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j.-p. demailly, L2 hodge theory and vanishing theorems 20. Introdu
tionThe aim of these notes is to des
ribe two fundamental appli
ations of L2 Hilbertspa
e te
hniques to analyti
 or algebrai
 geometry: Hodge theory, and the theoryof L2 estimates for the � operator. The point of view adopted here is essentiallyanalyti
.The �rst part is fo
ussed on Hodge theory and it is intended to be rather in-trodu
tory. Thus the reader will �nd here only the most elementary topi
s, mostlythose due to W.V.D. Hodge himself [Hod41℄ or to A. Weil [Wei57℄. Hodge the-ory, as �rst 
on
eived by its 
reator, 
onsists of the study of the 
ohomology ofRiemannian or K�ahlerian manifolds, by means of a des
ription of harmoni
 formsand their properties. We refer to the treatment of J. Bertin-Ch. Peters [BePe95℄and L. Illusie [Ill95℄ for a presentation of more advan
ed topi
s and appli
ations(variation of Hodge stru
ture, appli
ation of periods, Hodge theory in 
hara
teristi
p > 0 : : : ). We 
onsider a Riemannian manifold X and a Eu
lidean or Hermitianbundle E over X . We assume that E is equipped with a 
onne
tion D 
ompatiblewith the metri
: A 
onne
tion is by de�nition a di�erential operator analogous toexterior di�erentiation, a
ting on forms of arbitrary degree with values in E, andsatis�es Leibniz rule for the exterior produ
t. The Lapla
e-Beltrami operator isthe self-adjoint di�erential operator of se
ond order �E = DED�E +D�EDE, whereD�E is the Hilbert spa
e adjoint of DE. One easily shows that �E is an ellipti
operator. The �niteness theorem for ellipti
 operators shows then that the spa
eHq(X;E) of harmoni
 q-forms with values in E is �nite dimensional if X is 
om-pa
t (we say that a form u is harmoni
 if �Eu = 0). If we assume in addition thatthe 
onne
tion satis�es D2E = 0, the operator DE a
ting on forms of all degreesde�nes a 
omplex 
alled the de Rham 
omplex with values in the lo
al system of
oeÆ
ients de�ned by E. The 
orresponding 
ohomology groups will be denoted byHqDR(X;E). The fundamental observation of Hodge theory is that any 
ohomology
lass 
ontains a unique harmoni
 representative, sin
e X is 
ompa
t. It leads thento an isomorphism, 
alled the Hodge isomorphism(0.1) HqDR(X;E) ' HqDR(X;E):When the manifold X and the bundle E are holomorphi
, there exists a unique
onne
tion DE 
alled the Chern 
onne
tion, 
ompatible with the Hermitian metri
on E and has the following properties: DE splits into a sum DE = D0E + D00Eof a 
onne
tion D0E of type (1; 0) and a 
onne
tion D00E of type (0; 1), su
h thatD02E = D002E = 0 and D0ED00E + D00ED0E = �(E) (Chern 
urvature tensor of thebundle). The operator D00E a
ting on the forms of bidegree (p; q) de�nes then for�xed p, a 
omplex 
alled the Dolbeault 
omplex. When X is 
ompa
t, the Dolbeault
ohomology groups Hp;q(X;E) satisfy a Hodge isomorphism analogous to (0:1),namely(0.2) Hp;q(X;E) ' Hp;q(X;E);where Hp;q(X;E) denotes the spa
e of harmoni
 (p; q)-forms with values in E,relative to the anti-holomorphi
 Lapla
ian �00E = D00ED00�E + D00�E D00E . By utilizingthis latter result, one easily proves the Serre duality theorem(0.3) Hp;q(X;E)� ' Hn�p;n�q(X;E�); n = dimC X;



3 0. introdu
tionwhi
h is the 
omplex version of the Poin
ar�e duality theorem. The 
entral theoremof Hodge theory 
on
erns 
ompa
t K�ahler manifolds: A Hermitian manifold (X;!)is 
alled K�ahlerian if the Hermitian (1; 1)-form ! = iPj;k !jkdzj ^ dzk satis�esd! = 0. A fundamental example of a 
ompa
t K�ahlerian manifold is given by theproje
tive algebrai
 manifolds. If X is 
ompa
t K�ahlerian and if E is a lo
al systemof 
oeÆ
ients on X , the Hodge de
omposition theorem asserts thatHkDR(X;E) = Mp+q=kHp;q(X;E) (Hodge de
omposition)(0.4) Hp;q(X;E) ' Hq;p(X;E�): (Hodge symmetry)(0.5)The intrinsi
 
hara
ter of the de
omposition will be shown here in a somewhat orig-inal way, via the utilization of the Bott-Chern 
ohomology groups (��-
ohomologygroups). It follows from these results that the Hodge numbers h p; q =dimC Hp;q(X; C ) satisfy the symmetry property hp;q = hq;p = hn�p;n�q = hn�q;n�p,and that they are 
onne
ted to the Betti numbers bk = dimC HkDR(X; C ) by therelation bk = Pp+q=k hp;q . A 
ertain number of other remarkable 
ohomologi
alproperties of 
ompa
t K�ahler manifolds are obtained by means of the primitivede
omposition and the hard Lefs
hetz theorems (whi
h in turn is a result of the ex-isten
e of an sl(2; C ) a
tion on harmoni
 forms). These results allow us to des
ribein a pre
ise way the stru
ture of the Pi
ard group Pi
(X) = H1(X;O�) in theK�ahlerian 
ase. In a more general setting, we dis
uss the Hodge-Fr�oli
her spe
tralsequen
e (the spe
tral sequen
e 
onne
ting Dolbeault to de Rham 
ohomology), andwe show how one 
an utilize this spe
tral sequen
e to obtain some general resultson the Hodge numbers hp;q of 
ompa
t 
omplex manifolds. Finally, we establishthe semi-
ontinuity of the dimension of the 
ohomology groups Hq(Xt; Et) of bun-dles arising from a proper and smooth holomorphi
 �bration X ! S (result dueto Kodaira-Spen
er), and we dedu
e from it that the Hodge numbers hp;q(Xt) are
onstant if the �bers Xt are K�ahlerian (invarian
e of the hp;q under deformations);the holomorphi
 nature of the Hodge �ltration F pHk(Xt; C ) = �r�pHr;k�r(Xt; C )relative to the Gauss-Manin 
onne
tion is proven by means of the theorem on the
oheren
e of dire
t images, applied to the relative de Rham 
omplex 
�X=S of X! S.In the se
ond part, after re
alling some of the relevant 
on
epts of positivity andpseudo
onvexity, we establish the Bo
hner-Kodaira-Nakano identity 
onne
ting theLapla
ians �0E and �00E . The identity in question furnishes an expli
it expressionof the di�eren
e �00E � �0E in terms of the 
urvature �(E) of the bundle. Underadequate hypothesis (weak pseudo
onvexity of X , positivity of the 
urvature of E),one arrives a priori at the estimatejjD00Eujj2 + jjD00�E ujj2 � ZX �(z)juj2dV (z)where � is a positive fun
tion depending on the eigenvalues of 
urvature. Theinequality is valid here for any form u of bidegree (n; q); n = dimX; q � 1, withvalues in E, u belonging to the Hilbert spa
e domains of D00E and D00�E . By anargument of Hilbert spa
e duality one dedu
es from this the following fundamentaltheorem, essentially due to H�ormander [H�or65℄ and Andreotti-Vesentini [AV65℄:0.6. Theorem. Let (X;!) be a K�ahler manifold, dimX = n. Assume thatX is weakly pseudo
onvex. Let E be a Hermitian line bundle and suppose that the
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urvature form i�(E) with respe
t to the metri
 ! at ea
h pointx 2 X, satisfy 
1(x) � � � � � 
n(x):Further, suppose that the 
urvature is semi-positive, i.e. 
1 � 0 everywhere. Thenfor any form g 2 L2(X;�n;qT �X 
E) su
h thatD00Eg = 0 and ZX(
1 + � � �+ 
q)�1jgj2dV! < +1;there exists f 2 L2(X;�n;q�1T �X 
E) su
h thatD00Ef = g and ZX jf j2dV! � ZX (
1 + � � �+ 
q)�1jgj2dV! :An important observation is that the above theorem still remains valid whenthe metri
 h of E a
quires singularities. The metri
 h is then given in ea
h 
hartby a weight e�2' asso
iated to a plurisubharmoni
 fun
tion ' (by de�nition 'is psh if the matrix of se
ond derivatives (�2'=�zj�zk), 
al
ulated in the sense ofdistributions, is semi-positive at ea
h point). Taking into a

ount Theorem (0.6), itis natural to introdu
e themultiplier ideal sheaf J (h) = J ('), made up of the germsof holomorphi
 fun
tions f 2 OX;x su
h that RV jf j2e�2' 
onverges in a suÆ
ientlysmall neighbourhood V of x. A re
ent result of A. Nadel [Nad89℄ guarantees thatJ (') is always a 
oherent analyti
 sheaf, whatever the singularities of '. In this
ontext, one dedu
es from (0.6) the following qualitative version, 
on
erning the
ohomology with values in the 
oherent sheaf O(KX 
 E) 
 J (h) (KX = �nT �Xbeing the 
anoni
al bundle of X).0.7. Nadel Vanishing Theorem ([Nad89℄, [Dem93b℄). Let (X;!) be aweakly pseudo
onvex K�ahler manifold, and let E be a holomorphi
 line bundle overX equipped with a singular Hermitian metri
 h of weight '. Suppose that thereexists a 
ontinuous positive fun
tion � on X su
h that the 
urvature satis�es theinequality i�h(E) � �! in the sense of 
urrents. ThenHq(X;O(KX 
E)
J (h)) = 0 for all q � 1:In spite of the relative simpli
ity of the te
hniques involved, it is an extremelypowerful theorem, whi
h by itself 
ontains many of the most fundamental results ofanalyti
 or algebrai
 geometry. Theorem (0.7) also 
ontains the solution of the Leviproblem (equivalen
e of holomorphi
 
onvexity and pseudo
onvexity), the vanish-ing theorems of Kodaira-Serre, Kodaira-Akizuki-Nakano and Kawamata-Viehwegfor proje
tive algebrai
 manifolds, as well as the Kodaira embedding theorem 
har-a
terizing these manifolds among the 
ompa
t 
omplex manifolds. By its intrinsi

hara
ter, the \analyti
" statement of Nadel's theorem appears useful even forpurely algebrai
 appli
ations. (The algebrai
 version of the theorem, known as theKawamata-Viehweg vanishing theorem, utilizes the resolution of singularities anddoes not give su
h a 
lear des
ription of the multiplier sheaf J (h).) In a re
ent work[Siu96℄, Y.T. Siu has shown the following remarkable result, by utilizing only theRiemann-Ro
h formula and an indu
tive Noetherian argument for the multipliersheaves. The te
hnique is des
ribed in x16 (with some improvements developed in[Dem96℄).



5 0. introdu
tion0.8. Theorem [Siu96℄, [Dem96℄). Let X be a proje
tive manifold and L anample line bundle (i.e. has positive 
urvature) on X. Then the bundle K
2X 
L
mis very ample for m � m0(n) = 2 + �3n+1n �, where n = dimX.The importan
e of having an e�e
tive bound for the integer m0(n) is thatone 
an also obtain embeddings of manifolds X in proje
tive spa
e, with a pre
ise
ontrol of the degree of the embedding. As a 
onsequen
e of this, one has a rathersimple proof of a signi�
ant �niteness theorem, namely \Matsusaka's big theorem"(
f. [Mat72℄, [KoM83℄, [Siu93℄, [Dem96℄):0.9. Matsusaka's Big Theorem. Let X be a proje
tive manifold and L anample line bundle over X. There exists an expli
it boundm1 = m1(n;Ln;KX �Ln�1)depending only on the dimension n = dimX and on the �rst two 
oeÆ
ients of theHilbert polynomial of L, su
h that mL is very ample for m � m1.From this theorem, one easily dedu
es numerous �niteness results, in parti
ularthe fa
t that there exist only a �nite number of families of deformations of polarizedproje
tive manifolds (X;L), where L is an ample line bundle with given interse
tionnumbers Ln and KX � Ln�1.



Part I: L2 Hodge Theory1. Ve
tor bundles, 
onne
tions and 
urvatureThe goal of this se
tion is to re
all some basi
 de�nitions of Hermitian di�er-ential geometry with regard to the 
on
epts of 
onne
tion, 
urvature and the �rstChern 
lass of line bundles.1.A. Dolbeault 
ohomology and the 
ohomology of sheaves. Assumegiven X a C -analyti
 manifold of dimension n. We denote by �p;qT �X the bundleof di�erential forms of bidegree (p; q) on X , i.e. di�erential forms whi
h 
an bewrittenu = XjIj=p; jJj=q uI;Jdz ^ zJ ; dzI := dzi1 ^ � � � ^ dzip ; dzJ := dzj1 ^ � � � ^ dzjq ;where (z1; : : : ; zn) are lo
al holomorphi
 
oordinates, and where I = (i1; : : : ; ip)and J = (j1; : : : ; jq) are multi-indi
es (in
reasing sequen
es of integers in the in-terval [1; : : : ; n℄, with lengths jI j = p; jJ j = q). Let Ap;q be the sheaf of germs ofdi�erential forms of bidegree (p; q) with 
omplex valued C1 
oeÆ
ients. We re
allthat the exterior derivative d de
omposes into d = d0 + d00 whered0u = XjIj=p;jJj=q;1�k�n �uI;J�zk dzk ^ dzI ^ dzJ ;d00u = XjIj=p;jJj=q;1�k�n �uI;J�zk dzk ^ dzI ^ dzJare of type (p+1; q), (p; q+1) respe
tively. The well known Dolbeault-Grothendie
kLemma asserts that all d00-
losed forms of type (p; q) with q > 0 are lo
ally d00-exa
t(this is the analogue for d00 of the usual Poin
ar�e Lemma for d, see for example[Hor66℄). In other words, the 
omplex of sheaves (Ap;�; d00) is exa
t in degreeq > 0: and in degree q = 0, Ker d00 is the sheaf 
pX of germs of holomorphi
 formsof degree p on X .More generally, if E is a holomorphi
 ve
tor bundle of rank r over X , thereexists a natural operator d00 a
ting on the spa
e C1(X;�p;qT �X 
E) of C1 (p; q)-forms with values in E. Indeed, if s = P1���r s�e� is a (p; q)-form expressed interms of a lo
al holomorphi
 frame of E, we 
an de�ne d00s :=P(d00s�)
e�; by �rstobserving that the transition matri
es 
orresponding to a 
hange of holomorphi
frame are holomorphi
, and whi
h 
ommute with the operation of d00. It thenfollows that the Dolbeault-Grothendie
k Lemma still holds for forms with values inE. For every integer p = 0; 1; : : :; n, the Dolbeault 
ohomology groups Hp;q(X;E)are de�ned as being the 
ohomology of the 
omplex of global forms of type (p; q)(indexed by q):(1.1) Hp;q(X;E) = Hq(C1(X;�p;�T �X 
E)):There is the following fundamental result of sheaf theory (de Rham-Weil Isomor-phism Theorem): Let (L�; Æ) be a resolution of a sheaf F by a
y
li
 sheaves, i.e. a
omplex (L�; Æ) given by an exa
t sequen
e of sheaves0! F j�! L0 Æ0�! L1 ! � � � ! Lq Æq�! Lq+1 ! � � � ;6



7 1. ve
tor bundles, 
onne
tions and 
urvaturewhere Hs(X;Lq) = 0 for all q � 0 and s � 1. (To arrive at this latter 
ondition ofa
y
li
ity, it is enough for example that the Lq are 
asque or soft, for example asheaf of modules over the sheaf of rings C1.) Then there is a fun
torial isomorphism(1.2) Hq(�(X;L�))! Hq(X;F):We apply this in the following situation. Let Ap;q(E) be the sheaf of germs of C1se
tions of �p;qT �X 
 E. Then (Ap;�(E); d00) is a resolution of the lo
ally free OX -module 
pX
O(E) (Dolbeault-Grothendie
k Lemma), and the sheaves Ap;q(E) area
y
li
 as C1-modules. A

ording to (1.2), we obtain1.3. Dolbeault Isomorphism Theorem (1953). For all holomorphi
 ve
torbundles E on X, there exists a 
anoni
al isomorphismHp;q(X;E) ' Hp(X;
pX 
O(E)):If X is proje
tive algebrai
 and if E is an algebrai
 ve
tor bundle, the theoremof Serre (GAGA) [Ser56℄ shows that the algebrai
 
ohomology groups Hq(X;
pX
O(E)) 
omputed via the 
orresponding algebrai
 sheaf in the Zariski topology areisomorphi
 to the 
orresponding analyti
 
ohomology groups. Sin
e our point ofview here is ex
lusively analyti
, we will no longer need to refer to this 
omparisontheorem.1.B. Conne
tions on di�erentiable manifolds. Assume given a real or
omplex C1 ve
tor bundle E of rank r on a di�erentiable manifoldM of 
lass C1.A 
onne
tion D on E is a linear di�erential operator of order 1D : C1(M;�qT �M 
E)! C1(M;�q+1T �M 
E)su
h that D satis�es Leibnitz rule:(1.4) D(f ^ u) = df ^ u+ (�1)deg ff ^Dufor all forms f 2 C1(M;�pT �M ); u 2 C1(X;�qT �M 
 E). On an open set 
 �Mwhere E admits a trivialization � : Ej
 '�! 
� C r , a 
onne
tion D 
an be writtenDu '� du+ � ^ uwhere � 2 C1(
;�1T �M 
 Hom(C r ; C r )) is a given matrix of 1-forms and where da
ts 
omponentwise on u '� (u�)1���r. It is then easy to verify thatD2u '� (d� + � ^ �) ^ u on 
:Sin
e D2 is a globally de�ned operator, there exists a global 2-form(1.5) �(D) 2 C1(M;�2T �M 
Hom(E;E))su
h that D2u = �(D)^u for any form u with values in E. This 2-form with valuesin Hom(E;E) is 
alled the 
urvature tensor of the 
onne
tion D.Now suppose that E is equipped with a Eu
lidean metri
 (resp. Hermitian) of
lass C1 and that the isomorphism Ej
 ' 
 � C r is given by a C1 frame (e�).
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anoni
al bilinear pairing, (resp. sesquilinear).C1(M;�pT �M 
E)� C1(M;�qT �M 
E)! C1(M;�p+qT �M 
 C )(1.6) (u; v) 7! fu; vggiven byfu; vg =X�;� u� ^ v�he�; e�i; u =Xu� 
 e�; v =X v� 
 e�:The 
onne
tion D is 
alled Hermitian if it satis�es the additional propertydfu; vg = fDu; vg+ (�1)degufu;Dvg:By assuming that (e�) is orthonormal, one easily veri�es that D is Hermitian if andonly if �� = ��. In this 
ase �(D)� = ��(D), thereforei�(D) 2 C1(M;�2T �M 
Herm(E;E)):1.7. A parti
ular 
ase. For a 
omplex line bundle L (a 
omplex ve
torbundle of rank 1), the 
onne
tion form � of a Hermitian 
onne
tion D 
an be takento be a 1-form with purely imaginary 
oeÆ
ients � = iA (A real). We then have�(D) = d� = idA. In parti
ular i�(L) is a 
losed 2-form. The �rst Chern 
lass ofL is de�ned to be the 
ohomology 
lass
1(L)R = � i2��(D)� 2 H2DR(M;R):This 
ohomology 
lass is independent of the 
hoi
e of 
onne
tion, sin
e any other
onne
tion D1 di�ers by a global 1-form, D1u = Du + B ^ u, so that �(D1) =�(D) + dB. It is well-known that 
1(L)R is the image in H2(M;R) of an integral
lass 
1(L) 2 H2(M;Z). Indeed if A = C1 is the sheaf of C1 fun
tions on M ,then via the exponential exa
t sequen
e0! Z! A e2�i����! A� ! 0;
1(L) 
an be de�ned in �Ce
h 
ohomology as the image of the 
o
y
le fgjkg 2H1(M;A�) de�ning L by the 
oedge mapH1(M;A�)! H2(M;Z). See for example[GH78℄ for more details.1.C. Conne
tions on 
omplex manifolds. We now study those propertiesof 
onne
tions governed by the existen
e of a 
omplex stru
ture on the base mani-fold. If M = X is a 
omplex manifold, any 
onne
tion D on a 
omplex C1 ve
torbundle E 
an be split in a unique manner as a sum of a (1; 0)-
onne
tion and a(0; 1)-
onne
tion, D = D0 +D00. In a lo
al trivialization � given by a C1 frame,one 
an write D0u '� d0u+ �0 ^ u;(1.80) D00u '� d00u+ �00 ^ u;(1.800)with � = �0 + �00. The 
onne
tion is Hermitian if and only if �0 = �(�00)� relativeto any orthonormal frame. As a 
onsequen
e, there exists a unique Hermitian
onne
tion D asso
iated to a (0; 1)-
onne
tion pres
ribed by D00.



9 2. differential operators on ve
tor bundlesNow suppose that the bundle E is endowed with a holomorphi
 stru
ture. Theunique Hermitian 
onne
tion whose 
omponent D00 is the operator d00 de�ned inx1.A is 
alled the Chern 
onne
tion of E. With respe
t to a lo
al holomorphi
frame (e�) of Ej
 , the metri
 is given by the Hermitian matrix H = (h��) whereh�� = he�; e�i. We havefu; vg = X�;� h��u� ^ v� = uy ^Hv;where uy is the transpose matrix of u, and an easy 
al
ulation givesdfu; vg = (du)y ^Hv + (�1)deguuy ^ (dH ^ v +Hdv)= (du+H�1d0H ^ u)y ^Hv + (�1)deguuy ^ (dv +H�1d0H ^ v);by using the fa
t that dH = d0H + d0H and Hy = H . Consequently the Chern
onne
tion D 
oin
ides with the Hermitian 
onne
tion de�ned by( Du '� du+H�1d0H ^ u;D0 '� d0 +H�1d0H ^ � = H�1d0(H�); D00 = d00:(1.9)These relations show that D02 = D002 = 0. Consequently D2 = D0D00 +D00D0, andthe 
urvature tensor �(D) is of type (1; 1). Sin
e d0d00 + d00d0 = 0, we obtain(D0D00 +D00D0)u '� H�1d0H ^ d00u+ d00(H�1d0H ^ u) = d00(H�1d0H) ^ u:1.10. Proposition. The Chern 
urvature tensor �(E) := �(D) satis�esi�(E) 2 C1(X;�1;1T �X 
 Herm(E;E)):If � : E�
 ! 
 � C r is a holomorphi
 trivialization and if H is the Hermitianmatrix representative of the metri
 along the �bers of E�
, theni�(E) '� id00(H�1d0H) on 
: �If (z1; : : : ; zn) are holomorphi
 
oordinates on X and if (e�)1���r is an orthog-onal frame of E, one 
an write(1.11) i�(E) = X1�j;k�n;1��;��r 
jk��dzj ^ dzk 
 e�� 
 e�;where (
jk��(x)) are the 
oeÆ
ients of the 
urvature tensor of E at any point x 2 X .2. Di�erential operators on ve
tor bundlesWe �rst des
ribe some basi
 
on
epts 
on
erning di�erential operators (symbol,
omposition, ellipti
ity, adjoint), in the general 
ontext of ve
tor bundles. Assumegiven M a manifold of di�erentiable 
lass C1; dimRM = m, and E; F given Kve
tor bundles on M , over the �eld K = R or K = C su
h that rank E = r, rankF = r0.



j.-p. demailly, part i: L2 hodge theory 102.1. Definition. A (linear) di�erential operator of degree Æ from E to F is aK -linear operator P : C1(M;E)! C1(M;F ); u 7! Pu of the formPu(x) = Xj�j�Æ a�(x)D�u(x);where E�
 ' 
 � K r ; F�
 ' 
 � K r0 are lo
al trivializations on an open 
hart
 � M with lo
al 
oordinates (x1; : : : ; xm), and the 
oeÆ
ients a�(x) are r0 �r matri
es (a���(x))1���r0;1���r with C1 
oeÆ
ients on 
. One writes hereD� = (�=�x1)�1 � � � (�=�xm)�m as usual, and the matri
es u = (u�)1���r , D�u =(D�u�)1���r are viewed as 
olumn ve
tors.If t 2 K is a parameter and f 2 C1(M;K ); u 2 C1(M;E), an easy 
al
ulationshows that e�tf(x)P (etf(x)u(x)) is a polynomial of degree Æ in t, of the forme�tf(x)P (etf(x)u(x)) = tÆ�P (x; df(x)) � u(x) + terms 
j(x)tj of degree j < Æ;where �P is a homogeneous polynomial map T �M ! Hom(E;F ) de�ned by(2.2) T �M;x 3 � 7! �P (x; �) 2 Hom(Ex; Fx); �P (x; �) = Xj�j=Æ a�(x)��:Then �P (x; �) is a C1 fun
tion of the variables (x; �) 2 T �M , and this fun
tionis independent of the 
hoi
e of 
oordinates or trivialization used for E; F . �P is
alled the prin
ipal symbol of P . The prin
ipal symbol of a 
omposition Q Æ P ofdi�erential operators is simply the produ
t.(2.3) �QÆP (x; �) = �Q(x; �)�P (x; �);
al
ulated as a produ
t of matri
es. The di�erential operators for whi
h the symbolsare inje
tive play a very important role:2.4. Definition. A di�erential operator P is said to be ellipti
 if �P (x; �) 2Hom(Ex; Fx) is inje
tive for all x 2M and � 2 T �M;xnf0g.Let us now assume that M is oriented and assume given a C1 volume formdV (x) = 
(x)dx1^� � �^dxm, where 
(x) > 0 is a C1 density. If E is a Eu
lidean orHermitian ve
tor bundle, we 
an de�ne a Hilbert spa
e L2(M;E) of global se
tionswith values in E, being the spa
e of forms u with measurable 
oeÆ
ients whi
h aresquare summable se
tions with respe
t to the s
alar produ
tjjujj2 = ZM ju(x)j2dV (x);(2.5) hhu; vii = ZM hu(x); v(x)idV (x); u; v 2 L2(M;E):(2.50)2.6. Definition. If P : C1(M;E)! C1(M;F ) is a di�erential operator andif the bundles E; F are Eu
lidean or Hermitian, there exists a unique di�erentialoperator P � : C1(M;F )! C1(M;E);
alled the formal adjoint of P , su
h that for all se
tions u 2 C1(M;E) and v 2C1(M;F ) one has an identityhhPu; vii = hhu; P �vii; whenever Supp u \ Supp v �� M:
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 operatorsProof. The uniqueness is easy to verify, being a 
onsequen
e of the densityof C1 forms with 
ompa
t support in L2(M;E). By a partition of unity argu-ment, we redu
e the veri�
ation of the existen
e of P � to the proof of its lo
alexisten
e. Now let Pu(x) = �j�j�Æa�(x)D�u(x) be the des
ription of P relative tothe trivializations of E; F asso
iated to an orthonormal frame and to the systemof lo
al 
oordinates on an open set 
 �M . By assuming Supp u \ Supp v �� 
,integration by parts giveshhPu; vii = Z
 Xj�j�Æ;�;�a���D�u�(x)v�(x)
(x)dx1 ; : : : ; dxm= Z
 Xj�j�Æ;�;�(�1)j�ju�(x)D�(
(x)a���v�(x)dx1; : : : ; dxm= Z
hu; Xj�j�Æ(�1)j�j
(x)�1D��
(x)ay�v(x)�idV (x):We thus see that P � exists, and is de�ned in a unique way by(2.7) P �v(x) = Xj�j�Æ(�1)j�j
(x)�1D��
(x)ay�v(x)�: �Formula (2.7) shows immediately that the prin
ipal symbol of P � is given by(2.8) �P�(x; �) = (�1)Æ Xj�j=Æ ay��� = (�1)Æ�P (x; �)�:If rank E = rank F , the operator P is ellipti
 if and only if �P (x; �) is invertiblefor � 6= 0, therefore the ellipti
ity of P is equivalent to that of P �.3. Fundamental results on ellipti
 operatorsWe assume throughout this se
tion thatM is a 
ompa
t oriented C1 manifoldof dimension m, with volume form dV . Let E ! M be a C1 Hermitian ve
torbundle of rank r on M .3.A. Sobolev spa
es. For any real number s, we de�ne the Sobolev spa
eW s(Rm ) to be the Hilbert spa
e of tempered distributions u 2 S 0(Rm ) su
h thatthe Fourier transform û is a L2lo
 fun
tion satisfying the estimate(3.1) jjujj2s = ZRm(1 + j�j2)sjû(�)j2d�(�) < +1:If s 2 N, we have jjuj2s � ZRm Xj�j�s jD�u(x)j2d�(x);therefore W s(Rm ) is the Hilbert spa
e of fun
tions u su
h that all the derivativesD�u of order j�j � s are in L2(Rm ).More generally, we denote byW s(M;E) the Sobolev spa
e of se
tions u :M !E whose 
omponents are lo
ally in W s(Rm ) on all open 
harts. More pre
isely,
hoose a �nite sub
overing (
j) of M by open 
oordinate 
harts 
j ' Rm onwhi
h E is trivial.



