP},—, ... 5 of H = Hg, such that dim F? = f?, and
for any p, Q(FP, F*—P+1) = 0}. (Then F*~P*! is the space Q-orthogonal
to FP).

e D denotes the subset of D consisting of Hodge structures, i.e. satisfying
condition 2 above.

e Let Gr be the orthogonal group of (Hg,®) and G¢ its complexification,
Gc = O(HC5 Q)

3.4. PROPOSITION.
1. D is a non singular submanifold of [[ Gr(f?, H), which is in fact a homo-
P

geneous space under the complex Lie group Gc.
D = G¢/B, (B parabolic subgroup)
2. D is open in D, an orbit of the real Lie group Gg:

DZGR/V (V=GrNB).

ProOF. The proof not is not too difficult, it is an exercise in linear algebra (use
Witt’s theorem for example). Note that D gets the structure of complex manifold
(open in D). It is often convenient to fix an initial Hodge structure {H2*?}, and
then one can identify D with G¢/B, where B is the stabilizer of {FF}, and V the
stabilizer of {H{"*} in Gg. O

It is important to describe the tangent bundle to D as well as the universal sub
bundles F? of the trivial bundle H ® Op as homogeneous vector bundles on these
homogeneous spaces.

Recall that if F' C H is a subspace of dimension d, the tangent space of Gr(d, H)
at [F] can be canonically identified with Hom (F, H/F'). Hence, a tangent vector of
D at the point F'* = {FP} may be identified with a collection of linear maps

¢ : FP — H/FP
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fitting into commutative diagrams

FP L) H/F?

I I

Frtl _SPFL, Ept1 H/FP‘H

such that moreover

Q((a),B) + Qo &—p41(B)) =0 (a € FP, g e FkPH)

[infinitesimal version of the first bilinear relation]. Recall that we have chosen a
base point {H}"?} € D. Let

g = Lie(Ge) = {X € End(H),Q(X(a), f) + Q(a, X(8)) = 0}.
One has a Hodge structure of weight 0 on g, with

g"t = {X €g, X(Hp,q) C Hp+q,q+s}_

Then b = Lie(B) = ,~,8" ", and the tangent bundle T} is the homogeneous
bundle G¢ x g g/b, B acting by the adjoint representation. Let go = Lie(Gr), then
v = Lie(V) = go N g%C. Observe that go/v = g/b, which corresponds to the fact
that the open subset D C D is an orbit of Gg.

3.5. DEFINITION. [Grifl] The subbundle G¢c xp g="'/b of T}, is called the
horizontal subbundle (notation Thor(D)). A tangent vector £ = {&,} is horizontal
if & (FP) C FP=L)FP.

To describe the universal bundle 7P C H ® Op in terms of bundles associated
to principal bundles, remark that the trivial bundle H ® Oy, (with fiber H and base
D) is the bundle G¢ xp H, and FP = G¢ x g FE (by definition B is the stabilizer
of the filtration {FJ}.

3.6. EXAMPLE (SIEGEL'S UPPER HALF SPACE). Let k = 1 (weight a). The
Hodge filtration reduces to H = F° D F! 5 0, with (F!)1 = F* (for the skew form
Q). Then D is the Lagrangian Grassmannian of (H,Q), and D = Sp(2g,C)/B if
dim H = 2g. It is a classical fact (and easy to check) that D = Sp(2¢,R)/U(g,C)
can be identified with Siegel’s upper half space {7 € M,(C),!7 = 7 and Im 7 > 0}.

Let there be given a VHS {Hz, F?,V,Q}. It does not directly give a morphism
S — D, because Hz is only locally constant. However, locally on an open subset
U of S one can trivialize the vector bundle Hz ® Og, by means of flat sections (of
Hz) and then the filtration induced by the F? yields a (holomorphic) morphism

d:U - DcD.

Globally, one can transport the VHS to the universal covering S of S, and the choice

of a trivialization of the local system Hz on S leads to a morphism ® : S—DcD.
One sees immediately that the (global) monodromy group I' acts properly dis-

continuously on D. One gets the period map after taking the quotient by I':

®:5 —T\D.

An important property of & is that it is horizontal, which is the translation of the
condition of Griffiths’ transversality for V: for any s € S
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(4) d®,(Ts,0) € Thor,a(s)(D)-

To make this property clear, let us make it explicit on a neighborhood of sy € S.
Trivialize the vector bundle Hz ® Og by means of flat sections {7;}. One may
suppose that Hy*? (= H?(so)) has a basis (73),,,<i<s,, and then a basis for F§
is {7i}i<y,. One can find a local trivialization {e;(s)} of Hz ® Os with e;(so) = 7,
and such that locally (e1, ... ,ey,) is a basis of 7. Let e; = ) Aj;7; be the matrix
of change of frames (we abbreviate sg = 0). The section 7; being flat, we have
Ve; = Y dAjitj = 3 cpie, with ¢ = A~'dA. Transversality implies that ¢;; = 0

k
for i < fp, j > fp+1- The linear map &, associated to d®,,(9/0s4) is such that for
i < fp one has

de;
€a(ri) = 5--(0) (mod 7F)
=Y s (0)7;.
fp+1<J
As
dA;i(0) d

W = <cji(0)7 E);
one has indeed (4).

For later use, let us indicate the following property, consequence of the vanishing
of the curvature of V.

3.7. PROPOSITION. If 81, 02 € Tss, & = d®,(8;) € g~ 1, then [&1,6] =0
(bracket in g).

ProoF. Recall the formula (1) of section 2. It implies that it suffices to show
that [0y, d2] = 0 seen as endomorphism of H(’]’ Y. Thus one may suppose & = 8/05,,
§» = 0/0sp. Set c; = {cji,0/0sq), then c$;(0) = BAJ,/63a|0 It suffices to show

that Oc$; /0sp — ac / 0sp is annihilated in 0 for fpr1 <4,j < fp. We have seen that

N 1 0Ak; e .
%= Ay ask =0ifi<fy, §> for1 -
k a

Differentiating with respect to sg, and then evaluating at 0, one gets for 4, j in the
interval (fp41, fp):

82Aj, 3AJk aAkz’
— 0
83583a Z 8sa 68/3 0)
. 6Ajk 6Ak,~
Z 655 6sa 0)
which yields the result. O

§3.C. Deformations and IVHS (Infinitesimal variations of Hodge struc-
tures).

A natural question at this stage is whether the variation of complex structure
is determined by its variation of Hodge structures (Torelli problem). It is clear that
this is false in general: take the product family. Thus one restricts to families for
which the complex structure varies truly, at least infinitesimally. The infinitesimal
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complex variation being measured by the Kodaira-Spencer map, one only considers
families having the property that the Kodaira-Spencer map is everywhere injective.
These are the effective families. The variation of Hodge structures at the infinitesi-
mal level is described by the derivative of the period map. An infinitesimal version
of the Torelli problem is whether this derivative is injective for effective families.
See [P-S] for this circle of ideas. Let us complete the discussion in making precise
the notion of universal or versal deformation. Here one fixes a manifold X,, one
works with families on a pointed base manifold (S, 0), considered as germ, such
that the fiber above o is the fixed manifold X,. These types of families are called
deformations of X,. Such a deformation f : X — S is complete if any other
deformation g : Y — T of X, can be obtained from f : X — S by a change of basis
(at the level of germs)

y 4L X
o]
T % 3

where p : (T,0) — (S, 0), and the above square is Cartesian. If the morphism p is
unique, X /S is called universal. In general this not the case, but often the derivative
dp(o) is unique and in this case the deformation X /S is called versal. For example,
if X/S is complete, to obtain a versal deformation, one may restrict the family to
a suitable submanifold which passes through o. Warning: a deformation can very
well be (uni)versal at o € S but can fail to be so at other points of S. Kodaira and
Spencer have shown [K-S2] that f is complete if and only if the Kodaira-Spencer
map is a surjection.

3.8. CONSEQUENCE. f : X — S is versal at o if and only if the Kodaira-
Spencer map

p: TS,o — HI(TXO)

is an isomorphism.

In this situation, dim S is considered to be the number of parameters for the
complex structure).

Although this result has been ameliorated by Kuranishi, Kodaira’s result suf-
fices for many examples, notably for hypersurfaces in projective space, as in the
following example. The result of Kuranishi says that there is always a versal family,
provided that one allows analytic spaces as possible base space S (it is essential to
allow nilpotent elements in the structure sheaf of S). In this framework, a family
f : X — Sis aholomorphic and proper map such that, if one replaces S by a smaller
set, locally X is a product U; x S and f|U; — S coincides with the projection on
the second factor. See [Ku] for details.

3.9. ExampLE. If f : X — S is the tautological family of hypersurfaces of
degree d in P**!, the Kodaira-Spencer map is a surjection if n > 2 or n = 2 and
d # 4. To obtain a versal deformation one has to restrict this family to a small disk
transversal to a PGL(n + 1, C)-orbit of a fixed hypersurface. For details see [K-S],

§14(C).

Let us come back to the derivative of the period map for a versal family f :
X — S. Fix 0 € S and consider the fiber X, above the point 0 and the derivative
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0 = d®(0) at o. This is a linear map

§:Ts,, — g~ " C D Hom(HP7, HP~11t1)
P

with the following properties (3.7):
(1) For any tangent vector t in o, §(t) € g = Lie(G¢)-
(2) Ift1,t2 € Ts,, the endomorphisms §(t1) and d(t2) commute.

3.10. DEFINITION. Let there be given a (real) Hodge structure on H. The
(linear algebra) data (T, H, 4, Q)

§: T — g1t
which satisfies (1) and (2) is called (by Griffiths and Harris [C-G-G-H]), an infin-
itesimal variation of Hodge structures (IVHS).

For a geometrical IVHS, the linear map induced by
5(t) - gp1 _y fp—Latl

is cup product with the image of ¢ under the Kodaira-Spencer map T's, = H* (X, Tx,)
(cf. §2B and §2C).
Starting with a IVHS, one can perform linear algebra operations. For example,
if t1,...,tx € Ts,, = T, one can compose the maps d(t1), ... ,d(tx), which yields
a map

k0 a(t1) HE-11 a(t2) HE-22 .. o(te) HOk

Denote the result by 6(t, ... ,t;) € Hom(H*?, HOF). Recall that H%* and H*0
are each others dual under Q. Then the properties (1) and (2) lead easily to the
following results:

1. 0(t1, ... ,ty) is a symmetric bilinear form on H*:0

2. 0(t1, ... ,tg) is symmetric in the arguments ¢1, ... , k.
Hence a linear map
(5) § : Sym®(T) — Homgym (H®C, HO*) = Sym? (H*?)

which, as one can expect, contains significant information about Xj.

84. Degenerations

In this section we introduce the notion of a mixed Hodge structure. Next we consider families
with base a punctured disk, deduced from a proper morphism over the disk by deleting the fiber
above of the origin. Such situation is called a degeneration, because the fiber above the origin can
be singular. In this situation, turning once around the origin induces in cohomology the Picard-
Lefschetz or local monodromy operator. This map is a quasi-unipotent, a fundamental property
which is discussed briefly in §4.B. Finally, in §4.C we define the nearby and vanishing cycles,
notions which we need to understand the recent developments concerning local monodromy.

§4.A. Mixed Hodge structures.
Let Hgp be a Q-space vector of finite dimension equipped with an increasing
filtration W,
Wk CWk+1 CWk+2"'
Let us assume that there is a decreasing filtration F'®

. Fk c FEL c pR2 ol
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on H = Hy ® C. These two filtrations define a mixed Hodge structure if the
filtration induced by F'® on GrEV = Wy /W,_; is a pure Hodge structure of weight
£. The induced filtration is F”(Gr}fv) =W,N Fp/Wl,l N F?. The Hodge numbers
are the Hodge numbers of Gr}”. Thus h?¢ = h%? but in general there are non zero
Hodge numbers for different values of p+g¢. If one can find a bigrading H = @ H??
such that Wy @ R = }°, , ., H™® and FP = }° . H"® one says that the mixed
structure is split. Deligne has found (see [C-K-S1]) a canonical splitting

1% = FP AW,y 0 (FY N Wars) + Gogp o), with GP:=> FrinwW,;
>0

and thus

we= @ 1, Fr=pr’.

a+b<t a>p

Warning: although h%® = hb®, in general it is not the case that I*® = IT*, but if
this symmetry property holds, we say that the splitting is defined over R. One can
always “deform” a mixed structure defined over R (i.e. in the definition of mixed
structure one starts with an R-space vector) into a real split mixed Hodge structure.
In this case I** = F* N F* N W,,4. In [Dem] it is shown that the cohomology
group H¥(X,Z) of a compact Kéhler manifold X carries a pure Hodge structure
of weight w. In particular this applies to complex projective manifolds.

Deligne has proved [Del4], [Del5], that H* (X, Z) carries a mixed Hodge struc-
ture which depends functorially on X for any quasi-projective, possibly singular
variety X, in fact for any scheme of finite type over C. The Hodge numbers of this
structure can be shown to be non-zero at most in the range 0 < p,q¢ < w, and in
the more restricted range w —n < p,qg < n if w > n = dim X. If X is smooth, one
only has weights > w (h?? = 0 if p + ¢ < w); however for X proper, there are only
weights < w. Of course if X is smooth and projective, the mixed Hodge structure
on H¥(X,Z) reduces to the classical pure Hodge structure of weight w.

Let us indicate where the mixed Hodge structure comes from when X is a
smooth quasi-projective C-scheme (see [Deld4] for the details). One first compacti-
fies X, i.e. realizes X as the complement X = X \ D of a normal crossings divisor
([111], §7). Such a compactification exists; to simplify the discussion, we assume that
D is the union of nonsingular divisors which cross transversally. We work in the
analytic framework; the forms are thus holomorphic. The ordinary De Rham theo-
rem, which says that H*(X,C) = H¥ (X, Q%) does not suffice. If j : X — X is the
inclusion note that H*(X,C) = H* (X, j.Q%). Let Q% (log D) be the subcomplex
of j.0%, whose the sections are the meromorphic forms on X that are holomor-
phic on X and which have logarithmic poles along D. Recall [I11] that a section of
Qly(log D) defined at x € D, is a linear combination {%, ceey %, dzpt1,---,dzn}
if (21,...,2,) is a system of local coordinates around z such that z1 -...- 25 = 0 is
a local equation of D. Set Q% (log D) = APQL (log D). One may check that Q% is
the smallest subcomplex of j.Q% containing {25 and the logarithmic differentials
‘;—f for any local section which is meromorphic along D. The logarithmic version of
the De Rham theorem then says that the two complexes Q%-(log D) and j.Q% are
quagi-isomorphic and hence

H"(X,C) = H* (X, 0% (log D).
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For D is a smooth hypersurface the reader can find a proof in §8.
As in §1, the Hodge filtration F'® leads to a spectral sequence

EY? = HY(X, Q%(logD)) = HPTY(X,C)

and to a Hodge filtration FP H¥ (X, C) on the limit. Note that the coherent algebraic
sheaves pr(log D) can be substituted for their analytic analogs ([Ill], §7).

The complex 253-(log D) admits a second filtration, the weight filtration W, (an
increasing filtration); W, is the image of the exterior product map

Q% (log D) ® Q% [-m] — Q5 (log D).