j.-p. demailly, part i: L2 hodge theory 12Consider an orthonormal frame (ej;�)1���r of E�
j and write u in terms of its
omponents, i.e. u =Puj;�ej;�. We then setjjujj2s =Xj;� jj juj;�jj2swhere ( j) is a \partition of unity" subordinate to (
j), su
h that P 2j = 1.The equivalen
e of norms jj jjs is independent of 
hoi
es made. We will need thefollowing fundamental fa
ts, that the reader will be able to �nd in many of thespe
ialized works devoted to the theory of partial di�erential equations.3.2. Sobolev lemma. For an integer k 2 N and any real numbers s � k+ m2 ,we have W s(M;E) � Ck(M;E) and the in
lusion is 
ontinuous. �It follows immediately from the Sololev lemma that\s�0W s(M;E) = C1(M;E);[s�0W s(M;E) = D0(M;E):3.3. Relli
h lemma. For all t > s, the in
lusionW t(M;E) ,!W s(M;E)is a 
ompa
t linear operator. �3.B. Pseudodi�erential operators. If P =Pj�j�Æ a�(x)D� is a di�erentialoperator on Rm , the Fourier inversion formula givesPu(x) = ZRm Xj�j�Æ a�(x)(2�i�)�û(�)e2�ix��d�(�); 8u 2 D(Rm );where û(�) = RRm u(x)e�2�ix��d�(x) is the Fourier transform of u. We 
all�(x; �) = Xj�j�Æ a�(x)(2�i�)�;the symbol (or total symbol) of P .A pseudodi�erential operator is an operator Op� de�ned by a formula of thetype(3.4) Op�(u)(x) = ZRm �(x; �)û(�)e2�ix��d�(�); u 2 D(Rm );where � belongs to a suitable 
lass of fun
tions on T �Rm. The standard 
lass ofsymbols SÆ(Rm ) is de�ned as follows: Assume given Æ 2 R; SÆ(Rm ) is the 
lass ofC1 fun
tions �(x; �) on T �Rm su
h that for any �; � 2 Nm and any 
ompa
t subsetK � Rm one has an estimate(3.5) jD�xD�� �(x; �)j � C�;�(1 + j�j)Æ�j�j; 8(x; �) 2 K � Rm ;where Æ 2 R is regarded as the \degree" of �. Then Op�(u) is a well de�ned C1fun
tion on Rm , sin
e û belongs to the 
lass S(Rm ) of fun
tions having rapid de
ay.In the more general situation of operators a
ting on a bundle E and having values
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 operatorsin a bundle F over a 
ompa
t manifold M , we introdu
e the analogous spa
e ofsymbols SÆ(M ;E;F ). The elements of SÆ(M ;E;F ) are the fun
tionsT �M 3 (x; �) 7! �(x; �) 2 Hom(Ex; Fx)satisfying 
ondition (3.5) in all 
oordinate systems. Finally, we take a �nite trivial-izing 
over (
j) of M and a \partition of unity" ( j) subordinate to 
j su
h thatP 2j = 1, and we de�neOp�(u) =X jOp�( ju); u 2 C1(M;E);in a way whi
h redu
es the 
al
ulations to the situation of Rm . The basi
 resultspertaining to the theory of pseudodi�erential operators are summarized below.3.6. Existen
e of extensions to the spa
es W s. If � 2 SÆ(M ;E;F ), thenOp� extends uniquely to a 
ontinuous linear operatorOp� :W s(M;E)!W s�Æ(M;F ): �In parti
ular if � 2 S�1(M ;E;F ) := TSÆ(M ;E;F ), then Op� is a 
ontinuousoperator sending an arbitrary distributional se
tion of D0(M;E) into C1(M;F ).Su
h an operator is 
alled a regular operator. It is a standard result in the theoryof distributions that the 
lass R of regular operators 
oin
ides with the 
lass ofoperators de�ned by means of a C1 kernel K(x; y) 2 Hom(Ey; Fx). That is, theoperators of the formR : D0(M;E)! C1(M;F ); u 7! Ru; Ru(x) = ZM K(x; y) � u(y)dV (y):Conversely, if dV (y) = 
(y)dy1 � � � dym on 
j and if we write Ru =PR(�ju), where(�j) is a partition of unity, the operator R(�j�) is the pseudodi�erential operatorasso
iated to the symbol � de�ned by the partial Fourier transform�(x; �) = �
(y)�j(y)K(x; y)�ŷ (x; �); � 2 S�1(M ;E;F ):When one works with pseudodi�erential operators, it is 
ustomary to work modulothe regular operators and to allow operators more generally of the form Op� + Rwhere R 2 R is an arbitrary regular operator.3.7. Composition. If � 2 SÆ(M ;E;F ) and �0 2 SÆ0(M ;F;G); Æ; Æ0 2 R,there exists a symbol �0}� 2 SÆ+Æ0(M ;E;G) su
h that Op�0 ÆOp� = Op�0}� modR. Moreover �0}� � �0 � � 2 SÆ+Æ0�1(M ;E;G):3.8. Definition. A pseudodi�erential operator Op� of degree Æ is 
alled el-lipti
 if it 
an be de�ned by a symbol � 2 SÆ(M;E; F ) su
h thatj�(x; �) � uj � 
j�jÆjuj; 8(x; �) 2 T �M ; 8u 2 Exfor j�j large enough, the estimate being uniform for x 2M .If E and F have the same rank, the ellipti
ity 
ondition implies that �(x; �) isinvertible for large �. By taking a suitable trun
ating fun
tion �(�) equal to 1 forlarge �, one sees that the fun
tion �0(x; �) = �(�)�(x; �)�1 de�nes a symbol in thespa
e S�Æ(M ;F;E), and a

ording to (3.8) we have Op�0 ÆOp� = Id + Op�; � 2S�1(M ;E;E). Choose a symbol � asymptomati
ally equivalent (at in�nity) to the



j.-p. demailly, part i: L2 hodge theory 14expansion Id� �+ �}2 + � � �+ (�1)j�}j + � � � . It is 
lear then that one obtains aninverse Op�}�0 of Op� modulo R. An easy 
onsequen
e of this observation is thefollowing:3.9. G�arding inequality. Assume given P : C1(M;E) ! C1(M;F ) anellipti
 di�erential operator of degree Æ, where rank E = rank F = r, and let ~Pbe an extension of P with distributional 
oeÆ
ient se
tions. For all u 2W 0(M;E)su
h that ~Pu 2W s(M;F ), one then has u 2 W s+Æ(M;E) andjjujjs+Æ � Cs(jj ~Pujjs + jjujj0);where Cs is a positive 
onstant depending only on s.Proof. Sin
e P is ellipti
, there exists a symbol � 2 S�Æ(M ;F;E) su
h thatOp� Æ ~P = Id + R; R 2 R. Then jjOp�(v)jjs+Æ � Cjjvjjs by applying (3.6).Consequently, in setting v = ~Pu, we see that u = Op�( ~Pu) � Ru satis�es thedesired estimate. �3.C. Finiteness theorem. We 
on
lude this se
tion with the proof of thefollowing fundamental �niteness theorem, whi
h is the starting point of L2 Hodgetheory.3.10. Finiteness Theorem. Assume given E; F Hermitian ve
tor bun-dles on a 
ompa
t manifold M , su
h that rank E = rank F = r; and givenP : C1(M;E)! C1(M;F ) an ellipti
 di�erential operator of degree Æ. Then:i) KerP is �nite dimensional.ii) P (C1(M;E)) is 
losed and of �nite 
odimension in C1(M;F ); moreover, ifP � is the formal adjoint of P , there exists a de
omposition.C1(M;F ) = P (C1(M;E))�KerP �as an orthogonal dire
t sum in W 0(M;F ) = L2(M;F ).Proof. (i) The G�arding inequality shows that jjujjs+Æ � Csjjujj0 for all u 2KerP . By the Sobolev Lemma, this implies that KerP is 
losed in W 0(M;E).Moreover, the jj jj0-
losed unit ball of KerP is 
ontained in the jj jjÆ-ball of radiusC0, therefore it is 
ompa
t a

ording to the Relli
h Lemma. Riesz Theorem impliesthat dimKerP < +1.(ii) We �rst show that the extension~P :W s+Æ(M;E)!W s(M;F )has 
losed image for all s. For any � > 0, there exists a �nite number of elementsv1; : : : ; vN 2W s+Æ(M;F ); N = N(�), su
h that(3.11) jjujj0 � �jjujjs+Æ + NXj=1 jhhu; vjii0j:Indeed the set:K(vj) = �u 2W s+Æ(M;F ) ; �jjujjs+Æ + NXj=1 jhhu; vjii0j � 1�;
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 operatorsis relatively 
ompa
t in W 0(M;F ) and T(vj)K(vj) = f0g. It follows that thereare elements (vj) su
h that K(vj) are 
ontained in the unit ball of W 0(M;E),as required. Substituting the main term jjujj0 given by (3.11) in the G�ardinginequality; we obtain(1� Cs�)jjujjs+Æ � Cs�jj ~Pujjs + NXj=1 jhhu; vjii0j�:De�ne T = fu 2 W s+Æ(M;E) ; u ? vj ; 1 � j � ng and put � = 1=2Cs. It followsthat jjujjs+Æ � 2Csjj ~Pujjs; 8u 2 T:This implies that ~P (T ) is 
losed. As a 
onsequen
e~P (W s+Æ(M;E)) = ~P (T ) + Ve
t� ~P (v1); : : : ; ~P (vN )�is 
losed in W s(M;E). Consider now the 
ase s = 0. Sin
e C1(M;E) is dense inW Æ(M;E), we see that in W 0(M;E) = L2(M;E), one has� ~P �W Æ(M;E)��? = �P �C1(M;E)��? = Ker ~P �:We have thus proven that(3.12) W 0(M;E) = ~P �W Æ(M;E)��Ker ~P �:Sin
e P � is also ellipti
, it follows that Ker ~P � is �nite dimensional and thatKer ~P � = KerP � is 
ontained in C1(M;F ). By applying the G�arding inequal-ity, the de
omposition formula (3.12) givesW s(M;E) = ~P �W s+Æ(M;E)��KerP �;(3.13) C1(M;E) = P �C1(M;E)��KerP �:(3.14)We �nish this se
tion by the 
onstru
tion of the Green's operator asso
iated toa self-adjoint ellipti
 operator.3.15. Theorem. Assume given E a Hermitian ve
tor bundle of rank r on a
ompa
t manifold M , and P : C1(M;E) ! C1(M;E) a self-adjoint ellipti
 dif-ferential operator of degree Æ. Then if H denotes the orthogonal proje
tion operatorH : C1(M;E)! KerP , there exists a unique operator G on C1(M;E) su
h thatPG + H = GP + H = Id;moreover G is a pseudo-di�erential operator of degree �Æ, 
alled the Green's oper-ator asso
iated to P .Proof. A

ording to Theorem 3.10, KerP = KerP � is �nite dimensional andIm P = (KerP )?. It then follows that the restri
tion of P to (KerP )? is a bije
tiveoperator. One de�nes G to be 0 � P�1 relative to the orthogonal de
ompositionC1(M;E) = KerP � (KerP )?. The relations PG +H = GP +H = Id are thenobvious, as well as the uniqueness of G. Moreover, G is 
ontinuous in the Fr�e
hetspa
e topology of C1(M;E), a

ording to the Bana
h theorem. One also uses



j.-p. demailly, part i: L2 hodge theory 16the fa
t that there exists a pseudo-di�erential operator Q of order �Æ whi
h is aninverse of P modulo R, i.e. PQ = Id +R; R 2 R. It then follows thatQ = (GP +H)Q = G(Id +R) +HQ = G+GR+HQ;where GR andHG are regular. (H is a regular operator of �nite rank de�ned by thekernelP's(x)
'�s(y), if ('s) is a basis of eigenfun
tions of KerP � C1(M;E).)Consequently G = Q mod R and G is a pseudodi�erential operator of order �Æ. �3.16. Corollary. Under the hypotheses of 3.15, the eigenvalues of P form areal sequen
e �k su
h that limk!+1 j�kj = +1, the eigenspa
es V�k of P are �nitedimensional, and one has a Hilbert spa
e dire
t sumL2(M;E) =dMkV�k :For any integer m 2 N, an element u =Pk uk 2 L2(M;E) is in WmÆ(X;E) if andonly if P j�k j2mjjukjj2 < +1.Proof. The Green's operator extends to a self-adjoint operator~G : L2(M;E)! L2(M;E)whi
h fa
tors through W Æ(M;E), and is therefore 
ompa
t. This operator de�nesan inverse to ~P : W Æ(M;E) ! L2(M;E) on (KerP )?. The spe
tral theory of
ompa
t self-adjoint operators shows that the eigenvalues �k of ~G form a realsequen
e tending to 0 and that L2(M;E) is a dire
t sum of Hilbert eigenspa
es.The 
orresponding eigenvalues of ~P are �k = ��1k if �k 6= 0 and a

ording to theellipti
ity of P � �kId, the eigenspa
es V�k = Ker(P � �kId) are �nite dimensionaland 
ontained in C1(M;E). Finally, if u = Pk uk 2 L2(M;E), the G�ardinginequality shows that u 2WmÆ(M;E) if and only if ~Pmu 2 L2(M;E) =W 0(M;E),whi
h easily gives the 
ondition P j�kj2mjjukjj2 < +1.4. Hodge theory of 
ompa
t Riemannian manifoldsThe establishment of Hodge theory as a well developed subje
t, was 
arriedout by W.V.D Hodge during the de
ade 1930-1940 (see [Hod41℄, [DR55℄). Theprin
ipal goal of the theory is to des
ribe the de Rham 
ohomology algebra of aRiemannian manifold in terms of its harmoni
 forms. The prin
ipal result is thatany 
ohomology 
lass has a unique harmoni
 representative.4.A. Eu
lidean stru
ture of the exterior algebra. Let (M; g) be an ori-ented Riemannian C1 manifold of dimension m, and let E ! M be a Hermit-ian ve
tor bundle of rank r on M . We denote respe
tively by (�1; : : : ; �m) and(e1; : : : ; er) orthonormal frames of TM and of E on a 
oordinate 
hart 
 �M , andlet (��1 ; : : : ; ��m), (e�1; : : : ; e�r) be the 
orresponding dual 
oframes of T �M ; E� re-spe
tively. Further, let dV be the Riemannian volume element on M . The exterioralgebra ��T �M is endowed with a natural inner produ
t h�; �i, given by(4.1) hu1 ^ � � � ^ up; v1 ^ � � � ^ vpi = det(huj ; vki)1�j;k�p; uj ; vk 2 T �Mfor all p, with ��T �M = L�pT �M an orthogonal dire
t sum. Thus the family of
ove
tors ��I = ��i1 ^ � � � ^ ��ip ; i1 < i2 < � � � < ip, de�nes an orthonormal basis of��T �M . One denotes by h�; �i the 
orresponding inner produ
t on ��T �M 
E.
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ompa
t Riemannian manifolds4.2. Hodge star operator. The Hodge-Poin
ar�e-de Rham ? operator is theendomorphism of ��T �M de�ned by a 
olle
tion of linear maps su
h that? : �pT �M ! �m�pT �M ; u ^ ?v = hu; vidV; 8u; v 2 �pT �M :The existen
e and uniqueness of this operator follows easily from the dualitypairing �pT �M � �m�pT �M ! R(4.3) (u; v) 7! u ^ v=dV =X �(I; {I)uIv{I ;where u = PjIj=p uI��I ; v = PjJj=m�p vJ��J , and where �(I; {I) is the sign of thepermutation (1; 2; : : : ;m) 7! (I; {I) de�ned by I followed by the 
omplementary(ordered) multi-indi
es {I . From this, we dedu
e(4.4) ?v = XjIj=p �(I; {I)vI��{I :More generally, the sesquilinear pairing f�; �g de�ned by (1.6) indu
es an operator? on the ve
tor-valued forms, su
h that(4.5) ? : �pT �M 
E ! �m�pT �M 
E; fs; ?tg = hs; tidV;(4.6) ?t = XjIj=p;� �(I; {I)tI;���{I 
 e�; 8s; t 2 �pT �M 
E;for t =P tI;���I 
 e�. Sin
e �(I; {I)�({I; I) = (�1)p(m�p) = (�1)p(m�1), we imme-diately obtain(4.7) ? ? t = (�1)p(m�1)t on �pT �M 
E:It is 
lear that ? is an isometry of ��T �M 
E. We will also need a variant of the ?operator, namely the antilinear operator# : �pT �M 
E ! �m�pT �M 
E�de�ned by s ^ #t = hs; tidV , where the exterior produ
t ^ is 
ombined with the
anoni
al pairing E � E� ! C . We have(4.8) #t = XjIj=p;� �(I; {I)tI;���{I 
 e��:4.9. Contra
tion by a ve
tor �eld. Assume given a tangent ve
tor � 2 TMand a form u 2 �pT �M . The 
ontra
tion �yu 2 �p�1T �M is de�ned by�yu(�1; : : : ; �p�1) = u(�; �1; : : : ; �p�1); �j 2 TM :In terms of the basis (�j); �y� is the bilinear operator 
hara
terized by�ly(��i1 ^ � � � ^ ��ip) = ( 0 if l 62 fi1; : : : ; ipg,(�1)k�1��i1 ^ � � � �̂�ik � � � ��ip if l = ik:This same formula is also valid when (�j) is not orthonormal. An easy 
al
ulationshows that �y� is a derivation of the exterior algebra, i.e. that�y(u ^ v) = (�yu) ^ v + (�1)deg uu ^ (�yv):



j.-p. demailly, part i: L2 hodge theory 18Moreover, if ~� = h�; �i 2 T �M , the operator �y� is the adjoint of ~� ^ �, i.e.,(4.10) h�yu; vi = hu; ~� ^ vi; 8u; v 2 ��T �M :Indeed, this property is immediate when � = �l; u = ��I ; v = ��J .4.B. Lapla
e-Beltrami operator. Let E be a Hermitian ve
tor bundle onM , and let DE be a Hermitian 
onne
tion on E. We 
onsider the Hilbert spa
eL2(M;�pT �M 
 E) of p-forms on M with values in E, with the given L2 s
alarprodu
t hhs; tii = ZM hs; tidValready introdu
ed in (2.5). Here hs; ti is the spe
i�
 s
alar produ
t on �pT �M 
Easso
iated to the Riemannian s
alar produ
t on �pT �M and the Hermitian pairingon E.4.11. Theorem. The formal adjoint of DE a
ting on C1(M;�pT �M 
 E) isgiven by D�E = (�1)mp+1 ? DE ? :Proof. If s 2 C1(M;�pT �M 
E) and t 2 C1(M;�p+1T �M
E) have 
ompa
tsupport, we havehhDEs; tii = ZM hDEs; tidV = ZMfDEs; ?tg= ZM dfs; ?tg � (�1)pfs;DE ? tg = (�1)p+1 ZMfs;DE ? tgby an appli
ation of Stokes theorem. As a 
onsequen
e, (4.5) and (4.7) implyhhDEs; tii = (�1)p+1(�1)p(m�1) ZMfs; ? ? DE ? tg = (�1)mp+1hhs; ?DE ? tii:The desired formula follows. �4.12. Remark. In the 
ase of the trivial 
onne
tion d on E = M � C , theformula be
omes d� = (�1)m+1 ? d?. If m is even, these formulas redu
e tod� = � ? d?; D�E = � ? DE ? :4.13. Definition. The Lapla
e-Beltrami operator is the se
ond order di�er-ential operator a
ting on the bundle, �pT �M 
E, su
h that�E = DED�E +D�EDE :In parti
ular, the Lapla
e-Beltrami operator a
ting on �pT �M is � = dd� + d�d.This latter operator does not depend on the Riemannian stru
ture (M; g).It is 
lear that the Lapla
ian � is formally self-adjoint i.e. hh�Es; tii =hhs;�Etii whenever the forms s; t are C1 and that one of them has 
ompa
tsupport.



19 4. hodge theory of 
ompa
t Riemannian manifolds4.14. Cal
ulation of the symbol. For every C1 fun
tion f , Leibnitz rulegives e�tfDE(etfs) = tdf ^ s+DEs. By de�nition of the symbol, we therefore �nd�DE (x; �) � s = � ^ s; 8� 2 T �M;x; 8s 2 �pT �M 
E:From formula (2.8), we obtain �D�E = �(�DE )�, therefore�D�E (x; �) � s = �~�yswhere ~� 2 TM is the adjoint tangent ve
tor of �. The equality ��E = �DE�D�E +�D�E�DE implies that��E (x; �) � s = �� ^ (~�ys)� ~�y(� ^ s) = �(~�y�)s;��E (x; �) � s = �j�j2s:In parti
ular, �E is always an ellipti
 operator. In the spe
ial 
ase where M isan open subset of Rm with the 
onstant metri
 g =Pmi=1 dx2i , all these operatorsd; d�; � have 
onstant 
oeÆ
ients. They are 
ompletely determined by theirprin
ipal symbol (no term of lower order 
an appear). One easily 
omputes:s = XjIj=p sIdxI ; ds = XjIj=p;j �sI�xj dxj ^ dxI ;d�s = �XI;j �sI�xj ��xj ydxI ;�s = �XI �Xj �2sI�x2j �dxI :Consequently � has the same expression as the elementary Lapla
ian operator, upto a minus sign.4.C. Harmoni
 forms and the Hodge isomorphism. Let E be a Hermit-ian ve
tor bundle on a 
ompa
t Riemannian manifold (M; g). We assume that E isgiven a Hermitian 
onne
tion DE su
h that �(DE) = D2E = 0. Su
h a 
onne
tionis said to be integrable or 
at. It is known that this is equivalent to su
h an Egiven by a representation �1(M) ! U(r). Su
h a bundle is 
alled a 
at bundle ora lo
al system of 
oeÆ
ients. A standard example is the trivial bundle E =M � Cwith its obvious 
onne
tion DE = d. Our assumption implies that DE de�nes ageneralized de Rham 
omplexC1(M;E) DE��! C1(M;�1T �M 
E)! � � � ! C1(M;�pT �M 
E) DE��! � � � :The 
ohomology groups of this 
omplex are denoted by HpDR(M;E).The spa
e of harmoni
 forms of degree p relative to the Lapla
e-Beltrami op-erator �E = DED�E +D�EDE is de�ned byHp(M;E) = �s 2 C1(M;�pT �M 
E) ; �Es = 0	:Sin
e hh�Es; sii = jjDesjj2 + jjD�Esjj2, we see that s 2 Hp(M;E) if and only ifDEs = D�Es = 0.



j.-p. demailly, part i: L2 hodge theory 204.16. Theorem. For all p, there exists an orthogonal de
ompositionC1(M;�pT �M 
E) = Hp(M;E)� ImDE � ImD�E ; whereImDE = DE�C1(M;�p�1T �M 
E)�;ImD�E = D�E�C1(M;�p+1T �M 
E)�:Proof. It is immediate that Hp(M;E) is orthogonal to the two subspa
esImDE and ImD�E. The orthogonality of these two subspa
es is also obvious, as aresult of the hypothesis D2E = 0, namely:hhDEs;D�Etii = hhD2Es; tii = 0:We now apply th. 3.10 to the ellipti
 operator �E = ��E a
ting on the p-forms, i.e.the operator �E : C1(M;F ) ! C1(M;F ) a
ting on the bundle F = �pT �M 
 E.We obtain C1(M;�pT �M 
E) = Hp(M;E)��E(C1(M;�pT �M 
E));Im�E = Im(DED�E +D�EDE) � ImDE + ImD�E :Further, sin
e ImDE and ImD�E are orthogonal to Hp(M;E), these spa
es are
ontained in Im�E . �4.17. Hodge Isomorphism Theorem. The de Rham 
ohomology groupsHpDR(M;E) are �nite dimensional; moreover HpDR(M;E) ' Hp(M;E).Proof. From the de
omposition in (4.16), we obtainBpDR(M;E) = DE(C1(M;�p�1T �M 
E));ZpDR(M;E) = KerDE = (ImD�E)? = Hp(M;E)� ImDE :This shows that any de Rham 
ohomology 
lass 
ontains a unique harmoni
 repre-sentative. �4.18. Poin
ar�e duality. The pairingHpDR(M;E)�Hm�pDR (M;E�)! C ; (s; t) 7! ZM s ^ tis a non-degenerate bilinear form, and thus de�nes a duality between HpDR(M;E)and Hm�pDR (M;E�):Proof. First observe that there is a naturally de�ned 
at 
onne
tion DE�su
h that for all s 2 C1(M;��T �M 
E); t 2 C1(M;��T �M 
E�), one has(4.19) d(s ^ t) = (DEs) ^ t+ (�1)deg ss ^DE�t:It then follows from Stokes theorem that the bilinear map (s; t) 7! RM s ^ t fa
torsthrough the 
ohomology groups. For s 2 C1(M;�pT �M 
E), the reader 
an easilyverify the following formulas (use (4.19) in a similar way to that whi
h was donefor the proof of th. 4.11):(4.20)DE�(#s) = (�1)p#D�Es; (DE�)�(#s) = (�1)p+1#DEs; �E�(#s) = #�sE :



21 5. Hermitian and k�ahler manifoldsConsequently #s 2 Hm�p(M;E�) if and only if s 2 Hp(M;E). Sin
eZM s ^#s = ZM jsj2dV = jjsjj2;it follows that the Poin
ar�e duality pairing has trivial kernel in the left fa
torHp(M;E) ' HpDR(M;E). By symmetry, it also has trivial kernel in the right. This
ompletes the proof. �5. Hermitian and K�ahler manifoldsLet X be a 
omplex manifold of dimension n. A Hermitian metri
 on Xis a positive de�nite Hermitian C1 form on TX . In terms of lo
al 
oordinates(z1; : : : ; zn), su
h a form 
an be writtenh(z) = X1�j;k�n hjk(z)dzj 
 dzk;where (hjk) is a positive Hermitian matrix with C1 
oeÆ
ients. The fundamental(1; 1)-form asso
iated to h is! = �Imh = i2Xhjkdzj ^ dzk; 1 � j; k � n:5.1. Definition.a) A Hermitian manifold is a pair (X;!) where ! is a positive de�nite C1 (1; 1)-form on X .b) The metri
 ! is said to be K�ahler if d! = 0.
) X is 
alled a K�ahler manifold if X has at least one K�ahler metri
.Sin
e ! is real, the 
onditions d! = 0; d0! = 0; d00! = 0 are all equivalent. Inlo
al 
oordinates, we see that d0! = 0 if and only if�hjk�zl = �hlk�zj ; 1 � j; k; l � n:A simple 
al
ulation gives!nn! = det(hjk) ^1�j�n� i2dzj ^ dzj� = det(hjk)dx1 ^ dy1 ^ � � � ^ dxn ^ dyn;where zn = xn + iyn. Consequently the (n; n) form(5.2) dV = 1n!!nis positive and 
oin
ides with the Hermitian volume element of X . If X is 
ompa
t,then RX !n = n!Vol!(X) > 0. This simple observation already implies that a
ompa
t K�ahler manifold must satisfy 
ertain restri
tive topologi
al 
onditions:5.3. Consequen
e.a) If (X;!) is 
ompa
t K�ahler and if f!g denotes the 
ohomology 
lass of ! inH2(X;R), then f!gn 6= 0.b) If X is 
ompa
t K�ahler, then H2k(X;R) 6= 0 for 0 � k � n. Indeed, f!gk is anon-zero 
lass of H2k(X;R).



j.-p. demailly, part i: L2 hodge theory 225.4. Example. Complex proje
tive spa
e Pn is endowed with a natural K�ahlermetri
 !, 
alled the Fubini-Study metri
, de�ned byp�! = i2�d0d00 log(j�oj2 + j�1j2 + � � �+ j�nj2)where �0; �1; : : : ; �n are 
oordinates of C n+1 and where p : C n+1nf0g ! Pn is theproje
tion. Let z = (�1=�0; : : : ; �n=�0) be the non-homogeneous 
oordinates of the
hart C n � Pn. A 
al
ulation shows that! = i2�d0d00 log(1 + jzj2) = i2��(O(1)); ZPn !n = 1:Sin
e the only non-zero integral 
ohomology groups of Pn are H2p(Pn;Z) ' Z for0 � p � n, we see that h = f!g 2 H2(Pn;Z) is a generator of the 
ohomology ringH�(Pn;Z). In other words, H�(Pn;Z)' Z[h℄=(hn+1) as rings.5.5. Example. A 
omplex torus is a quotientX = C n=� of C n by a latti
e � ofrank 2n. This gives a 
ompa
t 
omplex manifold. Any positive de�nite Hermitianform ! = iPhjkdzj ^ dzk with 
onstant 
oeÆ
ients on C n de�nes a K�ahler metri
on X .5.6. Example. Any 
omplex submanifold X of a K�ahler manifold (Y; !0) isK�ahler with the indu
ed metri
 ! = !0�X . In parti
ular, any proje
tive manifoldis K�ahler (by de�nition, a proje
tive manifold is a 
losed submanifold X � Pn ofproje
tive spa
e). In this 
ase, if !0 denotes the Fubini-Study metri
 on Pn, wehave the additional property that the 
lass f!g := f!0g�X 2 H2DR(X;R) is integral,i.e. is the image of an integral 
lass of H2(X;Z). A K�ahler metri
 ! with integral
ohomology 
lass is 
alled a Hodge metri
.5.7. Example. Consider the 
omplex surfa
eX = (C 2nf0g)=�where � = f�n ; n 2 Zg, � 2 ℄0; 1[, is viewed as a group of dilations. Sin
e C 2nf0gis di�eomorphi
 to R�+�S3, we haveX ' S1�S3. As a 
onsequen
e, H2(X;R) = 0by an appli
ation of the K�unneth formula, and property 5.3 b) shows that X is notK�ahler. More generally, one 
an take for � an in�nite 
y
li
 group generated bythe holomorphi
 
ontra
tions of C 2 , of the form� z1z2� 7! ��1z1�2z2� ; resp. � z1z2� 7! � �z1�z2 + zp1 � ;where �; �1; �2 are 
omplex numbers su
h that 0 < j�1j � j�2j < 1; 0 < j�j < 1,and p a positive integer. These non-K�ahler surfa
es are 
alled Hopf surfa
es. �The following theorem shows that a Hermitian metri
 ! on X is K�ahler if andonly if the metri
 ! is tangent to order 2 to a Hermitian metri
 with 
onstant
oeÆ
ients at any point of X .5.8. Theorem. Let ! be a positive de�nite C1 (1; 1)-form on X. For ! to beK�ahler, it is ne
essary and suÆ
ient to show that at any point x0 2 X, there existsa holomorphi
 
oordinate system (z1; : : : ; zn) 
entered at x0 su
h that(5.9) ! = i X1�l;m�n!lmdzl ^ dzm; !lm = Ælm +O(jzj2):



23 5. Hermitian and k�ahler manifoldsIf ! is K�ahler, the 
oordinates (zj)1�j�n 
an be 
hosen so that(5.10) !lm = h ��zl ; ��zm i = Ælm � X1�j;k�n 
jklmzjzk +O(jzj3);where (
jklm) are the 
oeÆ
ients of the Chern 
urvature tensor(5.11) �(TX)x0 = Xj;k;l;m 
jklmdzj ^ dzk 
� ��zl�� 
 ��zmasso
iated to (TX ; !) at x0. Su
h a system (zj) is 
alled a geodesi
 
oordinatesystem at x0.Proof. It is 
lear that (5.9) implies dx0! = 0, 
onsequently the 
ondition issuÆ
ient. Assume now that ! is K�ahler. Then one 
an 
hoose lo
al 
oordinates(�1; : : : ; �n) su
h that (d�1; : : : ; d�n) are a !-orthonormal basis of T �x0X . As a
onsequen
e! = i X1�l;m�n ~!lmd�l ^ d�m; where~!lm = Ælm +O(j�j) = Ælm + X1�j�n(ajlm�j + a0jlm�j) +O(j�j2):(5.12)Sin
e ! is real, we have a0jlm = ajml. Furthermore, the K�ahler 
ondition �!lm=��j =�!jm=��l at x0 implies that ajlm = aljm. Now putzm = �m + 12Xj;l ajlm�j�l; 1 � m � n:Then (zm) is a lo
al 
oordinate system at x0, anddzm = d�m +Xj;l ajlm�jd�l;iXm dzm ^ dzm = iXm d�m ^ d�m + iXj;l;m ajlm�jd�l ^ d�m+ iXj;l;m ajlm�jd�m ^ d�l +O(j�j2)= iXl;m ~!lmd�l ^ d�m +O(j�j2) = ! +O(jzj2):Thus we have shown 
ondition (5.9). Now let us assume the 
oordinates (�m)were 
hosen initially so that (5.9) is satis�ed for (�m). By 
ontinuing the Taylorexpansion (5.12) to order two, we arrive at~!lm = Ælm +O(j�j2))= Ælm +Xjk (ajklm�j�k + a0jklm�j�k + a00jklm�j�k) +O(j�j3):(5.13)The new 
oeÆ
ients introdu
ed satisfy the relationa0jklm = a0kjlm; a00jklm = a0jkml; ajklm = akjml:



j.-p. demailly, part i: L2 hodge theory 24The K�ahler 
ondition �!lm=��j = �!jm=��l at � = 0 furnishes the equality a0jklm =a0lkjm; in parti
ular a0jklm is invariant under all permutations of j; k; l. If one putszm = �m + 13Xj;k;l a0jklm�j�k�l; 1 � m � n;then from (5.13) one �ndsdzm = d�m +Xj;k;l a0jklm�j�kd�l; 1 � m � n;! = i X1�m�n dzm ^ dzm + i Xj;k;l;m ajklm�j�kd�l ^ d�m +O(j�j3);! = i X1�m�n dzm ^ dzm + i Xj;k;l;m ajklmzjzkdzl ^ dzm +O(jzj3):(5.14)It is now easy to 
al
ulate the Chern 
urvature tensor �(TX)x0 in terms of the
oeÆ
ients ajklm and to verify that 
jklm = �ajklm. We leave this as an exer
isefor the reader.6. Fundamental identities of K�ahlerian geometry6.A. Hermitian geometri
 operators. Assume given (X;!) a Hermitianmanifold and let zj = xj + iyj ; 1 � j � n, be C -analyti
 
oordinates about a pointa 2 X , su
h that !(a) = iP dzj ^ dzj is diagonalized at this point. The asso
iatedHermitian form is h(a) = 2P dzj 
 dzj and its real part is the Eu
lidean metri
2P(dxj)2 + (dyj)2. It follows that jdxj j = jdyj j = 1=p2; jdzj j = jdzj j = 1, andthat (�=�z1; : : : ; �=�zn) is an orthonormal basis of (T �aX;!). Formula (4.1) foruj ; vk in the orthogonal sum (C 
TX)� = T �X �T �X de�nes a natural inner produ
ton the exterior algebra ��(C 
 TX)�. The norm of a formu =XI;J uI;JdzI ^ dzJ 2 ��(C 
 TX)�:at a point a is then given by(6.1) ju(a)j2 =XI;J juI;J(a)j2:The Hodge ? operator (4.2) 
an be extended to the 
omplex-valued forms by theformula(6.2) u ^ ?v = hu; vidV:It follows that ? is a C -linear isometry? : �p;qT �X ! �n�q;n�pT �X :



25 6. fundamental identities of k�ahlerian geometryThe standard Hermitian geometri
 operators are the operators d; Æ = � ? d?, theLapla
ian � = dÆ + Æd already de�ned, and their 
omplex analogues(6.3) 8><>: d = d0 + d00;Æ = d0� + d00�; d0� = (d0)� = � ? d00?; d00� = (d00)� = � ? d0?;�0 = d0d0� + d0�d0; �00 = d00d00� + d00�d00:We say that an operator is of pure degree r if it transforms a form of degreek to a form of degree k + r, and similarly an operator of pure bidegree (s; t) isan operator whi
h transforms the (p; q)-forms to forms of bidegree, (p + s; q + t).(Its total degree is then of 
ourse r = s + t.) Thus d0; d00; d0�; d00�; �0; �00are of bidegree (1; 0); (0; 1); (�1; 0); (0;�1); (0; 0); (0; 0) respe
tively. Anotherimportant operator is the operator L of bidegree (1; 1) de�ned by(6.4) Lu = ! ^ u;and its adjoint � = L� = ?�1L? of bidegree (�1;�1):(6.5) hu;�vi = hLu; vi:We observe that the unitary group U(TX) ' U(n) has a natural a
tion on the spa
eof (p; q)-forms, given byU(n)� �p;qT �X 3 (g; v) 7! (g�1)�v:This a
tion makes �p;qT �X a unitary representation of U(n). Sin
e the metri
 ! isinvariant, it is 
lear that L and � 
ommute with the a
tion of U(n).6.B. Commutivity identities. If A; B are endomorphisms (of pure degree)of the graded module M� = C1(X;��;�T �X), their graded 
ommutator (or gradedLie bra
ket) is de�ned by(6.6) [A;B℄ = AB � (�1)abBAwhere a; b are the degrees of A and B respe
tively. If C is another endomorphismof degree 
, one has the following formal Ja
obi identity.(6.7) (�1)
a�A; [B;C℄�+ (�1)ab�B; [C;A℄� + (�1)b
�C; [A;B℄� = 0:For all � 2 �p;qT �X , we will still denote by � the asso
iated endomorphism of type(p; q), operating on ��;�T �X by the formula u 7! � ^ u.Let 
 2 �1;1T �X be a real (1; 1)-form. There exists a !-orthogonal basis(�1; �2; : : : ; �n) of TX whi
h diagonalizes the two forms ! and 
 simultaneously:! = i X1�j�n ��j ^ ��j ; 
 = i X1�j�n 
j��j ^ ��j ; 
j 2 R:6.8. Proposition. For any form u =Puj;k��J ^ ��K , one has[
;�℄u =XJ;K�Xj2J 
j +Xj2K 
j � X1�j�n 
j�uJ;K��J ^ ��K :



j.-p. demailly, part i: L2 hodge theory 26Proof. If u is of type (p; q), a brutal 
al
ulation gives�u = i(�1)p XJ;K;luJ;K(�ly��J) ^ (�ly��K); 1 � l � n;
 ^ u = i(�1)p XJ;K;m 
muJ;K��m ^ ��J ^ ��m ^ ��K ; 1 � m � n;[
;�℄u = XJ;K;l;m 
muJ;K����l ^ (�my��J)� ^ ���l ^ (�my��K)�� ��my(��l ^ ��J )� ^ ��my(��l ^ ��K)��= XJ;K;m 
muJ;K���m ^ (�my��J) ^ ��K+ ��J ^ ��m ^ (�my��K)� ��J ^ ��K�=XJ;K�Xm2J 
m + Xm2K 
m � X1�m�n 
m�uJ;K��J ^ ��K : �6.9. Corollary. For all u 2 �p;qT �X , one has [L;�℄u = (p+ q � n)u.Proof. Indeed, if 
 = !, the eigenvalues of 
 are 
1 = � � � = 
n = 1. �We introdu
e the operator B = [L;�℄ whi
h satis�es Bu = (p + q � n)u for uof bidegree (p; q). Sin
e L has degree 2, one immediately obtains [B;L℄ = 2L, andsimilarly [B;�℄ = �2�. This suggests introdu
ing the Lie algebra sl(2; C ) (matri
eswith zero tra
e, with the usual 
ommutator bra
ket [�; �℄ = �� � �� of matri
es),for whi
h the basis of 3 matri
es(6.10) ` = � 0 01 0� ; � = � 0 10 0� ; b = ��1 00 1�satis�es the 
ommutivity relations[`; �℄ = b; [b; `℄ = 2`; [b; �℄ = �2�:6.11. Corollary. There is a natural a
tion of the Lie algebra sl(2; C ) on theve
tor spa
e ��;�T �X , i.e. a morphism of Lie algebras � : sl(2; C ) ! End(��;�T �X),given by �(`) = L, �(�) = �, �(b) = B.We now mention the other very important 
ommutivity identities. Let us �rstassume that X = 
 � C n is open in C n and that ! is the standard K�ahler metri
,! = i X1�j�n dzj ^ dzj :For any form u 2 C1(
;�p;qT �X) one hasd0u = XI;J;k �uI;J�zk dzk ^ dzI ^ dzJ ;(6.120) d00u = XI;J;k �uI;J�zk dzk ^ dzI ^ dzJ :(6.1200)



27 6. fundamental identities of k�ahlerian geometrySin
e the global L2 s
alar produ
t is given byhhu; vii = Z
XI;J uI;JvI;JdV;some elementary 
al
ulations similar to those of the example in 4.12 show thatd0�u = �XI;J;k �uI;J�zk ��zk y(dzI ^ dzJ );(6.130) d00� = �XI;J;k �uI;J�zk ��zk y(dzi ^ dzJ):(6.1300)We �rst state a lemma due to Akizuki and Nakano [AN54℄.6.14. Lemma. In C n , one has [d00�; L℄ = id0.Proof. Formula (6.1300) 
an more su

in
tly be writtend00�u = �Xk ��zk y� �u�zk�:We then obtain[d00�; L℄u = �Xk ��zk y� ��zk (! ^ u)�+ ! ^Xk ��zk y� �u�zk�:Sin
e ! has 
onstant 
oeÆ
ients, one has ��zk (! ^ u) = ! ^ �u�zk and 
onsequently[d00�; L℄u = �Xk � ��zk y�! ^ �u�zk �� ! ^ � ��zk y �u�zk ��= �Xk � ��zk y !� ^ �u�zk :However, it is 
lear that ��zk y! = idzk, therefore[d00�; L℄u = iXk dzk ^ �u�zk = id0u: �We are now ready to establish the basi
 
ommutivity relations in the situationof an arbitrary K�ahler manifold (X;!).6.15. Theorem. If (X;!) is K�ahler, then[d00�; L℄ = id0; [d0�; L℄ = �id00;[�; d00℄ = �id0�; [�; d0℄ = id00�:



j.-p. demailly, part i: L2 hodge theory 28Proof. It suÆ
es to establish the �rst relation, sin
e the se
ond is the 
onju-gate of the �rst, and the relations in the se
ond line are the adjoint of the relationsin the �rst line. If (zj) is a geodesi
 
oordinate system at a point x0 2 X , then forall (p; q)-forms u; v with 
ompa
t support in a neighbourhood of x0, (5.9) impliesthat hhu; vii = ZM�XIJ uIJvIJ + XI;J;K;LaIJKLuIJvKL�dV;with aIJKL(z) = O(jzj2) at x0. An integration by parts analogous to that used toobtain (4.12) and (6.1300) givesd00�u = �XI;J;k �uI;J�zk ��zk y(dzI ^ dzJ) + XI;J;K;L bIJKLuIJdzk ^ dzL;where the 
oeÆ
ients bIJKL are obtained by di�erentiation of aIJKL. Consequentlywe have bIJKL = O(jzj). Sin
e �!=�zk = O(jzj), the proof of lemma 6.14 aboveimplies [d00�; L℄u = id0u+O(jzj). In parti
ular the two terms 
oin
ide at the givenpoint x0 2 X . �6.16. Corollary. If (X;!) is K�ahler, the 
omplex Lapla
e-Beltrami opera-tors satisfy �0 = �00 = 12�:Proof. We �rst show that �00 = �0. One has�00 = [d00; d00�℄ = �i�d00; [�; d0℄�:Sin
e [d0; d00℄ = 0, the Ja
obi identity (6.7) implies that��d00; [�; d0℄�+ �d0; [d00;�℄� = 0;hen
e �00 = �d0;�i[d00;�℄� = [d0; d0�℄ = �0. Furthermore,� = [d0 + d00; d0� + d00�℄ = �0 +�00 + [d0; d00�℄ + [d00; d0�℄:It therefore suÆ
es to prove:6.17. Lemma. [d0; d00�℄ = 0; [d00; d0�℄ = 0.Proof. We have [d0; d00�℄ = �i�d0; [�; d0℄� and (6.7) implies that��d0; [�; d0℄�+ ��; [d0; d0℄�+ �d0; [d0;�℄� = 0;hen
e �2�d0; [�; d0℄� = 0 and [d0; d00�℄ = 0. The se
ond relation [d00; d0�℄ = 0 is theadjoint of the �rst. �6.18. Theorem. If (X;!) is K�ahler, � 
ommutes with all the operators?; d0; d00; d0�; d00�; L; �.Proof. The identities [d0;�0℄ = [d0�;�0℄ = 0; [d00;�00℄ = [d00�;�00℄ = 0 and[�; ?℄ = 0 are immediate. Moreover, the equality [d0; L℄ = d0! = 0, 
ombined withthe Ja
obi identity, implies that[L;�0℄ = �L; [d0; d0�℄� = ��d0; [d0�; L℄� = i[d0; d00℄ = 0:Taking adjoints, we obtain [�0;�℄ = 0. �



29 6. fundamental identities of k�ahlerian geometry6.C. Primitive elements and the Lefs
hetz isomorphism theorem. Toestablish the Lefs
hetz Theorem, it is 
onvenient to use the representation of sl(2; C )exhibited in Cor. 6.11. We �rst re
all that if g is a Lie sub-algebra (real or 
omplex)of the Lie algebra sl(r; C ) = End(C r ) of 
omplex matri
es and if G = exp(g) �GL(r; C ) is the asso
iated Lie group, a representation � : g ! End(V ) of the Liealgebra in a 
omplex ve
tor spa
e V indu
es by exponentiation a representation~� : G ! GL(V ) of the group G. Conversely, a representation ~� : G ! GL(V )indu
es by di�erentiation a representation � : g! End(V ) of Lie algebras; there istherefore an identi�
ation between these two notions. If G is 
ompa
t, a 
lassi
allemma of H. Weyl shows that all representations of g are broken down into a dire
tsum of irredu
ible representations (one says that g is redu
tive): the Haar measureof G indeed allows the 
onstru
tion of an invariant Hermitian metri
 on V , andone exploits the fa
t that the orthogonal 
omplement of a sub-representation is asub-representation. In parti
ular the Lie algebra su(r) of the 
ompa
t group SU(r)is redu
tive. It is the same as for sl(r; C ), whi
h is the 
omplexi�
ation of su(r).We will need the following well-known lemma from representation theory.6.19. Lemma. Let � : sl(2; C ) ! End(V ) be a representation of the Lie algebrasl(2; C ) on a �nite dimensional 
omplex ve
tor spa
e V , and letL = �(`); � = �(�); B = �(b) 2 End(V )be the endomorphisms of V asso
iated to the basis elements of sl(2; C ). Then:a) V = ��2ZV� is a (�nite) dire
t sum of eigenspa
es of B, whose eigenvalues �are integers. An element v 2 V� is said to be an element of pure weight �.b) L and � are nilpotent, satisfying L(V�) � V�+2, �(V�) � V��2 for all � 2 Z.
) We denote by P = Ker� = fv 2 V ; �v = 0g, the set of primitive elements.One then has a dire
t sum de
ompositionV =Mr2NLr(P ):d) V is isomorphi
 to a �nite dire
t sum �m2NS(m)��m of irredu
ible represen-tations, where S(m) ' Sm(C 2 ) is the representation of sl(2; C ) indu
ed by them-th symmetri
 produ
t of the natural representation of SL(2; C ) on C 2 , and�m = dimPm is the multipli
ity of the isotypi
 
omponent S(m).e) If P� = P \ V�, then P� = 0 for � > 0 and P = ��2Z;��0P�. The endomor-phism Lr : P�m ! Vm+2r is inje
tive for r � m and zero for r > m.f) V� =Lr2N;r��Lr(P��2r), where Lr : P��2r ! Lr(P��2r) is bije
tive.g) For any r 2 N, the endomorphism Lr : V�r ! Vr is bije
tive.Proof. We �rst observe the following fa
t: If v 2 V�, then Lv has pure weight�+ 2 and �v has pure weight �� 2. Indeed, one hasBLv = LBv + [B;L℄v = L(�v) + 2Lv = (�+ 2)Lv;B�v = �Bv + [B;�℄v = �(�v)� 2�v = (�� 2)�v:Now suppose V 6= 0 and let v 2 V� be a non-zero eigenve
tor. If the ve
tors(�kv)k2N were all non-zero, one would have an in�nite number of eigenve
tors ofB with �� 2k distin
t eigenvalues, whi
h is impossible. Therefore there exists aninteger r � 0 su
h that �rv 6= 0 and �kv = 0 for k > r. Consequently �rv is anon-zero primitive element of pure weight �0 = �� 2r. Thus we 
on
lude that for



j.-p. demailly, part i: L2 hodge theory 30some � 2 C , there exists w 2 P , a non-zero element of pure weight �. The samereasoning as above applied to the powers Lkw shows that there exists an integerm > 0 su
h that Lmw 6= 0 and Lm+1w = 0. The ve
tor spa
e W of dimensionm + 1 generated by wk = Lkw; 0 � k � m is stable under the a
tion of sl(2; C ).Indeed one has Bwk = (�+ 2k)wk; Lwk = wk+1 by de�nition, while�wk = �Lkw = Lk�w � X0�j�k�1Lk�j�1[L;�℄Ljw= 0�XLk�j�1BLjw = � X0�j�k�1(�+ 2j)Lk�1w= k(��� k + 1)wk�1:By applying this relation to the indi
e k = m + 1 for whi
h wm+1 = 0, it followsthat one must ne
essarily have � = �m � 0. We remark that B�W is diagonal-izable (the eigenve
tors of W being the ve
tors wk of integral weight 2k � m),and that the primitive elements of W are redu
ed to the line Cw, su
h thatW = �Lr(Cw). Properties (a,b,
,d) mentioned above are then easily obtainedby indu
tion on dimV . By 
onsidering the quotient representation V=W one 
anargue by indu
tion that the eigenvalues of B are integers and that L; � are nilpo-tent. It is easy to verify that W ' Sm(C 2 ) as a representation of SL(2; C ). (Ife1; e2 are two basis ve
tors of C 2 , the isomorphism sends w = w0 to em1 and wk toLkem1 = m(m � 1) � � � (m � k + 1)ek1em�k2 .) The fa
t that one has a dire
t sum ofrepresentations V = V 0 �W (with V 0 = W? � V for a 
ertain SU(2; C )-invariantmetri
) involves the diagonalizability of B, by indu
tion on dim V , as well as theformula V = �Lr(P ) and the de
omposition in d).e) The relation [B;�℄ = �2� shows that P = Ker� is stable under B, 
onsequentlyP =M(P \ V�) =MP�:The above 
al
ulations show that the non-zero primitive elements w are of weight�m � 0, so that P� = 0 if � > 0. The latter assertion of e) follows from the fa
tthat for 0 6= w 2 P�m, one has Lrw 6= 0 if and only if r � m.f) An immediate 
onsequen
e of e) and the de
omposition V = �r2NLr(P ), if onerestri
ts only to elements of pure weight �. One 
an only have Lr(P��2r) 6= 0 ifeither r � m = �(�� 2r), or r � �.g) It suÆ
es to verify the assertion in the 
ase of an irredu
ible representationV ' Sm(C 2 ). In this 
ase, the result is 
lear, sin
e the weights 2k�m; 0 � k � mare distributed symmetri
ally in the interval [�m;m℄ and that V is generated by(Lkw)0�k�m for any non-zero ve
tor w of V�m. �We now interpret these results in the 
ase of a representation of sl(2; C ) onV = ��;�T �X . The 
omponent �k(C 
TX )� = �p+q=k�p;qT �X 
an then be identi�edwith the eigenspa
e V� of B of weight � = k � n = p + q � n (by de�nition of B,see (6.9)).6.20. Definition. A homogeneous form u 2 �k(C k 
TX)� is 
alled primitiveif �u = 0. The spa
e of primitive forms of total degree k is denoted byPrimkT �X = Mp+q=kPrimp;qT �X :
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e the operator � 
ommutes with the a
tion of U(TX) ' U(n) on the exterioralgebra, it is 
lear that Primp;qT �X � �p;qT �X is a U(n)-invariant subspa
e. Onefurther sees (prop. 6.24) that Primp;qT �X is in fa
t an irredu
ible representation ofU(n). Properties (6.19 e, f, g) su

essively imply6.21. Proposition. We have PrimkT �X = 0 for k > n. Moreover, if u 2PrimkT �X , k � n, then Lru = 0 for r > n� k.6.22. Primitive de
omposition formula. For any u 2 �k(C 
 TX)�, thereexists a unique de
ompositionu = Xr�(k�n)+Lruk�2r; uk�2r 2 Primk�2rT �X :Consequently, one obtains a de
omposition into a dire
t sum of representations ofU(n) �k(C 
 TX)� = Mr�(k�n)+ LrPrimk�2rT �X ;�p;q(C 
 TX)� = Mr�(p+q�n)+ LrPrimp�r;q�rT �X :6.23. Lefs
hetz Isomorphism Theorem. The linear operatorsLn�k : �k(C 
 TX)� ! �2n�k(C 
 TX)�;Ln�p�q : �p;qT �X ! �n�q;n�pT �X ;are isomorphisms for all integers k � n and (p; q) satisfying p+ q � n.6.24. Proposition. For any (p; q) 2 N2 satisfying p+q � n, Primp;qT �X is anirredu
ible representation of U(n); more pre
isely, it is the irredu
ible representationasso
iated to the highest weight �1 + � � � + �q � (�n�p+1 + � � � + �n), where (�j) isthe 
anoni
al basis of 
hara
ters of the maximal 
ommutative subgroup U(1)n �U(n). The primitive de
omposition of �p;qT �X or of �k(C 
 TX)� is the same asthe de
omposition into irredu
ible 
omponents under the a
tion of U(n).Proof. First observe that Primp;qT �X 6= 0, sin
e for exampledz1 ^ � � � ^ dzp ^ dzp+1 ^ � � � ^ dzp+q 2 Primp;qT �X :Further, the primitive de
omposition gives�p;qT �X = M0�r�mLrPrimp�r;q�rT �Xwith m = min(p; q), whi
h shows that the U(n)-module �p;qT �X has at least m+ 1non-trivial irredu
ible 
omponents, to a

ount for ea
h of the terms Primp�r;q�rT �X ,0 � r � m. To see that these are irredu
ible , it suÆ
es to show that the U(n)-module �p;qT �X has no more than (m + 1) irredu
ible 
omponents. However, by
omplexi�
ation of the representation of U(n), one obtains a representation isomor-phi
 to that of GL(n; C ) on �pT �X 
�qTX given by g � (u
 �) = (g�1)�u
g��. Therepresentation theory of linear groups shows that the irredu
ible 
omponents of arepresentation are in bije
tive 
orresponden
e with the eigenve
tors asso
iated to
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tion of the Borel subgroup Bn of upper triangular matri
es. We leave it tothe reader to show that these eigenve
tors 
orrespond pre
isely to the (p; q)-formsLr(dzn�p+r+1 ^ � � � ^ dzn ^ dz1 ^ � � � ^ dzq�r); 0 � r � m;for whi
h the weight under the a
tion of U(1)n is �1+ � � �+ �q�r� (�n�p+r+1+ � � �+�n). �7. The groups Hp;q(X;E)Hp;q(X;E)Hp;q(X;E) and Serre dualityWe now arrive at some holomorphi
 
onsequen
es of Hodge theory. A largepart of this theory was developed by K. Kodaira, S. Lefs
hetz and A. Weil. Thereader 
an pro�tably 
onsult the Completed Works of Kodaira [Kod75℄ and thebook by A. Weil [Wei57℄; see also [Wel80℄ for a more re
ent a

ount.Let (X;!) be a 
ompa
t Hermitian manifold and E a Hermitian holomorphi
ve
tor bundle of rank r over X . We will denote by DE the Chern 
onne
tion of E,D�E = � ? DE? the formal adjoint of DE , and D0�E , D00�E the 
omponents of D�E oftype (�1; 0) and (0;�1). A similar 
al
ulation to that done in 4.14 shows that�D00E (x; �) � s = �0;1 ^ s; � 2 RT �X = HomR(TX ;R); s 2 Ex;where �(0;1) is the type (0; 1) part of the real 1-form �. Consequently, we see thatthe prin
ipal part of the operator �00E = D00ED00�E +D00�E D00E is given by��00E (x; �) � s = �j�0;1j2s = �12 j�j2s;and there is a similar result for �0E . In parti
ular ��0E = ��00E = 12��E and �00Eis a self-adjoint ellipti
 operator on ea
h of the spa
es C1(X;�p;qT �X 
E). UsingD002E = 0, one arrives at the following result, in the same way as obtained in x4.C.7.1. Theorem. For any bidegree (p; q), there exists an orthogonal de
omposi-tion C1(X;�p;qT �X 
E) = Hp;q(X;E)� Im D00E � Im D00�Ewhere Hp;q(X;E) is the spa
e of �00E-harmoni
 forms in C1(X;�p;qT �X 
E).The above de
omposition shows that the subspa
e of q-
o
y
les of the 
omplex(C1(X;�p;�T �X 
E); d00) is Hp;q(X;E)� Im D00E . From here, we dedu
e the7.2. Theorem (Hodge isomorphism). The Dolbeault 
ohomology groupsHp;q(X;E) are �nite dimensional, and there is an isomorphismHp;q(X;E) ' Hp;q(X;E):Another interesting 
onsequen
e is a proof of the Serre duality theorem for
ompa
t 
omplex manifolds. See Serre [Ser55℄ for a proof in a somewhat moregeneral 
ontext.7.3. Theorem (Serre duality). The bilinear pairingHp;q(X;E)�Hn�p;n�q(X;E�)! C ; (s; t) 7! ZM s ^ tis a non-degenerate duality.
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omohology of 
ompa
t k�ahler manifoldsProof. Let s1 2 C1(X;�p;qT �X
E); s2 2 C1(X;�n�p;n�q�1T �X
E). Sin
es1 ^ s2 is of bidegree (n; n� 1), we have(7.4) d(s1 ^ s2) = d00(s1 ^ s2) = d00s1 ^ s2 + (�1)p+qs1 ^ d00s2:Stokes theorem implies that the bilinear pairing above 
an be fa
tored through theDolbeault 
ohomology groups. The operator # de�ned is x4.A satis�es# : C1(X;�p;qT �X 
E)! C1(X;�n�p;n�qT �X 
E�):Moreover, (4.20) impliesD00E�(#s) = (�1)deg s#(D00E)�s; (D00E�)�(#s) = (�1)deg s+1#D00�E s;�00E�(#s) = #�00Es;where DE� is the Chern 
onne
tion of E�. Consequently, s 2 Hp;q(X;E) if andonly if #s 2 Hn�p;n�q(X;E�). Theorem 7.3 is then a 
onsequen
e of the fa
t thatthe integral jjsjj2 = RX s ^#s is non-vanishing if s 6= 0.8. Comohology of 
ompa
t K�ahler manifolds8.A. Bott-Chern 
ohomology groups. Let X be a 
omplex manifold, forthe moment not ne
essarily 
ompa
t. The following \
ohomology groups" are usefulfor des
ribing 
ertain aspe
ts of the Hodge theory of 
ompa
t 
omplex manifolds,whi
h are not ne
essarily K�ahler.8.1. Definition. The Bott-Chern 
ohomology groups of X are given byHp;qBC(X; C ) = (C1(X;�p;qT �X) \Kerd)=d0d00C1(X;�p�1;q�1T �X):The 
ohomology H�;�BC(X; C ) has a bigraded algebra stru
ture, whi
h we 
all theBott-Chern 
ohomology algebra of X .Sin
e the group d0d00C1(X;�p�1;q�1T �X) is also 
ontained in the group of
oboundaries d00C1(X;�p;q�1T �X) of the Dolbeault 
omplex as well as that in
oboundaries of the de Rham 
omplex dC1(X;�p+q�1(C 
TX )�), there are 
anon-i
al morphisms Hp;qBC(X; C ) ! Hp;q(X; C );(8.2) Hp;qBC(X; C ) ! Hp+q(X; C );(8.3)of the Bott-Chern 
ohomology to the Dolbeault or de Rham 
ohomology. Thesemorphisms are C -algebra homomorphisms. It is also 
lear from the de�nition thatwe have the symmetry property Hq;pBC(X; C ) = Hp;qBC(X; C ). One 
an show fromthe Hodge-Fr�oli
her spe
tral sequen
e (see x10) that Hp;qBC(X; C ) is always �nitedimensional if X is 
ompa
t.8.B. Hodge de
omposition theorem. We assume from now on that (X;!)is a 
ompa
t K�ahler manifold. The equality � = 2�00 shows that � is homogeneouswith respe
t to bidegree and that there is an orthogonal de
omposition(8.4) Hk(X; C ) = Mp+q=kHp;q(X; C ):
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e �00 = �0 = �00, one has the equality Hq;p(X; C ) = Hp;q(X; C ). By apply-ing the Hodge isomorphism theorem for de Rham 
ohomology and for Dolbeault
ohomology, one obtains:8.5. Theorem (Hodge De
omposition). On a 
ompa
t K�ahler manifold, thereare 
anoni
al isomorphismsHkDR(X; C ) ' Mp+q=kHp;q(X; C ) (Hodge de
omposition),Hq;p(X; C ) ' Hp;q(X; C ) (Hodge symmetry).The only point that is not a priori obvious is that isomorphisms are independentof the 
hoi
e of K�ahler metri
. To show that this is indeed the 
ase, one 
an usethe following lemma, whi
h will allow us to 
ompare the three types of 
ohomologygroups 
onsidered in x8.A.8.6. Lemma. Let u be a d-
losed (p; q)-form. The following properties areequivalent:a) u is d-exa
t;b0) u is d0-exa
t;b00) u is d00-exa
t;
) u is d0d00-exa
t, i.e. u 
an be written u = d0d00v.d) u is orthogonal to Hp;q(X; C ).Proof. It is evident that 
) implies a), b0), b00), and that a) or b0) or b00)implies d). It suÆ
es therefore to prove that d) implies 
). Sin
e du = 0, we haved0u = d00u = 0, and sin
e u is assumed orthogonal toHp;q(X; C ), th. 7.1 implies thatu = d00s, s 2 C1(X;�p;q�1T �X). The analogous theorem to th. 7.1 for d0 (whi
h 
anbe dedu
ed by 
omplex 
onjugation) shows that one 
an write s = h+ d0v + d0�w,where h 2 Hp;q�1(X; C ), v 2 C1(X;�p�1;q�1T �X) and w 2 C1(X;�p+1;q�1T �X).Consequently u = d00d0v + d00d0�w = �d0d00v � d0�d00wby an appli
ation of Lemma 6.16. Sin
e d0u = 0, the 
omponent d0�d00w orthogonalto Ker d0 must be zero. �From Lemma 8.6 we dedu
e the following 
orollary, whi
h in turn implies thatthe Hodge de
omposition does not depend on the 
hoi
e of K�ahler metri
.8.7. Corollary. Let X be a 
ompa
t K�ahler manifold. Then the naturalmorphismsHp;qBC(X; C ) ! Hp;q(X; C ); Mp+q=kHp;qBC(X; C ) ! HkDR(X; C )are isomorphisms.Proof. The surje
tivity of Hp;qBC(X; C ) ! Hp;q(X; C ) follows from the fa
tthat any 
lass in Hp;q(X; C ) 
an be represented by a harmoni
 (p; q)-form, there-fore by a d-
losed (p; q)-form; the inje
tivity property is nothing more than theequivalen
e (8.5b00) , (8.5
). Therefore Hp;qBC(X; C ) ' Hp;q(X; C ) ' Hp;q(X; C ),and the isomorphism Mp+q=kHp;qBC(X; C ) ! HkDR(X; C )