If one sets W™ = W_,, (making it into a decreasing filtration), one can thus
consider the spectral sequence associated to the filtered complex (25 (log D), W*),
let

By = WY (X, G (% (log D)) = H (X, C).
Assume that Dy,...,D, are the components of D. It is not hard to see that the
Poincaré ”residue” operation furnishes an isomorphism (see §8)

0 ifn<O0
Gr,) (2% (log D)) = 0% ifn=0
B1<ir<<in<r2p, aoppy, 1] iR 21

On H¥(X,C) one has thus two filtrations W, and F*. We then study how these
filtrations live together. The E; term of the spectral sequence reads

B = HUT(Dy NN D, 0)
1<i <L <7

The Hodge filtration induces on this term a pure Hodge structure of weight w + n,
which is derived from the one of weight w—n on each group H¥~"(D;,N---ND;,_,C)
by means of a shift. Then one can show inductively by a rather delicate analysis,
that the derivative d,. is zero for r > 2, in particular

Egaq e Eg(’)q = GrZV(Herq(X)(C))

We may then easily conclude that the filtration F* on W,,/W,,_; = Gt (H* (X, C))
yields a pure Hodge structure of weight w + n. Then the shifted filtration W,[w]
together with the filtration F'® define on H*(X) a mixed Hodge structure. The
reader can find in [Del4] an explanation why W, is in fact defined over Q, and also
why the result is independent of the compactification. As an example let us regard
the case of a smooth hypersurface D C X and X = X \ D. Keeping account of the
shift, the weight filtration on H¥(X,C) is 0 C Wy, C Wy11 = H¥(X,C). One has
W, = Im[H*(X,C) — H*(X,C)]. To interpret the quotient W, 1/W,,, consider
the derivative d; of the spectral sequence

_ d _
0 — E/Mt S gt 50

| |

Hw—l(D) Hw+1(X)
Degeneration at E» is here clear. We have

Eg_l’w+1 =ker(dy) = --- = BV = Wyp1 /W,
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We shall see in §7 that the derivative d; can be interpreted by means of the Gysin
exact sequence

o HY(X) > HY(X) » H*'(D) S H*H(X) —> ...

Here, 0 = d; being of bidegree (1,1), the proof of Deligne’s theorem is immediate.

Let us specify this example even more, by by taking for X a complete smooth
curve of genus g and for D a set of n points. The above Gysin sequence shows
that W; = H'(X) carries a pure Hodge structure of weight 1 and that Wo/W; =
ker(H°(D) — H?(X)) is of rank n — 1 with a pure Hodge structure of weight 2,
with only one term of type (1,1) (just as for H2(X)), which corresponds to the fact
that by (X)=g+n — 1.

The method of Deligne yields also a mixed structure on the cohomology of
Kéhler manifolds admitting K&hler compactifications. In another direction, coho-
mology with compact support as well as Borel-Moore homology (of a separated
scheme over C or of a K&hler manifold admitting a Kahler compactification) carry
also mixed Hodge structures.

§4.B. Limit Structures.

Consider the situation of a degeneration f : X — A, i.e. a proper and holo-
morphic map of a complex manifoldX to the disk A such that f is smooth outside
the origin. Let

h— A*, 17— s=exp(2rir)
be the universal covering of the punctured disk. Let X = X xa- b be the product
bundle and let k : X — X be the natural map. The map h : X — X, h(z,7) =
(x,7 + 1) induces the monodromy operation T on the cohomology groups H*(X)
(s = exp(2rir) and X; = f !(s)). In the case of a geometrical VHS, Hz =
RFf(Z)s, = H*(X,,,7Z)/torsion, T is the Picard-Lefschetz transformation. A
fundamental property of T is

4.1 THEOREM. ([La]) The map T is quasi-unipotent, i.e.. (T*—1) is nilpotent
for suitable £ € N; in fact, the index of nilpotency is < k+1 so that (T*—1)¥*1 =0
(Local Monodromy Theorem)

For abstract variations this theorem has been proved by Schmid in [S]. The
local monodromy theorem without the bound on the index of nilpotency results
(according to an idea of Borel) from curvature properties of the period domain. We
sketch the argument given in [S].

Recall the notion of sectional curvature of a hermitian metric h on a complex
manifold M. Let Fj be the curvature (see [Dem)], §1) of the metric connection
on the holomorphic tangent bundle T'(M). The sectional curvature is the function
k: T(M) \ {zero-section} — C given by

_ h (Fh(v75)v7v)
Kk(v) = CROEEE

4.2 EXAMPLE. Assume that dim M = 1. Then Fj, = 09log(h), where w =
Lh dz A dZ is the form associated to the metric. We check easily that k(0/9z) is

the Gaussian curvature K, = —h~1-9%/020%(log h). This result can be written as
follows:

< curvature h = — Gaussian curvature of the metric h.
1
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Particular cases:
1. Let A be the unit disk with the Poincaré metric

1
We find
k(0/0z) = —1.
2. The upper half plane h = {z € C | Im z > 0}, with the metric
1

The Gaussian curvature is equal to —1.
3. The punctured disk A* = {( € C: |{| < 1, { # 0} admit h as universal
covering. The Poincaré metric is invariant by translation and thus induces
a metric on A* .
————d{ ® dE
€1 (log [£]%)?

with Gaussian curvature —1.

LEMMA (AHLFORS-SCHWARZ). A holomorphic map f : A — M of the unit
disk to a complex manifold equipped with a hermitian metric h having the property
that f(A) is tangent to the directions in which the curvature k satisfies k < —1,
then, with wy, the form associated to h and wa the form associated to the Poincaré
metric one has

[rwn <wa,

i.e. f is distance decreasing.

PRrROOF. The assumption of the lemma says that the sectional curvature calcu-
lated in the direction of f(A) is estimated from above by —1. We know that the
curvature decreases in subbundles (see [Grif4], Chapt. II) and thus the sectional
curvature calculated with the metric induced on T is bounded by —1. Recall that
the Ricci form of a metric with form wy on a manifold N of dimension 1 is given
by

1,
Ricwy = §i8810gh = —-Kuwn,
where K denotes the Gaussian curvature. Thus f*w;, < Ric f*wy and it suffices to
show that Ric f*w, < wa.
Consider a smaller disk of radius r and let
i-r?dz Adz
Nr = 5 9 5
SRCEIEDE

be the Poincaré metric on this disk. Introduce
U= ffwp = un,.

Since ¥ remains bounded on each disk of radius r < 1, while 7, tends to infinity
when one approaches the circle |z| = r, the function u remains bounded on this
disk and thus takes on an interior maximum, say at the point zg. At this point one
has

0 > i0dlogu = Ric ¥ — Ricn,.
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The Gaussian curvature of 7, is equal to —1, where:
Ric¥ < Ricn, =7,

and one gets the inequality u(zg) < 1. But u takes on its maximum at 2o and thus
Ric ¥ < 7,.. Taking the limit, one gets indeed Ric ¥ < nja. O

One can see the upper half plane as a special case of a period domain. Here
the curvature is —1. For an arbitrary period domain the curvature of the invariant
metric in general won’t be negative, but it will be negative along the horizontal
directions. More precisely, the holomorphic sectional curvature of the horizontal
subbundle The (D) is bounded by a (uniform) negative constant

”(5) <-1,Vze Thor(D)

(so as to normalize the metric). For the original proof see [G-S1].
Let there now be given a VHS on A*, with monodromy transformation 7', as
indicated. Lift the period map to

&:y—-DcCD.

Recall that the map ® is horizontal and then the Ahlfors-Schwarz lemma implies
that @ is distance decreasing (on b one puts the hyperbolic metric with curvature
-1)

®*(ds?) < ds?

hence ® is decreasing with respect to the associated Riemannian distances:

dp(®(p), 8(9)) < dn(p,q) -
Note that if z,7 € Ry, d(ir,ir + z) = T. Then since &(r +1) = T®(r) one has

dp(®(in), T®(in)) < %

Fix a base point v € D, and one identifies D with the orbit Gr/V of v. The
map Gr — D is proper because V is compact. Let ®(in) = g,v. One has
dp(gnv,Tgnv) = dp(v,9, Tgnv) < 1/n because dp is Gr-invariant. It follows
that g, 'Tg,v — v. Passing to a subsequence of {g,}, one may suppose that
9. 1T gy, converges to an element g of V. Since V is compact (it is a subgroup of a
unitary group), the eigenvalues of g, and thus those of T' are complex numbers of
norm 1. The element T is in fact in Gz. Then, if A is an eigenvalue of T, the same
is true for any complex conjugate, and a classical fact (due to Kronecker) implies
that A must be a root of unity. O

Let us next explain a fundamental result [S] of W. Schmid: “The nilpotent orbit
theorem” for a VHS on A*. Here A is a disk with parameter s, and A* = A\ {0}.
Recall that the universal covering of A* is given by

h = A%, 7 s =exp(2wir).

The monodromy of the locally constant sheaf Hz is described by analytic con-
tinuation along a circle traversed counterclockwise and is thus an operator T on
(Hz)s, = Hz (one fixes a base point so € A*). Recall that this means that
the inverse image of Hz on b is the constant sheaf hh x Hy, with the operation
o:(r,a) = (1+1,T'a), and that Hz = h x Hz/{o}.
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The holomorphic vector bundle H := Hz ® Oa+, on A* is trivial for general
reasons: a holomorphic bundle on a non compact Riemann surface is trivializable
([Fo], §30). In the present situation one can choose a privileged trivialization, using
the fact that the monodromy is quasi-unipotent.

Assume that T is in fact a unipotent operator (T' — 1)™ = 0, to simplify a
bit. Then N =1log(T) = (T —1) = (T = 1)* + -+ + (-1)™ 2 (T - 1)™ ' is
defined, and N € gg, i.e. N is a rational element of the Lie algebra of the group
G¢ = Aut(Hc, Q). Observe that for any t € C, exp(tN) € G¢.

Trivializing the vector bundle H = H(X/S) on A* according to the description

H=hHx H/{c}

(H is equipped with the complex topology) is the same as trivializing the class {T'}
in Hl (Z, Gc) .
It suffices to remark that

exp((T +1)-N)-exp(rN)"' =T .

In other words, if (7, a) = (7,exp(7N)a) is a “change of coordinates” on h x H,
the action of 71 (A*) in the new coordinates becomes

(087 1) (1,0) = (1 + 1, a).

This leads to a privileged trivialization of # over A*. In this trivialization, the
horizontal sections (those that extend over s = 0), are the sections a(s) = (s, )
in the new coordinates. In the old ones, this means that if @ € H = (H),, the
analytic continuation of a defines a multi-valued section of the locally constant
sheaf Hc, and s — exp ( - %ffN )a(s) defines a holomorphic section of the vector
bundle, which is horizontal relative to the privileged trivialization. By definition,
the section 1
. og s
a*(s) =exp ( 91 N)a(s)
is defined at s = 0. These are the horizontal sections of the vector bundle H(X/S),
extended to the whole disk A.
The fundamental result of W. Schmid is the following [S]:

4.3. THEOREM. The Hodge bundles F? C H(X/S) can be extended to sub-
bundles of the bundle H(X/S). In particular in s = 0 one has a limit filtration
F*(0) € D (in general F*(0) ¢ D).

The theorem can be stated in another way: let
d:h—DCD.

Then if 9() = exp(—7N)®(7), one has (1 +1) = ¥(7), consequently ¢ defines a
holomorphic function 9 : A* — D by ¢(s) = ¢ (*%£). The result is that 1 extends

holomorphically to a map ¢ : A — D. Recall that H = H*(X,,,7)/torsion.
Consider 1(0) as a filtration

0OCFE cFEYc...CcFY

on H ® C; this is the limit filtration.
The second part of Schmid’s theorem — which we shall not use — concerns the
nilpotent orbit

N(1) = exp(rN)[F*(0)] .
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For Im7 > 0, N(r) € D, and N is horizontal; thus for Im7 big enough N(7)
defines a variation of Hodge structures, for which one can prove that it furnishes
an approximation of the initial variation (in a sense one can make precise).

Introduce the (monodromy) weight filtration. It results from the following
construction [S]: let V' be a vector space over a field K of characteristic zero, and
let N € End(V), such that N¥*1 = 0. Then there is a unique filtration

W_1:{O}CWOCW1C"'CW2k:V

such that N(W,) C W,—_2, and such that N*¢ induces an isomorphism Gr,?jre =5
GrkW_E, where GrZV = Wy /Ws_1. So on H one disposes of two filtrations F3 and
W*, the weight filtration W, being defined on Q. The most important result is the
following part of Schmid’s nilpotent orbit theorem.

4.4. THEOREM([S]). The filtrations F3, (the limit Hodge filtration) and W,
define a mized Hodge structure on H.

There is a generalization which is much more delicate (the S1(2)-Orbit theorem
of in n variables) with applications to degenerations with n parameters. See [C-
K-S1].
For the case of a degeneration of one parameter, Steenbrink [St1] and Clemens-
Schmid [C]] have constructed this mixed Hodge structure in a geometrical way and
from it they draw important consequences, for example

4.5. LOCAL INVARIANT CYCLE THEOREM. A class in H*(X,, Q) is invariant
if and only if it is the restriction of a global class on H*(X, Q).

This assertion, although intuitively clear, is false in the non-Kéhler setting!

§4.C. Nearby and vanishing Cycles.

It is useful to recall here the constructions of the sheaves of nearby and vanishing
cycles associated to a degeneration f : X — A (or more generally to a function
f : X = C). These sheaves have support contained in X, = f~1(0).

The construction uses the Milnor fiber at x € X which is the intersection of
a small sphere around z of maximal real dimension in X with X;, ¢ close to 0.
It can shown that the homotopy type of the Milnor fiber is independent of ¢ and
of the radius of the sphere, provided that these be carefully chosen (see [Mil]).
Consider the cohomology groups resp. the reduced cohomology groups. For z
variable, these groups form sheaves and one can construct two complexes which
“calculate” these two cohomology groups, the complex of the nearby cycles resp.
the complex of the vanishing cycles. To define the complex );(Cx) of the nearby
cycles, take an injective resolution of the constant sheaf on X. Then restrict the
direct image by k : X — X to Xo (in other words ¢;(Cx) = i*Rk.Cy, the
inverse image under ¢ : Xg — X of the direct image by k of the constant sheaf
on X). The complex of the vanishing cycles ¢;(Cx ) is defined as the cone of the
natural morphism Cx, — 9(Cx) coming from Cx — Rk.k*Cx. Here we recall
that the cone C(f)*® of a morphism f®: A* — B*® J‘t:ftween complexes is defined by

D
CP?(f) = APt @ BP with derivation given by | ff; d?,
sequence 0 —» B®* — C(f)* — A°*[1] — 0 and applying thjigs sequence, one finds that
indeed for j > 0, H7(¢7(Cx)) = H’(¢7(Cx)) computes the j-th cohomology group

) . There is a short exact
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of the Milnor fiber. For j = 0 there is a difference: H°(¢;(Cx)) computes the
cohomology but H°(¢¢(Cx )) computes the reduced cohomology.

The advantage of this description can be seen from the fact that H* (X, Q) =
H*(X,Q) = Hv (w?ni(@x) where the superscript ”uni” means that one takes the
maximal subcomplex of ¥;Qx on which the natural monodromy action is unipo-
tent. Thus the mixed Hodge structure can be constructed on the level of this
complex. This is what Steenbrink ([St1]) in fact does in the case where the mon-
odromy acts unipotently and Xy is a divisor with normal crossings with a structure
of algebraic variety. Navarro-Aznar ([NA]) has generalized this construction. See
[St2] for applications to isolated singularities. See also [D-S] where a nice supple-
ment to the monodromy theorem can be found in the case of an isolated singularity:
if T admits a Jordan block of maximal size n = dim X — and necessarily for an
eigenvalue different from 1 — then it will have also a block of size n — 1 with
eigenvalue 1.

Let us finally observe that the above description suggests that Cyz = k*Cx can
be replaced by k*K°®, where K*® is an arbitrary bounded complex of sheaves on X.
This plays an important role Saito’s works (see below).

5. Higgs bundles

The goal of this section is to give some details of Simpson’s work on the construction of vari-
ation of Hodge structures. In particular we shall briefly explain how his results lead to restrictions
on the possible fundamental groups of a Kahler manifold. These results can be found in [Si3].
They depend on [Sil] and [Si4]. The reader should also consult [Si2]. For other results on the
fundamental groups which depend on the theory of the Higgs bundles, see [Al], [A2], [Z1], [Z2].

In §3 we have introduced the notion of a variation of of polarized (VHS) of
weight w on a base manifold S which is supposed to be projective, smooth and
defined over C. Briefly, a such structure consists of a quadruple {#,V,Q, {H™*}}
where # is a holomorphic bundle (equipped with a real structure), V a flat con-
nection, @ a bilinear form, (—1)*-symmetric and V-parallel, H = @, ,_, H"® a
decomposition into differentiable subbundles H™® with the property that H™® is
the complex conjugate of H*" (a Hodge decomposition). In addition, one demands
that the Hodge bundles 77 = P, ,H"™* be holomorphic and that V send F? to
Fr~1 Q@ QL (Griffiths’ transversality). Finally one demands that the Hodge decom-
position be h-orthogonal with respect to the hermitian and V-parallel form, defined
by h(z,y) = (—i)*Q(x,7), and that (—1)"h be positive on H™*. So one could also
start from {H,V, h, {H"*}}.

Forgetting the real structure, and dropping the condition H™* = H57, we ob-
tain the notion of a complex variation of Hodge structures (cVHS), provided Grif-

fiths’ transversality is interpreted correctly: not only it is required that V : FP —

FP~1 @ QL but so that the bundles F4¢ o ®,>,H"?® carry an anti-holomorphic

structure on which V acts by sending ¢ to 4T @z QL.

A cVHS yields a particular example of a Higgs bundle, i.e. a holomorphic
bundle H with a homomorphism 6 : H — H ® Q} satisfying the integrability
property 6 A ¢ = 0. Here H = P, FP/FPTL and 6 is the direct sum of the Og-
linear homomorphisms F?/FPTt — Fr=1 /7P Q QL induced by V.
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The Higgs bundle coming from a ¢VHS in addition is stable under the action of
C* given by t-(H, 0) = (H,t0). More precisely, ¢; : H — H given by H™* 5 z — t"x
induces an isomorphism (#,6) — (H,t6).

One can show ([Si3], Theorem 4.2) that if S is compact (and thus projective),
each local system ( of complex vector spaces) yields a Higgs bundle and if the
system is semi-simple, the Higgs bundle (#,6) comes from a ¢VHS if and only
if the isomorphism class of (#,6) is C*-invariant. In other words: among the
representations of the fundamental group of S in C?, those which carry a cVHS
are the semi-simple ones which are fixed by the action of C*. Another theorem of
Simpson ([Si3], Theorem 3) says a representation of m1(S) can always be deformed
into such a representation. In particular the Zariski closure G of the monodromy
group (in the group Gl(d, R)) must be very special, called of Hodge type, i.e. the
rank of G must be equal to the rank of the maximal compact subgroup of G. For
example the groups Sl(n,R) for n > 3 not are not of Hodge type.

It follows from these results that a lattice (discrete subgroup with quotient
of finite volume) T" in Sl(n,R) (for example Sl(n,Z)) not can not figure as the
fundamental group of a Kihler manifold.

To give a short indication of the proof, recall that a representation p : 7 —
Gl(d, C) is called rigid if the G1(d, C)-orbit of p under conjugation on Hom(r, Gl(d, C))
is open. Thus this orbit is a connected component, because Gl(d, C)) is reductive.
By Simpson’s last theorem this component contains a ¢cVHS and thus the Zariski
closure of the monodromy group is of Hodge type.

On the other hand, a result of Margulis implies that the natural representation
of the lattice I is rigid and thus, if I' would be the fundamental group of a Kihler
manifold, Sl(d, R) would be of Hodge type, leading to a contradiction.

The reader can find the details, as well as many other examples in [Si3].

6. Hodge modules

The goal of this section is to give an introduction to Morihiko Saito work on Hodge modules.
One of the main applications is to intersection cohomology treated briefly in §6.A.

§6.A. Intersection and L,-cohomology.

Recently, the intersection cohomology groups ITH¥(X) (for X complex and
quasi-projective) have been introduced by Goresky and MacPherson ([G-M]). This
cohomology is better adapted to singular manifolds than ordinary cohomology. For
example there is a version of Poincaré duality of and the strong and weak Lefschetz
theorems are valid. Cheeger, Goresky and MacPherson ([C-G-M]) have stated the
conjecture that THY(X) should carry a pure Hodge structure of weight w if X is
projective. Saito [Sal,2] has proved this with his theory of Hodge modules (see
below).

One can ask whether classical Hodge theory (valid for compact K&hler mani-
folds) can be generalized for example to quasi-projective manifolds using a suitable
Kahler metric so that the intersection cohomology can be calculated in terms of
harmonic forms on the smooth part. Indeed, a Hodge decomposition theorem can
be proved for complete Kdhler metrics using forms which are locally L, with respect
to the metric. In this case, as in the classical case, the decomposition into harmonic
forms in components of pure bidegree leads to a Hodge decomposition for the co-
homology groups HY (X, C) provided that this group has finite rank. See [B-Z]
§3. Thus, if there would exist an identification between H¥ (X, C) and IH*(X,C),
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one would have a Hodge structure on intersection cohomology. There always is a
natural map HY(X,C) —» IH¥(X,C) which conjecturally is an isomorphism. This
conjecture is true for isolated conical singularities [Ch1], [Ch2].

Observe that the conjecture of Cheeger, Goresky and MacPherson is more
precise than the mere existence of a Hodge structure on I H* (X); one requires that

1. TH"(X) be canonically isomorphic to the group H' (X \ SingX), the coho-

mology group computed using forms which are locally L, with respect to
the Fubini-Study metric,

2. the Hodge structure is induced by this isomorphism.

It is this more refined conjecture which has been proved in the case of isolated
conical singularities, but it has not been proved yet in general. See [B-Z], §3 for a
detailed discussion.

Deligne has generalized the Hodge decomposition theorem by replacing C by
a variation of Hodge structures Hx on a compact Kihler manifold X. The same
argument works in the Ls-framework with X quasi-projective admitting a complete
Kéhler metric, provided that the group HY (X, Hx) has finite dimension. It has
been shown in this case that HY (X, Hx) admits a pure Hodge structure of weight
w + v where v is the weight of Hx (see [Zu]).

Next, Cattani, Kaplan, Schmid [C-K-S2] and Kashiwara and Kawai [K-K]
have shown that if X is a smooth compactification of X such that X \ X is a
divisor with normal crossings, TH* (X, Hx) is isomorphic to H{ (X, Hx) and thus
carries a Hodge structure of weight w + v.

§6.B. Saito’s work.

Let S be a complex manifold and Hg a local system of real vector spaces. The
holomorphic bundle associated Hs = Hs ® Og admits a flat connection V = 1 ® d.
Thus Dg, the sheaf of differentials operators on S acts on Hg (the action of a
holomorphic vector field £ is given by s — V¢s) giving Hg the structure of a Dg-
module. In fact, such a Dg-module is a coherent and even a holonomic D g-module.
The definitions of these notions can be found in [Bo], where also the details can be
found of the following discussion.

In the framework of algebraic geometry, we often encounter the situation where
S is a Zariski open subset of projective manifold X and D := X \ S is a divisor. In
this framework, the notion of a connection with regular singularities along D makes
sense and it is known that V admits such singularities. It can even be shown that
(Hs,V) — Hg establishes an equivalence between the category of holomorphic
bundles on S equipped with a connection having regular singularities (along D)
and the category of the local systems of complex vector spaces (’Riemann-Hilbert
correspondence’).

The notion of regularity can be extended to holonomic Dg-modules and in
this framework one also has a ’Riemann-Hilbert’ correspondence. To explain this,
the notion of perverse sheaf is needed. So let us take a Dg-module M and we
begin by observing that the Dg-module structure allows one to define a complex,
called De Rham complex DR(M) := Q% ® M. Consider this complex in a suitable
derived category where, let us recall, two complexes get identified when a morphism
between them exist inducing an isomorphism between the cohomology sheaves [Il1];
the complexes are said to be quasi-isomorphic. In the case of a Dg-module coming
from a local system, there only is cohomology in dimension zero: the local system
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itself (by the holomorphic Poincaré lemma). And thus in this case DR(Hg) is
quasi-isomorphic to Hg.

An important construction in this category is that of Verdier duality. We do
not give the details here; it suffices to know that the dual complex of DR(#Hg) in
the sense of Verdier is represented by the complex DR(HY%) and thus in the derived
category the dual of Hg is HY.

A complex K® of sheaves of C- vector spaces is said to be perverse if the
cohomology sheaf in dimension j of K® as well of its Verdier dual is constructible
and supported in dimension at most —j. A word of explanation: the convention
is such that the De Rham complex of a Dg-module starts in degree —n and thus
a local system Hg is perverse because the support of Hg as well as of its dual
is S and thus has dimension n. More generally, a local system Hg on a Zariski
open dense subset S of an algebraic manifold X can be extended in a minimal
way to a perverse sheaf IC(Hg) on X. In this case, if X is compact one has
THY(X,Hg) = H*(X,IC(Hs)).

So a perverse sheaf can be viewed as a generalization of a local system; the
correspondence which associates to a holonomic Dg-module its De Rham complex
induces an equivalence of categories between the category of holonomic D g-modules
with regular singularities and the category of the perverse sheaves of C-spaces
vector (Riemann-Hilbert correspondence of [Kas], [Mel, Me2]). One can convince
oneself that this new framework is a consequent generalization of §2.

Now assume that the local system Hg carries a variation of Hodge structures
of weight w. The Hodge filtration induces a filtration called good M, := F 77, i.e.
the action of the operators of order < 1 send M, to M, (translation of Griffiths’
transversality). Such a filtered Dg-module is an example of a Hodge Module of
weight w. The definition of these objects is rather indirect, as we shall see, and it is
a difficult theorem that a variation of Hodge structures is indeed a Hodge Module.
See [Sa] for a proof as well as that for of the details of the discussion which follows.

Saito defines Hodge modules by induction. Begin with those which have their
supported in a point s € S: this are simply the (real) Hodge structures with an
increasing Hodge filtration (F), := F~P). By taking the direct image under the
inclusion s — S one gets a constructible sheaf on S considered as a perverse sheaf
and thus as a Dg-module. The Hodge filtration in fact gives it the structure of a
filtered Dg-module and this is an object in the category M Fp,(Dg) of filtered Dg-
modules. Finally, to obtain a real structure, the fiber product with the category of
real perverse sheaves should be taken.

In §4.C, we recalled the definition of the nearby and vanishing cycles relative to
the zeroes of a non constant holomorphic function g : S = C: 94(Cs) =i*Rk.Cq =
i*Rk.k*Cg and ¢4(Cg) being the cone over {Cg, = i*Cg — i*Rk.k*Cg}. Replac-
ing Cs by a bounded complex K® on S, one arrives at 1,(K*®) resp. ¢,(K*). We
have seen that the monodromy acts on these complexes and induces the the weight
filtration.

Gabber (see [Bry]) has shown that for K® perverse, these complexes (shifted
by [—1]) are perverse sheaves on Sy and Saito has proposed a construction of the
functors ¢ and v at the level of filtered holonomic D g-modules. In particular, the
resulting nearby and vanishing modules admit weight filtrations W,. Saito now
completes the inductive definition of his Hodge Modules in two steps: first restrict
to a full sub-category of M F}(Dg) such that its objects possess good properties
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with respect to the functors ¢ and 1 and next, declare a module M in this sub-
category to be a Hodge Module if and only if it is so for the W-graded modules
hg(M) and ¢4(M) for any function g : S — C (more precisely: one has to restricts
to the maximal submodule on which T acts unipotently). Since these modules have
support on the fiber Sy of g over 0, they are supported in strictly smaller dimension
and since one knows inductively what Hodge modules supported in these dimensions
are, the definition is complete.

The best known application of the fact that a variation of Hodge structures Hg
of weight v parametrized by a complex manifold S is a Hodge Module of weight
v is the following theorem that we already have announced: for any S Zariski
open in a compact Kahler manifold X, the group THY(X, Hg) carries a polar-
ized Hodge structure of weight v + w. Indeed, we have seen that ITHY(X, Hg) =
HY(X,IC(Hg)) and that Hg and thus so IC(Hg) are Hodge modules of weight
v. Thus H¥(X,IC(Hgs)) as a Hodge module supported in a point, carries a Hodge
structure (of weight v + w)).

In particular, the polarized structure on TH¥(X,Q) is a direct factor of the
pure structure on TH*(X,Q) where X is a resolution of the singularities of X.



PART II

Mirror Symmetry and Calabi-Yau Manifolds

7. Introduction to mirror symmetry

Mirror symmetry is a phenomenon which has its origins in ”physics”. There is for the
moment only a conjectural mathematical definition. The goal of this section is to suggest a rather
incomplete definition and draw some mathematical consequences from it. The framework is the
class of the so called Calabi-Yau manifolds; we describe these manifolds in detail.

§7.A. Motivation for mirror symmetry.

Mirror symmetry is a phenomenon which which has its origins in ”physics”
and as of today there is no precise mathematical definition. To raise the reader’s
curiosity, we give the definition which appear in the physics literature [G-P], [C-
O-G-P], [G]. The mirror symmetry phenomenon has its origins in the study of
super-conformal (2,2)-theories with central charge ¢ = 9. The properties of the
conformal fields of these theories are related to the geometry of non-linear sigma
models on Calabi-Yau manifolds. A precise definition of these manifolds is delayed
to the following section. Let us only say that these manifolds appear to ensure
conformal invariance. In this framework, somewhat hostile for a mathematician,
the physicists have constructed a remarkable correspondence between the abstract
properties of conformal fields and the geometrical properties of the realizations in
terms of sigma models. This correspondence in a natural way suggests that one
should deform the complex structure and (or) the Kahler class on a Calabi-Yau
manifold. These are the A- and B-models of the physicists [G-P]. The apparent
asymmetry which is nothing but an ambiguity of sign, leads to geometrical models
of definitively distinct flavor realizing the same conformal field theory. For X a
Calabi-Yau manifold and T'x its holomorphic tangent bundle, the objects linked to
the same theory H*(X,Tx) and H'(X,T%) = H'(X,QY) are totally different from
the point of view of geometry. In fact, in §7.C we shall see that dim H!(X,Tx) is the
number of parameters for the complex structure, while dim H*(X,T%) = ht1(X)
is the maximal number of K&hler classes on X.

This leads to postulating that Calabi-Yau threefolds (one restricts oneself to
dimension three) have to come in pairs, say X and X* which realize these two
models and X* is said to be the mirror of X (and vice-versa). There maybe is
a more definitive definition in physics but it is difficult to assimilate it as such
mathematically. It can be summarized into an identity of the form

zZ =2z

between partition functions (Feynman integrals). The mathematical implications
at the more naive level of the Hodge numbers of X and X* is the symmetry-relation

h2,1(X*) — hl’l(X); hl,l(X*) — h2’1(X).

193
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Of course this symmetry alone not is not sufficient to make X* the mirror manifold
of X. Between X and X™* exists a more profound relation which relates the space
of deformations of the complex structure of X to the space of deformations of the
Kahler class of X* and vice-versa. This relation lies at the origin of the conjectural
applications to enumerative geometry on X, as sketched in §10. In [V] the reader
can find a more detailed explanation.

In the sequel, we shall make precise those aspects which are directly related to
Hodge theory:

1. symmetry of Hodge numbers,

2. definition of the Yukawa coupling,

3. Use of the limit Hodge structure to study the asymptotical behavior of the

Yukawa coupling.

§7.B. Construction of Calabi-Yau manifolds.