35 8. 
omohology of 
ompa
t k�ahler manifoldsis a 
onsequen
e of (8.4). �We now mention two simple 
onsequen
es of Hodge theory. The �rst 
on
ernsthe 
al
ulation of the Dolbeault 
ohomology of Pn. Sin
e Hp;p(Pn; C ) 
ontains thenon-zero 
lass f!pg and sin
e H2pDR(Pn; C ) = C , the Hodge de
omposition formulaimplies:8.8. Consequen
e. The Dolbeault 
ohomology groups of Pn areHp;p(Pn; C ) = C for 0 � p � n; Hp;q(Pn; C ) = 0 for p 6= q: �8.9. Proposition. Any holomorphi
 p-form on a 
ompa
t K�ahler manifoldX is d-
losed.Proof. If u is a holomorphi
 form of type (p; 0) then d00u = 0. Moreover d00�uis of type (p;�1), hen
e d00�u = 0. Consequently �u = 2�00u = 0, whi
h impliesthat du = 0. �8.10. Example. Consider the Heisenberg group G � Gl3(C ), de�ned by thesubgroup of matri
es M = 0� 1 x z0 1 y0 0 11A ; (x; y; z) 2 C 3 :Let � be a dis
rete subgroup of matri
es with the property that the 
oeÆ
ientsx; y; z belong to the ring Z[i℄ (or more generally in the ring of imaginary quadrati
integers). Then X = G=� is a 
ompa
t 
omplex manifold of dimension 3, 
alled aIwasawa manifold. The equalityM�1dM = 0� 0 dx dz � xdy0 0 dy0 0 0 1A ;shows that dx; dy; dz � xdy are left invariant 1-forms on G. These forms indu
eholomorphi
 1-forms on the quotient X = G=�. Sin
e dz�xdy is not d-
losed, one
on
ludes that X 
annot be K�ahler.8.11. Remark. For simpli
ity of notation we work here with 
onstant 
oef-�
ients, but the reader 
an easily verify that one has analogous results for 
oho-mology with values in a lo
al system of 
oeÆ
ients (
at Hermitian bundle), as inx4.C. It is enough to repla
e everywhere in the proof the operator d = d0 + d00 byDE = D0E+D00E, and to observe that one still has �0E = �00E = 12�E (proof identi
alto that of Cor. (6.16)). One 
an then dedu
e the existen
e of isomorphismsHp;qBC(X;E)! Hp;q(X;E); Mp+q=kHp;qBC(X;E)! HkDR(X;E)and a 
anoni
al de
ompositionHkDR(X;E) = Mp+q=kHp;q(X;E):In this 
ontext, the symmetry property of Hodge be
omesHp;q(X;E) ' Hq;p(X;E�);
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onsidered in x4 and x7. These observations are usefulfor the study of variations of Hodge stru
ture.8.C. Primitive de
omposition and hard Lefs
hetz theorems. We �rstintrodu
e some standard notation. The Betti numbers and the Hodge numbers ofX are by de�nition(8.12) bk = dimC Hk(X; C ); hp;q = dimC Hp;q(X; C ):A

ording to the Hodge de
omposition, the numbers satisfy the relations(8.13) bk = Xp+q+k hp;q ; hq;p = hp;q:Consequently, the Betti numbers b2k+1 of a 
ompa
t K�ahler manifold are even.Note that the Serre duality theorem gives the additional relation hp;q = hn�p;n�q ,provided that X is 
ompa
t. As we will see, the existen
e of the primitive de
om-position implies many other interesting 
hara
teristi
 properties of the 
ohomologyalgebra of a 
ompa
t K�ahler manifold.8.14. Lemma. If u = Pr�(k�n)+ Lrur is the primitive de
omposition of aharmoni
 k-form u, then all the 
omponents ur are harmoni
.Proof. Sin
e [�; L℄ = 0, one obtains 0 = �u =Pr Lr�ur, therefore �ur = 0a

ording to the uniqueness of the de
omposition. �Denote byHpprim(X; C ) =Lp+q=k Hp+qprim(X; C ) the spa
e of primitive harmoni
k-forms and let hp;qprim be the dimension of the 
omponent of bidegree (p; q). Lemma(8.14) gives Hp;q(X; C ) = Mr�(p+q�n)+ LrHp�r;q�rprim (X; C );(8.15) hp;q = Xr�(p+q�n)+ hp�r;q�rprim :(8.16)Formula (8.16) 
an be written as(8.160) 8><>: If p+ q � n; hp;q = hp;qprim + hp�1;q�1prim + � � �If p+ q � n; hp;q = hn�q;n�pprim + hn�q�1;n�p�1prim + � � � .8.17. Corollary. The Hodge and Betti numbers satisfy the following in-equalities.a) If k = p+ q � n, then hp;q � hp�1;q�1; bk � bk�2,b) If k = p+ q � n; then hp;q � hp+1;q+1; bk � bk+2. �Another important result of Hodge theory (that is in fa
t a dire
t 
onsequen
eof Cor. 6.23) is the8.18. Hard Lefs
hetz Theorem. The 
up produ
t morphismsLn�k : Hk(X; C ) ! H2n�k(X; C ); k � n;Ln�p�q : Hp;q(X; C ) ! Hn�q;n�p(X; C ); p+ q � n;
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omohology of 
ompa
t k�ahler manifoldsare isomorphisms. �Another way of stating the hard Lefs
hetz Theorem is to introdu
e the Hodge-Riemann bilinear form on HkDR(X; C ), de�ned by(8.19) Q(u; v) = (�1)k(k�1)=2 ZX u ^ v ^ !n�k:The hard Lefs
hetz Theorem 
ombined with Poin
ar�e duality says that Q is non-degenerate. MoreoverQ is of parity (�1)k (symmetri
 if k is even, alternating if k isodd). When ! is a Hodge metri
, that is a K�ahler metri
 su
h that f!g 2 H2(X;Z),it is 
lear that Q takes integer values when restri
ted to Hk(X;Z)=(torsion). TheHodge-Riemann bilinear form satis�es the following additional properties: For p+q = k, Q(Hp;q; Hp0;q0) = 0 if (p0; q0) 6= (q; p);(8.200) If 0 6= u 2 Hp;qprim(X; C ); then ip�qQ(u; u) = jjujj2 > 0:(8.2000)In fa
t (8.200) is 
lear and (8.2000) will be shown if we 
an 
he
k that any (p; q)-primitive form u satis�es (�1)k(k�1)=2ip�q!n�k ^ u = ?u:Sin
e Primp;qT �X is an irredu
ible representation of U(n), it suÆ
es to verify theformula for a 
onveniently 
hosen (p; q)-form u. One 
an take for example u =dz1^ � � �^dzp^dzp+1^ � � �^dzp+q from an orthonormal basis for !. The ne
essaryveri�
ation is easy for the reader to work out as an exer
ise.8.D. A des
ription of the Pi
ard group. Another important appli
ationof Hodge theory is a des
ription of the Pi
ard group H1(X;O�) of a 
ompa
t K�ahlermanifold. We assume here that X is 
onne
ted. The exponential exa
t sequen
e0! Z! O ! O� ! 1 gives(8.21) 0! H1(X;Z)! H1(X;O)! H1(X;O�) 
1�! H2(X;Z)! H2(X;O);taking into a

ount the fa
t that the map exp(2�i�) : H0(X;O) = C ! H0(X;O�) =C � is surje
tive. One has H1(X;O) ' H0;1(X; C ) by the Dolbeault isomorphismtheorem. The dimension of this group is 
alled the irregularity of X and it is usuallydenoted by(8.22) q = q(X) = h0;1 = h1;0:Consequently we have b1 = 2q and(8.23) H1(X;O) ' C q ; H0(X;
1X) = H1;0(X; C ) ' C q :8.24. Lemma. The image of H1(X;Z) in H1(X;O) is a latti
e.Proof. Consider the morphismH1(X;Z)! H1(X;R) ! H1(X; C ) ! H1(X;O)indu
ed by the in
lusions Z � R � C � O. Sin
e the �Ce
h 
ohomology groupswith values in Z or R 
an be 
al
ulated by a �nite 
overing of open sets for whi
hea
h is di�eomorphi
 to an open 
onvex set, and the same for all their mutualinterse
tions, it is 
lear that H1(X;Z) is a Z-module of �nite type and that the



j.-p. demailly, part i: L2 hodge theory 38image of the H1(X;Z) in H1(X;R) is a latti
e. It suÆ
es therefore to show thatthe map H1(X;R) ! H1(X;O) is an isomorphism. However, the 
ommutativediagram 0 ! C ! A0 d�! A1 d�! A2 ! � � �# # # #0 ! O ! A0;0 d00�! A0;1 d00�! A0;2 ! � � �shows that the map H1(X;R) ! H1(X;O) 
orresponds, for de Rham and Dol-beault 
ohomology, to the 
omposite mapH1DR(X;R) � H1DR(X; C ) ! H0;1(X; C ):Sin
e H1;0(X; C ) and H0;1(X; C ) are 
omplex 
onjugate subspa
es in the 
om-plexi�
ation H1DR(X; C ) of H1DR(X;R), we 
an easily dedu
e that H1DR(X;R) !H0;1(X; C ) is an isomorphism. �As a 
onsequen
e of this lemma, H1(X;Z) is of rank 2q, i.e. H1(X;Z)' Z2q.The 
omplex torus of dimension q(8.25) Ja
(X) = H1(X;O)=H1(X;Z)is 
alled the Ja
obian variety of X . It is isomorphi
 to the subgroup of H1(X;O�)
orresponding to the line bundles with zero �rst Chern 
lass. In other words, thekernel of the arrow H2(X;Z)! H2(X;O) = H0;2(X; C );whi
h de�nes the integral 
ohomology 
lasses of type (1; 1), is equal to the image ofthe morphism 
1(�) in H2(X;Z). This subgroup is 
alled the N�eron-Severi groupof X , and is denoted by NS(X). Its rank �(X) is 
alled the Pi
ard number of X .The exa
t sequen
e (8.21) then gives(8.26) 0! Ja
(X)! H1(X;O�) 
1�! NS(X)! 0:The Pi
ard group H1(X;O�) is therefore an extension of the 
omplex torus Ja
(X)by the Z-module of �nite type NS(X).8.27. Corollary. The Pi
ard group of Pn is H1(Pn;O�) ' Z with O(1) asgenerator, i.e. any line bundle over Pn is isomorphi
 to one of the line bundlesO(k), k 2 Z.Proof. We have Hk(Pn;O) = H0;k(Pn; C ) = 0 for k � 1 by applying 
onseq.8.8, therefore Ja
(Pn) = 0 and NS(Pn) = H2(Pn;Z)' Z. Moreover, 
1(O(1)) is agenerator of H2(Pn;Z). �9. The Hodge-Fr�oli
her spe
tral sequen
eAssume given X a 
omplex manifold (i.e. not ne
essarily 
ompa
t) of dimen-sion n. We 
onsider the double 
omplex Kp;q = C1(X;�p;qT �X) with its totaldi�erential d = d0 + d00. The Hodge-Fr�oli
her spe
tral sequen
e (or Hodge to deRham spe
tral sequen
e) is by de�nition the spe
tral sequen
e asso
iated to thisdouble 
omplex.



39 9. the hodge-fr�oli
her spe
tral sequen
eWe �rst re
all the algebrai
 ma
hinery of spe
tral sequen
es, whi
h applies toan arbitrary double 
omplex (Kp;q; d0+d00) of modules over a ring. We assume herefor simpli
ity that Kp;q = 0 if p < 0 or q < 0. One �rst asso
iates to K�;� the total
omplex (K�; d) su
h that Kl = �p+q=lKp;q, equipped with the total di�erentiald = d0+d00. Then K� admits a de
reasing �ltration formed from the sub
omplexesF pK� where(9.1) F pKl = Mp�j�lKj;l�j :One obtains an indu
ed �ltration on the 
ohomology groups H l(K�) of the total
omplex by setting(9.2) F pH l(K�) := Im�H l(F pK�)! H l(K�)�;and one denotes by GpH l(K�) = F pH l(K�)=F p+1H l(K�) the asso
iated gradedmodule. The theory of spe
tral sequen
es (see for example [God57℄) says thatthere exists a sequen
e of double 
omplexes E�;�r ; r � 1, equipped with di�eren-tials dr : Ep;qr ! Ep+r;q�r+1r of bidegree (r;�r + 1) su
h that Er+1 = H�(Er) is
al
ulated re
ursively as the 
ohomology of the 
omplex (E�;�r ; dr), and where thelimit Ep;q1 = limr!+1Ep;qr is identi�ed with the graded module G�H�(K�), morepre
isely Ep;q1 = GpHp+q(K�). The E1 terms are de�ned as the 
ohomology groupsof the partial 
omplex d00 : Kp;q ! Kp;q+1 by passing to the se
ond di�erential,that is(9.4) Ep;q1 = Hq�(Kp;�; d00)�;and the di�erential d1 : Ep;q1 ! Ep+1;q1 is indu
ed by the �rst di�erential d0:(9.5) d0 : Hq�(Kp;�; d00)�! Hq�(Kp+1;�; d00)�:In fa
t, one has Ep;qr = 0 unless p; q � 0, and the limit E1 = limEr is stationary,more pre
iselyEp;qr = Ep;qr+1 = � � � = Ep;q1 when r � max(p+ 1; q + 2);as one sees by 
onsidering the indi
es in whi
h dr 
an be non-zero. One says thatthe spe
tral sequen
e 
onverges to the graded �ltered module H�(K�), and it is
ustomary to represent this situation by the notationEp;q1 ) GpHp+q(K�):A 
areful examination of the terms of small degree leads to the exa
t sequen
e(9.6) 0! E1;02 ! H1(K�)! E0;12 d2�! E2;02 ! H2(K�):One says that the spe
tral sequen
e degenerates at Er0 if dr = 0 for all r � r0 andfor all bidegree (p; q). In this 
ase one has E�;�r0 = E�;�r0+1 = � � � = E�;�1 .In the 
ase of the Hodge-Fr�oli
her spe
tral sequen
e, the E1 terms are theDolbeault 
ohomology groups Ep;q1 = Hp;q(X; C ), and the 
ohomology of the total
omplex is pre
isely the de Rham 
ohomology H�DR(X; C ). One therefore obtainsa spe
tral sequen
e(9.7) Ep;q1 = Hp;q(X; C ) ) GpHp+qDR (X; C )
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ohomology to the de Rham 
ohomology. The 
orresponding �ltra-tion F pHkDR(X; C ) of 
ohomology groups is 
alled the Hodge(-Fr�oli
her) �ltration.Now assume that X is 
ompa
t. All the terms Ep;qr are then �nite dimensionalve
tor spa
es. Sin
e Er+1 = H�(Er), the dimensions dimEp;qr are de
reasing (orstationary) with r, therefore dimEp;q1 � dimEp;qr , and equality takes pla
e if andonly if the spe
tral sequen
e degenerates at Er. In parti
ular, the Betti numbersbl = dimH l(X; C ) and the Hodge numbers hp;q = dimEp;q1 satisfy the inequality(9.8) bl = Xp+q=l dimEp;q1 � Xp+q=l dimEp;q1 = Xp+q=l hp;q;and equality is equivalent to the degeneration of the spe
tral sequen
e at E�1 . As a
onsequen
e, we have the9.9. Theorem. If X is a 
ompa
t K�ahler manifold, the following propertiesare equivalent:a) The Hodge-Fr�oli
her spe
tral sequen
e degenerates at E�1 .b) One has the equality bl =Pp+q=l hp;q for all l.
) There exists an isomorphism GpHp+qDR (X; C ) ' Hp;q(X; C ) for all p; q.If one of these 
onditions is satis�ed, the isomorphism 
) is given in a 
anoni
alway.We 
an now again interpret the results of x8.B as follows.9.10. Theorem. If X is a 
ompa
t K�ahler manifold, the Hodge-Fr�oli
herspe
tral sequen
e degenerates at E1 and there is a 
anoni
al de
ompositionH lDR(X; C ) = Mp+q=lHp;q(X; C ); Hq;p(X; C ) = Hp;q(X; C ):In terms of this de
omposition, the �ltration F pH lDR(X; C ) is given byF pH lDR(X; C ) =Mj�pHj;l�j(X; C ):In parti
ular, the 
onjugate �ltration F �H lDR is opposed to the �ltration F �H lDR,i.e. H lDR(X; C ) = F pH lDR(X; C ) � F l�p+1H lDR(X; C ):9.11. Definition. If X is a 
ompa
t 
omplex manifold, we say that X admitsa Hodge de
omposition if the Hodge-Fr�oli
her spe
tral sequen
e degenerates at E1and if the 
onjugate �ltration F �H lDR is opposed to F �H lDR, i.e. H lDR = F pH lDR�F l�p+1H lDR for all p.If X admits a Hodge de
omposition in the sense of def. 9.11 and if p+ q = l,then it is immediate from the equality H lDR = F p+1H lDR � F qH lDR thatF pH lDR = F p+1H lDR � (F pH lDR \ F qH lDR):Therefore one obtains a 
anoni
al isomorphism(9.12) Hp;q(X; C ) ' F pH lDR=F p+1H lDR ' F pH lDR \ F qH lDR � H lDR:
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her spe
tral sequen
eWe dedu
e from this that there are 
anoni
al isomorphismsH lDR(X; C ) = Mp+q=lHp;q(X; C ); Hq;p(X; C ) = Hp;q(X; C );as expe
ted. Note that (9.12) furnishes another proof of the fa
t that the Hodgede
omposition of a 
ompa
t K�ahler manifold does not depend on the 
hoi
e ofK�ahler metri
 (all the groups and morphisms 
on
erned in (9.12) are intrinsi
).In fa
t, we have shown that a 
ompa
t K�ahler manifold satis�es a still strongerproperty, that will be 
onvenient to 
all a strong Hodge de
omposition, sin
e this onetrivially implies the existen
e of a Hodge de
omposition in the sense of De�nition9.11.9.13. Definition. If X is a 
ompa
t 
omplex manifold, we say that X admitsa strong Hodge de
omposition if the morphismsHp;qBC(X; C ) ! Hp;q(X; C ); Mp+q=lHp;qBC(X; C ) ! H lDR(X; C )are isomorphisms.9.14. Remark. Deligne [Del68, 72℄ has given an algebrai
 
riterion for thedegeneration of the Hodge spe
tral sequen
e, in
luding the 
ase of the relative situa-tion. More re
ently, Deligne and Illusie [DeI87℄ have given a proof of the degenera-tion of the Hodge spe
tral sequen
e whi
h does not use analyti
 methods (their ideais to work in 
hara
teristi
 p and to relate the result in 
hara
teristi
 0). It is ne
es-sary to observe that the degeneration of the Hodge-Fr�oli
her spe
tral sequen
e doesnot automati
ally imply the Hodge symmetry property Hq;p(X; C ) = Hp;q(X; C )nor the existen
e of a 
anoni
al de
omposition of de Rham groups. In fa
t, it isnot diÆ
ult to show that the Hodge-Fr�oli
her spe
tral sequen
e of a 
ompa
t 
om-plex surfa
e always degenerates at E1; however if X is not K�ahler, then b1 is odd,and one 
an show using the index theorem of Hirzebru
h that h0;1 = h1;0 + 1 andb1 = 2h1;0+1 (see [BPV84℄). One 
an show that the existen
e of a Hodge de
om-position (resp. strong Hodge) is preserved by 
ontra
tion morphisms (repla
ementof X by X 0, if � : X ! X 0 is a modi�
ation); this is an easy 
onsequen
e of the ex-isten
e of a dire
t image fun
tor �� a
ting on all the 
ohomology groups 
on
erned,su
h that ���� = Id. In the analyti
 
ontext, �� is easily 
onstru
ted by 
al
ulating
ohomology with the aid of 
urrents, sin
e one has on those a natural dire
t imagefun
tor. As any Moishezon manifold admits a proje
tive algebrai
 modi�
ation,we dedu
e that Moishezon manifolds also admit a strong Hodge de
omposition. Itwould be interesting to know if there exists examples of 
ompa
t 
omplex manifoldspossessing a Hodge de
omposition without having a strong Hodge de
omposition(there are indeed immediate examples of abstra
t double 
omplexes having thisproperty). �In general, when X is not K�ahler, a 
ertain amount of interesting information
an be dedu
ed from the spe
tral sequen
e. For example, (9.6) implies(9.15) b1 � dimE1;02 + (dimE0;12 � dimE2;02 )+:In addition, E1;02 is the 
ohomology group de�ned by the sequen
ed1 = d0 : E0;01 ! E1;01 ! E2;01 ;
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e E0;01 is the spa
e of global holomorphi
 fun
tions on X , the �rst arrowd1 is zero (by the maximum prin
ipal, the holomorphi
 fun
tions are 
onstant onea
h 
onne
ted 
omponent of X). Therefore dimE1;02 � h1;0�h2;0. Similarly, E0;12is the kernel of the map E0;11 ! E1;11 , therefore dimE0;12 � h0;1�h1;1. From (9.15)we dedu
e(9.16) b1 � (h1;0 � h2;0)+ + (h0;1 � h1;1 � h2;0)+:Another interesting relation 
on
erns the topologi
al Euler-Poin
ar�e 
hara
teristi
�top(X) = b0 � b1 + � � � � b2n�1 + b2n:We utilize the following simple lemma.9.17. Lemma. Let (C�; d) be a bounded 
omplex of �nite dimensional ve
torspa
es over a �eld. Then the Euler 
hara
teristi
�(C�) =X(�1)q dimCqis equal to the Euler 
hara
teristi
 ��H�(C�)� of the 
ohomology module.Proof. Set
q = dimCq ; zq = dimZq(C�); bq = dimBq(C�); hq = dimHq(C�):Then 
q = zq + bq+1; hq = zq � bq:Consequently we �ndX(�1)q
q =X(�1)qzq �X(�1)qbq =X(�1)qhq : �In parti
ular, if the term E�r of the spe
tral sequen
e of a �ltered 
omplex K�is a bounded 
omplex of �nite dimension, one has�(E�r ) = �(E�r+1) = � � � = �(E�1) = �(H�(K�))be
ause E�r+1 = H�(E�r ) and dimEl1 = dimH l(K�). In the Hodge-Fr�oli
her spe
-tral sequen
e one additionally has dimEl1 =Pp+q=l hp;q , therefore:9.18. Theorem. For any 
ompa
t 
omplex manifold X, the topologi
al Euler
hara
teristi
 
an be written�top(X) = X0�l�2n(�1)lbl = X0�p;q�n(�1)p+qhp;q :We now translate the Hodge-Fr�oli
her spe
tral sequen
e in terms of the spe
tralsequen
e of hyper
ohomology asso
iated to the holomorphi
 de Rham 
omplex.First let us brie
y explain what this spe
tral sequen
e 
onsists of. Assume givena bounded 
omplex of sheaves of abelian groups A� over a topologi
al spa
e X .Then the hyper
ohomology groups of A� are de�ned as the groupsH k (X;A�) := Hk(�(X;L�));where L� is a 
omplex of a
y
li
 sheaves (
asque sheaves or sheaves of C1 modulesfor example) 
hosen so that one has a quasi-isomorphism A� ! L� (a morphism
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ontinuity theoremof 
omplexes of sheaves indu
ing an isomorphism Hk(A�) ! Hk(L�) on the 
oho-mology of sheaves). It is easy to see that hyper
ohomology does not depend upto isomorphism on the 
omplex of a
y
li
 sheaves L� 
hosen. Hyper
ohomologyis a fun
tor from the 
ategory of 
omplexes of sheaves of abelian groups to the
ategory of graded groups. By de�nition, if A� ! B� is a quasi-isomorphism, thenH k (X;A�) ! H k (X;B�) is an isomorphism; moreover hyper
ohomology redu
esto the usual 
ohomology Hk(X; E) of the sheaf E for a 
omplex A� redu
ed to asingle term A0 = E . Suppose that one has for ea
h term Ap of the 
omplex A�a resolution Ap ! Lp;� by a
y
li
 sheaves Lp;q , giving rise to a double 
omplexof sheaves (Lp;q ; d0 + d00). Then the asso
iated total 
omplex (L�; d) is an a
y
li

omplex quasi-isomorphi
 to A�, and one therefore hasH k (X;A�) = Hk(�(X;L�)):Further, the double 
omplex Kp;q = �(X;Lp;q) de�nes a spe
tral sequen
e su
hthat Ep;q1 = Hq(Kp;�; d00) = Hq(X;Ap);
onverges to the asso
iated graded 
ohomology of the total 
omplex Hk(K�) =H k (X;A�). One therefore obtains a spe
tral sequen
e 
alled the hyper
ohomologyspe
tral sequen
e(9.19) Ep;q1 = Hq(X;Ap)) GpH p+q (X;A�):The �ltration F p of hyper
ohomology groups is by de�nition obtained by takingthe image of the morphismH k (X;F pA�)! H k (X;A�);where F pA� denotes the 
omplex trun
ated to the left� � � ! 0! 0! Ap ! Ap+1 ! � � � ! AN � � � :Consider now the 
ase where X is any given 
omplex manifold and where A� = 
�Xis the holomorphi
 de Rham 
omplex (with the usual exterior di�erential). Theholomorphi
 Poin
ar�e Lemma shows that 
�X is a resolution of the 
onstant sheafCX , i.e., one has a quasi-isomorphism of 
omplexes of sheaves CX ! 
�X , whereCX denotes the 
omplex redu
ed to a single term in degree 0. By de�nition ofhyper
ohomology, one therefore has(9.20) Hk(X; CX ) = H k (X;
�X);and the exa
t sequen
e of hyper
ohomology of the 
omplex 
�X furnishes a spe
tralsequen
e(9.21) Ep;q1 = Hq(X;
pX)) GpHp+q(X; CX ):Be
ause the groups H k (X;
�X) 
an be 
al
ulated by using the resolution of 
�X bythe Dolbeault 
omplex Lp;q = C1(�p;qT �X) (these sheaves are 
ertainly a
y
li
!),one then sees that the hyper
ohomology spe
tral sequen
e (9.21) is pre
isely theHodge-Fr�oli
her spe
tral sequen
e previously de�ned.
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ontinuity theoremThe purpose of this se
tion is to study the dependen
e of the groupsHp;q(Xt; C )or more generally the 
ohomology groups Hq(Xt; Et), when the pair (Xt; Et) de-pends holomorphi
ally on a parameter t in a 
ertain 
omplex spa
e S. Our ap-proa
h is to adopt the point of view of Kodaira-Spen
er, su
h as is developed intheir original work on the theory of deformations (see for example the 
ompleteworks of Kodaira [Kod75℄). The method of Kodaira-Spen
er exploits the 
ontinu-ity properties or semi-
ontinuity of proper spa
es of Lapla
ians as a fun
tion of theparameter t. Another approa
h furnishing more pre
ise results 
onsists of utilizingthe theorem of dire
t images of Grauert [Gra60℄.10.1 Definition. A deformation of 
ompa
t 
omplex manifolds is given by aproper analyti
 morphism � : X ! S of 
onne
ted 
omplex spa
es, for whi
h allthe �bers Xt = ��1(t) are smooth manifolds of the same dimension n, and satisfythe following lo
al 
ondition:(H) Any point � 2 X admits a neighbourhood U su
h that there exists a biholo-morphism  : U � V ! U where U is open in C n and V is a neighbourhood oft = �(�), satisfying � Æ  = pr2 : U � V ! V (se
ond proje
tion).We say that (Xt)t2S is a holomorphi
 family of deformations of any given �ber Xt0 ,and that S is the base of the deformation. A holomorphi
 family of ve
tor bundles(resp. sheaves) Et ! Xt is given by a family of bundles (resp. sheaves) obtainedfrom a global bundle (resp. global sheaf) E ! X, by restri
tion to the �bers Xt.If S is smooth, the hypothesis (H) is equivalent to assuming that � is a holo-morphi
 submersion, as a 
onsequen
e of the theorem of 
onstant rank. There arenevertheless situations where one must ne
essarily 
onsider also the 
ase of a sin-gular base S (for example when one seeks to 
onstru
t the \universal deformation"of a manifold). In a topologi
al setting (di�erentiable or smooth), we have thefollowing lemma, known as Ehresmann's Lemma.10.2. Ehresmann's Lemma. Let � : X! S be a smooth and proper di�eren-tiable submersion.a) If S is 
ontra
tible, then for any t0 2 S, there exists a 
ommutative diagramX ��! Xt0 � Spr1 & . �Swhere � is a di�eomorphism.b) For any given base S, X ! S is a lo
ally trivial bundle (di�erentiable). Inparti
ular, if S is 
onne
ted, the �bers are all di�eomorphi
.Proof. a) Let H : S � [0; 1℄ ! S be a di�erentiable homotopy betweenH(�; 0) = IdS and H(�; 1) = 
onstant map S ! ft0g. The �ber produ
t~X = f(x; s; t) 2 X� S � [0; 1℄ ; �(x) = H(s; t)gwith proje
tion ~� = pr2�pr3 : ~X! S� [0; 1℄ is still a di�erentiable submersion, asone 
an easily verify. One dedu
es that there exists a ve
tor �eld � on ~X whi
h liftsthe ve
tor �eld ��t on S � [0; 1℄, i.e. ��� = ��t . (There exists a lo
al lifting by the
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ontinuity theoremsubmersive property, and one glues together these liftings by means of a partitionof unity.) Let 't be a 
ow of this lifting: Then, if (x; s; 0) 2 ~X�S�f0g ' X, one hasby 
onstru
tion 't(x; s; 0) = (?; s; t), therefore � = '1 de�nes a di�eomorphism of~X�S�f0g ' X on ~X�S�f1g ' Xt0 � S, 
ommuting with the proje
tion on S.b) is dedu
ed immediately from a). �It follows from b) that the bundle t 7! Hk(Xt; C ) is a lo
ally trivial bundle of C -ve
tor spa
es of �nite dimension. Furthermore, in ea
h �ber we have a free abeliansubgroup ImHk(Xt;Z)� Hk(Xt; C ) of rank bk whi
h generates Hk(Xt; C ) as a C -ve
tor spa
e. The transition matri
es of this lo
ally 
onstant system are in SLbk (Z).Sin
e the transition matri
es are lo
ally 
onstant, the bundle t 7! Hk(Xt; C ) isequipped with a 
onne
tion D su
h that D2 = 0: This 
onne
tion is 
alled theGauss-Manin 
onne
tion. The following lemma is useful.10.3. Lemma. Let � : X! S be a smooth and proper di�erentiable submersionand E a C1 ve
tor bundle over X. Consider a family of ellipti
 operatorsPt : C1(Xt; Et)! C1(Xt; Et)of degree Æ. We assume that Pt is self-adjoint semipositive relative to a metri
 hton Et and a volume form dVt on Xt, and that the 
oeÆ
ients of Pt, ht and dVt areC1 on X. Then the eigenvalues of Pt, 
omputed with multipli
ity, 
an be arrangedin a sequen
e �0(t) � �1(t) � � � � � �k(t)! +1;where the k-th eigenvalue �k(t) is a 
ontinuous fun
tion of t. Moreover, if � is not inthe spe
trum f�k(t0)gk2N of Pt0 , the dire
t sum W�;t � C1(Xt; Et) of eigenspa
esof Pt with eigenvalues �k(t) � � de�nes a C1 ve
tor bundle, t 7! Wt;�, in aneighbourhood of t0.Proof. Sin
e the results are lo
al over S, one 
an assume that X = Xt0 � Sand E = pr�1Et0 , that is, their �bers Xt and Et are independent of t (but the formsdVt on Xt and the metri
s ht on Et are in general dependent on t). Let ��;t bethe orthogonal proje
tion operator onW�;t in L2(Xt; Et) ' L2(Xt0 ; Et0). If �(0; �)denotes the 
ir
le with 
enter 0 and with radius � in the 
omplex plane, Cau
hy'sformula gives ��;t = 12�i Z�(0;�)(zId� Pt)�1dz;where the integral is viewed as an integral with ve
tor values in the spa
e of boundedoperators on L2(Mt0 ; Et0). (It suÆ
es to verify the formula on the eigenve
tors ofPt, whi
h is elementary.) The arguments made in x3 show that there exists a familyof pseudodi�erential operators Qt of order �Æ, for whi
h the symbol depends in aC1 manner with t (and with uniform estimates by di�erentiation in t), su
h thatPtQt = Id+Rt for regular operators Rt, for whi
h the kernel also depends in a C1manner in t. Sin
e Qt is a family of 
ompa
t operators on L2(Xt; Et) whi
h dependin a C1 manner in t, the eigenvalues ofQt depend 
ontinuously in t. Up to 
hangingQt0 on a subspa
e of �nite dimension, one 
an assume that Qt0 is an isomorphismof L2(Xt0 ; Et0) ontoW Æ(Xt0 ; Et0). It will be the same for Qt in a neighbourhood oft0, and 
onsequently zId�Pt is invertible if and only if (zId�Pt)Qt = Id+Rt+zQtis invertible. If � is not in the spe
trum of Pt0 , it follows that for all z 2 �(0; �),the inverse (zId � Pt)�1 = Qt(Id + Rt + zQt)�1 depends in a C1 way in t. This
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ally trivial C1 �bration in a neighbourhood of t0.The 
ontinuity of the eigenvalue �k(t) of Pt follows from the 
onstant rank of W�;tin a neighbourhood of t0, for � = �k(t0)� �. �10.4. Semi-
ontinuity Theorem (Kodaira-Spen
er). If X! S is a smooth,proper C -analyti
 morphism and if E is a lo
ally free sheaf on X, the dimensionshq(t) = hq(Xt; Et) are upper semi-
ontinuous fun
tions. More pre
isely, the alter-nating sums hq(t)� hq�1(t) + � � �+ (�1)qh0(t); 0 � q � n = dimXtare upper semi-
ontinuous fun
tions.Proof. Let Et the holomorphi
 ve
tor bundle asso
iated to Et. Equip E andX with arbitrary Hermitian metri
s. A