From the point of view of algebraic geometry, a Calabi-Yau manifold is a (com-
plex) projective manifold V', such that the canonical sheaf Ky is trivial (Ky =
Qp =2 Oy), and h?® =0forp =1,...,n—1, (n = dimV). The fundamen-
tal group (V) is often required to be finite, to avoid some marginal situations.
In differential geometry these are the Kahler manifolds for which the Ricci cur-
vature is zero ([Dem]) and which have holonomy group exactly SU(n). Directly
related to this, there is the following classification result, due to several authors (see
[Beau]): Let X be a compact Kéhler manifold with first Chern class zero; there
exists a non ramified finite covering X — X such that X is isomorphic to a product
T x (T1Vi) x (I W;), where T is a complex torus, V; is a simply connected Calabi-

i j

Yau manifold, and W; is a symplectic manifold (there exists a 2-form holomorphic
which is non-degenerate in any point). In the context of Calabi-Yau manifolds, the
important theorem of Yau [Y1] (conjecture of Calabi) plays certainly a key role:

THEOREM. (Yau) Let X a be Calabi-Yau manifold with Kdhler metric g and
Kihler form w € HV'(X). There erists a unique Kdhler metric gy with Ricci

curvature zero (Yau-metric) such that with wy its associated form, [w] = [wy] €
HYY(X).

From now on, we only look at the case n = 3 ; observe that A% = 0 implies
h?0 = 0, because by Serre duality H'(V,Oy) is the dual of H?(V,Oy), since
Ky = 0y.

It is easy to construct examples of Calabi-Yau threefolds. Let Hy, ..., H, be
hypersurfaces of PN (N = r + 3), of degrees respectively dy, ... ,d, with N +1 =

T
> d;. If the intersection V' = (| H; is transversal, V is then smooth, and the
i i=1
adjunction formula shows that Ky = Oy, thus V is Calabi-Yau (here m (V') = 0).

For example, you can take for V a hypersurface of degree 5 in P* (quintic), an
intersection of two cubic hypersurfaces in P5, of three quadrics in P8 (see §10 for
these examples).

More generally PV can be replaced by a product P™* x - - - x P?s or by any other
manifold, whose anti-canonical sheaf is ample (i.e. K;l is ample). A hypersurface
is then specified by its equation, i.e. a form of multidegree d; = (dy;, ... ,ds;). One
forms a table
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H, H,
ny |dig |- | dir
Ny |doy |-+ | dor
Ng dsl dsr

and V is the intersection V = HyN---NH,, with dimV =3 if ), n; =7+ 3. The

T
condition Ky = Oy is equivalent to > d;j =n;+1, (i=1,...,s).
i=1

7.1. ExaMPLE. (Tian-Yau)

H, | H, | H;
33 [0 |1
30 [3 |1

3
You can take for example the complete intersection V of the hypersurfaces } X3 =
i=0

3 3

0, > Y2 =0and ) X,Y;inP?®xP3 where (X;), (V;) are homogeneous coordinates
=0 =0

in the two copies of P3. Observe that in this example, circular permutation of the

coordinates furnishes a free action of the group G = Z/3Z, and W = V/G is then a

Calabi-Yau threefold with Euler characteristic —6 (“model with generation number

3” thus “physically acceptable”).

At this stage, the principal question can be summarized as follows. Given a
Calabi-Yau threefold X, which geometrical construction gives the mirror threefold
X*, in fact a ”candidate threefold”?

From arguments originating from physics it seems that X* will often arise as
a quotient of X by a finite group G of automorphisms of X, the group G acting
trivially on H*%(X) to ensure that a suitable desingularization of X/G will be
Calabi-Yau; this is the orbifold method of the physicists. At this stage various
difficulties appear; these are related to the singularities which result from the fixed
points, because the action of G is not necessarily free. If X is a resolution of
singularities of X/G, with K4 = Oy (one can prove that a such resolution exists
in essentially all the cases [B-M]), there is the problem of computing the Hodge
numbers H?(X), say from those of X and from data related to the action of
G on X. For the Euler characteristic x = > (—1)PT9hP4 there is the formula of
Dixon-Vafa-Witten

X() = 1 3 a0 X"
gh=hg
where the sum is taken over pairs g, h of elements of G which commute (gh = hg)
and X9 = {z € X | g(z) = x} is the manifold of fixed points of g. Observe that if
X is the mirror of X, x(X) = —x(X). Remarkably enough, for Hodge numbers an
analogous formula has been proposed by Batyrev and Zaslow [Za]. This conjectural
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formula is
hPa(X) = Z dim (prfg,qffg (X!J)C(g))
{9}

where C(g) is the commutator of g in G and {g} the conjugation class of g. To define
the integer f,, consider the action of the automorphism g, induced on the tangent
space T, X at * € X9. Since g induces the identity on H3°, the determinant of
gz is 1 and thus, if e72™% | 0 < Aj < 1 are the eigenvalues of g, on T, X/T, X9,
the normal space to X9 (these values are independent of the choice of the point
z € X9), the sum f, =37, A; is indeed an integer.

It is not hard to verify that the structure of the Hodge diamond of a Calabi-Yau
threefold is preserved and thus that the numbers h”’q(X' ) are the Hodge numbers of
a speculative Calabi-Yau threefold. This has been checked for Batyrev’s construc-
tion of the mirror threefold by means of polyhedra.

To have more evidence that Calabi-Yau threefolds come in pairs (with maybe
exceptions), more ways to construct Calabi-Yau threefolds are needed, because if X
is a hypersurface of P4, there is little chance that X is also a hypersurface. Of course
P™ or P™ x- - -xP™ can be replaced by a projective space with weights, or by a prod-
uct of such spaces. Consider a projective space with weights P"(ky, ..., kr41), which
is the algebraic manifold consisting of (r + 1)-tuples (21,...,2.41) € C"T1\ {0},
modulo the equivalence relation

(21, -y 20) ~ (A zg, . M1z ) (A€ CP).

The construction of the projective space P" = P7(1,...,1) can be seen to gen-
eralize to this situation, but it can produce a singular variety. A hypersurface
of degree d is the locus of zeroes of a quasi-homogeneous polynomial P(z) =
Ciripsr 24t -+ 2, . If P and its differential vanish simultaneously
i1k1+-ipyp1krt1=d
only at the origin, one says that P is transversal. Such a polynomial defines a
smooth hypersurface and if d = ) k; we get a Calabi-Yau hypersurface. We shall
suppose that r = 4, to obtain a hypersurface of dimension 3. Experiment shows that
in the list of the weights {k;} such that there exists a transversal quasi-homogeneous
polynomial of degree d = Y k;, the distribution of Hodge numbers (h':!, h?1) is
essentially symmetrical, i.e. in 90% of the cases, the pair (h*!, h':!) appears. The
best way to explain the absence of complete symmetry is to invoke the construc-
tion of mirror symmetry by toric methods proposed by Batyrev [Ba]. Briefly the
naive duality X < X* in the construction above coincides with the combinatorial
duality between convex reflexive polyhedra which have the property explained in
(loc. cit.). The polyhedron in question is the Newton polyhedron of the polyno-
mial P. There exist combinatorial formulas for the Hodge numbers. The example
of the quintic hypersurface can be treated via this process (see §10). The reader
can consult [H-L-T-Y] for a detailed discussion on toric methods.
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§7.C. Deformations.
The Hodge diamond of a Calabi-Yau threefold is

1
0 0
0 htl 0
1 h2’1 h1,2 1
0 htt 0
0 0
1

One has h*! = dim H'(3,) = dim H*(V, Ty ) because Ty = Ty @ 0%, =2 Q},. In
section 3.C. (see 3.8) we have seen that this number yields the number of parameters
for the complex structure, if there exists a versal deformation (with a non singular
base).

Consider the Hodge structures on H3(V,R) polarized by the (skew and uni-
modular) intersection form. Then

H3(X, (C) — HS,O @H2’1 @H1’2 @H0’3

T
and F3 — HS’O, F2 — H3,0 @HQ’]', Fl — H3,0 @HQ’]' ®H1’2.
Set b = h%1. Then F? is a totally isotropic subspace of H?(X,C), with respect
to the skew form @ (cup product), and F! = (F3)L. The period domain for the
Hodge structures of this type is of the form D(b) = Sp(2b+2,R)/U(1) x U(b). This
is a domain of dimension % (b + 1)(b+ 2).

In §3.C we have briefly looked at deformations and we saw that we can not in
general expect that there exists a versal deformation with a non singular base. But
for Calabi-Yau manifolds this is effectively the case by a theorem of Tian, Todorov
and Bogomolov (see [T]):

7.2. THEOREM. A Calabi-Yau manifold admits a locally universal deformation
Xs,s € S over a smooth base S.

Hence here h?! is actually the number of effective parameters needed to de-
scribe the variation of the complex structure [C-O]. Assume now that the base S
is simply connected. Then the period map is a holomorphic map p : S — D(b).
It factors over ¢ : S — P20t! where P?*! is the projective space of lines in
H39(X,) C H3(X,,C) because p describes the position of H3%(X,) ® H*'(X,) in
the cohomology group H3(X,) while g describes the position of H3°(Xj).

Now we want to explain the theorem of Bryant and Griffiths [B-G]. The local
system {H3(Xs,Z)} can be locally trivialized by means of a symplectic basis, i.e. a
basis of 3-cycles {vi,d;}i j—o, ... » such that with respect to the intersection product

(7i,65) = 655 and (vi,7;) = (6;,6;) = 0.
The Poincaré dual basis {a;, 8;):,j=0, ... » furnishes a trivialization of the local sys-
tem R’ f.(Z). Let w be a local section of F* = f.(w%/s) which trivializes this
bundle. Consider now the periods of w

Ci(s) = / wle), &(s) = [ w0

d;
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i.e.
(6) w=Y Gait+ > &B;.
i J
The "partial period map’ q : S — P?%*! can be described as s = ((o(8), .. ,((8),
&(s), ... ,&(s)) and you can consider only ’half of it’ ¢ : S — PP given by the

v-periods s = (Co(s), -- -, (o(s))

7.3 THEOREM (BRYANT-GRIFFITHS). The map q' is an immersion so that the
~-periods ((o, ... ,(p) serve as homogeneous parameters on S and the §-periods &
are holomorphic functions in (g, ... ,Cp-

SKETCH OF THE PROOF.

The proof is based on a reinterpretation of the period map ¢ as a Legendre
immersion. To be precise, a contact manifold is a pair (M, £) with M a complex
manifold of odd dimension 2m + 1 and £ C Q! a line subbundle of the cotangent
bundle which is non-degenerate. This means that for any local section w # 0 of L,

w A (dw)™ # 0.

An associated Legendre manifold is an immersion f : S — M with dim .S = m such
that f*w = 0 for any local section w of L.

If H = H3(X,C), the intersection form on H defines a contact structure on
P(H) (X is a Calabi-Yau manifold of dimension 3, and m = h%*!). In fact, we
can suppose that a symplectic basis of H has been chosen. Let {p1,...,Pm+1,a1,

.+ yqm+1} be the corresponding coordinate system. It suffices to specify a 1-form
w on any standard open subset of P(H), say on U; = {p; # 0}

wi = —dg; + Y _(q;dp; — p;da;)-
J#i
It can be checked easily that w; is a local basis on U; of a subsheaf of Q]%],(H)
of rank one which is locally free and isomorphic to O(—2) (compare w; and wy
on U; NU). Since obviously w A (dw)™ # 0, we have a contact structure on
P(H). Now one shows that the period map is a Legendre immersion. It is an
immersion, because dg, i.e. § (§3.C) is injective. This is a simple consequence of the
triviality of the canonical class. That it is also Legendre is simply a reformulation of
the infinitesimal properties of the period map as developed in §3.C (compare also

§10.A). To finish the proof, certain structure theorems on contact varieties from
[B-G] are invoked.

O
The derivative dg being injective, the partials 8q/9¢;, i = 0, ... ,b are inde-
pendent, and thus the Va%w(s) € F%(X,) give a basis.

We can now explicitly 'describe the period map p : S — D(b) as given by the
matrix 5 5
o ( w(S)’/ w(S))_
Vi 9Gi Ok 9Gi
This is a (b+1) by (2b+2) matrix which describes the position of F?(X,) in H?(X,).

From the relation (6) above, it follows that w = [1, 7], with 7;; symmetric. Since
the form —iw A @ as well as the forms ia A @ for @ € H?! are positive, Im 7 has
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signature (1,b). It can also be verified that a symplectic change of basis transforms
T into

AB

' = (AT + B)(Ct+ D)™, (C’ D

> € Sp(2b + 2,7Z)

as for Siegel’s upper half space (§3.B).

8. Cohomology of hypersurfaces

Consider a smooth projective manifold P of dimension n + 1 and a smooth hypersurface
X C P. We want to relate the cohomology groups of P \ X to the primitive cohomology groups
of X, especially when P = P"t! where rational forms having poles along X are used. This yields
Griffiths’ description ([Grif2] of the primitive cohomology of a hypersurface. This description has
been generalized to complete intersections by Dimca [Dim] and by others.

§8.A. Cohomology of the complement. Recall the weak Lefschetz theorem
implying that the cohomology of X differs from that of P only in rank n:

8.1. THEOREM (Lefschetz). Let X be very ample and let i : X — P be the
injection. Then

. . an isomorphism if m <n -1
i*: H*(P,C) » H™(X,C) is< . . . .
injective if m=n

We shall need the following consequence:

8.2. COROLLARY. Let X be a very ample divisor. Let
iv: H"(X,C) — H"*(P,C)

be the adjoint of i* : H™(P,C) — H™(X,C) with respect to cup product. Then i,
is surjective and the kernel is contained in the primitive cohomology Prim™(X, C)
and ker i, = Prim"(X,C) 4f Prim"(P,C) = 0.

PROOF. The first assertion is evident. The kernel consists of the classes [a]
such that [,0"aAfB = [,aAi*f =0 for [f] € H"(P,C). In particular [§] can
be taken of the form (Kahler class w) A i* (class of an n — 2-form on P). But
i* : H" 2(P,C) - H" 2(X,C) is an isomorphism (Lefschetz’ theorem again) and
thus [a¢] Aw =0, i.e. [@] is primitive.

The map i, appearing in the Gysin sequence
o H™2(X,7) 2 H™(P,7) - H™(P\ X, 7)
5 Hm (X, Z2) & HmHY(PZ) -

is obtained as follows. Let T' C P be a tubular neighborhood of X in P. As X is a
retract of T, one has H¥(T,Z) = H*(X,Z), while H¥(T, T\ X, Z) = H*~2(X,Z)
(‘Thom isomorphism’). So, the inclusion (7,7 \ X) — (P, P \ X) is an excision
and thus H*(P, P\ X,Z) = H*(T,T \ X,Z). The long exact sequence of the pair
(P, P\ X) yields then the Gysin sequence.

It suffices thus to calculate the pertinent part of the cohomology of P\ X. This
computation is done using complexes of rational forms having only poles along X.
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Recall the holomorphic Poincaré lemma (see §1)
Vp>1,da=0,a€Q? = a=dB e’

This assertion is equivalent to the exactness of the complex Q%. This complex
gives a resolution of the constant sheaf Cx. The hypercohomology group H™ (Q%)
is thus equal to H™(P,C). Analogously, Q;)\  computes the cohomology of P\ X.
Passing to forms having poles, one puts
L (k) == Q% ®0, Op(kX) (sheaf of meromorphic p-forms
with at most a pole of order k along X)
ZB(k) : = {w € Qb (k)| dw = 0}

OF,(*) : = sheaf of meromorphic p-forms with at worst poles along X.

A but simple nevertheless central observation is

8.3. COMPUTATION. Let o € Z%(k),k > 2. Then, if f is a local equation for
X, one has

_ dff/\k B + fl;y—l , B,v holomorphic without df
k—1"\ fk1 frt

In other words, if the pole order is > 2 one can, at least locally, lower the order
modulo exact forms.