ording to the Hodge isomorphism for thed00-
ohomology, one 
an interpret Hq(Xt; Et) as the spa
e of harmoni
 forms for theLapla
ian �00qt a
ting on C1(Xt;�0;qT �Xt
Et). Fix a point t0 2 S and a real � > 0whi
h does not belong in the spe
trum of the operators �00qt0 ; 0 � q � n = dimXt.ThenW qt =W q�;t = dire
t sum of eigenspa
es of �00qt with eigenvalues � �de�nes a C1 bundle W q in a neighbourhood of t0. Moreover the di�erential d00t
ommutes with �00t and thus sends the eigenspa
es of �00qt into the eigenspa
esof �00q+1t asso
iated to the same eigenvalues. This shows that (W �t ; d00t ) is a sub-
omplex of �nite dimension of the Dolbeault 
omplex �C1(Xt;�0;qT �Xt 
Et); d00t �.The 
ohomology of this sub
omplex 
oin
ides with Hq(Xt; Et) sin
e the relationd00t d00�t + d00�t d00t = �00t shows that 1�k d00�t is a homotopy operator on the sub
omplexformed from the eigenspa
es with eigenvalue �k when �k 6= 0. If Zqt denotes thekernel of the morphism d00qt : W qt ! W q+1t , then zq(t) := dimZqt is an upper semi-
ontinuous fun
tion in the Zariski topology, as one 
an easily see by 
onsidering therank of the minors of the matrix de�ning the morphism d00q : W q ! W q+1. Fromthe trun
ated 
omplex0!W 0t !W 1t ! � � � !W q�1t ! Zqt ! 0having for the 
ohomology the groups Hj(Xt; Et) with indi
es 0 � j � q, oneobtainshq(t)� hq�1(t) + � � �+ (�1)qh0(t) = zq(t)� wq�1 + wq�2 + � � �+ (�1)qw0;where wq denotes the rank of W q . The upper semi-
ontinuity of the term on theleft follows, and that of hq(t) is then immediate by indu
tion on q. �10.5. Invarian
e of the Hodge numbers. Let X ! S be a smooth andproper C -analyti
 morphism. We assume that the �bers Xt are K�ahler manifolds.Then the Hodge numbers hp;q(Xt) are 
onstant. Moreover, in the de
ompositionHk(Xt; C ) = Mp+q=kHp;q(Xt; C );the bundles t 7! Hp;q(Xt; C ) de�ne C1 subbundles (in general, not holomorphi
subbundles) of the bundle t 7! Hk(Xt; C ).



47 10. deformations and the semi-
ontinuity theoremProof. Lemma 10.2 implies that the Betti numbers bk = dimHk(Xt; C ) are
onstant. Sin
e, a

ording to th. 10.4, hp;q(Xt; C ) = hq(Xt;
pXt ) is upper semi-
ontinuous, and hp;q(Xt) = bk � Xr+s=k;(r;s)6=(p;q)hr;s(Xt);these fun
tions are likewise lower semi-
ontinuous. Consequently they are 
ontin-uous and therefore 
onstant. A theorem of Kodaira [Kod75℄ shows that if a �berXt0 is K�ahler, then the neighbouring �bers Xt are K�ahler and the K�ahler metri
s!t 
an be 
hosen so that they depend in a C1 way with t. The spa
es of harmoni
(p; q)-forms therefore depend in a C1 way with t a

ording to th. 10.4, and onededu
es that t 7! Hp;q(Xt; C ) is a C1 subbundle of Hk(Xt; C ). �It is possible to obtain more pre
ise and general results by means of the theoremof dire
t images of Grauert [Gra60℄. Re
all that if we are given a 
ontinuous mapf : X ! Y between topologi
al spa
es and a sheaf E of abelian groups on X , thenone 
an de�ne the dire
t image sheaf Rkf�E on Y , as being the sheaf asso
iated tothe presheaf U 7! Hk(f�1(U); E), for all open U in Y . More generally, being givena 
omplex of sheaves A�, we have the dire
t image sheaves Rq f�A�, obtained fromthe hyper
ohomology presheavesU 7! H k (f�1(U);A�):The proof of the theorem of dire
t images as given by [FoK71℄ and [KiV71℄ (alsosee [DoV72℄) furnishes the following fundamental result.10.6. Theorem of dire
t images. Let � : X ! S be a proper morphismof 
omplex analyti
 spa
es and A� a bounded 
omplex of 
oherent sheaves of OX-modules. Thena) The dire
t image sheaves Rk��A� are 
oherent sheaves on S.b) Any point of S admits a neighbourhood U � S on whi
h there exists a bounded
omplex W� of sheaves of lo
ally free OS-modules in whi
h the 
ohomologysheaves Hk(W�) are isomorphi
 to the sheaf Rk��A�.
) If the �bers of � are equidimensional (\geometri
ally 
at morphism"), the hy-per
ohomology of the �ber Xt = ��1(t) with values in A�t = A�
OXOXt (whereOXt = OX=��mS;t) is given byHk(Xt;A�t ) = Hk(W �t );where (W �t ) is the 
omplex of �nite dimensional spa
esW kt =Wk
OS;tOS;t=mS;t.d) Under the hypothesis of 
), if the hyper
ohomology spa
es H k (Xt;A�t ) of the�bers are of 
onstant dimension, the sheaves Rk��A� are lo
ally free on S.The same results are true in parti
ular for the dire
t images Rk��E of a 
oherentsheaf E on X, and the 
ohomology groups Hk(Xt; Et) of the �bers.One notes that property d) is in fa
t a formal 
onsequen
e of 
), be
ause thehypothesis guarantees that the holomorphi
 matri
es de�ning morphisms Wk !Wk+1 are of 
onstant rank at ea
h point t 2 S. From (10.6b) one then dedu
es thefollowing result due to [Fle81℄ with an identi
al argument to that in th. 10.4.10.7 Semi-Continuity Theorem. If X ! S is a proper analyti
 morphismwith equidimensional �bers and if E is a 
oherent sheaf on X, then the alternating



j.-p. demailly, part i: L2 hodge theory 48sums hq(t)� hq�1(t) + � � �+ (�1)qh0(t);with dimensions hk(t) = hk(Xt; Et), are upper semi-
ontinuous fun
tions of t in theanalyti
 Zariski topology (topology of whose 
losed are the analyti
 sets).Let � : X ! S be a C -analyti
 proper and smooth submersion. One assumesthat the Hodge spe
tral sequen
e of the �bers Xt degenerates at E1 for all t 2 S(a

ording to (10.7) this is in fa
t an open property for the analyti
 Zariski topologyon S). If U � S is open and 
ontra
tible, then ��1(U) ' Xt�U for any �ber overt 2 U . If ZX; C X , denotes the lo
ally 
onstant sheaves with base X and with �bersZ; C , one obtains �(U;Rk��ZX) = Hk(��1(U);Z) = Hk(Xt;Z);�(U;Rk��C X) = Hk(��1(U); C ) = Hk(Xt; C );so thatRk��ZX andRk��C X are lo
ally 
onstant sheaves on S, with �bersHk(Xt;Z)and Hk(Xt; C ). The bundle t 7! Hk(Xt; C ), equipped with the 
at 
onne
tion D(Gauss-Manin 
onne
tion), possesses a 
anoni
al holomorphi
 stru
ture indu
ed bythe 
omponent D0;1 of the Gauss-Manin 
onne
tion. The 
at bundle �kHk(Xt; C )is 
alled the Hodge bundle of the �bration X! S.Now 
onsider the relative de Rham 
omplex (
�X=S ; dX=S) of the �bration X!S. This 
omplex furnishes a resolution of the sheaf ��1OS (\purely shea��ed"inverse image of OS), 
onsequently(10.8) Rk��
�X=S = Rk��(��1OS) = (Rk��C X )
C OS :The latter equality is obtained immediately by an argument using OS(U) linearityfor the 
ohomology 
al
ulated on the open set ��1(U) (the 
omplex stru
ture of��1(U) does not intervene here). In other words, Rk��
�X=S is the lo
ally freeOS-module asso
iated to the 
at bundle t 7! Hq(Xt; C ). One has a relative hyper-
ohomology spe
tral sequen
eEp;q1 = Rq��
pX=S ) GpRp+q��
�X=S = GpRp+q��C X(the relative spe
tral sequen
e is obtained simply by a \shea��
ation" of the ab-solute hyper
ohomology spe
tral sequen
e (9.19) of the 
omplex 
�X=S over theopen set ��1(U)). Sin
e the 
ohomology of 
pX=S on the �ber Xt is pre
isely thespa
e Hq(Xt;
pXt) of 
onstant rank, th. 10.6d) shows that the dire
t image sheavesRp��
pX=S are lo
ally free. In addition, the �ltration F pHk(Xt; C ) � Hk(Xt; C ) isobtained on the level of lo
ally free OS-modules asso
iated with taking the imageof the OS-linear morphism Rk��F p
�X=S ! Rk��
�X=S;whi
h is therefore a 
oherent subsheaf (and likewise a lo
ally free subsheaf, a

ord-ing to the property of 
onstant rank on the �bers Xt). From (10.8) one dedu
esthe



10.9. Theorem (holomorphi
 Hodge �ltration). The Hodge �ltrationF pHk(Xt; C ) � Hk(Xt; C ) de�nes a holomorphi
 subbundle relative to the holo-morphi
 stru
ture de�ned by the Gauss-Manin 
onne
tion.One sees that in general there is no reason for Hp;q(Xt; C ) = F pHk(Xt; C ) \F qHk(Xt; C ) to be a holomorphi
 subbundle of Hk(Xt; C ) for any p + q = k,although Hp;q(Xt; C ) possesses a natural holomorphi
 bundle stru
ture (obtainedfrom the 
oherent sheaf Rq��
pX=S , or as a quotient of F pHk(Xt; C )). In otherwords, this is the Hodge de
omposition whi
h is not holomorphi
.10.10 Example. Let S = f� 2 C ; Im � > 0g be the upper half plane andX ! S the \universal" family of ellipti
 
urves over S, de�ned by X� = C =(Z +Z�). The two basis elements of the Hodge �ber H1(X� ; C ), dual to the basis(1; �) of the latti
e of periods, are � = dx � Re �=Im �dy and � = (Im �)�1dy(z = x + iy 2 C denotes the 
oordinates on X� ). These elements therefore satisfyD� = D� = 0 and de�ne the holomorphi
 stru
ture of the Hodge bundle; thesubbundle H1;0(X� ; C ) generated by the 1-form dz = �+ �� is 
learly holomorphi
(as it should be!), however one sees that the 
omponents �1;0 = � i2 (Im �)�1dz and�0;1 = � i2 (Im �)�1dz are not holomorphi
 in � .

49



j.-p. demailly, part ii: L2 estimations and vanishing theorems 50Part II: L2 Estimations and Vanishing Theorems11. Con
epts of pseudo
onvexity and of positivityThe statements and proofs of the vanishing theorems brings into play many
on
epts of pseudo
onvexity and positivity. We �rst present a summary, by bringingtogether the 
on
epts that we deem ne
essary.11.A. Plurisubharmoni
 fun
tions. The plurisubharmoni
 fun
tions wereintrodu
ed independently by Lelong and Oka in 1942 in the study of holomorphi

onvexity. We refer to [Lel67, 69℄ for more details.11.1. Definition. A fun
tion u : 
 ! [�1;+1[ de�ned on an open set
 � C n is 
alled plurisubharmoni
 (abbreviated psh) ifa) u is upper semi-
ontinuous;b) for any 
omplex line L � C n ; u�
\L is subharmoni
 on 
 \ L, that is, for anya 2 
 and � 2 C n satisfying j�j < d(a; {
), the fun
tion u satis�es the meaninequality u(a) � 12� Z 2�0 u(a+ ei��)d�:The set of psh fun
tions on 
 is denoted by Psh(
).We give below a list of some fundamental properties satis�ed by the psh fun
-tions. All these properties 
ome about easily from the de�nition.11.2. Fundamental properties.a) Any fun
tion u 2 Psh(
) is subharmoni
 in the 2n real variables, i.e. satis�esthe mean value inequality on the Eu
lidean ball (or sphere):u(a) � 1�nr2n=n! ZB(a;r) u(z)d�(z)for all a 2 
 and all r < d(a; {
). In this 
ase, one has either u � �1 oru 2 L1lo
 on every 
onne
ted 
omponent of 
.b) For any de
reasing sequen
e of psh fun
tions uk 2 Psh(
), the limit u = limukis psh on 
.
) Assume given u 2 Psh(
) su
h that u 6� �1 on all 
onne
ted 
omponents of
. If (��) is a family of regular kernels, then u ? �� is C1 and psh on
� = fx 2 
; d(x; {
) > �g;the family (u ? ��) is in
reasing in �, and lim�!0 u ? �� = u.d) Assume given u1; : : : ; up 2 Psh(
) and � : Rp ! R a 
onvex fun
tion su
hthat �(t1; : : : ; tp) is in
reasing in ea
h variable tj . Then �(u1; : : : ; up) is pshon 
. In parti
ular u1+ � � �+up; maxfu1; : : : ; upg; log(eu1 + � � �+eup) are pshon 
. �11.3. Lemma. A fun
tion u 2 C2(
;R) is psh on 
 if and only if the Hermit-ian form Hu(a)(�) = P1�j;k�n �2u=�zj�zk(a)�j�k is semi-positive at every pointa 2 
.



51 11. 
on
epts of pseudo
onvexity and of positivityProof. This is an easy 
onsequen
e of the following standard formula12� Z 2�0 u(a+ ei��)d� � u(a) = 2� Z 10 dtt Zj�j<tHu(a+ ��)(�)d�(�);where d� is the Lebesque measure on C . Lemma 11.3 strongly suggests thatplurisubharmoni
ity is the 
omplex analog of the property of linear 
onvexity inthe real 
ase. �For nonregular fun
tions, one obtains an analogous 
hara
terization of plurisub-harmoni
ity by means of a pro
ess of regularization.11.4. Theorem. If u 2 Psh(
) with u 6� �1 on every 
onne
ted 
omponentof 
, then for every � 2 C nHu(�) = X1�j;k�n �2u�zj�zk �j�k 2 D0(
)is a positive measure. Conversely, if v 2 D0(
) is given su
h that Hv(�) is a positivemeasure for all � 2 C n , then there exists a unique fun
tion u 2 Psh(
) whi
h islo
ally integrable on 
 and su
h that v is the distribution asso
iated to u. �In order to obtain a better geometri
al 
omprehension of the notion of plurisub-harmoni
ity, we assume more generally that the fun
tion u lives on a 
omplex man-ifold X of dimension n. If � : X ! Y is a holomorphi
 map and if v 2 C2(Y;R),we have d0d00(v Æ�) = ��d0d00v, thereforeH(v Æ�)(a; �) = Hv(�(a);�0(a):�):In parti
ular Hu, viewed as a Hermitian form on TX , is independent of the 
hoi
e
oordinates (z1; : : : ; zn). Consequently, the notion of a psh fun
tion makes senseon any 
omplex manifold. More generally, we have11.5. Proposition. If � : X ! Y is a holomorphi
 map and v 2 Psh(Y ),then v Æ� 2 Psh(X). �11.6. Example. It is well known that log jzj is psh (i.e. subharmoni
) on C .Therefore log jf j 2 Psh(X) for any holomorphi
 fun
tion f 2 H0(X;OX). Moregenerally log(jf1j�1 + � � �+ jfqj�q ) 2 Psh(X)for any 
hoi
e of fun
tions fj 2 H0(X;OX) and real �j � 0 (apply property 11.2dwith uj = �j log jfj j). We will be interested more parti
ularly with singularities ofthis fun
tion along the variety of zeros f1 = � � � = fq = 0, when the �j are rationalnumbers. �11.7. Definition. One says that a psh fun
tion u 2 Psh(X) has analyti
singularities (resp. algebrai
) if u 
an be written lo
ally in the formu = �2 log(jf1j2 + � � �+ jfN j2) + v;with holomorphi
 fun
tions (resp. algebrai
) fj ; � 2 R+ , (resp. � 2 Q+ ), andwhere v is a bounded fun
tion.



j.-p. demailly, part ii: L2 estimations and vanishing theorems 52We introdu
e then the ideal J = J(u=�) of germs of holomorphi
 fun
tions hsu
h that there exists a 
onstant C � 0 for whi
h jhj � Ceu=�, i.e.jhj � C(jf1j+ � � �+ jfN j):One therefore obtains a global sheaf of ideals de�ned on X , lo
ally equal to theintegral 
losure I of the sheaf of ideals I = (f1; : : : ; fN); 
onsequently J is 
oherenton X . If (g1; : : : ; gN 0) are the lo
al generators of J, we still haveu = �2 log(jg1j2 + � � �+ jgN 0 j2) +O(1):From an algebrai
 point of view, the singularities of u are in bije
tive 
orresponden
ewith the \algebrai
 data" (J; �). We will later see another even more signi�
antway to asso
iate to a psh fun
tion, a sheaf of ideals.11.B. Positive 
urrents. The theory of 
urrents was founded by G. de Rham[DR55℄. We mention here only the most basi
 de�nitions. The reader 
an 
onsult[Fed69℄ for a mu
h more 
omplete treatment of this theory. In the 
omplex sit-uation, the important 
hara
teristi
 
on
ept of a positive 
urrent was studied andemanated by P. Lelong [Lel57,69℄.A 
urrent of degree q on a di�erential manifold M , is nothing more than adi�erential q-form � with distribution 
oeÆ
ients. The spa
e of 
urrents of degreeq on M will be denoted by D0q(M). Alternatively, one 
an 
onsider the 
urrents ofdegree q as the elements � of the dual D0p(M) := �Dp(M)�0 of the spa
e Dp(M) ofC1 di�erential forms of degree p = dimM � q with 
ompa
t support; the dualitypairing is given by(11.8) h�; �i = ZM � ^ �; � 2 Dp(M):A fundamental example is the 
urrent of integration [S℄ on a 
ompa
t orientedsubmanifold S (possibly with boundary) of M :(11.9) h[S℄; �i = ZS �; deg� = p = dimRS:Then [S℄ is a 
urrent with measurable 
oeÆ
ients, and Stokes theorem shows thatd[S℄ = (�1)q�1[�S℄. In parti
ular d[S℄ = 0 if and only if S is a submanifoldwithout boundary. Be
ause of this example, the integer p is 
alled the dimensionof � 2 D0p(M). One says that the 
urrent � is 
losed if d� = 0.On a 
omplex manifold X , we have the analogous 
on
ept of bidegree and ofbidimension. As in the real 
ase, we denote byD0p;q(X) = D0n�p;n�q(X); n = dimX;the spa
e of 
urrents of bidegree (p; q) and bidimension (n�p; n�q) onX . Following[Lel57℄, a 
urrent � of bidimension (p; p) is 
alled (weakly) positive if for any 
hoi
eof C1 (1; 0)-forms �1; : : : ; �p on X , the distribution(11.10) � ^ i�1 ^ �1 ^ � � � ^ i�p ^ �p is a positive measure.
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on
epts of pseudo
onvexity and of positivity11.11. Exer
ise. If � is positive, show that the 
oeÆ
ients �I;J of � are
omplex measures, and that they are dominated up to a 
onstant by the tra
emeasure�� = � ^ 1p!�p = 2�pX�I;I ; where � = i2d0d00jzj2 = i2 X1�j�n dzj ^ dzj ;is a positive measure.Indi
ation. Observe thatP�I;I is invariant under a unitary 
hange of 
oordi-nates, and that the (p; p)-forms i�1^�1 � � �^ i�^�p generate �p;pT �Cn as a C -ve
torspa
e. �One easily sees that a 
urrent � = iP1�j;k�n�jkdzj ^ dzk of bidegree (1; 1)is positive if and only if the 
omplex measureP�j�k�jk is a positive measure forany n-tuple (�1; : : : ; �n) 2 C n .11.12. Example. If u is a psh fun
tion (not identi
ally �1) on X , one 
anasso
iate to u a 
losed positive 
urrent � = i��u of bidegree (1; 1). Conversely,any 
losed positive 
urrent of bidegree (1; 1) 
an be written in this form on anyopen subset 
 � X satisfying H2DR(
;R) = H1(
;O) = 0, for example on open
oordinate 
harts biholomorphi
 to a ball (exer
ise for the reader). �It is not diÆ
ult to show that a produ
t �1 ^ � � � ^ �q of positive 
urrents ofbidegree (1; 1) is positive whenever the produ
t is well de�ned. (This is 
ertainlythe 
ase if all but one of the �j are C1.) Other mu
h �ner 
onditions exist, butwe will not pursue this subje
t here.We now dis
uss another very important example of a 
losed positive 
urrent.For any 
losed analyti
 set A in X , of pure dimension p, one asso
iates a 
urrentof integration(11.13) h[A℄; �i = ZAreg �; � 2 Dp;p(X);obtained by integrating � on the set of regular points of A. To 
he
k that (11.13)gives a legitimate de�nition of a 
urrent on X , it should be shown that Areg islo
ally of �nite area in a neighbourhood of ea
h point of Asing. This result whi
hdue to [Lel57℄, 
an be shown as follows. Suppose (after a 
hange of 
oordinates)that 0 2 Asing. From the lo
al parameterization theorem for analyti
 sets, onededu
es that there exists a linear 
hange of 
oordinates on C n su
h that all theproje
tions �I : (z1; : : : ; zn) 7! (zi1 ; : : : ; zip)de�ne a �nite rami�ed 
overing over the interse
tion A \ �I of A with a smallpolydisk �I = �0I ��00I of C n = C p � C n�p , over the polydisk �0I of C p . Let nI bethe number layers of ea
h of these 
overings. Then, if � = \�I , the p-dimensionalarea of A\� is bounded above by the sum of the areas of its proje
tions 
omputedwith multipli
ities, i.e.Surfa
e Area(A \�) �XnIVol(�0I ):The fa
t that [A℄ is positive is easy. In fa
t, in terms of lo
al 
oordinates (w1; : : : ; wp)on Areg, one hasi�1 ^ �1 ^ � � � ^ i�p ^ �p = j det(�jk)j2iw1 ^ w1 ^ � � � iwp ^ wp
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h a produ
t of forms is � 0 by 
omparisonto the 
anoni
al orientation de�ned by iw1 ^ w1 ^ � � � ^ iwp ^ wp. A deeper result,also proven by P. Lelong [Lel57℄, is that [A℄ is a d-
losed 
urrent on X , in otherwords, the set Asing (whi
h is of real dimension � 2p � 2) does not 
ontribute tothe boundary 
urrent d[A℄. Finally, in 
onne
tion with example 11.12, we have theimportant11.14. Lelong-Poin
ar�e equation. Let f 2 H0(X;OX) be a nonzero holo-morphi
 fun
tion, Zf = PmjZj ; mj 2 N, the divisor of zeros of f , and [Zf ℄ =Pmj [Zj ℄ the asso
iated 
urrent of integration. Theni� �� log jf j = [Zf ℄:Proof (outline). It is 
lear that id0d00 log jf j = 0 in a neighbourhood of ea
hpoint x 62 Supp(Zf ) = [Zj , 
onsequently it suÆ
es to verify the equation in aneighbourhood of any point of Supp(Zf ). Let A be the set of singular points ofSupp(Zf ), i.e. the union of the interse
tions Zj\Zk and of their singularities Zj;sing;we then have dimA � n � 2. In a neighbourhood of any point x 2 Supp(Zf )nAthere exists lo
al 
oordinates (z1; : : : ; zn) su
h that f(z) = zmj1 , where mj is themultipli
ity of f along the 
omponent Zj whi
h 
ontains x, and where z1 = 0 is alo
al equation of Zj near x. Sin
e i�d0d00 log jzj = Dira
 measure Æ0 in C , we �ndi�d0d00 log jz1j = [hyperplane z1 = 0℄, thereforei�d0d00 log jf j = mj i� d0d00 log jz1j = mj [Zj ℄in a neighbourhood of x. This shows that the equation is valid on XnA. Con-sequently, the di�eren
e i�d0d00 log jf j � [Zf ℄ is a 
losed 
urrent of degree 2 withmeasurable 
oeÆ
ients for whi
h the support is 
ontained in A. This 
urrent isne
essarily zero be
ause A is of too small a dimension for to be able to 
arry itssupport. (A is strati�ed into submanifolds of real 
odimension � 4, whereas the
urrent itself is of real 
odimension 2.) �To 
on
lude this se
tion we now revisit the de Rham and Dolbeault 
ohomologyin the 
ontext of the theory of 
urrents. A basi
 observation is that the Poin
ar�eand Dolbeault-Grothendie
k Lemmas are still valid for 
urrents. More pre
isely, if(D0q; d) and (D0(F )p;q ; d00) denotes the 
omplexes of sheaves of 
urrents of degreeq (resp. 
urrents of bidegree (p; q) with values in a holomorphi
 ve
tor bundle F ),one still has resolutions of de Rham and of Dolbeault sheaves0! R ! D0�; 0! 
pX 
O(F )! D0(F )p;�:As a result, there are 
anoni
al isomorphismsHqDR(M;R) = Hq�(�(M;D0�); d)�;(11.15) Hp;q(X;F ) = Hq�(�(X;D0(F )p;�); d00)�:In other words, one 
an atta
h a 
ohomology 
lass f�g 2 HqDR(M;R) to any 
losed
urrent � of degree q, resp. a 
ohomology 
lass f�g 2 Hp;q(X;F ) for any d00-
losed
urrent of bidegree (p; q). By repla
ing if ne
essary the respe
tive 
urrents by their
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on
epts of pseudo
onvexity and of positivityC1 representatives of the same 
ohomology 
lass, one sees that there exists a wellde�ned 
up produ
t pairing, given by the exterior produ
t of di�erential formsHq1(M;R) � � � � �Hqm(M;R) ! Hq1+���+qm(M;R);(f�1g; : : : ; f�1g) 7! f�1g ^ � � � ^ f�mg:In parti
ular, if M is a 
ompa
t oriented manifold and if q1 + � � � + qm = dimM ,one obtains a well de�ned interse
tion numberf�1g � f�2g � � � � � f�mg = ZMf�1g ^ � � � ^ f�mg:We note however that the spe
i�
 produ
t �1 ^ � � � ^�m does not exist in general.11.C. Positive ve
tor bundles. Let (E; h) be a Hermitian holomorphi
 ve
-tor bundle on a 
omplex manifold X . Its Chern 
urvature tensor�(E) = X1�j;k�n;1��;��r 
jk��dzj ^ dzk 
 e�� 
 e�
an be identi�ed with a Hermitian form on TX 
E, viz.(11.16) ~�(E)(� 
 v) = X1�j;k�n;1��;��r 
jk���j�kv�v�; 
jk�� = 
kj�� :This leads us naturally to the 
on
ept of positivity, in the following de�nitionsintrodu
ed by Kodaira [Kod53℄, Nakano [Nak55℄ and GriÆths [Gri66℄.11.17. Definition. The Hermitian holomorphi
 ve
tor bundle E is 
alleda) positive in the sense of Nakano if:~�(E)(�) > 0 for any non-zero tensor � =P �j��=�zj 
 e� 2 TX 
E.b) positive in the sense of GriÆths if:~�(E)(� 
 v) > 0 for any non-zero de
omposable tensor � 
 v 2 TX 
 E.The 
orresponding 
on
epts of semi-positivity are de�ned by repla
ing the stri
tinequalities by the broader inequalities.11.18. The parti
ular 
ase of rank 1 bundles. Suppose that E is a linebundle. The Hermitian matrix H = (h11) asso
iated to a trivialization � : E�
 '
� C is then simply a positive fun
tion, and it will be 
onvenient to denote it bye�2', ' 2 C1(
;R). In this 
ase, the 
urvature form �(E) 
an be identi�ed withthe (1; 1)-form 2d0d00', andi2��(E) = i� d0d00' = dd
'; where d
 = i2� (d00 � d0)is a real (1; 1)-form. Therefore E is semipositive (in the sense of Nakano or in thesense of GriÆths) if and only if ' is psh, resp. positive if and only if ' is stri
tlypsh. In this 
ontext, the Lelong-Poin
ar�e equation 
an be generalized as follows:Let � 2 H0(X;E) be a non-zero holomorphi
 se
tion. Then(11.19) dd
 log jj�jj = [Z� ℄� i2��(E):Formula (11.19) is immediate if one writes jj�jj = j�(�)je�' and if one applies theLelong-Poin
ar�e equation to the holomorphi
 fun
tion f = �(�). As we will seelater, it is important for appli
ations to 
onsider the 
ase of singular Hermitianmetri
s (
f. [Dem90b℄).
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 on a line bundle E is ametri
 given in any trivialization � : E�
 '�! 
� C byjj�jj = j�(�)je�'(x); x 2 
; � 2 Exwhere ' 2 L1lo
(
) is an arbitrary fun
tion, 
alled the weight of the metri
 withrespe
t to the trivialization � .If � 0 : E�
0 ! 
0 � C is another trivialization, '0 the asso
iated weight andg 2 O�(
 \ 
0) the transition fun
tion, then � 0(�) = g(x)�(�) for all � 2 EX , andtherefore '0 = ' + log jgj on 
 \ 
0. The 
urvature form of E is then formallygiven by the 
urrent of degree (1; 1), i��(E) = dd
' on 
; moreover the hypoth-esis ' 2 L1lo
(
) guarantees that �(E) exists in the sense of distributions. As inthe C1 
ase, the form i��(E) is globally de�ned on X and independent of the
hoi
e of trivializations, and its de Rham 
ohomology 
lass is the image of the �rstChern 
lass 
1(E) 2 H2(X;Z) in H2DR(X;R). Before going further, we dis
uss twofundamental examples.11.21. Example. Let D =P�jDj be a divisor with 
oeÆ
ients �j 2 Z andlet E = O(D) be the asso
iated invertible sheaf, de�ned as the sheaf of meromorphi
fun
tions u su
h that div(u) +D � 0. The 
orresponding line bundle 
an be givena singular metri
 de�ned by jjujj = juj (modulus of the meromorphi
 fun
tion u).If gj is a generator of the ideal of Dj on an open set 
 � X , then �(u) = uQ g�jjde�nes a trivialization of O(D) on 
, thus our singular metri
 is asso
iated to theweight ' =P�j log jgj j. The Lelong-Poin
ar�e equation implies thati��(O(D)) = dd
' = [D℄;where [D℄ =P�j [Dj ℄ denotes the 
urrent of integration on D. �11.22. Example. Suppose that �1; : : : ; �N are non-zero holomorphi
 se
tionsof E. One 
an then de�ne a natural (possibly singular) Hermitian metri
 on E�,by setting jj��jj2 = X1�j�n j��:�j(x)j2 for �� 2 E�x:The dual metri
 of E is given byjj��jj2 = j�(�)j2j�(�1(x))j2 + � � �+ j�(�N (x))j2with respe
t to any lo
al trivialization � . The asso
iated weight fun
tion is thereforegiven by '(x) = log(P1�j�N j�(�j (x))j2)1=2. In this 
ase ' is a psh fun
tion,therefore i�(E) is a 
losed positive 
urrent. Denote by � the linear system de�nedby �1; : : : ; �N and B� = \��1j (0) its base lo
us. One has a meromorphi
 map�� : XnB� ! PN�1; x 7! [�1(x) : �2(x) : � � � : �N (x)℄:With this notation, the 
urvature i2��(E) restri
ted to XnB� is identi�ed with theinverse image by �� of the Fubini-Study metri
 !FS = i2�d0d00 log(jz1j2+� � �+jzN j2)on PN�1. It is therefore semi-positive. �
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omplete k�ahler manifolds11.23. Ample and very ample line bundles. A holomorphi
 line bundleE on a 
ompa
t 
omplex manifold X is 
alleda) very ample if the map �jEj : X ! PN�1 asso
iated to the 
omplete linearsystem jEj = P(H0(X;E)) is a regular embedding. (This implies in parti
ularthat the base lo
us is empty, i.e. BjEj = ;.)b) ample if there exists a multiple mE; m > 0, whi
h is very ample.We adopt here the additive notation for Pi
(X) = H1(X;O�), the symbol mErepresenting the line bundle E
m. By refering to example 11.22, it follows thatany ample line bundle E has a C1 Hermitian metri
, having a positive de�nite
urvature form. Indeed, if the linear system jmEj gives an embedding in proje
tivespa
e, then one obtains a C1 Hermitian metri
 on E
m, and the m-th root givesa metri
 on E su
h that i2��(E) = 1m��jmEj!FS. Conversely, Kodaira's embeddingtheorem [Kod54℄ says that any positive line bundle E is ample (see exer
ise 15.11for a dire
t analyti
 proof of this fundamental theorem).12. Hodge theory of 
omplete K�ahler manifoldsThe goal of this se
tion is primarily to extend to the 
ase of 
omplete K�ahlermanifolds the results of Hodge theory already proven in the 
ompa
t 
ase.12.A. Complete Riemannian manifolds. Before treating the 
omplex situ-ation, we will need to dis
uss some general results on the Hodge theory of 
ompleteRiemannian manifolds. Re
all that a Riemannian manifold (M; g) is said to be
omplete if the geodesi
 distan
e Æg is 
omplete, or what amounts to the samething (Hopf-Rinow Lemma below), if the 
losed geodesi
 balls are all 
ompa
t. Wewill need the following more pre
ise 
hara
terization.12.1. Lemma (Hopf-Rinow). The following properties are equivalent:a) (M; g) is 
omplete;b) the 
losed geodesi
 balls Bg(a; r) are 
ompa
t;
) there exists an exhaustive fun
tion  2 C1(M;R) su
h that jd jg � 1;d) there exists inM an exhaustive sequen
e (K�)�2N of 
ompa
t sets and fun
tions�� 2 C1(M;R) su
h that�� = 1 on a neighbourhood of K� ; Supp �� � KÆ�+1;0 � �v � 1 and jd�� jg � 2�� :Proof. a) =) b). The point x being �xed, one denotes by r0 = r0(x), thesupremum of the real numbers r > 0 su
h that Bg(a; r) is 
ompa
t. Supposer0 < +1. Being given a sequen
e of points (x�) in Bg(a; r0) and � > 0, one
hooses a sequen
e of points x�;� 2 B(a; r0 � �) su
h that Æg(x� ; x�;�) < 2�. By
ompa
tness of Bg(a; r0� �), one 
an extra
t from (x�;�) a 
onvergent subsequen
efor ea
h � > 0. By applying a diagonal pro
ess, one easily sees that one 
anextra
t from (x�) a Cau
hy subsequen
e. Consequently this sequen
e 
onvergesand Bg(a; r0) is 
ompa
t. The lo
al 
ompa
tness of M implies that Bg(a; r0 + �)is still 
ompa
t for � > 0 small enough, whi
h is a 
ontradi
tion if r0 < +1.b) =) 
). Suppose M is 
onne
ted. Choose a point x0 2 M and set  0(x) =12Æ(x0; x). Then  0 is exhaustive, and this is a Lips
hitz fun
tion of order 12 ,therefore  0 is di�erentiable almost everywhere on M . One obtains the sought forfun
tion  by regularization.
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) =) d). Let  be as in a) and let � 2 C1(R;R) be a fun
tion su
h that � = 1on ℄�1; 1:1℄, � = 0 on [1:99;+1[ and 0 � �0 � 2 on [1; 2℄. ThenK� = fx 2M ;  (x) � 2�+1g; ��(x) = ��2���1 (x)�satis�es the desired properties.d) =) 
). Set  =P 2��1(1� ��).
) =) b). The inequality jd jg � 1 implies j (x) �  (y)j � Æg(x; y) for anyx; y 2 M , therefore the geodesi
 ball Bg(a; r) � fx 2 M ; Æg(x; a) �  (a) + rg isrelatively 
ompa
t.b) =) a). This is obvious! �Let (M; g) be a Riemannian manifold, not ne
essarily 
omplete for the moment,E a Hermitian ve
tor bundle on M , with a given Hermitian 
onne
tion D. One
onsiders the unbounded operator between Hilbert spa
es, still denoted by DD : L2(M;�pT �M 
E)! L2(M;�p+1T �M 
E);for whi
h the domain Dom D is de�ned as follows: A se
tion u 2 L2 is said tobe in Dom D if Du 
al
ulated in the sense of distributions is still in L2. Thedomain thus de�ned is always dense in L2, be
ause Dom D 
ontains the spa
eD(M;�pT �ME) of C1 se
tions with 
ompa
t support, whi
h is itself dense in L2.Moreover, the operator D thus de�ned, albeit not bounded, is 
losed, that is to sayits graph is 
losed; this follows at on
e from the fa
t that the di�erential operatorsare 
ontinuous in the weak distribution topology. In the same way, the formaladjoint D� admits an extension to a 
losed operatorD� : L2(M;�p+1T �M 
E)! L2(M;�p; T �M 
E):Some well-known elementary results of spe
tral theory due to Von Neumann guar-antees, in addition, the existen
e of a 
losed operatorD�H with dense domain, 
alledthe Hilbert spa
e adjoint of D, de�ned as follows: An element v 2 L2(M;�p+1T �M
E) is in Dom D�H if the linear form L2 ! C ; u 7! hhDu; vii is 
ontinuous. It isthus written u 7! hhu;wii for a unique element w 2 L2(M;�p; T �M 
 E). One setsD�Hv = w, so that D�H is de�ned by the usual adjoint relationhhDu; vii = hhu;D�Hvii 8u 2 Dom D:(Note that the formal adjoint D�, itself, is de�ned by requiring only the validityof their relation for u 2 D(M;�p; T �M 
 E).) It is 
lear that one always has DomD�H � Dom D� and that D�H = D� on Dom D�H. In general, however, the domainsare distin
t (this is the 
ase for example if M =℄0; 1[; g = dx2; D = d=dx !). Afundamental observation is that this phenomenon 
annot o