Repeating this, we ultimately obtain a decomposition

a=pgA q 7
f
with 8 and + holomorphic. The residue of « is the form res(a) = | X, defining a
map
res: ZB(1) = Q&'

The idea is to use these computations in De Rham cohomology, using C*°-forms
and partitions of unity to globalize. Start with a rational form on P of type (n+1,0)
and with at most a pole along X of order, say < n+ 1— p. Consider this form as a
C*-form on P\ X and then lower the pole order using the previous computation.
This yields a closed C*°-form of type (n + 1,0) + (n,1) because of d8 (8 and ~
don’t necessarily stay holomorphic if one globalizes this using partitions of unity).
After n — p steps a closed form of type (n +1,0) +---(p + 1,n — p) is obtained
having a pole of order < 1. Taking its residue, one finds a C*°-form on X of type
(n,0)+- -+ (p,n — p) which is closed. This form represents a class in FP H*(X, C).
It can be checked that this construction is well defined on the level of cohomology
classes and that the map

L(Qp" (n — p+1)/d0(Qp(n — p)) = FPH"(X,0)

is injective and surjects onto the primitive part, at least in favorable cases such as
P =Pt
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We shall give another proof of this identification which remains in the frame-
work of algebraic geometry. A version of the Poincaré lemma in the framework of
forms with poles is now needed:

8.4. LEMMA.
i. Assume p > 1. The complex (starting in degree p)

PL = {0h(1) S 05 (2) S ... 0Bt (n—p+2) - 0}
is exact and so gives a resolution of Z%(1). Therefore
HY(M, ZP(1)) = HPY9 (M, Ph).
ii. The cohomology groups H1(Q®*(x)) of
Q°(%) = {Op(x) = Q () = Q*(x) = ... }
are zero for q > 2 while H°(*(x)) = Cp and H*(Q°(x)) = Cx .
PROOF. The complex Q% (*) coincides with Q% outside of X and is exact on
P\ X. Take a point z € X and a system of coordinates f,zi,...,z, centered

at  such that X is given by f = 0. Let a € QF (k) with k& > 2. In the chosen
coordinates you write

df A
a= %, 8,7 holomorphic and without df
The central computation shows that o € QP(1) modulo dQ2?~!(k — 1). Such an
element can be written
L _dnB
f

The condition da = 0 implies that df = 0, dy = 0. Using the Poincaré lemma, you
then write 8 = do, v = dr and thus

do =d (%) +dr.

This shows i) and most of ii). It remains to verify that H°(Q*(x)) = Cp and
H'(Q*(x)) = Cx. The first assertion is immediate. The last assertion is shown by
a local computation similar to the previous one, which we omit.

+7, B,7 holomorphic and without df.

O

Now you pass to the subcomplex Q%(log X) of Q°(x) formed by differential

forms having logarithmic poles along X ([Ill], §7). We shall prove that it is quasi-

isomorphic to the full complex (and thus also computes the cohomology groups of
P\ X). In the case at hand we can take as definition (loc. cit.):

0%, (log X) := {w € O5(1)|dw € Q5T (1)}.
The residue map
res : 0P (log X) — Q&'
is defined as before. Locally, using coordinates {f, 2y, ... , z,} such that X is given

by f =0, you write a = dlog f A 8 and you put res(a) = §|x. This definition can
be checked to be independent of the choice of coordinates and of the local equation
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f = 0 of X. Thus this map is well defined. It appears in an exact sequence of
complexes

(7) 0— Q% — Qp(log X) == Q%[-1] = 0.
This exact sequence shows for example that
H°(Q*(log X)) = Cy = H°(Q*(xX)),
H'(Q2*(log X)) = Cx = H'(2*(xX)),
HY(Q*(log X)) =0=HYQ*(xX)) for g > 2,
and thus Q% (log X) and Q% (x) are quasi-isomorphic so that
HP (P, Qp () = HP (Qp(log X)) := HP
The long exact sequence in hypercohomology yields
— H™2(X,0) & H™(P,C) » H™ 2% gm-1(X,C)
9 H™Y(P,C) —»

where Res = res* is induced by the ‘residue’-map. We shall show that this sequence
is” the Gysin sequence.

First we have to relate 8™ and i,. A computation in local coordinates that we
omit shows that

(8) o™ : H™ '(X,C) - H™ ! (P,C)
is the adjoint (with respect to cup product) of
i* : H*"mHY(P,.C) —» H*™ ™LX, C).

Next, we note that there is a natural map

jH" = B (Qp(log X)) - H" (@, ) = H™(P\ X,C)
which commutes with the two restriction maps H™(P,C) — H™(Q%(log X)) and
H™(P,C) - H™(P \ X,C). Thus, in the ladder with exact rows

. — H™2(X,C) 5 H™P,C) - H™ RLGN

H H i|
. H™2(X,C) 5 H™P,0) — Hm(P\X(C) RN

Res, H™ (X, C) o, H"t(P,C)-- —

ST

% H™Y(X,©0) & H™'YPC)-  —

the two first squares commute as well as the last. Then j is injective and thus an
isomorphism. To express j, consider the spectral sequence EV'? = H1(QF (xX)) =
HP+4. Then Ey»° = closed m-forms modulo exact forms and, using the natural

map EJ* 0 _ H™, one considers a closed m-form as representing a cohomology class
on P\ X. It is easily verified that

d:H™(P\ X,Q — H™ (X,Q
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is the transpose of the ‘tube’ map
7 Hp1(X,Q) = Hpyt (T, T\ X,Q) 3 H(T\ X,Q) = Hy(P\ X,Q).

(Intuitively, the tube map associates to a cycle the tube above this cycle in the
complement of X in P). Next, for v € H;,(X,Z),w € H™T(P\ X, C) there is the
‘residue formula’:

9) Ares(w) = i /me

and thus res = #i@: the third square of the diagram commutes (up to multiplica-
tion with 5L:).

8.5. PROPOSITION. Let X be a very ample divisor. Then, Res : H" (P '\
X,C) - H"(X,C) is always injective. If Prim™(P,C) = 0, then the image is the
primitive part of H"(X,C).

PROOF. By the Lefschetz theorem, i* : H"*1(P,C) — H"1(X, P) is an iso-
morphism and therefore the adjoint 97~1 : H"~}(X,C) — H™*1(P,C) is also a
isomorphism and thus Res” : H"*1(P\ X,C) — H"(X,C) is injective. By (8), the
image of this map can be identified with the kernel of i, : H*(X,C) — H"t2(P,C)
which (if we assume Prim™(P,C) = 0) also consists of primitive classes (by Corol-
lary 2).

Fixing a degree in (7), the long sequence in cohomology reads

ga—Ll.p—1

e — HOTHOR Y S HY(QR) — HY(0%,(log X)) —
— HI@5) 25 P OB) — -

The map ¢* preserves the Hodge decomposition and hence the adjoint i, is a homo-
morphism of degree (1,1). Thus by Corollary 2 and Proposition 5, 87~ 1?~! is an
isomorphism and 07971 is surjective whenever p + ¢ = n + 1. The same argument
as used in the proof of Corollary 3 then shows

8.6. COROLLARY. In the situation of the previous proposition there is a de-
composition
H(P\X,0)= @ H(Q(logX))
p+g=n+1
and the residue map induces an isomorphism

H(Q% (log X)) = Prim? 7(X).

§8B. The pole order filtration and the Hodge filtration.

As in the compact case (§1 or [Dem], §9) the naive filtration F' can be intro-
duced on the complexes Q°(x) and P%. The induced filtration on hypercohomology
will also be denoted by F. The hypercohomology spectral sequence in this case
reads

H(P,Qp () = H"™(P\ X,C)
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but this sequence does not in general degenerate. The Hodge filtration F' in this
situation can be found from the subcomplex Q% (log X) of Q°(x). It can be see
directly that

ker(d : QP (log X) — QP (log X)) = ker(d : QO5,(1) — Q5 (2))
and hence
FPHPH(P\ X,C) = FPHPT(Q°(log X))
= PHPT9 (FP(Q*(log X))) = iLHI(P, ZP(1)).

8.7. LEMMA. If H*(P,Q%(c)) = 0 for all a,b,c > 0, then H1(P, Z%(1)) =
T(P, Q" (g +2))/dT (% (q + 1)) where p+g=n+ 1.

PROOF. As in the classical sheaf theoretical proof of the De Rham theorem
(see [God]), the conditions of the lemma imply that

HY(P, Zp(1)) = HY(T'(P,P*)),
where the complex T'(P, P*®)) is considered as a complex beginning in degree zero.
O
8.8. COROLLARY. In the situation of the previous lemma
FrE g (P X,C) = B"P(P, 25(1) = T3 (n — p+ 1)) /dT(23(n — p))
Combining this result with Corollary 5 yields:

8.9. THEOREM. Let P be a projective manifold of dimension n + 1 and let
X C P be a smooth hypersurface cut out by a very ample divisor. Suppose that
Prim"(P,C) = 0 and that H*(Q%(c)) = 0 for all a,b,c > 0. Then the ‘Residue’
map induces an isomorphism

Frigmti(p\ X,0) =T (n — p+1))/dT(Q%(n — p)) = FP Prim" (X, C).

Now, let Xy C P"*! be a smooth hypersurface given by a homogeneous poly-
nomial f of degree d in homogeneous coordinates Zy, ... , Z,;1 of P"*1. The only
interesting cohomology group of P™"*!\ X; is the group in dimension n + 1. The
conditions of the theorem are verified (Bott’s vanishing theorem [Bott]) and we
get Griffiths’ result:

8.10. THEOREM ([Grif2]). The residue map induces an isomorphism from
the subspace of the De Rham group Hpt'(P™\ X;) spanned by the classes of forms
having o pole of order < n — p+ 1 onto the p-th part FP of the Hodge filtration on
Prim"(Xy).

In particular, each rational n 4 1-form with at most a pole along Xy must be
cohomologous to a form having a pole of order at most n+1, because FO = H™(Xy).
Indeed, Griffiths gives a formula to lower the pole order by adding exact forms. To
explain this you must know how to write the n + 1 rational forms on P"*! having
at most a pole of order k. By a direct computation in affine coordinates such a
form can be seen to be expressible as

A
b
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where

0= (-1)Z;dZy A...dZ;...... AdZ,.1 and where degA +n+2=kd.
J

So, a rational n-form with pole along Xy can be written
1 L — —
Y = F Z(—l)ﬂ_] [ZZA] — Z]Az]dZ() AL dZ, AL A dZJ A A dZn+1
i<j
and thus:

8.11. LEMMA. Let Ag,...,An+1 be polynomials of order (k — 1)d —n — 1.
Then

ntl 4 8 n+1 9A;
(k—1) 2055 AJ’B_Z%Q _ 2j=0 9% 4 4
Iz =T R Tay
8.12. COROLLARY. Let J; C Cl[Zy,...,Zpns1] be the Jacobi ideal of f i.e.
the ideal generated by é)f/@Zj, j =0,...,n+ 1. The residue map induces an

isomorphism

(10)

(CQZ0, - Znga) ) Jp) W)= (0D 2 primpon—p (X ).

PROOF. Theorem 10 implies that there is a surjection
([ Zo, ... ,Zn+1])d(n+l_p)_(n+2) — F”/F”“ = Prim”"P(X;)

with kernel consisting of polynomials A coming from forms of type dp+ (forms
having order of pole < n — p) and because of the Lemma these are exactly the
polynomials of the form A’ + fB where A’ € J;. The Euler identity )= Z]-;—ij =
deg(f)f shows that f € J; and the Corollary follows.

9. Picard-Fuchs equations

The goal of this section is to define the Picard-Fuchs equation, and for a family of projective
manifolds with one parameter to explain the relation with the Gauss-Manin connection. We
determine this equation in some examples. The last example will used in §10 to find the g¢-
expansion related to mirror symmetry. We also explain how to compute the local monodromy for
this example.

Assume in the sequel that S is a smooth complex algebraic curve , S = S\ T,
where S is a smooth compact curve and T a finite number of points. Let Vg be
a local system on S let V be the flat Gauss-Manin connection on the associated
bundle V =V 4 ® Og defined by (see §2)

Ve f)=vedf.
On VY, the dual of V there is a natural connection VV defined by
d{v,v) = (V'v,v) + (v, Vv),

where v is a local holomorphic section of V and v a local section of V¥ (See [Dem]).
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Let S, C S be an affine Zariski open set over which there is a trivialization
VY|S, = (’)ga: (r=rang V).

An affine coordinate s induces a vector vector field d/ds on S, and by composing the
connection VY on VV|S, and the contraction with d/ds yields the endomorphism

D:VY[S, - VYIS,

If a is a meromorphic section of V¥ without poles in the open set S,, using the
trivialization, the sections a, Da, D%a, ... ,D"a viewed as contained in C(S)" D
T'(S,, 0®") are dependent over the field C(S). There is a minimal value p such that
a,Da, ... ,DPq are dependent and, replacing D by d/ds, there results a differential
equation (normalized by the fact that the coefficient of () is one)

(d/dt)P + A, 1(s)(d/dt)P L +--- + Ag(s) = 0.

The solutions form the local system Sol(D) and for each flat section v of Vg
the function {(a,v) is a solution of D = 0. In fact, d{a,v) = (VVa,v) gives
((d/dt)? + Ap_1(s)(d/dt)?~" + -+ + Ao(s)) (e, v) = ((V")Par+ Ap1(s)(VV)P e +
-+ Ap(s)a,v) = 0.

There results a surjective homomorphism of local systems

Vg — Sol(D)

which is an isomorphism if p = r. In this case « is called a cyclic section.

9.1. EXAMPLE. The local system coming from the homology of the fibers of
an algebraic family f : X — S. For V ¢ you take the local system whose fiber above
s € S is the homology group H,(X,,C) of the fiber X, = f~1(s) in dimension
n = dim X,.

The pairing given by integration over n-cycles

Ve x R'.C—C
(7, [w]) = /f’

makes Vg the dual of R"f,C, the local system which has for fiber above s the
cohomology group H" (X, C) (see §1).

We know that the bundle V¥ = R"f,.C ® Og supports a variation of Hodge
structure and the subbundle F” is the subbundle of classes of relative n-forms. On
each fiber these give the holomorphic n-forms. A meromorphic section w(s) of VY,
holomorphic on S and belonging to F7, is the same as a family of holomorphic forms
depending meromorphically on s. In this case, the differential equation associated
to the cohomology class [w(s)] is called the Picard-Fuchs equation. The preceding
discussion implies that its solutions are given by the periods fv w(s), v € Hp(Xs,C)
provided that one considers v as a (multi-valued) flat section of the local system
R, f.C.



9. PICARD-FUCHS EQUATIONS 207

9.2. REMARK. The section [w(s)] is not necessarily cyclic. However, it will
be cyclic for the local subsystem Vg of R" f.C generated by [w(s)]. The (classical)
monodromy of this differential equation coincides with the monodromy of this sub-
system. In fact, Vg, is orthogonal (with respect to intersection between n-cycles)
to the annihilator of V5 ., the smallest subspace of H"(X;,C) containing [w] and
stable under monodromy. In particular f7 w = 0 for v € Vg, implies that v = 0.
In other words, analytical continuation of the local solutions fv w yields solutions
of the form f”r’ w (classical monodromy) where 4’ is obtained from + through the
monodromy of the system Vg.

Now let s be a coordinate around one of the points ¢t € T'. Introduce

d

(“) = 8%

so that the Picard-Fuchs equation now reads
(%)) [©7 + B,_1(s)@P~" +--- + By(s)]¢ = 0.

9.3. LEMMA-DEFINITION ([Del]). The functions B;(s) are holomorphic around
each of the points t € T'. The point t is called a regular singular point.

This implies that in this case the connection V can be extended to a connection
with logarithmic poles on T

V:V-=VeQ(logT).

See §8 after Lemma 8.4 for the definition of the sheaf Q!(logT'). Note that if the
dimension is 1, Q'(logT) = QY(T) is, locally around a point in T, generated by
ds/s. The operator © corresponds to vs 4.

The equation (x) is equivalent to a system

0X(s) = A(s)X (s)

where (f being a searched for solution of the equation)

f
X(s) = ®f
@P-_lf
and
0 1 0
—Bo(s) -+ —Bp-i(s) —By(s)

The matrix A(0) is called the residue of the connection and is denoted
Res(V) := A(0).

9.4. LEMMA ([C-L]). Assuming that for all distinct eigenvalues A and p of
Res(V) one has A\ — p € 7, the monodromy around of t is given by e*™iRes(V),

In particular we find:



208 PART II. MIRROR SYMMETRY AND CALABI-YAU MANIFOLDS

9.5. COROLLARY. If B;(0) =0, j =0, ...,p the local monodromy around t is

2N here N is the nilpotent matriz
01 - 0
yofoo
: -1
0 --- --- 0

To apply this corollary in the situation of a family of hypersurfaces Xy, in
P+ with equation f(s)(Zo,...,Znt1) = 0, let us complete the discussion of the
previous section. Assume that dim(S) = 1. Let s be a local parameter on S and
let (s) = h(s)N2 be a rational n + 1-form on P*"*! which depends holomorphically
on s. The effect of the flat Gauss-Manin connection is described by

k

d
(11) Resx,,, [

@Q(s)] = I:Vfi:/ds rest(s) Q(S)] 5

where [a] denotes the cohomology class of a form «. This formula can easily be
deduced from the formula §8(9).

9.6. EXAMPLE. Consider the family of elliptic curves (Hesse family)

fw) = Z3 + Z3 + 73 — 3uZy 2, Zs

2mi

above P\ {c0, 1, p, p?} where p = e 3 . For u = oo the curve degenerates into three
lines and we shall study the situation around this point. We shall first determine
the differential equation associated to the holomorphic forms w(u) of the family
f(u) =0. Write

- —1
(=DM -1t (I1 Z; )
fw)t
Note that res(€(s)) = w(s) is a holomorphic form on Xy, and thanks to formula

(11) we have

(12), Q(u) = Q f=1,....

d\k
(11)bis (Ua) Qi (u) = Vﬁdiw(u) mod exact forms.

Computations give

2 af
Z0717:)%(1 —u®) =) Ap—=-
( 041 2) ( u) ; kazk
where .
AO = E’U/Z()le
A1 = %UZZOZ%ZQ
Ay = %zng

Using formula (10) (see Lemma 8.11) we find that Q3(u) = P modulo exact forms,
where

’LL3 %qu + %U2Z0Z1Z2

P = -
1— w3 f?
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Since P2 and Q2 (u) have a pole of order two, Corollary 8.12 shows that there exists
a function ¢(u) such that PQ — o(u)Qa(u) = %Q with ¢ € J¢. In fact, we find
that

u 1

u® 1l 3]
1—ud '(3

27070 7) = « 72
1—u3( wZoZ12>) 91—u3u 16‘Z1 €Jy

2
UZ13 + §U2Z0Z1Z2) +

and another application of (10) yields that

ud 1l
Q -z
A C Rt

Note now that Z/3Z acts: p - (Zo, Z1, Za,u) = (Zo, Z1, pZ2, p?u) and thus the
fibers above u, pu and p?u are isomorphic. It is thus natural pass to the parameter

Qs(u) + Qi (u) =0 mod exact forms.

s=u
Then
1 d d
0= —§u£ _SE

and, using OQ, = (—k/3)Q + 41, k = 1,2, we get (always modulo exact forms)
[@2 + Bl(') + B()]Ql(u) =0

where

This equation is equivalent to the system
M\ _ 921
©(om,) =4 (on,)

A(s) = (_5’30 B ) .

Using formula (11)pis we find that the 1-forms w(s) on the family of elliptic
curves satisfies the same system of equations. This system is equivalent to the
Picard-Fuchs equation.

Corollary 5 yields: A(0) = (

1 27i
0o 1 /-

9.7. EXAMPLE. In this example a family of Calabi-Yau threefolds is considered
(See [Mor2] for details)

where

01

0 0) and then the local monodromy operator is

f(S) = Z05 + Zir) + Z25 + Z35 + Z45 - 5UZ0Z1Z2Z3Z47 s = u—5_

By a computation identical to that of the previous example (© = s%) we find

[0* + B303 + By0? + B0 + Bylp =0
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with coefficients

T
625 s—1
2

Bi=Z-—
5 s—1
7 s

By =--

275 s—1

s
B3 =2- .
3 s—1

and the matrix A(s) of © with respect to {w1, Owi, O%w;, 3w, } is equal to

0 1 0 0
0 0 1 0
0 0 0 1
—By —B1 —B; —Bs
0100
. omiN 0010
Here the local monodromy is e“™" where N = 000 1)l For the sequel we
0 00O
need a holomorphic solution around the point s = 0. To obtain it, note that you

can rewrite the differential equation as
0*—s5O@+5HO+2-5)0O+3-51HO+4-5)]p=0
(multiply by (1 — s)) and then, since the relations
(n+1D'app=m+5")n+2-5")n+3-5")(n+4-5")a,

(5n)!

B (5n)! 7 s\

This is the unique holomorphic solution around s = 0 with fo(0) = 1.

admit a solution a,, = we get a holomorphic solution

The reader could complete these examples by treating the intermediate case of
Fermat quartic ( K3-surface).

10. Calabi-Yau threefolds and mirror symmetry

We continue the discussion of §7 by considering the universal family of a Calabi-Yau manifold
of dimension 3 and its infinitesimal variation which leads to the Yukawa coupling. We show that
for a 1-dimensional base the Yukawa coupling satisfies a differential equation of order 1 whose
coefficients are linked to those of the Picard-Fuchs equation, which is an equation of order 4. The
search for a canonical coordinate g leads to the limit mixed Hodge structure. In the last subsection
we come back to example 9.7 and we discuss the prediction resulting from mirror symmetry: the
coefficients of the g-expansion of the Yukawa coupling, properly normalized, are directly related
to the numbers of rational curves on the generic member of the mirror family (conjecturally the

family of quintics hypersurfaces in P4).
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§10.A. The Yukawa coupling.

Let us consider a family f : X — S of Calabi-Yau threefolds and the VHS
defined by the cohomology groups { H3(X,C)}. Since h3° = 1, locally around sq €
S we can suppose that F° = f.(Q%/s) is trivial. Choose a (relative) holomorphic
3-form w such that w(s) # 0 for s near so. Trivialize the vector bundle H3(X/S)
by means of flat sections (Va = 0). Let 7, ... ,T2p42 be such a trivialization
(here b = h?1(X,)). Consider {r;} as the dual basis of a (constant) homology
basis {7;}. Recall that the Hodge-Riemann form (see §3.A) is given by Q(a, ) =
- Jx,@AB, (k=n=3) and thus

fi=Q(mi,w) = —[ﬁw

is a holomorphic function in the neighborhood of sq we consider. These are the
periods of w. Relative to the chosen basis w decomposes as

2b4-2
w = Z a;7; (o holomorphic at sg).
=1

Since Vr; =0,
2642
Vw = z do; ® ;.
i=1
If t1, ..., t, are local coordinates around sg,

80&,’
Va/ata = aTTi-

Note that Griffiths’ transversality property with respect to the Hodge filtration
{F*}o<p<a, gives

ow ) 0w 1
% = Va/ataw € .7: and 6ta6tﬁ € f .
Hence
Ow 82w
Q(w’ ﬁ) - Q<w’ 8ta6tﬁ) =0
However

0 ( 03w ) / A 0w
W, ) = WA —————
" Ot O0t30t, X, Ot Otaot,
is in general different from zero. We shall prove that this function represents the

linear map d (see formula (5) in §3.C ) associated to the infinitesimal variation. We
have seen in §2.D that the differential of the period map is given by

o:Tgs — @Hom(Hp’q,H”_l’q"‘l)

where 0(09/0t) acts via cup product with p(9/0t), image of 8/0t by the Kodaira-
Spencer map p : Tss, — H* (Tx,,)- The bundle F?3 is trivialized by the form w
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and in our case the formula (5) reads

(028 Sym3 TS,sa — HOHI(H3’O(X30), HO’S(XSO)) =
= Hom(C - w(so), C - @(s0))
Pw

a/ata ® 6/6t5 ® 8/6t7 — {LU(S()) = W(So)}.

Therefore, we can write

83w
0(8)0te ® 8/0t5 8/, )(w(s0)) = /X T

Thus the infinitesimal variation of Hodge structure furnishes the invariants

P / LA
T x| Otadlgdt,

in this context called Yukawa coupling ([Morl], [C-O], [H]). The associated in-
variant tensor is
K=Y Kapydta ®tg @ty € Sym*(Qf).
B,y
If dim S =1, t is a local coordinate around sg, we write

/ A Pw
Rttt = W\ —=
X, dt?

which is a holomorphic function of ¢ (in a neighborhood of s¢) and the invariant
tensor is
K = ke (dt)®* € (Q5)%°.

If in addition f : X — S is a versal family (see §3.C), we have dim H'(Tx, ) =
1 = dim H*!(X,,) and thus H?(X,,) is of dimension 4. The versality implies
that the Kodaira-Spencer map is an isomorphism and thus that the three maps
HE3—k 5 gh-L4=k L — 1,2 3 are isomorphisms (these spaces have dimension 1
and the maps are obtained by taking cup product with the Kodaira-Spencer class

p(0/0t)). Thus in this case kgt # 0 and the sections { dw

T form a basis of

}i:0,1,2,3
the bundle H3(X/S) in a neighborhood of sy. Hence a linear dependence relation

o o diw
14 — =) Ai({t)—
( ) dt4 ; Z( ) dtz
which is the Picard-Fuchs equation. If « is a flat section of H3(X/S), the period
w = Q(a,w) = fvw ( « is the class Poincaré dual to the cycle «), satisfies the
same equation (14). Now we can differentiate under the sum because @ is constant.

@y &9y — () and differentiating the relation

Since @ is skew-symmetric, we have Q(Wv e

w,‘ﬁ—g = 0 twice gives
i g

19 5) =25 &) -5 ) = (5 %)
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but also
Ak (dw d3w) d*w (dw d3w) Bw
= _—, _— = _— A —_
dt a0 ar) TR ga) =g gE 3w g )
and so, adding these two equations we get
dlﬁlttt 1
= —As3k.
a 27"
A solution, unique up to a multiplicative constant, is given by
(15) Kttt = e% fAs(t)dt.

Let us note that under our assumption, the differential equation Va = 0, is
a linear system which is equivalent to the 4-th order equation (14). This explains
that the local information about the monodromy for k4 can be deduced from the
explicit computation of the Picard-Fuchs equation.

Finally a few words about Picard-Fuchs equations having regular singular
points. Assumes that s is a local coordinate around such a point and we write

3
ds\®
K= Ksss | —
S

and, as usual,

d
0=s2.
¥ ds
Now, to find k4,5 we solve the equation
dk 1
9% _ _ZR
s ds 973k
where Bj is the coefficient of © in the Picard-Fuchs equation ©* + B;03% + B,0? +

p—Y

10.1. EXAMPLE. In example 9.7 from the previous section, using the coordi-

nate s we find 1

Ksss = C1 C}=integration constant .
We discuss the possible normalizations of the Yukawa coupling in the case of a
parameter s. Apply first the classical result (see [Ince]):

10.2 THEOREM. Let there be given a differential equation of order > 2 on a
disk around of 0 having a regular singularity at 0. Assume that the local monodromy
T around of O has exactly one Jordan block for the eigenvalue 1 of size > 2. Then
there exists a solution fo which is reqular and univalent around 0. Moreover, there
exists a local solution fi around 0, independent from fo such that g(s) = 27wifi(s) —
log(s) - fo(s) is univalent. The solution fo is unique up to a multiplicative constant
and the solution fi is unique up to a multiple of fo.

If fo #0, fo can be normalized: fo(0) = 1 and then f; by ¢g(0) = 0. You can
always replace s by another coordinate w(s); from ksss(ds/s)®> = Kuyww (dw/w)®3,
you find that k gets multiplied by (w/s)(ds/dw)?.

We want to find a 'normalized’ coordinate ¢ in the disk. As a first step, consider
the multi-valued function

7(s) = f1(s)/ fo(s)
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as a uniform parameter on the Poincaré upper half plane h. When s turns once
around s = 0, the parameter 7 changes into 7 + 1, and this determines 7 up to
an additive constant; this comes from the fact that we can replace fi by f1 + 2%“ .
logca - fo, since the point s = 0 does not have any intrinsic meaning on f. Thus

the parameter
e (20 — s (£
q—ep(27r1f0(s) - e fo

on the punctured d disk is well defined up to a multiplicative constant co € C*.
Next, we want to normalize x,,,. First, observe that x depends on the choice
of the relative 3-form w. If w is transformed into k(s)w, ksss is transformed into
k(s)%ksss. Note that the solution fo is of the form fo = fv w for a 3-cycle v, which
is invariant under local monodromy. Such a cycle v is unique up to a multiplicative
constant. Thus, the 3-form @ = fo(s) 7w = w/ fww is a holomorphic 3-form &(s)

such that there exists an invariant cycle v in H3(X,, C) with f7cb =1. Sois
unique up to a multiplicative constant. Conclusion: with this normalization we

have 1 d ®3
—= [ B3(s)%£
exp (-1 [ 3(3)5) l.ds , ¢ €C.
fo(s)? 2mi 5

K =C

1 dg\®

Next note that k,,,(d7)? = Kggs (2— . _q) is periodic in 7 and thus there exists

i
a g-expansion, where

q:= e27riT(s)‘

One has
oo j ®3
q dg

16 — 1 - 2L i
(9 sma (S () ) (55)

=0

It can be seen easily (cf. [Mor2]) that the coefficients x; are rational numbers if
the coeflicients B;, of the Picard-Fuchs equation, can be written as a series with
rational coefficients.

Recall that this computation is done under the crucial assumption that fo(0) =
fv w(0) # 0. We shall verify it in the following subsection.

ExamMpPLE. Consider example 10.1. Here fo(0) = 1 (see Example 9.7) and
observe that the assumption concerning B;(s) holds. Here you get

Fggs =
T (5= Dfo(s)*

10.3 REMARKS.

I. In connection with the preceding computations, recall the theorem of Bryant
and Griffiths (Theorem 7.3). From the assumption that the family f: X — S is
the universal deformation of Xy = f~!(0) for which the Kodaira-Spencer map is
an isomorphism for any s € S, we have dim(S) = h?>! = b. By the theorem of
Bogomolov and Tian (see §7.C), S is smooth. We assume that S is isomorphic
to a disk of dimension b. Trivialize the local system {Hs3(X;,Z)} by means of a
symplectic basis {7i,d;}i,j=0, ...,»- Let w be a local section of F* = f,(w%/5) which
trivializes this bundle. The theorem of Bryant and Griffiths says that the y-periods
¢i(s) = f%, w(s) can serve as homogeneous coordinates on S (see §7).
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LEMMA. With £;(s) = féj w(s) we get the relations

i
& = ZCja_Cj
J

and {&;} is the gradient of a holomorphic function G which is homogeneous of degree
2 in the variables (g, - .. ,(p-

PROOF. As before, there are the relations

/w/\a—w—/ w A Fw =0
X G X, 0G0 .

If we replace w by the expansion w = )" (ia; + Y &;3; (see the §7.C for the
notation) and if you keep account of the fact that {c;} and {§;} are constants
sections, the announced relations follow. These relations imply

2; = 6%(;@@)

hence if G(¢) = %(zkjckgk), & = 5¢-

O
II. An elementary computation leads to the following expression for the Yukawa

coupling
.._/ op Pw _Pa
ik = X, 0¢;0C0C  0(i0zj0z

ITL. On the local moduli space S a Kahler metric (in fact a Hodge metric ([Dem])
can be defined, by its local potential. The Riemann relations show that

i/w/\w:i(ZZGg—g—gg) > 0.