ur if the Riemannianmetri
 is 
omplete.12.2. Proposition. If the manifold (M; g) is 
omplete, then:a) The spa
e D(M;��T �ME) is dense in Dom D, Dom D� and Dom D\Dom D�respe
tively, for the norms of the graphsu 7! jjujj+ jjDujj; u 7! jjujj+ jjD�ujj; u 7! jjujj+ jjDujj+ jjD�ujj:b) D�H = D� (i.e. the two domains 
oin
ide), and D��H = D�� = D.
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) Let � = DD� +D�D be the Lapla
ian 
al
ulated in the sense of distributions.For any u 2 Dom � � L2(M;��T �M
E), one has hu;�ui = jjDujj2+ jjD�ujj2.In parti
ularDom � � Dom D \ Dom D�; Ker� = KerD \KerD�;and � is self adjoint.d) If D2 = 0, there is an orthogonal de
ompositionL2(M;��T �M 
E) = H�L2(M;E)� Im D � Im D�;KerD = H�L2(M;E)� Im D;where H�L2(M;E) = fu 2 L2(M;��T �M 
 E); �u = 0g is the spa
e of L2harmoni
 forms on M .Proof. a) It is ne
essary to show for example that any element u 2 Dom D
an be approximated in the norm of the graph of D by C1 forms with 
ompa
tsupport. By assumption, u and Du are in L2. Let (��) be a sequen
e of trun
atingfun
tions as in Lemma 12.1 d). Then ��u! u in L2(M;��T �M 
E) and D(��u) =��Du+ d�� ^ u where jd�� ^ uj � jd�� jjuj � 2�� juj:Consequently d�� ^ u ! 0 and D(��u) ! Du. By repla
ing u by ��u, one 
anassume that u has 
ompa
t support, and with the aid of a partition of unity, oneis redu
ed to the 
ase where Supp u is 
ontained in a 
oordinate 
hart of M onwhi
h E is trivial. Let (��) be a family of regular kernels. A 
lassi
al lemma in thetheory of PDE (Friedri
h's Lemma), shows that for any di�erential operator P oforder 1 with C1 
oeÆ
ients, one has jjP (�� ? u) � ��PujjL2 ! 0, as � tends to 0(u being an L2 se
tion with 
ompa
t support in the 
oordinate 
hart 
onsidered).By applying this lemma to P = D; P = D� respe
tively, one arrives at the desiredproperties of density.b) is equivalent to the fa
t thathhDu; vii = hhu;D�vii; 8u 2 Dom D; 8v 2 Dom D�:However, a

ording to a), one 
an �nd u� ; v� 2 D(M;��T �M 
E) su
h thatu� ! u; v� ! v; Du� ! Du and D�v� ! D�v in L2(M;��T �M 
 E):The desired equality is then the limit of the equality hhDu� ; v�ii = hhu� ; D�v�ii.
) Let u 2 Dom �. Sin
e �u 2 L2 and that � is an ellipti
 operator of order2, one obtains u 2 W 2lo
 by applying the lo
al version of the G�arding inequality.In parti
ular Du; D�u 2 W 1lo
 � L2lo
, and we 
an apply integration by parts asneeded, after multiplying the respe
tive forms by C1 fun
tions �� with 
ompa
tsupport. Some simple 
al
ulations then givejj��Dujj2 + jj��D�ujj2 == hh�2�Du;Duii+ hhu;D(�2�D�u)ii= hhD(�2� ; u); Duii+ hhu; �2�DD�uii � 2hh��d�� ^ u;Duii+ 2hhu; ��d�� ^D�uii= hh�2�u;�uii � 2hhd�� ^ u; ��Duii+ 2hhu; d�� ^ (��D�u)ii� hh�2�u;�uii+ 2���2jj��Dujjjjujj+ 2jj��D�ujjjjujj�� hh�2�u;�uii+ 2���jj��Dujj2 + jj��D�ujj2 + 2jjujj2�:



j.-p. demailly, part ii: L2 estimations and vanishing theorems 60Consequentlyjj��Dujj2 + jj��D�ujj2 � 11� 2�� �hh�2�u;�uii+ 21�� jjujj2�:By letting � tend to +1, one obtains jjDujj2 + jjD�ujj2 � hhu;�uii, in parti
ularDu; D�u are in L2. This implieshhu;�vii = hhDu;Dvii + hhD�u;D�vii; 8u; v 2 Dom �;be
ause the equality holds for ��u and v, and that ��u ! u; D(��u) ! Du andD�(��u)! D�u in L2. It follows from this that � is self-adjoint.d) If P is a 
losed operator with dense domain on a Hilbert spa
e H, then KerPis 
losed and KerP � = (Im P )?. Consequently (KerP �)? = (Im P )?? = Im P .Sin
e KerP � itself is also 
losed, we haveH = KerP � � (KerP �)? = KerP � 
 Im P :This result applied to P = � givesH�L2(M;E) = Ker�� Im �;and it is 
lear a

ording to (12.2 
) that Im � � Im D� Im D�. Furthermore, oneeasily sees that Ker�; Im D and Im D� are pairwise orthogonal by using (12.2a,
). Property d) follows as in the 
ase where M is 
ompa
t. �12.3. Definition. Assume given a Riemannian manifold (M; g) and a Her-mitian bundle E with a 
at Hermitian 
onne
tion D. We denote by HpDR;L2(M;E),the L2 de Rham 
ohomology groups, namely the 
ohomology groups of the 
omplex(K�; D) de�ned by Kp = �u 2 L2(M;�pT �M 
E); Du 2 L2	:In other words, one hasHpDR;L2(M;E) = KerD=Im D, whereD is the L2 exten-sion of the 
onne
tion 
al
ulated in the sense of distributions. Sin
e HpL2(M;E) =KerD=Im D a

ording to (12.2 d), it follows that:12.4. Proposition. There is a 
anoni
al isomorphismHpL2(M;E) ' HpDR;L2(M;E)sepbetween HpL2(M;E) and the separated spa
e asso
iated to the L2 de Rham 
ohomol-ogy.In general the spa
e HpDR;L2(M;E) is not always separated, but it is in theimportant 
ase where the L2 
ohomology is �nite dimensional:12.5. Corollary. If (M; g) is 
omplete and if HpDR;L2(M;E) is �nite dimen-sional, then this spa
e is separated and there is a 
anoni
al isomorphismHpL2(M;E) ' HpDR;L2(M;E):



61 12. hodge theory of 
omplete k�ahler manifoldsProof. The spa
e Kp 
an be 
onsidered as the Hilbert spa
e with norm u 7!(jjujjL2 + jjDujjL2)1=2. It is a question of seeing that Im D = D(Kp�1) is 
losed inKerD, KerD being itself 
losed in Kp. Now D : Kp�1 ! KerD is 
ontinuous andits image is of �nite 
odimension by hypothesis. The fa
t that the image is 
losedis then a dire
t 
onsequen
e of the Bana
h Theorem. �12.6. Remark. For L2 de Rham 
ohomology, observe that one obtains theidenti
al 
ohomology groups when working with the sub
omplex of global L2 C1-forms, that is~Kp = �u 2 C1(M;�pT �M 
E); u 2 L2 and Du 2 L2	 � Kp:For that, it suÆ
es to 
onstru
t an operator ~K� ! K� whi
h is a homotopi
 inverseto the in
lusion. This 
an be done by using a regularization pro
ess by 
ows ofve
tor �elds tending to 0 suÆ
iently qui
kly, near in�nity.12.B. Case of Hermitian and 
omplete K�ahler manifolds. The pre-
eding results admit of 
ourse 
omplex analogs, with almost identi
al proofs (thedetails will be therefore left to the reader). One says that a Hermitian or K�ahlermanifold (X;!) is 
omplete if the underlying Riemannian manifold is 
omplete.12.7. Proposition. Let (X;!) be a 
omplete Hermitian manifold and E aHermitian holomorphi
 ve
tor bundle over X. There is a 
anoni
al isomorphismHp;qL2 (M;E) ' Hp;qL2 (M;E)sepbetween the spa
e of L2 harmoni
 forms and the separated L2 Dolbeault 
ohomologygroup, this latter spa
e being itself equal to Hp;qL2 (M;E) if the Dolbeault 
ohomologyis �nite dimensional.12.8. Corollary. Let (X;!) be a K�ahler manifold and E a 
at Hermitianbundle over X.a) Without further assumptions, there is, for any k, an orthogonal de
ompositionHkL2(M;E) = Mp+q=kHp;qL2 (M;E); Hp;qL2 (M;E) = Hq;pL2 (M;E�):b) If moreover (X;!) is 
omplete, there are 
anoni
al isomorphismsHkL2(M;E)sep ' Mp+q=kHp;qL2 (M;E)sep; Hp;qL2 (M;E)sep ' Hq;pL2 (M;E�)sep:
) If (X;!) is 
omplete, and if the L2 de Rham and Dolbeault 
ohomology groupsare �nite dimensional, there are 
anoni
al isomorphismsHkL2(M;E) ' Mp+q=kHp;qL2 (M;E); Hp;qL2 (M;E) ' Hq;pL2 (M;E�):12.C. Hodge theory of weakly pseudo
onvex K�ahler manifolds. Theweakly pseudo
onvex K�ahler manifolds furnish an important example of 
ompleteK�ahler manifolds.
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omplex manifold X is said to be weakly pseudo
onvexif there exists a C1 psh exhaustion fun
tion  on X . (Re
all that a fun
tion  is said to be exhaustive if for any 
 > 0 the level set X
 =  �1(
) is relatively
ompa
t, i.e.  (z) tends to +1 when z tends towards in�nity, a

ording to thestrati�
ation of the 
omplements of 
ompa
t parts of X .)In parti
ular, the 
ompa
t 
omplete manifolds X are weakly pseudo
onvex(take  = 0), as well as the Stein manifolds. For example the aÆne algebrai
subvarieties of CN (take  (z) = jzj2), the open balls X = B(z0; r) �take  (z) =1=(r � jz � z0j2)�, the open 
onvex sets, and so on. A basi
 observation is thefollowing:12.10. Proposition. Any weakly pseudo
onvex K�ahler manifold (X;!) has a
omplete K�ahler metri
 !̂.Proof. For any in
reasing 
onvex fun
tion � 2 C1(R;R), we will 
onsiderthe 
losed (1; 1)-form!� = ! + i d0d00(� Æ  ) = ! + �0( )i d0d00 + �00( )i d0 ^ d00 :Sin
e the three terms are positive or zero, this is a K�ahler metri
. The presen
eof the third term implies that the norm of �00( )1=2d by 
omparison to !� is lessthan or equal to 1, therefore if � is a 
hoi
e of (�00)1=2 we have jd(� Æ  )j!� � 1.A

ording to (12.1 
), !� will be 
omplete as long as � Æ  is exhaustive, that is,as long as lim+1 �(t) = +1. We therefore obtain the suÆ
ient 
onditionZ +1t0 �00(t)1=2dt = +1;whi
h is realized, for example, for the 
hoi
e �(t) = t2 or �(t) = t� log t; t � 1.�We have now established a Hodge de
omposition theorem for weakly pseu-do
onvex K�ahler manifolds having \suÆ
iently many stri
tly pseudo
onvex dire
-tions". Following Andreotti-Grauert [AG62℄, we introdu
e the:12.11. Definition. A 
omplex manifold X is said to be `-
onvex (resp. abso-lutely `-
onvex) if X has an exhaustion fun
tion (resp. a psh exhaustion fun
tion) , whi
h is strongly `-
onvex on the 
omplement XnK of a 
ompa
t part, i.e. su
hthat i d0d00 has at least n� `+1 positive eigenvalues at any point of XnK, wheren = dimC X .12.12. Example. Let X be a smooth proje
tive variety su
h that there existsa surje
tive morphism F : X ! Y onto another smooth proje
tive variety Y . LetD be a divisor of Y and let X = XnF�1(D); Y = Y nD. We assume that F indu
esa submersion XnF�1(D)! Y nD and that O(D)�D is ample. Then X is absolutely`-
onvex for ` = dimX�dimY +1. Indeed, the hypothesis of ampleness of O(D)�Dimplies that there exists a Hermitian metri
 on O(D) for whi
h the 
urvature ispositive de�nite in a neighbourhood of D, that is on an open set of the form Y nK 0where K 0 is a 
ompa
t part of Y nD. Let � 2 H0(Y ;O(D)) be the 
anoni
alse
tion of the divisor D. Then � log j�j2 is strongly psh on Y nK 0, 
onsequently = � log j� Æ F j2 is psh and strongly `-
onvex on XnK, where K = F�1(K 0). Inaddition,  
learly de�nes an exhaustion on X . Nothing is known of  on K, but



63 12. hodge theory of 
omplete k�ahler manifoldsit is enough to trun
ate  by taking a maximal regularized  C = max�( ;C) witha 
onstant C > supK  to obtain an everywhere psh fun
tion  C on X .We now 
an state the Hodge de
omposition theorem for absolutely `-
onvexmanifolds. This result is due to T. Ohsawa [Ohs81, 87℄; we present here a simpli�eddes
ription of a proof of it in [Dem90a℄. A purely algebrai
 approa
h of theseresults was obtained by Bauer-Kosarew [BaKo89,91℄ and [Kos91℄.12.13. Theorem (Ohsawa [Ohs81,87℄, [OT88℄). Let (X;!) be a K�ahlermanifold and n = dimC X, and assume that X is absolutely `-
onvex. Then, insuitable degrees, there is a Hodge de
omposition and symmetry:HkDR(X; C ) ' Mp+q=kHp;q(X; C ); Hp;q(X; C ) ' Hq;p(X; C ); k � n+ `;HkDR;
(X; C ) ' Mp+q=kHp;q
 (X; C ); Hp;q
 (X; C ) ' Hq;p
 (X; C ); k � n� `;all these groups being �nite dimensional (HkDR;
(X; C ) and Hp;q
 (X; C ) denotes herethe 
ohomology groups with 
ompa
t support). Moreover, there is a Lefs
hetz iso-morphism !n�p�q ^ � : Hp;q
 (X; C ) ! Hn�q;n�p(X; C ); p+ q � n� `:Proof. The �niteness of the de Rham 
ohomology groups 
on
erned is easilyobtained by means of Morse theory. Re
all brie
y the argument: a suitably smallperturbation of a strongly `-
onvex exhaustion fun
tion gives a Morse fun
tion  whi
h is still strongly `-
onvex on the 
omplement XnK of a 
ompa
t set. The realHessian D2 of  at a 
riti
al point indu
es a Hermitian form on the 
omplexi�edtangent spa
e C 
 TX , and its restri
tion to T 1;0X is identi�ed with the 
omplexHessian i d0d00 . Sin
e the 
omplex Hessian has by assumption at least n � ` + 1positive eigenvalues on XnK, it follows from this that D2 has at most 2n� (n�` + 1) = n + ` � 1 negative eigenvalues on XnK, without whi
h the positive andnegative eigenvalues of D2 would have a non-trivial interse
tion. Consequentlyall the 
riti
al points of index � n+ ` are lo
ated in K and their number is �nite.This implies that the groups HkDR(X; C ) of degree k � n+ ` are �nite dimensional.The �niteness of the Dolbeault 
ohomology groups Hp;q(X; C ) = Hq(X;
pX) isa result of the theorem of Andreotti-Grauert [AG62℄ (all the 
ohomology groupsof higher degree than ` with values in a given 
oherent sheaf are separated and�nite dimensional if the manifold is `-
onvex). It is noted however, that the `-
onvexity, although suÆ
ient to ensure the �niteness of the various groups involved,is not suÆ
ient to guarantee the existen
e of a Hodge de
omposition, nor eventhe Hodge symmetry. The reader will �nd a simple 
ounterexample in Grauert-Riemens
hneider [GR70℄.Now let ! be a K�ahler metri
 on X and  a strongly `-
onvex psh exhaus-tion fun
tion on XnK. As one 
an see, the existen
e of a Hodge de
ompositionfollows dire
tly from the fa
t that one has su
h a de
omposition for the L2 har-moni
 forms. The key point resides in the observation that any L2lo
 form of degreek � n+` be
omes globally L2 for a suitable 
hoi
e of metri
 !� = !+i d0d00(�Æ ).The groups HkDR(X; C ) and Hp;q(X; C ) 
ould then be 
onsidered as the indu
-tive limit of L2 
ohomology groups. In the sequel, we will use notation su
h as
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es of L2-forms (resp. harmoni
forms) relative to !�. Sin
e !� is K�ahler, one has(12.14) HkL2;!�(M; C ) = Mp+q=kHp;qL2;!�(M; C ); Hp;qL2;!�(M; C ) = Hq;pL2;!�(M; C );with an isomorphism HkL2;!�(M; C ) ' HkL2;!�(M; C )sep as long as !� is 
omplete.In the sequel, we always assume that !� is 
omplete. It is enough, for example, toimpose �00(t) � 1 on [0;+1[.12.15. Lemma. Let u be a form of bidegree (p; q) with L2lo
 
oeÆ
ients on X.If p + q � n + `, then u 2 L2!�(X;�p;qT �X) as long as � grows suÆ
iently qui
klynear in�nity.Proof. At a �xed point x 2 X , there exists an orthogonal basis (�=�z1; : : : ;�=�zn) of TX;x for whi
h!(x) = i X1�j�n dzj ^ dzj ; !�(x) = i X1�j�n�j(x)dzj ^ dzj ;where �1 � � � � � �n are the eigenvalues of !� relative to !. Then the volumeelements dV! = !n=2nn! and dV!� = !n�=2nn! are bound by the relationdV!� = �1 � � ��ndV! ;and for a (p; q)-form u =PI;J uI;JdzI ^ dzJ we �nd thatjuj2!� = XjIj=p;jJj=q�Yk2I �k Yk2J �k��1juI;J j2:In parti
ular, it follows thatjuj2!�dV!� � �1 � � ��n�1 � � ��p�1 � � ��q juj2!dV! = �p+1 � � ��n�1 � � ��q juj2!dV!:In addition, one has upper bounds�j � 1 + C1�0( ); 1 � j � n� 1; �n � 1 + C1�0( ) + C2�00( )where C1(x) is the largest eigenvalue of i d0d00 (x) and C2(x) = j� (x)j2. For toobtain the �rst n� 1 inequalities, one need only apply the minimum prin
ipal onthe kernel of � . Sin
e i d0d00 has at most ` � 1 zero eigenvalues on XnK, theminimum prin
ipal also gives lower bounds�j � 1; 1 � j � `� 1; �j � 1 + 
�0( ); ` � j � n;where 
(x) � 0 is the `-th eigenvalue of i d0d00 (x) and 
(x) > 0 on XnK. If weassume �0 � 1, then we 
an easily dedu
ejuj2!�dV!�juj2!dV! � �1 + C1�0( ))n�p�1(1 + C1�0( ) + C2�00( )��1 + 
�0( )�q�`+1� C3��0( )n+`�p�q�1 + �00( )�0( )�2� on XnK:For p+ q � n+ `, this is smaller or equal toC3��0( )�1 + �00( )�0( )�2�;



65 12. hodge theory of 
omplete k�ahler manifoldsand it is easy to show that this quantity 
an be made arbitrarily small towardsin�nity on X as � grows suÆ
iently qui
kly to in�nity on R. �Proof of the theorem (12.13), 
on
lusion. A well-known result of theAndreotti-Grauert [AG62℄ guarantees that the natural topology of the 
ohomologygroups Hq(X;F) of any given 
oherent sheaf F on a `-
onvex manifold is separatedfor q � `. If F = O(E) is the sheaf of se
tions of a holomorphi
 ve
tor bundle, thegroupsHq(X;O(E)) are algebrai
ally and topologi
ally isomorphi
 to the 
ohomol-ogy groups of the Dolbeault 
omplex of forms of type (0; q) with L2lo
 
oeÆ
ients forwhi
h the d00-di�erential has L2 
oeÆ
ients in terms of the Fr�e
het topology de�nedby the semi-norms u 7! jjujjL2(K) + jjd00ujjL2(K). To see this, one 
an begin againword for word the proof of Theorem (1.3), by observing that the L2lo
 
omplex stillfurnishes a resolution of O(E) by the (a
y
li
) sheaves of C1-modules. It followsfrom what pro
eeds this that the morphismL2!�(X;�p;qT �X) � KerD00!� ! Hp;q(X; C ) = Hq(X;
pX)is 
ontinuous and with 
losed kernel. Consequently this kernel 
ontains the imageIm D00!� , and we obtain a fa
torizationHp;q!� (X; C ) ' KerD00!�=Im D00!� ! Hp;q(X; C ):The proof of proposition (12.2) further shows that Im D00!� 
oin
ides with the imageof D00�D(X;�p;qT �X)� in L2!�(X;�p;qT �X). Consider the limit morphism(12.16) lim�!� Hp;q!� (X; C ) ! Hp;q(X; C );where the indu
tive limit is extended to the set of in
reasing C1 
onvex fun
tions�, su
h that �00(t) � 1 on [0;+1[, with the order relation�1 � �2 () �1 � �2 and L2!�1 (X;�p;qT �X) � L2!�2 (X;�p;qT �X) for k = p+ q:It is easy to see that this order is �ltered by again taking the arguments usedfor Lemma (12.15). Furthermore, it is well-known that the de Rham 
ohomologygroups are always separated in the indu
ed topology from the Fr�e
het topology onthe spa
e of forms, 
onsequently one has a limit morphism(12.16DR) lim�!� Hk!�(X; C ) ! HkDR(X; C )analogous to (12.16). The de
omposition formula of Theorem (12.13) follows nowfrom (12.14), and from the following elementary lemma.12.17. Lemma. The limit morphisms (12:16); (12:16)DR are bije
tive for k =p+ q � n+ `.Proof. Let us treat for example the 
ase of the morphism (12.16), and let ube a L2lo
 d00-
losed form of bidegree (p; q); p+q � n+ `. Then there exists a 
hoi
eof � for whi
h u 2 L2!� , therefore u 2 KerD00!� and (12.16) is surje
tive. If a 
lassfug 2 Hp;q!�0 (X; C ) is sent to zero in Hp;q(X; C ), one 
an write u = d00v for a 
ertainform v with L2lo
 
oeÆ
ients and of bidegree (p; q � 1). In the 
ase p + q > n + `,we will have v 2 L2!� for � � �0 large enough, therefore the 
lass of u = D00!�v inHp;q!� (X; C ) is zero and (12.16) is inje
tive. When p + q = n + `, the form v does
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essarily belong anymore to one of the spa
es L2!� , but it suÆ
es to showthat u = d00v is in the image of Im D00!� for � large enough. Let � 2 C1(R;R) be atrun
ating fun
tion su
h that �(t) = 1 for t � 1=2; �(t) = 0 for t � 1 and j�0j � 3.Then d00(�(� )v) = �(� )d00v + ��0(� )d00 ^ v:A

ording to the proof of lemma (12.15), there exists a 
ontinuous fun
tion C(x) >0 su
h that jvj2!�dV!� � C�1 + �00( )=�0( )�jvj2!dV!, whereas jd00 j2!� � 1=�00( )a

ording to the same de�nition of !�. We see therefore that the integralZX j�0(� )d00 ^ vj2!�dV!� � ZX C�1=�00( ) + 1=�0( )�jvj2dVis �nite for � large enough, and by dominated 
onvergen
e d00(�(� )v) 
onverges tod00v = u in L2!�(X;�p;qT �X). �Poin
ar�e and Serre duality show that the spa
es HkDR;
(X; C ) and Hp;q
 (X; C )with 
ompa
t support are dual to the spa
es H2n�kDR (X; C ) and Hn�p;n�q(X; C )sin
e the latter are separated and of �nite dimension, whi
h is very mu
h the 
aseif k = p+ q � n� `. We therefore obtain a dual Hodge de
omposition(12.18) Hk
 (X; C ) ' Mp+q=kHp;q
 (X; C ); Hp;q
 (X; C ) ' Hq;p
 (X; C ); k � n� `:In addition, it is easy to prove that the Lefs
hetz isomorphism(12.19) !n�p�q� ^ � : Hp;q!� (X; C ) ! Hn�q;n�p!� (X; C )given in the limit is an isomorphism between the 
ohomology with 
ompa
t supportand 
ohomology without supports (this result is due to Ohsawa [Ohs81℄). Indeed,if p+ q � n� `, the natural morphism(12.20) Hp;q
 (X; C ) = KerD00D=Im D00D ! KerD00!�=Im D00!� ' Hp;q!� (X)is dual to the morphism Hn�p;n�q!� (X; C ) ! Hn�p;n�q(X; C ), whi
h is surje
tivefor � large enough a

ording to Lemma (12.17) and the �niteness of the groupHn�p;n�q(X; C ). Therefore (12.20) is inje
tive for � large, and after 
ompositionwith the Lefs
hetz isomorphism (12.19), we obtain an inje
tion!n�p�q ^ � = !n�p�q� ^ � : Hp;q
 (X; C ) ! Hn�q;n�pL2;!� (X; C )sep ' Hn�q;n�p!� (X; C ):(The equality !n�p�q ^ � = !n�p�q� ^ � follows from the fa
t that !� has the same
ohomology 
lass as !.) By taking the indu
tive limit on � and in 
ombinationwith the limit isomorphism (12.16), we obtain an inje
tive map(12.21) !n�p�q ^ � : Hp;q
 (X; C ) ! Hn�q;n�p(X; C ); p+ q � n� `:Sin
e the two groups have the same dimension by the Serre duality theorem andHodge symmetry, the map is ne
essarily an isomorphism. �



67 13. bo
hner te
hniques and vanishing theorems12.22. Remark. Sin
e the Lefs
hetz isomorphism (12.21) 
an be fa
toredthrough Hp;q(X; C ) or through Hn�q;n�p
 (X; C ), we dedu
e from this that the nat-ural morphisms Hp;q
 (X; C ) ! Hp;q(X; C )are inje
tive for p+ q � n� ` and surje
tive for p+ q � n+ `. Of 
ourse, there areentirely analogous properties for the de Rham 
ohomology groups.13. Bo
hner te
hniques and vanishing theoremsLet X be a 
omplex manifold with a given K�ahler metri
 ! =P!jkdzj ^ dzk.Let (E; h) be a Hermitian holomorphi
 ve
tor bundle over X . We denote by D =D0 +D00 the Chern 
onne
tion and �(E) the asso
iated 
urvature tensor.13.1. Basi
 
ommutivity relations. Let L be the operator Lu = ! ^ ua
ting on the ve
tor valued forms, and let � = L� be its adjoint. Then[D00�; L℄ = i d0; [D0�; L℄ = �i d00;[�; D00℄ = �i d0�; [�; D0℄ = i d00�:Proof (outline). This is a simple 
onsequen
e of the 
ommutivity relation(6.14) already shown for the trivial 
onne
tion d = d0 + d00 on E = X � C . Indeed,for any point x0 2 X , there exists a lo
al holomorphi
 frame (e�)1���r of E su
hthat he�; e�i = Æ�� +O(jzj2):(The proof is identi
al to that of Theorem 5.8.) For s = P s� 
 e� with s� 2C1(X;�p;qT �X), we obtainD00s =X d00s� 
 e� +O(jzj); D00�s =X d00�s� 
 e� +O(jzj):The stated relations follow easily. �13.2. The Bo
hner-Kodaira-Nakano identity. If (X;!) is a K�ahler man-ifold, the 
omplex Lapla
ians �0 and �00 a
ting on the forms with values in Esatisfy the identity �00 = �0 + [i �(E);�℄:Proof. The latter equality (13.1) gives D00� = �i[�; D0℄, therefore�00 = [D00; D00�℄ = �i�D00; [�; D0℄�:The Ja
obi identity implies�D00; [�; D0℄� = ��; [D0; D00℄�+ �D0; [D00;�℄� = [�;�(E)℄ + i[D0; D0�℄;whi
h is based on the fa
t that [D0; D00℄ = D2 = �(E). The stated identity fol-lows. �Assume that X is 
ompa
t and let u 2 C1(X;�p;qT �X 
 E) be an arbitrary(p; q)-form. Integration by parts givesh�0u; ui = jjD0ujj2 + jjD0�ujj2 � 0;



j.-p. demailly, part ii: L2 estimations and vanishing theorems 68and one has an analogous equality for �00. From the Bo
hner-Kodaira-Nakanoidentity, one dedu
es a priori the inequality(13.3) jjD00ujj2 + jjD00�ujj2 � ZXh[i �(E);�℄u; uidV!:This inequality is the well-known Bo
hner-Kodaira-Nakano inequality (see [Bo
48℄,[Kod53℄, [Nak55℄). When u is �00-harmoni
, we obtainZXh[i �(E);�℄u; uidV � 0:If the Hermitian operator [i �(E);�℄ is positive on ea
h �ber of �p;qT �X 
 E, thenone sees that u is ne
essarily zero, thereforeHp;q(X;E) = Hp;q(X;E) = 0a

ording to Hodge theory. In this approa
h, the essential point is to know howto 
al
ulate the 
urvature form �(E) and to �nd suÆ
ient 
onditions for whi
hthe operator [i �(E);�℄ is positive de�nite. Some elementary (albeit somewhatagonizing) 
al
ulations yields the following formula: If the 
urvature of E is writtenin the form (11.16) and ifu =XuJ;K;�dzI ^ dzJ 
 e�; jJ j = p; jKj = q; 1 � � � ris a (p; q)-form with values in E, thenh[i �(E);�℄u; ui = Xj;k;�;�;J;S 
jk��uJ;jS;�uJ;kS;�(13.4) + Xj;k;�;�;R;K 
jk�;�ukR;K;�ujR;K�� Xj;�;�;J;K 
jj��uJ;K;�uJ;K;�;where the summations are extended to all the indi
es 1 � j; k � n; 1 � �; � � r andall the multi-indi
es jJ j = p; jKj = q; jRj = p� 1; jSj = q� 1. (Here the notationuJK� is applied to some not ne
essarily in
reasing multi-indi
es. Also, it is agreedthat the sign of this 
oeÆ
ient is alternating, under the a
tion of permutations.)Taking into a

ount the 
omplexity of the 
urvature term (13.4), the sign of thisterm is in general diÆ
ult to elu
idate, ex
ept in some very parti
ular 
ase.The simpler 
ase is the 
ase p = n. All of the terms of the extra se
ond sum-mation in (13.4) are then su
h that j = k and R = f1; : : : ; ngnfjg. Consequentlythe se
ond and third summations are equal. It follows thath[i �(E);�℄u; ui = Xj;k;�;�;J;S 
jk��uJ;jS;�uJ;kS;�is positive on the (n; q)-forms under the hypothesis that E is positive in the senseof Nakano. In this 
ase, X is automati
ally K�ahler sin
e! = TrE(i �(E)) = iXj;k;� 
jk��dzj ^ dzk = i �(detE)therefore de�nes a K�ahler metri
.



69 13. bo
hner te
hniques and vanishing theorems13.5. Nakano Vanishing Theorem (1955). Let X be a 
ompa
t 
omplexmanifold and let E be a positive ve
tor bundle in the sense of Nakano on X. ThenHn;q(X;E) = Hq(X;KX 
E) = 0 for all q � 1: �Another approa
hable 
ase is the 
ase where E is a line bundle (r = 1). Indeed,at ea
h point x 2 X , we 
an then 
hoose a 
oordinate system, whi
h simultaneouslydiagonalizes the Hermitian forms !(x) and �(E)(x), in su
h a way that!(x) = i X1�j�n dzj ^ dzj ; �(E)(x) = i X1�j�n 
jdzj ^ dzjwith 
1 � � � � � 
n. The eigenvalues of 
urvature 
j = 
j(x) are then de�nedin a unique way and depend 
ontinuously in x. In the former notation, we have
j = 
jj11 and all the other 
oeÆ
ients 
jk�� are zero. For any (p; q)-form u =PuJKdzJ ^ dzK 
 e1, this givesh[i �(E);�℄u; ui = XjJj=p;jKj=q�Xj2J 
j +Xj2K 
j � X1�j�n 
j�juJK j2� (
1 + � � �+ 
q � 
n�p+1 � � � � � 
n)juj2:(13.6)Assume that i �(E) is positive. It is then natural to provide X with the parti
ularK�ahler metri
 ! = i �(E). Then 
j = 1 for j = 1; 2; : : : ; n and we obtainh[i �(E);�℄u; ui = (p+ q � n)juj2:As a 
onsequen
e:13.7. Kodaira-Akizuki-Nakano Vanishing Theorem ([AN54℄). If E isa positive line bundle over a 
ompa
t 
omplex manifold X, thenHp;q(X;E) = Hq(X;
pX 
E) = 0 for p+ q � n+ 1: �More generally, if E is a positive ve
tor bundle in the sense of GriÆths (orample), of rank r � 1, Le Potier [LP75℄ has proven that Hp;q(X;E) = 0 forp+ q � n+ r. The proof is not a dire
t 
onsequen
e of the Bo
hner te
hnique. Asimple enough proof has been obtained by M. S
hneider [S
h74℄, by utilizing theLeray spe
tral sequen
e asso
iated to the proje
tion on X of the proje
tive bundleP(E)! X .13.8. Exer
ise. It is signi�
ant for various appli
ations to formulate vanish-ing theorems whi
h are also valid in the 
ase of semi-positive line bundles. Thereis, for example, the following result due to J. Girbau [Gir76℄ : Let (X;!) be a
ompa
t K�ahler manifold, assume that E is a line bundle and that i �(E) � 0 hasat least n� k positive eigenvalues at ea
h point, for a 
ertain integer k � 0. ThenHp;q(X;E) = 0 for p+ q � n+ k + 1.Indi
ation. Use the K�ahler metri
 !� = i �(E) + �! with small � > 0.A more natural and powerful version of this result has been obtained by A.Sommese [Som78, ShSo85℄ : Following these authors, we say that E is k-ampleif a 
ertain multiple mE is su
h that the 
anoni
al map�jmEj : XnBjmEj ! PN�1



j.-p. demailly, part ii: L2 estimations and vanishing theorems 70has all its �bers of dimension � k and dimBjmEj � k. If X is proje
tive and if Eis k-ample, then Hp;q(X;E) = 0 for p+ q � n+ k + 1.Indi
ation. Prove the dual result, that Hp;q(X;E�1) = 0 for p+q � n�k�1,by indu
tion on k. First show that E is 0-ample if and only if E is positive. Thenuse some hyperplane se
tions Y � X to prove the indu
tion step, by 
onsideringthe exa
t sequen
es0! 
pX 
E�1 
O(�Y )! 
pX 
E�1 ! (
pX 
E�1)�Y ! 0;0! 
p�1Y 
E�1�Y ! (
pX 
E�1)�Y ! 
pY 
E�1�Y ! 0: �14. L2 estimations and existen
e theoremsThe starting point is the following L2 existen
e theorem, whi
h is essentiallydue to H�ormander [H�or65, 66℄, and Andreotti-Vesentini [AV65℄. We only sket
hthe prin
ipal ideas, while referring for example to [Dem82℄ for a detailed expositionof the te
hniques 
onsidered in the situation here.14.1. Theorem. Let (X;!) be a 
omplete K�ahler manifold, and let E be aHermitian ve
tor bundle of rank r on X, su
h that the 
urvature operator A =Ap;qE;! = [i �(E);�!℄ is semi-positive on all the �bers of �p;qT �X 
 E; q � 1. Letg 2 L2(X;�p;qT �X 
E) be a form satisfyingD00g = 0 and ZXhA�1g; gidV! < +1:(At the points where A is not positive de�nite, we assume as a pre
ondition thatA�1g exists almost everywhere. We then 
hoose the pre
onditional term A�1g ofminimal norm, orthogonal to KerA.) Then there exists f 2 L2(X;�p;q�1T �X 
 E)su
h that D00f = g and ZX jf j2dV! � ZXhA�1g; gidV!:Proof. Let u 2 L2(X;�p;qT �X
E) be a form su
h that D00u 2 L2 and D00�u 2L2 in the sense of distributions. Lemma (12.2 a) shows (under the indispensablehypothesis that ! is 
omplete) that u is the limit of a sequen
e of C1 forms u� with
ompa
t support in su
h a way that u� ! u; D00u� ! D00u and D00�u� ! D00�u inL2. It follows that a priori the inequality (13.3) extends to arbitrary forms u su
hthat u; D00u; D00�u 2 L2. Now, sin
e KerD00 is weakly (and therefore strongly)
losed, we obtain an orthogonal de
omposition of the Hilbert spa
e L2(X;�p;qT �X
E), namely L2(X;�p;qT �X 
E) = KerD00 � (KerD00)?:Let v = v1 + v2 be the 
orresponding de
omposition of a C1 form v 2 Dp;q(X;E)with 
ompa
t support (in general, v1; v2 do not have 
ompa
t support!). Sin
e(KerD00)? = Im D00� � KerD00� by duality and g; v1 2 KerD00 by hypothesis, weobtain D00�v2 = 0 andjhg; vij2 = jhg; v1ij2 � ZXhA�1g; gidV! ZXhAv1; v1idV!



71 14. L2 estimations and existen
e theoremsby applying the Cau
hy-S
hwartz inequality. The inequality (13.3) a priori, appliedto u = v1 givesZXhAv1; v1idV! � jjD00v1jj2 + jjD00�v1jj2 = jjD00�v1jj2 = jjD00�vjj2:Combining these two inequalities we �nd thatjhg; vij2 � �ZXhA�1g; gidV!�jjD00�vjj2for any C1 (p; q)-form v with 
ompa
t support. This shows that there is a well-de�ned linear formw = D00�v 7! hv; gi; L2(X;�p;q�1T �X 
E) � D00�(Dp;q(E))! Con the image of D00�. This linear form is 
ontinuous in the L2 norm, and its normis � C with C = �ZXhA�1g; gidV!�1=2:A

ording to the Hahn-Bana
h Theorem, there exists an elementf 2 L2(X;�p;q�1T �X 
E)su
h that jjf jj � C and hv; gi = hD00�v; fi for any v, 
onsequently D00f = g in thesense of distributions. The inequality jjf jj � C is equivalent to the latter estimationin the theorem. �The pre
eding L2 existen
e theorem 
an be applied in the general 
ontextof weakly pseudo
onvex K�ahler manifolds (see de�nition (12.9)), and the same ifthe K�ahler metri
 
onsidered ! is not 
omplete. Indeed, a

ording to Proposition(12.10), we arrive at 
omplete K�ahler metri
s by setting!� = ! + �i d0d00 2 = ! + 2�(2i  d0d00 + i d0 ^ d00 )with a C1 psh exhaustion fun
tion  � 0. As a 
onsequen
e, the L2 existen
etheorem (14.1) applies to ea
h K�ahler metri
 !�. Indeed one 
an show (the 
al
ula-tions being left to the reader!) that the quantities jgj2!dV! and h(Ap;qE;!)�1g; gi!dV!are de
reasing fun
tions of ! when p = n = dimC X . For a D00-
losed form g ofbidegree (n; q), we therefore obtains solutions f� of the equationD00f� = g satisfyingZX jf�j2!�dV!� � ZXh(Ap;qE;!�)�1g; gi!�dV!� � ZXh(Ap;qE;!)�1g; gi!dV!:These solutions f� 
an be uniformly bounded in the L2 norm on any 
ompa
t set.Thus we 
an extra
t a weakly 
onvergent subsequen
e in L2. The limit f is asolution of D00f = g and satis�es the required L2 estimation relative to the metri
! initially given (whi
h, to repeat, is not ne
essarily 
omplete). A parti
ularlyimportant 
ase is the following:



j.-p. demailly, part ii: L2 estimations and vanishing theorems 7214.2. Theorem. Let (X;!) be a K�ahler manifold, dimX = n. Assume thatX is weakly pseudo
onvex. Let E be a Hermitian line bundle and let
1(x) � � � � � 
n(x)be the eigenvalues of 
urvature (i.e. the eigenvalues of i �(E) with respe
t to themetri
 !) at any point x. Assume that the 
urvature is semi-positive, i.e. 
1 � 0everywhere. Then for any form g 2 L2(X;�n;qT �X 
E) satisfyingD00g = 0 and ZX(
1 + � � �+ 
q)�1jgj2dV! < +1;(one assumes therefore g(x) = 0 almost everywhere at all points where 
1(x)+ � � �+
q(x) = 0), there exists f 2 L2(X;�n;q�1T �X 
E) su
h thatD00f = g and 2 ZX jf j2dV! � ZX(
1 + � � �+ 
q)�1jgj2dV! :Proof. Indeed, for p = n, formula (13.6) shows thathAu; ui � (
1 + � � �+ 
q)juj2;therefore hA�1u; ui � (
1 + � � �+ 
q)�1juj2. �An important observation is that the above theorem still applies when theHermitian metri
 of E is a singular metri
 with positive 
urvature in the sense of
urrents. Indeed, by a pro
ess of regularization (
onvolution of psh fun
tions byregular kernels), the metri
 
an made C1 and the solutions obtained by meansof Theorems (14.1) or (14.2), sin
e the regular metri
s have limits satisfying thedesired estimates. In parti
ular, we obtain the following 
orollary.14.3. Corollary. Let (X;!) be a K�ahler manifold, dimX = n. Assume thatX is weakly pseudo
onvex. Let E be a holomorphi
 bundle provided with a singularmetri
 for whi
h the lo
al weight is denoted by ' 2 L1lo
. Assume thati �(E) = 2i d0d00' � �!for a 
ertain � > 0. Then for any form g 2 L2(X;�n;qT �X 
E) satisfying D00g = 0,there exists f 2 L2(X;�p;q�1T �X 
E) su
h that D00f = g andZX jf j2e�2'dV! � 1q� ZX jgj2e�2'dV! : �We denoted here somewhat in
orre
tly the metri
 in the form jf j2 e�2', asif the weight ' were globally de�ned on X (
ertainly, this is not possible if E isglobally trivial). By abuse of notation, we will nevertheless use this same notationbe
ause it 
learly underlines the dependen
e of the L2 norm on the psh fun
tionasso
iated to the weight.15. Vanishing theorems of Nadel and Kawamata-ViehwegWe begin by introdu
ing the 
on
ept of multiplier ideal sheaves, following A.Nadel [Nad89℄. The prin
ipal idea in fa
t goes ba
k to the fundamental work ofE. Bombieri [Bom70℄ and H. Skoda [Sko72℄.



73 15. vanishing theorems of nadel and kawamata-viehweg15.1. Definition. Let ' be a psh fun
tion on an open set 
 � X . Weasso
iate to ', the sheaf of ideals J (') � O
 formed from the germs of holomorphi
fun
tions f 2 O
;x su
h that jf j2e�2' is integrable with respe
t to the Lebesguemeasure in the lo
al 
oordinates x. This sheaf will be 
alled the multiplier idealsheaf asso
iated to the weight '.The variety of zeros V (J (')) is therefore the set of points in a neighbourhoodfor whi
h e�2' is non-integrable. Of 
ourse, su
h points 
annot appear where 'has logarithmi
 poles. The pre
ise formulation is the following.15.2. Definition. We say that a psh fun
tion ' has a logarithmi
 pole with
oeÆ
ient 
 at a point x 2 X if the Lelong number�('; x) := lim infz!x '(z)log jz � xjis non-zero and if �('; x) = 
.15.3. Lemma. (Skoda [Sko72℄). Let ' be a psh fun
tion on an open set
 � C n and let x 2 
.a) If �('; x) < 1, then e�2' is integrable in a neighbourhood of x, in parti
ularJ (')x = O
;x.b) If �('; x) � n+ s for a 
ertain integer s � 0, then e�2' � Cjz� xj�2n�2s in aneighbourhood of x and J (')x � ms+1
;x , where m
;x denotes the maximal idealof O
;x.Proof. The proof rests on some 
lassi
al estimations of 
omplex potentialtheory, see H. Skoda [Sko72℄. �15.4. Proposition ([Nad89℄). For any psh fun
tion ' on 
 � X, the sheafJ (') is a 
oherent sheaf of ideals on 
.Proof. Sin
e the result is lo
al we 
an assume that 
 is the unit ball in C n . LetH'(
) be the set of the holomorphi
 fun
tions f on 
 su
h that R
 jf j2e�2'd� <+1. A

ording to the strong Noetherian property of 
oherent sheaves, the setH'(
) generates a 
oherent sheaf of ideals J � O
. It is 
lear that J � J (');for to show equality, it suÆ
es to verify that Jx + J (')x \ms+1
;x = J (')x for anyinteger s, by virtue of Krull's lemma. Let f 2 J (')x be a germ de�ned on aneighbourhood V of x and let � be a trun
ating fun
tion with support in V , su
hthat � = 1 in a neighbourhood of x. We 
an solve the equation d00u = g := d00(�f)by means of L2 estimations of H�ormander (14.3), where E is the trivial line bundle
� C provided with the stri
tly psh weight~'(z) = '(z) + (n+ s) log jz � xj+ jzj2:We obtain a solution u su
h that R
 juj2e�2'jz � xj�2(n+s)d� <1, therefore F =�f � u is holomorphi
, F 2 H'(
) and fx�Fx = ux 2 J (')x \ms+1
;x . This provesour assertion. �The multiplier ideal sheaves satisfy the following essential fun
torial property,relative to the dire
t images of sheaves by modi�
ations.
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ation of non-singular 
om-plex varieties (i.e. a proper holomorphi
 map that is generi
ally 1 : 1), and let 'be a psh fun
tion on X. Then���O(KX0)
J (' Æ �)� = O(KX)
J ('):Proof. Let n = dimX = dimX 0 and let S � X be an analyti
 subvarietysu
h that � : X 0nS0 ! XnS is a biholomorphism. By de�nition of multiplier idealsheaves, O(KX ) 
 J (') is identi�ed with the sheaf of holomorphi
 n-forms f onsome open set U � X , satisfying in2f^fe�2' 2 L1lo
(U). Sin
e ' is lo
ally boundedabove, we 
an likewise 
onsider the forms f whi
h a priori are de�ned only on UnS,be
ause f is in L2lo
(U), and thus automati
ally extends through S. The 
hange ofvariables formula givesZU in2f ^ fe�2' = Z��1(U) in2��f ^ ��fe�2'Æ�;therefore f 2 �(U;O(KX)
J (')) if and only if ��f 2 �(��1(U);O(KX )
J (' Æ�)). This proves Prop. 15.5. �15.6. Remark. If ' has algebrai
 or analyti
 singularities (
f. de�nition 11.7),the 
al
ulation of J (') is redu
ed to a purely algebrai
 problem.The �rst observation is that J (') is easily 
al
ulated if ' =P�j log jgj j whereDj = g�1j (0) are smooth irredu
ible divisors with normal 
rossings. Then J (') isthe sheaf of holomorphi
 fun
tions h on the open set U � X , satisfyingZU jhj2Y jgj j�2�jdV < +1:Sin
e the gj 
an be taken as 
oordinate fun
tions in suitable lo
al 
oordinate sys-tems (z1; : : : ; zn), the integrability 
ondition is that h is divisible by Q gmjj , wheremj � �j > �1 for ea
h j, i.e. mj � b�j
 (where b 
 denotes the integral part).Consequently J (') = O(�bD
) = O(�Xb�j
Dj)where bD
 is the integral part of the Q-divisor D =P�jDj .Now 
onsider the general 
ase of algebrai
 or analyti
 singularities and assumethat ' � �2 log �jf1j2 + � � �+ jfN j2�in a neighbourhood of the poles. A

ording to the remark stated after de�nition11.7, we 
an assume that the (fj) are generators of the sheaf of integrally 
losedideals J = J('=�), de�ned as the sheaf of holomorphi
 fun
tions h su
h that jhj �C exp('=�). In this 
ase, the 
al
ulation is done as follows.Let us �rst 
hoose a smooth modi�
ation � : ~X ! X of X su
h that ��J is aninvertible sheaf O(�D) asso
iated to a divisor with normal 
rossings D =P�jDj ,where (Dj) are the 
omponents of the ex
eptional divisor of ~X. (Consider theblow-up X 0 of X along the ideal J, so that the inverse image of J on X 0 be
omesan invertible sheaf O(�D0), then blow-up X 0 again so as to render X 0 smooth andD0 with normal 
rossings, by invoking Hironaka [Hi64℄.) We then have K ~X =



75 15. vanishing theorems of nadel and kawamata-viehweg��KX + R where R = P �jDj is the divisor of zeros of the ja
obian J� of theblow-up map. From the dire
t image formula 15.5, we dedu
eJ (') = ���O(K ~X � ��KX)
J (' Æ �)� = ���O(R)
J (' Æ �)�:Now the (fj Æ �) are generators of the ideal O(�D), therefore' Æ � � �X�j log jgj jwhere the gj are lo
al generators of O(�Dj). We are thus redu
ed to 
al
ulatingthe multiplier ideal sheaf in the 
ase where the poles are given by a Q-divisor withnormal 
rossingsP��jDj . We obtain J (' Æ �) = O(�Pb��j
Dj), thereforeJ (') = ��O ~X (X(�j � b��j
)Dj): �15.7. Exer
ise. Cal
ulate the multiplier ideal sheaf J (') asso
iated to thepsh fun
tion ' = log(jz1j�1 + � � �+ jzpj�p), for arbitrary real numbers �j > 0.Indi
ation. By using Parseval's formula and polar 
oordinates zj = rjei�j ,show that the problem is equivalent to determining for whi
h p-tuples (�1; : : : ; �p) 2Np the integralZ[0;1℄p r2�11 � � � r2�pp r1dr1 � � � rpdrpr2�11 + � � �+ r2�pp = Z[0;1℄p t(�1+1)=�11 � � � t(�p+1)=�ppt1 + � � �+ tp dt1t1 � � � dtptpis 
onvergent. Dedu
e from this that J (') is generated by the monomials z�11 � � � z�ppsu
h that P(�p + 1)=�p > 1. (This exer
ise shows that the analyti
 de�nition ofJ (') is also sometimes very 
onvenient for 
al
ulations). �Let E be a line bundle over X with a given singular metri
 h with 
urvature
urrent �h(E). If ' is the weight representing the metri
 h on an open set 
 � X ,the sheaf of ideals J (') is independent of the 
hoi
e of the trivialization. It istherefore the restri
tion to 
 of a global 
oherent sheaf on X that we will denoteby J (h) = J ('), by abuse of notation. In this 
ontext, we have the followingfundamental vanishing theorem, whi
h is probably one of the most 
entral resultsin algebrai
 or analyti
 geometry. (As we will see later, this theorem 
ontains theKawamata-Viehweg vanishing theorem as a spe
ial 
ase.)15.8. Nadel Vanishing Theorem ([Nad89℄, [Dem93b℄). Let (X;!) be aweakly pseudo
onvex K�ahler manifold, and let E be a holomorphi
 line bundle onX with a given singular Hermitian metri
 h of weight '. Assume that there existsa positive 
ontinuous fun
tion � on X su
h that i �h(E) � �!. ThenHq�X;O(KX +E)
J (h)� = 0 for all q � 1:Proof. Let Lq be the sheaf of germs of (n; q)-forms u with values in E andwith measurable 
oeÆ
ients, for whi
h juj2e�2' and jd00uj2e�2' are simultaneouslylo
ally integrable. The operator d00 de�nes a 
omplex of sheaves (L�; d00) whi
h isa resolution of the sheaf O(KX + E) 
 J ('): Indeed, the kernel of d00 in degree0 
onsists of the germs of holomorphi
 n-forms with values in E whi
h satisfy theintegrability 
ondition. Therefore the 
oeÆ
ient fun
tion belongs to J ('), and theexa
tness at degree q � 1 arises from Corollary 14.3 applied to arbitrary small balls.Sin
e ea
h sheaf Lq is a C1-module, L� is a resolution by a
y
li
 sheaves. Let  
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tion on X . We apply Corollary 14.3 globally on X ,with the initial metri
 of E multiplied by the fa
tor e��Æ , where � is an in
reasing
onvex fun
tion of arbitrary growth at in�nity. This fa
tor 
an be used to ensure
onvergen
e of integrals at in�nity. From Corollary 14.3, we then dedu
e thatHq(�(X;L�)) = 0 for q � 1. The theorem follows by virtue of the de Rham-WeilIsomorphism Theorem (1.2). �15.9. Corollary. Let (X;!); E and ' be given as in Theorem 15.8, andassume given x1; : : : ; xN isolated points of the variety of zeros V (J (')). Thenthere exists a surje
tive mapH0(X;O(KX +E)) �! M1�j�N O(KX +E)xj 
 �OX=J (')�xj :Proof. Consider the long exa
t 
ohomology sequen
e asso
iated to the shortexa
t sequen
e 0 ! J (') ! OX ! OX=J (') ! 0, twisted by O(KX + E), andapply Theorem 15.8 to obtain the vanishing of the �rst group H1. The statedsurje
tive property follows. �15.10. Corollary. Let (X;!); E and ' be given as in Theorem 15.8. As-sume that the weight fun
tion ' satis�es �('; x) � n+ s at a given point x 2 X forwhi
h �('; y) < 1, for y 6= x 
lose enough to x. Then H0(X;KX + E) generatesall the s-jets of se
tions at the point x.Proof. Skoda's Lemma 15.3 b) shows that e�2' is integrable in a neighbour-hood of any point y 6= x suÆ
iently 
lose to x, therefore J (')y = OX;y, whereasJ (')x � ms+1X;x a

ording to 15.3 a). Corollary 15.10 is therefore a spe
ial 
ase of15.9. �The philosophy of the results (whi
h 
an be regarded as generalization of theH�ormander-Bombieri-Skoda Theorem [Bom70℄, [Sko72,75℄), is that the problemof 
onstru
ting holomorphi
 se
tions of KX + E 
an be solved by 
onstru
tingsuitable Hermitian metri
s on E su
h that the weight ' has isolated logarithmi
points at the given points xj .15.11. Exer
ise. Assume thatX is 
ompa
t and that L is a positive line bun-dle on X . Let fx1; : : : ; xNg be a �nite set. Show that there exists 
onstants a; b � 0depending only on L and N su
h that for any s 2 N, the group H0(X;O(mL)) gen-erates the jets of order s at any point xj , for m � as+ b.Indi
ation. Apply Corollary 15.9 to E = �KX +mL, with a singular metri
on L of the form h = h0e�� , where h0 is C1 with positive 
urvature, � > 0 small,and  (z) � log jz � xj j in a neighbourhood of xj . Dedu
e from this the Kodairaembedding theorem:15.12. Kodaira Embedding Theorem. If L is a line bundle on a 
ompa
t
omplex manifold, then L is ample if and only if L is positive. �An equivalent way to state the Kodaira embedding theorem is the following:15.13. Kodaira 
riterion for proje
tivity. A 
ompa
t 
omplex manifoldX is proje
tive algebrai
 if and only if X 
ontains a Hodge metri
. That is, aK�ahler metri
 with integral 
ohomology 
lass.