Set k = —log (i f w Aw). Then the metric (called Weil-Peterson metric, [T]) on S
is defined locally by

0%

8¢,
The form of this potential x shows the special character of this metric (see the next
Remark IV). If you identify T, S and H*'(X,) using 0% = Ogx,, the Weil-Peterson
metric is the same as

95

W, $)wp = /X A *B.

There is a precise relation with the period map ¢ introduced above. From the
Riemann relations R1 and R2 of §3.A, the line H39(X) belongs to an open subset
of a complex quadric Q@ C P?*!. On the restriction of the tautological bundle of
P2+1 to @ the Hodge-form induces clearly a hermitian metric. If w is its Chern
form, it can be shown [T] that the Kahler form wwp of the Weil-Peterson metric
coincides with the inverse image of w.

IV. The previous geometric considerations are carried out on the space of param-
eters for the infinitesimal complex structures H?!. Tt is not a priori obvious that
similar constructions exist for the space of parameters for the K&hler classes, which
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we define now. If J € H'(X,R) is the Kihler form of a Kéahler metric on X, then
J is positive and, in particular, for any algebraic curve C' C X,

[ 150
[l

In the real vector space H11(X,R) = H?(X,R) these inequalities define an open
cone K (X), called the Kahler cone. The complexified Kéhler cone is

CK(X)={B+iJ|B,J € K(X)}.

It is also important to consider the closed cone K(X).

There exist no variation of Hodge structures supported on the complexified
Kahler cone, and thus there is not an evident counterpart to the Yukawa coupling.
We only have the topological triple product given by intersection of (1,1)-forms
k(p,o,7) = [p Ao AT. It is already remarkable that in this dual situation, the
“geometry” of the moduli space of complex structures subsists formally [C-O],
reinforcing the hypothesis of symmetry between the two types of deformations.
The differential geometric properties described above have been formalized under
the name of “special geometry” [Str]. We refer to this article for a precise definition.
The study of this “geometry” on the complexified Kahler cone is at the heart of
mirror symmetry. A precise mathematical definition can be considered as being
equivalent to the existence of a variation of Hodge structures over the complexified
Kahler cone, leading to a triple pairing which “corrects” in a certain sense the
pairing k above, and which under the duality between X and X*, plays the role
of the previous variation for X*. For a more precise formulation the reader may
consult [Mor4], [G]. We only want to retain from this discussion that Hodge theory
is certainly at the basis of a rigorous formulation of the principle of symmetry. See
also §11 for a discussion going in this direction.

§10.B. Mathematical Normalization.

We need information on the asymptotic behavior of the periods, and of the
Yukawa coupling. This comes from a general study of the asymptotic behavior of
a variation of Hodge structure (singularities of the period map).

Let there be given a family of Calabi-Yau threefolds. For simplicity assume
that h%! = 1 and that dim S = 1 (we saw that X — S is universal at any point
s € S (Theorem 7.2). Assume that S =S\ {by, ...,b,} with S is a complete non-
singular curve so that above the points {b;} the family possibly has singular fibers
(see the example of the quintic family and its mirror family in §7.A). We analyze
the behavior of the variation of Hodge structure carried by H3(X/S) = R3 f, (w$ /5)
when the parameter s approaches a singular point. At such a point b;, we have seen
that #3(X/S) admits a privileged extension (over a parametrized disk of center b;),
and that the fibers of the Hodge flag 7? (p = 0,1, 2, 3) extend as subbundles FP of

the privileged extension " (X/S). We make now an assumption [Morl1] which is
verified in the example of interest.

10.4. AsSUMPTION. (See Theorem 4.1) The local monodromy operator T at
b; is maximally unipotent. L.e. (T — 1)3 # 0 and thus N = logT has only one

0 0
0 0
Jordan block 0 1
0 0

10
01
0 0
0 0
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With the help of this assumption it can be checked immediately that the fil-
tration W, is of the form

Wo = W1 = ker(N), W2 = W3 = ker(N2), W4 = W5 = ker(N3).

The Hodge structure on Gry, (£ = 0,1,2,3) reduces to Gry, = I‘. In particular

I** =0 if a # b and
we= @ 1, FE, =1
a+b<¢t a>p

Recall that the bundle H3(X/S) is trivialized on A* and extended to A. If «
is the value of a section of this bundle at so € A*, and if a(s) is its (multi-valued)
continuation by parallel transport by the Gauss-Manin connection, the extended
horizontal section is a*(s) = exp ((I;’%N[a(s)]) In particular, if « € Wy, T'(a) =
a, we have a*(s) = a(s). Likewise, with 8 € H3(X/S)s,, define 8*(s). Since Q is
flat, in the trivialized bundle H° this means that Q(a*(s), 8*(s)) = Q(a, B) = const.
Because w(s), a section which trivializes F3, is a linear combination of sections of
the form $*(s) with holomorphic coordinates, Q(a(s),w(s)) = Q(a*(s),w(s)) is a
holomorphic function on A. If « is the dual class of the cycle 7y, this function

represents the period
fo(s) :=/ w(s).
Yo

Let us show that fo(0) # 0. If not, we have Q(a(0),w(0)) = 0 in the fiber of H at
s =0. But w(0) € ’73(0), and a(0) € Wy. Now the weight filtration is self dual with
respect to @ (since N € gg), i.e. W;t = We_4—» . Thus w(0) € ?3(0) NWy =0.
This shows that we must have fo(0) # 0.

Let us discuss now the choice of an intrinsic coordinate on A*. Let 8 € W, =
ker(N?) be linearly independent from «.. There is an integer A such that N (3) = Aa.

Let 8*(s) be the canonical (horizontal) extension of 3 to H'. Then

5(5) = exp (— BN 5(s)
= B(s) — lg’%m*(s) .

Thus

fi(s) = / w(s) (if B is the class dual to 1)
7
1
= oo Mo(s) + Q(8*(5),w(s))
and Q(B*(s),w(s)) is holomorphic on A. Thus:
AL w
T = 0et

w
Yo

is a parameter on h and
q = exp(2wir)

a parameter on A.
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Observe that 7, being the quotient of two periods, does not depend on the
section w. If {o/, 8’} is another choice, leading to the periods {w§,w|} and to the
parameters t', ¢, we have a,b,c € C, ac # 0, with

o =aa, B =ba+ch

thus
NB' =MXNa' avec N = %
Hence
=7+ b et ¢’ = exp (27ri£)q i
cA cA
Relating this to the discussion in §10.A we observe that the constant cs gets iden-
tified with exp(2miL;).

These remarks being made, we certainly need the integral structure in order
to normalize the periods to obtain a “canonical” coordinate on the disk. Denote
by L the integral lattice (L = (Hz)s,) in H and recall that T' € Autz(L, Q). Then
LN Wy is of rank one and so you can take for a a generator of this group. Then
T =exp(N) = 1+ N on Wy = ker(N?), and hence N = T'—1 is integral on WoN L,
ie. NW2nL) C LNW,. So we can choose a basis of the rank 2 group Wo N L
of the form {a,}, and N(f8) € Na, let N(8) = ma with m > 1. Another basis of
this type is o' = ta, f' = 8+ La (L € Z).

Concluding, the parameter g obtained by this normalization is defined up to
an mth root of unity, and if m = 1 (the monodromy is “small”: dixit Morrison), g
is then determined uniquely. In this case following Morrison Morl we say that q is
the canonical parameter around the singularity. Summarizing, we have shown:

10.5 PROPOSITION. (Mathematical normalization) Let f : X — A be a one-
parameter degeneration of Calabi-Yau threefolds with h®>' = 1. Let w be a nowhere
zero section of F3 on A*. Suppose also that the local monodromy of the local system
of cohomology in dimension 3 is unipotent of index 4. Put N =logT. Fiz s, € A,
fiz a generator a of H3(X,,,Z)NKer N and a basis {a, B} of H*(X;,,Z) NKer N?
so that N8 = ma,m € Zso. Let vo,v1 € H3(Xs,,Z) be the dual classes. Then the
function
2mi f»h w(s)

s) = exp(—
q(s) = exp(— f%w(s))

is well-defined up to an m-th root of unity.

10.6 EXAMPLE. [Hu] The situation is analogous to the case of genus 1 curves.
Consider the family of genus 1 curves y?2 = z(z — 1)(z — A), X # 0,1 (Legendre
form) ; w = g—; defines a section of the Hodge bundle F*.

The two periods are given (with respect to a basis of Hy(X»,Z)) by

wlz/oo dz andw2=/0 dz
1 Ve —1)(xz— )\ oo Vx(x =1z —N)

Express now w; and wy as a function of A\, by means of the hyper-geometric series

F()\) = zFl(%,%,].;)\) = i <_1/2>2)\n

n
n=0
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which is convergent for |A| < 1. Then a classical result says that wy = 7wF()\),
we = irF(1 — A) (J]A] < 1) and that these are the two independent solutions of the
Picard-Fuchs equations, which are the hyper-geometric differential equations

1
s(1—s)f"(s) + (1 —2s8)f'(s) - (8 =0.
This is indeed the start of the Gauss-Manin connection!

We return to the Yukawa coupling. If s is a local coordinate in the disk A with
center the singular point b; (here s(b;) = 0), and if w is a local section of F° which
trivializes this line bundle on A, the (non-normalized) Yukawa coupling has been
defined as the function on A* given by

d3w)

Ksss = Q (W, ds®

The function k44, depends on the coordinate s, as well as on the local section w of
F on A. Passing from w to fw (f(0) # 0), transforms ks into f2kg,.

For a section w of 7  which is a local basis at s = 0, the normalized period
fo= f% w is then defined up to sign. Normalize the form by replacing w by w/ fo,
and now fo(0) = 1. Then the Yukawa coupling ky; is normalized, and thus is a
function defined intrinsically on A* ; we shall call it the mathematically normalized
Yukawa coupling.

We do not pursue the computations of this mathematical normalization in the
examples, because it is easier to normalize the two constants ¢; and ¢y introduced
in §10.A. We shall take this route in the following subsection (see Conjecture 10.7).

§10.C. Relation to the number of rational curves in some examples.

The applications to enumerative geometry (“prediction formulas”) are based
on the precise sense that we should attribute to the corrections (“instanton correc-
tions”) to the topological triple product « (remark IV of §10.A) which are related
to “the action” for the sigma models supported on Calabi-Yau threefolds [F-G],
[G]. More precisely, the integral Z* of §7.A admits an expansion to which the mor-
phisms of P! to the Calabi-Yau threefold contribute. See in particular [P], §5.6 for
an explicit statement.

In the sequel we merely observe the internal coherence of these expansions in
few examples, particularly the one from [C-O-G-P].

Let T be the open subset of P(Sym°®C®)) parametrizing the nonsingular hy-
persurfaces of degree 5 in P* and let Y;, ¢t € T be the corresponding tautologi-
cal family. This family is a family of Calabi-Yau threefolds with dim H'(Ty,) =
dim 7T — dim PGL(5) = 101 and h''(Y;) = 1. Mirror symmetry predicts the exis-
tence of a family X;, s € S with dim S = dim H!(Tx,) = 1 and A1 (X,) = 101.
The candidate proposed for X; is a suitable resolution of singularities of the quo-
tient of the family

F(8)=Z8+ 20+ Z5 + Z5 + 70 — 5tZ0 21727574, s=1"°

by the group

G = {(ao,al,ag,ag,a4) € p2| agarazazay = 1}
where ps is the group of the 5-th roots of unity. In fact we have studied this
family in the preceding sections (the example 9.7) and the classes of the forms
res(2;), j = 1,2, 3,4 constitute a basis of the G-invariant part of the cohomology,
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and thus gives a basis for H3(X,,C). The Picard-Fuchs equation we found is the
equation for w;, residue of €y, considered as 3-form holomorphic on X,;. Mirror
symmetry predicts in addition that the Yukawa coupling, properly normalized,
admits a g-expansion Y agq? such that the coefficients ay determine the numbers
ng of rational curves of degree d on the generic member of the family Y;. Here q is
the canonical parameter of §10.B.

Unfortunately this number is not a priori finite. In fact, there exist Calabi-Yau
threefolds with an infinite number of rational curves of fixed degree. For example,
consider a covering double of P? ramified along a surface S of degree 8. There is
a family of dimension > 1 of rational curves having for image a line three times
tangent to the surface S (it is one condition for a line to be tangent to a surface).
In spite of this, Clemens’ conjecture says that on a general quintic there are only
a finite number of rational curves of a given degree. But if you do not want to
assume this conjecture, you need to find some interpretation for the numbers ng.
A suggestion is to interpret these in the framework of symplectic geometry as the
Gromov-Witten invariants for rational curves of degree d. But this is another
history for which [Mor3], [D-S] can be consulted. This being said, there is the

10.7. CONJECTURE. If, in the formula (16) of §10.A, you choose ¢; = —5 and
co = 575 and write

o0 3 d
nqd>q

].7 TTT =
(17) K n0+d2_11_qd

then ng = 5 and for d > 1, ng is the Gromov- Witten invariant for rational curves
of degree d on a generic hypersurface in P* of degree 5. This number coincides with
the number of rational curves of degree d if Clemens’ conjecture is true.!

This prediction has been verified for d < 3. See [Mor2] for references. Here is
the table of the numbers ng4 for d < 10:

2875

609250

317206375

242467530000

229305888887625
248249742118022000
295091050570845659250
375632160937476603550000
503840510416985243645106250

10 | 704288164978454686113488249750

© 00 O Ut s Wi

10.8. OTHER EXAMPLES. See [L-T] and [B-S], §5 for details. The only com-
plete intersections of P3*" defined by degrees di, ... ,d, giving a Calabi-Yau three-
fold are those with degrees (3,3), (2,4),(2,2,2,2) and (2,2, 3). For these examples
h1'! =1 and there is a natural construction for the (conjectural) mirror family (see

! Translator’s note : There are new computations showing that this is not true, see [Co-K].
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§7.B). First define the Laurent polynomials f;(u,X) in the variables X;:

(3,3) f1 =1- (U1X1 + uo X9 + U3X3)
fo=1— (usXy +usXs +ug(Xy - X5)7")
(2,4) fi=1— (w1 Xy +uXy)
fo=1— (us X3 + us Xy + us X5 + ug(Xy--- X5)71)
(2,2,2,2) f1 =1- (U1X1 + UQXQ)
fo=1— (u3 X3+ usXy))
f3=1— (us X5 + ugXs
fa=1—(ur X7 +ug(Xy---X7)™1)
(2,2,3) f1 =1- (Ule + ’U.QXQ)
fo=1— (usX3 4+ us Xy)
f3=1— (us X5 + ugXe + ur(Xy--- Xg)™1).

221

These equations define a family Y, of complete intersections in the algebraic
torus (C*)3*" parametrized by z = []u;. There exists a smooth compactification
of UY, having as fibers Calabi-Yau threefolds. For this family one can compute the
Picard-Fuchs equation explicitly:

0% — uz(0@ + 1) (O +a2) (04 a3)(O® +ay) =0

where © = z% and the coefficients pu, (a1, a2, as,a4) are given in the following

table.

(3,3)
(2,4)

(2725 27 2) M = 28
(2,2,3)

(1/3,1/3,2/3,2/3)

1) = (1/4,2/4,2/4,3/4)
ay1,02,03, 4) (1/4,1/4,1/4,1/4)
a1, a2,a3,04) = (1/3,1/2,1/2,2/3)

_ 26
/J/_3 a15a2)a37a4)

(

,LI/:210 (a1;a2;a3aa
( «
(

w= 2433

The normalized Yukawa coupling for these four examples can then be computed
and yields the Gromov-Witten invariants in each case.

degree | intersection type = (3,3) |intersection type = (2,4)
1 1053 1280
2 52812 92288
3 6424326 15655168
4 1139448384 3883902528
5 249787892583 1190923282176
6 |62660964509532 417874605342336
7 17256453900822009 160964588281789696
8 5088842568426162960 66392895625625639488
9 |1581250717976557887945 | 28855060316616488359936
10 | 512045241907209106828608| 13069047760169269024822656
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degree | intersection type = (2,2, 2,2)| intersection type = (2, 2, 3)
1 512 720
2 9728 22428
3 416256 1611504
4 25703936 168199200
5 1957983744 21676931712
6 |170535923200 3195557904564
7 16300354777600 517064870788848
8 |1668063096387072 89580965599606752
9 179845756064329728 16352303769375910848
10 | 20206497983891554816 3110686153486233022944

Recent articles (Ellingsrud, Libgober) confirm these numbers, at least in small
degree.

11 Relation with mixed Hodge theory

In this section we explain how mixed Hodge theory makes it possible to formulate an inter-

esting aspect of mirror-symmetry.

Recall briefly some basic notions which complete the definitions of §4.

11.1. DEerINITION. Let Hp be a real finite dimensional vector space and set
H = Hr®C. A real mixed Hodge structure on H consists of an increasing filtration
W, of H defined on Hgr and a decreasing filtration F'* of H such that on Gr}’v F*
induces a Hodge structure of weight £.

11.2. ExamMmPpLE. A. Let M be a compact Kaihler manifold of dimension d.
Take H = Y, HY(M,C), Wy = @5, H*(M, R).
B. Let M; be a family of Kihler manifolds on a punctured disk. Assume that the
monodromy on H?(M;) is unipotent. Then N := logT satisfies N4*! = 0 and
there exists a unique filtration 0 C Wy C Wi ... C Wag_1 C Waq on H¢(M;, R)
such that NW, C W;_5 and N* induce an isomorphism between Grg‘:% and Gr),
(see [S] for details). We have introduced (§4) the filtration F2 on H(M;). W,
and F3, define a mixed Hodge structure. See [S].

In example B even more is true:
1. the polarization form @Q on H?(My) is such that

Q(Nu,v) + Q(u, Nv) = 0.
2. Q(F?, Fi-r+1) = ;
3. There is a Lefschetz decomposition Grl,, = @ iso N 3(Py42;) where
Pg = ker NZ+1 : Grg‘_/’_e — Grg‘il_z

such that Q(—, N*—) polarizes the Hodge structure of weight d + £ on Grg‘ie. In
this case we say that N polarizes the mixed Hodge structure.

Recall that the classical Lefschetz-decomposition states that multiplication with
the Kahler class furnishes an operator L with L3+! = 0 such that the kernel of L¢
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admits a polarization. But you cannot use L to polarize the mixed Hodge structure
of Example A since L is of weight (1,1). Instead you need to take the adjoint A
(see [Dem], §6A). It can be verified [C-K] that now indeed Lefschetz theory can
be expressed by saying that the mixed Hodge structure of example A is polarized
by A provided you use the quadratic form Q(a,b) = (—1)2P(P—1) [,;aUb, a € HP,
be H¥-p,

There is an inverse of the nilpotent orbit theorem saying that, given a mixed
Hodge structure (F*,W,) on H polarized by N with N%t! = 0, the filtration

. —logs N
FS., = exp( 275 N)F

new

is a pure Hodge structure of weight d for s small. You even obtain a variation of
Hodge structure of polarized by Q. See [C-K-S].
Applying this to example A gives:

hge—vg,q — § :ha,q
a

We shall see that this idea leads to a duality on the level of variations of Hodge
structure which is related to mirror Symmetry.
For Calabi-Yau manifolds M of dimension 3 the Hodge diamond is as follows
(see §7)
33 =1
h32 =0 h?3 =0
R31=0 h*2=a B3 =0
R3O =1 p2=p A2l1=0b KO3 =1
W20 =0 hbl=a RHO2=0
AP =0 K%' =0
ho0 =1
and the new variation of Hodge structure has Hodge numbers

h3, =2=h%3, KL =hi2 =a+b=hb +hb2

new new? new new

This variation can be regarded as follows. The choice of a Kahler class determines
a one parameter-variation Hodge structure of weight 3 and Hodge numbers (2,a +
b, a+b,2). This structure is direct sum of a variation with Hodge numbers (1, a, a, 1),
the part which comes from the even cohomology of M, and a constant variation
with Hodge numbers (1,b,b,1) coming from the odd cohomology. A priori the
variation depends on the chosen parameter.

EXAMPLE 11.3. Consider the casea = 1. Let H* (M) = H'oH*oH'® H® =
@zzo Z fy, be the even cohomology with f; the positive generator of H?(M). With

1

the parameter ¢(s) = (;g_(:s) on A* the connection of the new variation in term of
the basis {fo, f1, f2, f3} can be written as

(9 0 0

a 0 0

! d

V=10 deg(M)?q 0
d
0 0 o
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In the mirror symmetry story, the preceding variation must be modified so
that the numbers of rational curves in any degree appear (“quantum deformation
or instanton corrections”). The physicist have proposed to use the flat connection
related to the ” A-model”, which in terms of the basis { fo, f1, f2, f3} is given by

0 0 0 0

O
! d
(18) Va=1lo0 K@% o o

0 0 @ 0
q
where

K(q) = deg(M +an

with ng (d > 1) the number of rational curves of degree d on M (or the Gromov-
Witten invariant if you wish) and so V 4 is entirely defined in terms of the geometry
on M.

This construction generalizes to several parameter-degenerations. See [C-K-S].
Then, using a system of a generators for the Kéahler cone of M, yields a variation
of Hodge structure which depend on a parameters, sum of a variation with Hodge
numbers (1,a,a,1) and a constant variation V(M) with Hodge numbers (1,b,b,1).

The first variation should be modified as follows. Let fy be the positive gener-
ator of H°(M), f» the dual generator of H4(M), {fL,..., f#} an integral basis of
H2(M), {f3,..., 3} the dual basis of H*(M), and let finally qi,- - - ,q, be param-
eters in (A*)?. Set

n

z]k —fl fl f1+ZnUk qqn
where n € H*(M) runs over the classes of rational curves on M, and where n;;x(n) is
the Gromov-Witten invariant (see [D-S]. Let us only say that n;;x(n) is the number
of pseudo-holomorphic curves f : P1 — M of class n such that f(0) € D;, f(1) €
Dj, f(0) € Dy, where D;, D;, Dy, are effective divisors which represent the classes
fi, fl, fF) and where one puts g7 = ¢S* --- %, ¢; = 1 - fi. The connection V4 is
then given by

dqz
Vafo= Zﬁ
k d%
Vafi = ZKmka k=1,...,a;
i,j=1
Vafa=0.

See [B-S], §3.1 for details. Let us call this variation V; (M).

Mirror symmetry predicts that there exists a versal family of mirror Calabi-
Yau threefolds with h%! = a and A''! = b. It seems natural to conjecture that
the variation Vo(M) coincides with the variation given by the third cohomology
group of the mirror family, at least if this family is restricted to an open coordinate
neighborhood with suitable coordinates.
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Visibly, this construction is asymmetric in a and b. To restore the symmetry,
you need a versal family M;,t € T with dimT = b = H%“2(M;), and then you
consider the complexified Kahler cone (see Remark 10.3 IV) C'K (M;) on each fiber
M; which yields a manifold T of dimension a + b parameters. It is a bundle over
T, the fiber above t being CK(M;). The variations V;(M;) glue together to a
variation V; over T'. The variations Vs (M) also glue together to a variation Vs
over T'. Mirror symmetry predicts the existence of a universal family N;,s € S,
dimS = a, h'(N,) = b and you get as before two variations Wi, with Hodge
numbers (1,a,a,1) and W, with Hodge numbers (1, b, b, 1) over a manifold § fibered
over S with fiber above s equal to CM (N).

Now mirror symmetry can be formulated in terms of variations of Hodge struc-
ture:

CONJECTURE. Let {M,;},t € T be a versal family of Calabi- You threefolds and
T be the union of the complexified Kdhler cones of all the fibers My. Let Vi be
the variation of Hodge structure over T coming from the even cohomology of the
fibers My (the “ quantum deformation” of the nilpotent orbit introduced above) and
let Vs, be the variation over T coming from the odd cohomology. There ezists a
versal family M}, t € T* of Calabi-Yau threefolds with H2'(My) = HY(M,);
HYY (M}) = H>Y (M) and an isomorphism T = T* exchanging the two types of
variations Vi and Vs.

In this formulation there is a problem due to the fact that the first variation
depends on the choice of parameters while the second does not. Here we not will
discuss this problem in general, but rather we will regard the case b = 1 in some
more detail, the case of a versal family with one parameter s. We assume that the
base of the variation (a quasi-projective curve) admits a compactification with only
one point around which the local monodromy 7' is maximally unipotent. Let

0CWy=W1 CWe=W3CWy=W5CWs

be the weight filtration. Let {ag,a;1} be a basis of Wy such that Nag = 0
and Naj; = a¢ with N = logT. Complete this to an adapted symplectic ba-
sis {ao,o1,p1,60}, ie. Qao,Bo) = Qar,p1) = 1, Qas,a1) = Q(ao,B1) =
Q(a1,B0) =0 and Ny = kay, NBy = —f1- Suppose moreover that k& = 1, which
is the case for the quintic hypersurface in §10.C (it is implicit in the calculations of
[Mor1] appendix A, C).

We know that the filtration F3 induces a pure structure of weight 2j on
Gro;(W), 5 = 0,1,2,3 and thus necessarily 8y is of type (3,3) and we have
F3 = CBo because dim F2, = 1. Also, 3 is of type (2,2) and thus F2 = Cp; +F3..

Similarly you find that FL = Ca; + F2,. Since we may write F*(s) = X (s)F,
where X (s) = e¥(®), Y (s) = — (logs/2ni) N € D, o 9" ", with respect to the
basis {fo, 81, 1,00} we have

o O
_o O O

*
g
~—~
»
S—r
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Let {wo,w1,v1,v0} be the basis of H3(X,,C) which you get in this way. It is
adapted to the new Hodge filtration

wo 1 f(s) = * Bo
w | _ |0 1 g(s) = B1
1 0 0 1 f(s) a1
1Z0) 0 0 0 1 a0

Apply now the Gauss-Manin connection. Using the above expression, Griffiths’
transversality yields

Vwo = f'(s)wy -ds, Vwy =g'(s)vy-ds, Vv = f'(s)vg - ds
and thus you find back the Yukawa coupling
Kgss = fl(s)zgl(s)'

As in §11 take 7 = Q(wo, 1) = f(s) as the canonical parameter and ¢ = exp 27ir.
Thus, with the coordinate ¢ you find

d
q
Vwo _
q Wo
Vwr | _ 1 . dgdgq w1
Vi |~ o27i| 0 2mwig- 0 a 0 0 v
v q q Yo
140} d(]
0 0 — 0
q

Let us summarize:

PROPOSITION 11.4. Let f : X — A be a one-parameter degeneration of 3-
dimensional Calabi-Yau threefolds with h®>' = 1. Suppose that the Hodge bundle
F3 on A*is trivialized by wo. Let {wo,w;} be a basis of F2. Suppose moreover that
the local monodromy of the local system formed by the cohomology in dimension 3 is
unipotent of index 4 and that there is an adapted symplectic basis {ag, a1, 81,80}
Then, putting

f(s) = Q(wo, 1),

g(S) = Q(wlaﬂl)a
the canonical parameter is

q = exp 2mi(f(s))
and the (normalized) Yukowa coupling is

_ . dg dl] ®3
(19) Kk = 27iq - d (27riq)

Finally, we shall discuss a few related results by Deligne [Del6] without giving
proofs. The central notion is that of an extension of mixed Hodge structures,
introduced by Carlson [Ca]. Let us just give an example to illustrate this notion
and refer to loc. cit. for the details.
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EXAMPLE. Let Z(—k) be the Hodge structure of dimension 1 which is pure
of type (k, k), k € Z and given by the lattice (27i)*Z C C (Tate structure). An
extension of Z(—1) by Z(0) is an exact sequence

05203 H 2 72(-1)=0

of mixed Hodge structures. Such an extension is classified by a non-zero complex
number ¢q. Concretely, Hc = C? admits a basis {ep,e1} such that a(1) = ey,

!
B(eg) = 27mi. And Hyz has a basis {fo = eo + ;giqel,fl = e1}. The choice of the
T

branch of log g is immaterial, a different branch leading to {fo + kf1, f1}, k € Z,
another basis of Hz. The Hodge and weight filtrations are given by Wy = Qey,
W, = Hg, F° = F' = Cep, F? = 0.

In the sequel we need a version with parameters and so the natural context is
that of variations of mixed Hodge structure over a basis S. See [B-Z], §7 for the
definition. For a rough comprehension of what follows the next example however
suffices.

EXAMPLE. Let S = A* with coordinate s. An extension of the constant “vari-
ation” Z(—1) by Z(0) is completely determined by ¢(s), a function which is mero-
morphic on A, holomorphic and everywhere non-zero on A* and of order m € Z.

1
The integral structure is given by the basis {fo = ep + qugs)el, f1 = e1} with
i
d
corresponding connection Vey = —2({7(‘2))@, Ve; = 0. The local monodromy T
wiq(s

satisfied Teg = eg + mey,Te; = e; and so Neg = mey, Ney = 0 (N = logT).
Here also the weight and Hodge filtrations are given by Wy = Qe;, Wy = Hp,
FO = F! = Ceg, F? = 0.

In our situation, the fact that Gr%[’ﬁ is of rank one (and thus pure of type
(k,k) implies that for each point s near the privileged point, the filtration Fy
together with the weight filtration give a mixed Hodge structure with A%0 = p1:1 =
h?? = b33 = 1. The mixed Hodge structure can be described as in the example
by an iterated extension of Tate structures Z(—3), Z(—2), Z(—1) and Z(0). Let
{eo,e1,€2,e3} be a symplectic basis adapted to the weight filtration 0 C Wy =
Wy C Wy = W3 C Wy = Ws C We such that {e3} is a basis of F3, {e3,es} of
F? and {e3,es,€1} of F1. The extension classes are then given by ¢ = exp(2if)
(the canonical parameter), go = exp(2wig) (the function related to the Yukawa
coupling via (18) above) and g3 = ¢ by “duality”. The underlying lattice is based

by {eo,e0 + f(s)e1,e1 + 92(—;1) -eg,ea + (;532 -e3}.

Because
0
Krrr = qa_q log g2,
the expansion of k., (see (17)) is equivalent to an infinite product expansion
_ 2
e =q" [J(1—qH™?,
d>1

giving an interpretation of (17) purely in terms of mixed Hodge structures. Let M*
the generic member of the mirror family M; and let HT(M*) = H' © H?> @ H* ®
HS = @i:o Z fr, be the even cohomology. The constant “variation” on H+(M*) x
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A* can be modified using the nilpotent orbit associated to A as explained in example
11.2. This gives an iterated extension of Tate structures Z(—3), Z(—2), Z(—1) and
Z(0) with extension classes ¢, deg(IN)q, ¢ which is not an interesting variation: the
flat connection can be written in terms of fj as in example 11.3 and and it needs
to be corrected in the same manner as before by equation (18) where now

e d3qd
K(q) = deg(M~) + ;ndl——qd’

with ng (d > 1) the number of rational curves of degree d on M* (or the correspond-
ing Gromov-Witten invariant). So this new connection V 4 is entirely determined
in terms of the geometry of the mirror. For the corrected variation the extension
classes are g, K(q) and g. So, comparing this with (19), you see that the mirror
symmetry conjecture can be reformulated as follows.

FINAL CONJECTURE. For every q € A*, the mized Hodge structure on H(M*)x
{q} coincides with Deligne’s mized Hodge structure from [Del6] on H3(M,).
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