77 15. vanishing theorems of nadel and kawamata-viehwegProof. If X � PN is proje
tive algebrai
, then the restri
tion of the Fubini-Study metri
 to X is a Hodge metri
. Conversely, if X has a Hodge metri
 !, the
ohomology 
lass representative f!g in H2(X;Z) de�nes a 
omplex topologi
al (i.e.C1) line bundle, say L. Sin
e ! is of type (1; 1), the exponential exa
t sequen
e(8.20) H1(X;O�X)! H2(X;Z)! H2(X;O) = H0;2(X; C )shows that the line bundle L 
an be represented by a 
o
y
le in H1(X;O�X ). Inother words, L is endowed with a 
omplex stru
ture. Moreover, there exists aHermitian metri
 h on L su
h that i2��h(L) = !. Consequently, L is ample andX is proje
tive algebrai
.15.14. Exer
ise (Riemann 
onditions 
hara
terizing Abelian varieties). A
omplex torus X = C n=� is 
alled an Abelian variety if X is proje
tive algebrai
.Show by using (15.13) that a torus X is an Abelian variety if and only if thereexists a positive de�nite Hermitian form H on C n su
h that Im H(
1; 
2) 2 Z forall 
1; 
2 in the latti
e �.Indi
ation. Use a pro
ess of averaging to redu
e the proof to the 
ase ofK�ahler metri
 invariant by translations. Observe that the real torus Z
1+Z
2 de-�nes a system of generators of the homology group H2(X;Z) and that RZ
1+Z
2 ! =!(
1; 
2).15.15. Exer
ise (solution of the Levi problem). Show that the following twoproperties are equivalent.a) X is strongly pseudo
onvex, i.e. X admits a strongly psh exhaustion fun
tion.b) X is a Stein, i.e. the global holomorphi
 fun
tions separate points, furnishinga system of lo
al 
oordinates at every point, and X is holomorphi
ally 
onvex.(By de�nition, this means that for any dis
rete sequen
e (z�) in X , there existsa fun
tion f 2 H0(X;OX) su
h that jf(z�)j ! 1.) �15.16. Remark. As long as one is interested only in the 
ase of forms ofbidegree (n; q); n = dimX , the L2 estimates extend to the 
omplex spa
es a
quiringarbitrary singularities. Indeed, if X is a 
omplex spa
e and ' a psh weight fun
tionon X , one 
an still de�ne a sheaf KX(') on X , su
h that the se
tions of KX(')on an open set U are the holomorphi
 n-forms f on the regular part U \ Xreg,satisfying the integrability 
ondition in2f ^ fe�2' 2 L1lo
(U). In this 
ontext, thefun
torial property 15.5 
an be written (or is written)��(KX0(' Æ �)) = KX(');and it is valid for arbitrary 
omplex spa
es X;X 0, � : X 0 ! X being a modi�
ation.If X is non-singular, one has KX(') = O(KX) 
 J ('), however, if X is singular,the symbols KX and J (') do not have to be disso
iated. The statement of theNadel vanishing theorem be
omes Hq(X;O(E)
KX(')) = 0 for q � 1, under thesame hypothesis (X K�ahler and weakly pseudo
onvex, 
urvature of E � �!). Theproof is obtained by restri
ting all the situations to Xreg. Although in general Xregis not weakly pseudo
onvex (a ne
essary 
ondition being 
odimXsing = 1), Xregis always K�ahlerian 
omplete (the 
omplement of an analyti
 subset in a weaklypseudo
onvex K�ahler spa
e is K�ahlerian 
omplete, see for example [Dem82℄). As a
onsequen
e, the Nadel vanishing theorem is essentially insensitive to the presen
eof singularities. �
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e an algebrai
 version of the Nadel vanishing theorem obtainedindependently by Kawamata [Kaw82℄ and Viehweg [Vie82℄. (The original proofrelies on a di�erent method using 
y
li
 
overings to redu
e to the 
ase situation ofthe ordinary Kodaira Theorem.) Before stating the theorem, we need a de�nition.15.17. Definition. A line bundle L on a 
ompa
t 
omplex manifold is 
alledlarge if its Kodaira dimension is equal to n = dimX , that is, if there exists a
onstant 
 > 0 su
h thatdimH0(X;O(kL)) � 
kn; k � k0:15.18. Definition. A line bundle L on a proje
tive algebrai
 manifold is
alled numeri
ally e�e
tive (nef for short) if L satis�es one of the following threeequivalent properties:a) For any irredu
ible algebrai
 
urve C � X , one has L � C = RC 
1(L) � 0.b) If A is an ample line bundle, then kL+A is ample for all k � 0.
) For any � > 0, there exists a C1 Hermitian metri
 h� on L su
h that �h�(L) ���!, where ! is a �xed Hermitian metri
 on X .The equivalen
e of properties 15.18 a) and b) is well-known and we will omit ithere (see for example Hartshorne [Har70℄ for the proof). It is 
lear in addition that15.18 
) implies 15.18 a), while 15.18 b) implies 15.18 
). Indeed if ! = i2��(A)is the 
urvature of a metri
 of A with positive 
urvature, and if hk is a metri
 onL indu
ing a metri
 with positive 
urvature on kL + A, it be
omes k i2��(L) +i2��(A) > 0, where i2��(L) � � 1k!. Now, if D = P�jDj � 0 is an e�e
tive Q-divisor, we de�ne the multiplier ideal sheaf J (D) to be the sheaf J (') asso
iatedto the psh fun
tion ' = P�j log jgj j de�ned by the generators gj of O(�Dj).A

ording to remark 15.6, the 
al
ulation of J (D) 
an be done algebrai
ally bymaking use of desingularizations � : ~X ! X su
h that ��D be
omes a divisor withnormal 
rossings on ~X .15.19. Kawamata-Viehweg Vanishing Theorem. Let X be a proje
tivealgebrai
 manifold, and let F be a line bundle on X su
h that a multiple mF of F
an be written in the form mF = L + D, where L is a nef and large line bundle,and D an e�e
tive divisor. ThenHq�X;O(KX + F )
J (m�1D)� = 0 for q � 1:15.20. Corollary. If F is nef and large, then Hq(X;O(KX + F )) = 0 forq � 1.Proof. Let A be a non-singular very ample divisor. There is an exa
t sequen
e0! H0(X;O(kL�A))! H0(X;O(kL))! H0(A;O(kL)�A);and dim H0(A;O(kL)�A) � Ckn�1 for a 
ertain 
onstant C � 0. Sin
e L is large,there exists an integer k0 � 0 su
h that O(k0L � A) has a non-trivial se
tion. IfE is the divisor of this se
tion, we have O(k0L� A) ' O(E), therefore O(k0L) 'O(A+E). Now, for k � k0, we arrive at O(kL) = O((k�k0)L+A+E). A

ordingto 15.18 b), the line bundle O((k � k0)L + A) is ample, therefore it 
omes witha C1 Hermitian metri
 hk = e�'k , and with positive de�nite 
urvature form!k = i2��((k � k0)L + A). Let 'D = P�j log jgj j be the weight of the singularmetri
 on O(D) des
ribed in example 11.21, su
h that i2��(O(D)) = [D℄, and in a



79 16. on the 
onje
ture of fujitasimilar way, let 'E be the weight su
h that i2��(O(E)) = [E℄. We de�ne a singularmetri
 on O(kL) = O((k � k0)L + A + E) by means of the weight 'k + 'E , andthen we obtain a singular metri
 on O(mF ) = O(L+D), by 
onsidering the weight1k ('k + 'E) + 'D. Finally, we obtain a metri
 on F of weight'F = 1km ('k + 'E) + 1m'D :The 
orresponding 
urvature form isi2��(F ) = 1km(!k + [E℄) + 1m [D℄ � 1km!k > 0:Moreover 'F has algebrai
 singularities, and by taking k suÆ
iently large we haveJ ('F ) = J� 1kmE + 1mD� = J� 1mD�:Indeed, J ('F ) is 
al
ulated by taking the integral part of a Q-divisor with normal
rossings, obtained by the means of a suitable modi�
ation (as was explained inremark 15.6). The divisor 1kmE+ 1mD furnishes therefore the same integral part as1mD when k is large. The Nadel Theorem then implies the desired vanishing resultfor all q � 1. �16. On the 
onje
ture of FujitaGiven an ample line bundle L, a fundamental question is of determining ane�e
tive integer m0 su
h that mL is very ample for m � m0. The example whereX is a hyperellipti
 
urve of genus g and where L = O(p) is asso
iated to one of the2g+2Weierstrass points, shows thatm0 must be at least equal to 2g+1 (additionallyit is 
he
ked rather easily that m0 = 2g+1 always answers the question for a 
urve).It follows from this that m0 must ne
essarily depend on the geometry of X , and
annot depend only on the dimension of X . However, when mL is repla
ed by the\adjoint" line bundle KX +mL, a simple universal answer seems likely to emerge.16.1. Fujita's 
onje
ture ([Fuj87℄). If L is an ample line bundle on aproje
tive manifold of dimension n, theni) KX + (n+ 1)L is generated by its global se
tions;ii) KX + (n+ 2)L is very ample.The bounds predi
ted by the 
onje
ture are optimal for (X;L) = (Pn;O(1)),sin
e in this 
ase KX = O(�n � 1). The 
onje
ture is easy to verify in the 
aseof 
urves (exer
ise!), and I. Reider [Rei88℄ has solved the 
onje
ture in the aÆr-mative in the 
ase n = 2. Ein-Lazarsfeld [EL93℄ and Fujita [Fuj93℄ arrived atestablishing part i) in dimension 3, and a very thorough re�nement of their te
h-nique allowed Kawamata [Kaw95℄ to also arrive at the 
ase of dimension 41. Theother 
ases of the 
onje
ture, namely i) for n � 5 and ii) for n � 3, remain for thetime being unsolved. The �rst step in the dire
tion of this 
onje
ture for arbitrarydimension n has been realized in 1991 (work published 2 years later in [Dem93℄),by means of an analyti
 method relying on a resolution of a Monge-Ampere equa-tion. Similar results were obtained by Koll�ar [Kol92℄ employing entirely algebrai
1The te
hnique of Fujita [Fuj93℄ and Kawamata [Kaw95℄ has just been simpli�ed 
onsider-ably and 
lari�ed by S. Helmke [Hel96℄.



j.-p. demailly, part ii: L2 estimations and vanishing theorems 80methods. We refer to [Laz93℄ for an ex
ellent arti
le devoted to the synthesis ofthese developments, as well as [Dem94℄ for the analyti
 version of the theory.This se
tion is devoted to the proof of some results dependent on Kujita's 
on-je
ture in arbitrary dimension. The prin
ipal ideas of interest here are inspired bysome re
ent work of Y.T. Siu [Siu96℄. Siu's method, whi
h is naturally algebrai
and relatively elementary, 
onsists of 
ombining the Riemann-Ro
h formula withthe Kawamata-Viehmeg vanishing theorem (however, it will be mu
h more 
on-venient to use this Nadel's formulation of the theorem, using the multiplier idealsheaves). Subsequently, X will denote a proje
tive algebrai
 manifold of dimen-sion n. The �rst useful observation is the following 
lassi
al 
onsequen
e of theRiemann-Ro
h formula:16.2. Parti
ular 
ase of the Riemann-Ro
h formula. Let J � OX be a
oherent sheaf of ideals on X su
h that the variety of zeros V (J) is of dimensiond (with possibly some 
omponents of lower dimension). Let Y = P�jYj be thee�e
tive algebrai
 
y
le of dimension d asso
iated to the 
omponents of dimensiond of V (J) (the multipli
ities �j taking into a

ount the multipli
ity of the lengthof the ideal J along ea
h 
omponent). Then, for any line bundle E, the Euler
hara
teristi
 �(X;O(E +mL)
OX=O(J)) is a polynomial P (m) of degree d andwith leading 
oeÆ
ient Ld � Y=d! �The se
ond useful fa
t is an elementary lemma 
on
erning the numeri
al poly-nomials (polynomials with rational 
oeÆ
ients, de�ning a map of Z into Z).16.3. Lemma. Let P (m) be a numeri
al polynomial of degree d > 0 and withleading 
oeÆ
ient ad=d!; ad 2 Z; ad > 0. We assume that P (m) � 0 for allm � m0. Thena) For all N � 0, there exists m 2 [m0;m0 +Nd℄ su
h that P (m) � N .b) For all k 2 N, there exists m 2 [m0;m0 + kd℄ su
h that P (m) � adkd=2d�1.
) For all N � 2d2, there exists m 2 [m0;m0 +N ℄ su
h that P (m) � N .Proof. a) Ea
h one of the N equations P (m) = 0; P (m) = 1; : : : ; P (m) =N�1 has at most d roots, therefore there is ne
essarily an integerm 2 [m0;m0+dN ℄whi
h is not a root of these equations.b) By virtue of Newton's formula for the iterated di�eren
es �P (m) = P (m+1)�P (m), we obtain�dP (m) = X1�j�d(�1)j�dj�P (m+ d� j) = ad; 8m 2 Z:Consequently, if j 2 �0; 2; 4; : : : ; 2b d=2
	 � [0; d℄ is the even integer realizing themaximum of P (m0 + d� j) on this �nite set, we obtain2d�1P (m0 + d� j) = ��d0�+�d2�+ � � ��P (m0 + d� j) � ad;whereby we obtain the existen
e of an integer m 2 [m0;m0 + d℄ with P (m) �ad=2d�1. The result is therefore proven for k = 1. In the general 
ase, we applythis parti
ular result to the polynomial Q(m) = P (km� (k� 1)m0), for whi
h theleading 
oeÆ
ient is adkd=d!
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onje
ture of fujita
) If d = 1, part a) already gives the result. If d = 2, a glan
e at the parabolashows that maxm2[m0;m0+N ℄P (m) � � a2N2=8 if N is even,a2(N2 � 1)=8 if N is odd;therefore maxm2[m0;m0+N ℄ P (m) � N whenever N � 8. If d � 3, we apply b) withk equal to the smallest integer satisfying kd=2d�1 � N , i.e. k = d2(N=2)1=de, wheredxe 2 Z denotes the greater integer. Thenkd � (2(N=2)1=d + 1)d � Nso long as N � 2d2, as one sees after a short 
al
ulation. �We now apply the Nadel vanishing theorem in an analogous way to that ofSiu [Siu96℄, with some simpli�
ations in the te
hnique and some improvements forthe bounds. Their method simultaneously gives a simple proof of a fundamental
lassi
al result due to Fujita.16.4. Theorem (Fujita). If L is an ample line bundle on a proje
tive manifoldX of dimension n, then KX + (n+ 1)L is nef.Using the theory of Mori and the \base point free theorem" ([Mor82℄, [Kaw84℄),one 
an show in fa
t that KX + (n + 1)L is semi-ample, and that there exists apositive integer m su
h that m(KX + (n + 1)L) is generated by its se
tions (see[Kaw85℄ and [Fuj87℄). The proof is based on the observation that n + 1 is themaximum length of the extremal rays of smooth proje
tive varieties of dimensionn. Their proof of (16.4) is di�erent and was obtained at the same time as the proofof th. (16.5) below.16.5. Theorem. Let L be an ample line bundle and let G be a nef line bundleover a proje
tive manifold X of dimension n. Then the following properties hold.a) 2KX + mL + G simultaneously generates the jets of order s1; : : : ; sp 2 N atarbitrary points x1; : : : ; xp 2 X, i.e., there exists a surje
tive mapH0(X;O(2KX +mL+G))� M1�j�pO(2KX +mL+G)
OX;xj=msj+1X;xj ;so long as m � 2 +P1�j�p �3n+2sj�1n �.In parti
ular 2KX +mL+G is very ample for m � 2 + �3n+1n �.b) 2KX + (n + 1)L + G simultaneously generates the jets of order s1; : : : ; sp atarbitrary points x1; : : : ; xp 2 X so long as the interse
tion numbers Ld � Y ofL on all the algebrai
 subsets Y of X of dimension d are su
h thatLd � Y > 2d�1bn=d
d X1�j�p�3n+ 2sj � 1n �:Proof. The proofs of (16.4) and (16.5a, b) are 
ompletely parallel, that iswhy we will present them simultaneously (in the 
ase of (16.4), it is simply agreedthat fx1; : : : ; xpg = ;). The idea is to �nd an integer (or a rational number) m0and a singular Hermitian metri
 h0 on KX +m0L for whi
h the 
urvature 
urrentis stri
tly positive, �h0 � �!, su
h that V (J (h0)) is of dimension 0 and su
hthat the weight '0 of h0 satis�es �('0; xj) � n + sj for all j. Sin
e L and G are
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) implies that (m � m0)L + G has for all m � m0 a metri
 h0 forwhi
h the 
urvature �h0 has an arbitrarily small negative part, say �h0 � � �2!.Then �h0 + �h0 � �2! is positive de�nite. An appli
ation of Cor. 15.9 to F =KX +mL+G = (KX +m0L) + ((m�m0)L+G) with metri
 h0 
 h0 guaranteesthe existen
e of se
tions of KX + F = 2KX +mL+ G produ
ing the desired jetsfor m � m0.Fix an embedding �j�Lj : X ! PN ; �� 0, given by the se
tions �0; : : : ; �N 2H0(X;�L), and let hL be the asso
iated metri
 on L, with positive de�nite 
ur-vature form ! = �(L). To obtain the desired metri
 h0 on KX +m0L, one �xesan integer a 2 N� and one uses a pro
ess of double indu
tion to 
onstru
t singu-lar metri
s (hk;�)��1 on aKX + bkL, for a de
reasing sequen
e of positive integersb1 � b2 � � � � � bk � � � � . Su
h a sequen
e is ne
essarily stationary and m0 will bepre
isely the stationary limit m0 = lim bk=a. The metri
s hk;� are 
hosen to be thetype that satisfy the following properties:�) hk;� is an \algebrai
" metri
 of the formjj�jj2hk;� = j�k(�)j2(P1�i��;0�j�N j� (a+1)�k (�a�i � �(a+1)bk�amij )j2)1=(a+1)� ;de�ned by the se
tions �i 2 H0�X;O((a+1)KX+miL)�; mi < a+1a bk; 1 � i ��, where � 7! �k(�) is an arbitrary lo
al trivialization of aKX + bkL. Observethat �a�i � �(a+1)bk�amij is a se
tion ofa�((a+ 1)KX +miL) + ((a+ 1)bk � ami)�L = (a+ 1)�(aKX + bkL):�) ordxj (�i) � (a+ 1)(n+ sj) for all i; j;
) J (hk;�+1) � J (hk;�) and J (hk;�+1) 6= J (hk;�) as long as the variety of zerosV (J (hk;�)) is positive dimensional.The weight 'k;� = 12(a+1)� logP��� (a+1)�k (�a�i ��(a+1)bk�amij )��2 of hk;� is plurisub-harmoni
 and the 
ondition mi < a+1a bk implies (a + 1)bk � ami � 1, thereforethe di�eren
e 'k;� � 12(a+1)� logP j�(�j)j2 is also plurisubharmoni
. Consequentlyi2��hk;� (aKX + bkL) = i�d0d00'k;� � 1(a+1)!. Moreover, 
ondition �) 
learly im-plies that �('k;� ; xj) � a(n + sj). Finally, 
ondition 
) 
ombined with the strongNoetherian property of 
oherent sheaves guarantees that the sequen
e (hk;�)��1will eventually produ
e a subs
heme V (J (hk;�)) of dimension 0. One 
an 
he
kthat the sequen
e (hk;�)��1 terminates at this point, and we set hk = hk;� to bethe �nal metri
 thus rea
hed, su
h that dimV (J (hk)) = 0.For k = 1, it is 
lear that the desired metri
s (h1;�)��1 exist if b1 is 
hosenlarge enough. (For example, su
h that (a + 1)KX + (b1 � 1)L generates the jetsof order (a + 1)(n + max sj) at every point. Then the se
tions �1; : : : ; �� 
an be
hosen su
h that m1 = � � � = m� = b1 � 1.) We assume that the metri
s (hk;�)��1and hk are already 
onstru
ted, and pro
eed with the 
onstru
tion of (hk+1;�)��1.We use again indu
tion on �, and assume that hk+1;� is already 
onstru
ted andthat dimV (J (hk+1;�)) > 0. We begin our indu
tion with � = 0, and let us de
larein this 
ase that J (hk+1;0) = 0 (this 
orresponds to an in�nite metri
 of weightidenti
ally equal to �1). By virtue of the Nadel vanishing theorem applied toFm = aKX +mL = (aKX + bkL) + (m� bk)L for the metri
 hk 
 (hL)
m�bk , we



83 16. on the 
onje
ture of fujitaobtain Hq(X;O((a+ 1)KX +mL)
J (hk)) = 0 for q � 1;m � bk:Sin
e V (J (hk)) is of dimension 0, the sheaf OX=J (hk) is a skys
raper sheaf andthe exa
t sequen
e 0! J (hk) ! OX ! OX=J (hk) ! 0 twisted by the invertiblesheaf O((a + 1)KX +mL) shows thatHq(X;O((a+ 1)KX +mL)) = 0 for q � 1; m � bk:Analogously, we �ndHq(X;O((a+ 1)KX +mL)
J (hk+1;�)) = 0 for q � 1; m � bk+1(it is therefore true for � = 0, sin
e J (hk+1;0) = 0), and whenm � max(bk; bk+1) = bk;the exa
t sequen
e 0! J (hk+1;�)! OX ! OX=J (hk+1; �)! 0 impliesHq(X;O((a+ 1)KX +mL)
OX=J (hk+1;�)) = 0 for q � 1; m � bk:In parti
ular, sin
e the group H1 above is zero, any se
tion u0 of (a+ 1)KX +mLon the sub-s
heme V (J (hk+1;�)) has an extension u to X . Fix a basis u01; : : : ; u0Nof se
tions of this sheaf on V (J (hk+1;�)) and take arbitrary extensions u1; : : : ; uNto X . Consider the linear map allotting to ea
h se
tion u on X the 
olle
tion ofjets of order (a+ 1)(n+ sj)� 1 at the points xj , i.e.u = X1�j�N ajuj 7!M J (a+1)(n+sj )�1xj (u):Sin
e the rank of the bundle of s-jets is �n+sn �, the target spa
e is of dimensionÆ = X1�j�p�n+ (a+ 1)(n+ sj)� 1n �:To obtain a se
tion ��+1 = u satisfying 
ondition �) and having a non-trivial re-stri
tion �0�+1 to V (J (hk+1;�)), we need at least N = Æ + 1 independent se
tionsu01; : : : ; u0N . This 
ondition will be realized by applying Lemma (16.3) to the nu-meri
al polynomialP (m) = �(X;O((a+ 1)KX +mL)
OX=J (hk+1;�))= h0(X;O((a+ 1)KX +mL)
OX=J (hk+1;�)) � 0; m � bk:The polynomial P is of degree d = dimV (J (hk+1;�)) > 0. We therefore obtainthe existen
e of an integer m 2 [bk; bk + �℄ su
h that N = P (m) � Æ + 1, for someexpli
it integer � 2 N. (For example, � = n(Æ + 1) is always appropriate a

ordingto (16.3 a), but it will be equally important to use the other possibilities to optimizethe 
hoi
es.) We then �nd a se
tion ��+1 2 H0(X; (a+1)KX +mL) having a non-trivial restri
tion �0�+1 to V (J (hk+1;�)), vanishing to order � (a + 1)(n + sj) atea
h point xj . Now set m�+1 = m, and the 
ondition m�+1 < a+1a bk+1 is realizedif bk + � < a+1a bk+1. This shows that one 
an 
hoose re
ursivelybk+1 = � aa+ 1(bk + �)� + 1:



j.-p. demailly, part ii: L2 estimations and vanishing theorems 84By de�nition, hk+1;� � hk+1;� , therefore J (hk+1;�+1) � J (hk+1;�). It is the
ase that J (hk+1;�+1) 6= J (hk+1;�), be
ause J (hk+1;�+1) 
ontains the sheaf ofideals asso
iated to the divisor of zeros of ��+1, whereas ��+1 is not identi
allyzero on V (J (hk+1;�)). Now, an easy 
al
ulation shows that the iterated sequen
ebk+1 = b aa+1 (bk + �)
 + 1 stabilizes to the limit value bk = a(� + 1) + 1, for anyinitial value b1 greater than this limit. In this way, we obtain a metri
 h1 withpositive de�nite 
urvature on aKX +(a(�+1)+1)L, su
h that dimV (J (h1)) = 0and �('1; xj) � a(n+ sj) at ea
h point xj .Proof of (16.4). In this 
ase, the set fxjg is taken to be the empty set,therefore Æ = 0. By virtue of (16.3 a), the 
ondition P (m) � 1 is realized for atleast one integer m 2 [bk; bk + n℄, therefore one 
an take � = n. Sin
e �L is veryample, �L has a metri
 having an isolated logarithmi
 pole of Lelong number 1 atea
h given point (for example, the algebrai
 metri
 de�ned by the se
tions of �Lvanishing at x0). ThereforeF 0a = aKX + (a(n+ 1) + 1)L+ n�Lhas a metri
 h0a su
h that V (J (h0a)) is of dimension zero and 
ontains fx0g. Byvirtue of Cor. (15.9), we 
on
lude thatKX + F 0a = (a+ 1)KX + (a(n+ 1) + 1 + n�)Lis generated by its se
tions, in parti
ular KX + a(n+1)+1+n�a+1 L is nef. By letting atend to +1, we dedu
e that KX + (n+ 1)L is nef. �Proof of (16.5 a). It suÆ
es here to 
hoose a = 1. ThenÆ = X1�j�p�3n+ 2sj � 1n �:If fxjg 6= ;, one has Æ + 1 � �3n�1n � + 1 � 2n2 for n � 2. Lemma (16.3 
) showsthat P (m) � Æ + 1 for at least one m 2 [bk; bk + �℄ with � = Æ + 1. We begin theindu
tion pro
edure k 7! k+1 with b1 = �+1 = Æ+2, be
ause the only ne
essaryproperty for the indu
tion step is the vanishing propertyHq(X; 2KX +mL) = 0 for q � 1; m � b1;whi
h is realized a

ording to Kodaira's vanishing theorem and the ampleness prop-erty of KX + b1L. (We use here the result of Fujita (16.4), by observing thatb1 > n+1.) The re
ursive formula bk+1 = b 12 (bk+�)
+1 then gives bk = �+1 = Æ+2for all k, and (16.5 a) follows. �Proof of (16.5 b). Completely similar to (16.5 a), ex
ept that we 
hoose� = n; a = 1 and bk = n + 1 for all k. By applying Lemma (16.3 b), we haveP (m) � adkd=2d�1 for at least one integer m 2 [m0;m0 + kd℄, where ad > 0 isthe leading degree 
oeÆ
ient of P . By virtue of Lemma (16.2), we have ad �infdimY=dLd � Y . Take k = bn=d
. The 
ondition P (m) � Æ + 1 
an then berealized for an integer m 2 [m0;m0 + kd℄ � [m0;m0 + n℄, provided thatinfdimY=dLd � Y bn=d
d=2d�1 > Æ;that whi
h is equivalent to the 
ondition in (16.5 b). �



85 17. an effe
tive version of matsusaka's big theoremThe big disadvantage of the des
ribed te
hnique is that one must ne
essarilyutilize multiples of L to avoid the zeros of the Hilbert polynomial, in parti
ular itis not possible to dire
tly obtain a 
riterion of large ampleness for 2KX +L in thestatement of (16.5 b). Su
h a 
riterion 
an nevertheless be obtained with the aidof the following elementary lemma.16.6. Lemma. Suppose that there exists an integer � 2 N� su
h that �Fsimultaneously generates all the jets of order �(n + sj) + 1 at every point xj of asubset fx1; : : : ; xpg � X. Then KX + F simultaneously generates all the jets oforder sj at the point xj .Proof. Choose the algebrai
 metri
 on F de�ned by a basis �1; : : : ; �N ofthe spa
e of se
tions of �F whi
h vanish to order �(n + sj) + 1 at ea
h point xj .Sin
e we are still free to 
hoose the homogenous term of degree �(n + sj) + 1 inthe Taylor expansion of these se
tions at the points xj , we see that x1; : : : ; xpare isolated zeros of \��1j (0). If ' is the weight of the metri
 of F about xj , wetherefore have '(z) � (n + sj + 1� ) log jz � xj j in suitable 
oordinates. Repla
e 'in a neighbourhood of xj by'0(z) = max �'(z); jzj2 � C + (n+ sj) log jz � xj j�and we leave ' un
hanged everywhere else (this is possible by taking C > 0 suf-�
iently large). Then '0(z) = jzj2 � C + (n + sj) log jz � xj j in a neighbourhoodof xj , in parti
ular '0 is stri
tly plurisubharmoni
 near xj . In this way, we obtaina metri
 h0 on F with semi-positive 
urvature everywhere on X , and has positivede�nite 
urvature in a neighbourhood of fx1; : : : ; xpg. The resulting 
on
lusionthen is a dire
t appli
ation of the L2 estimates (14.2). �16.7. Theorem. Let X be a proje
tive manifold of dimension n and L anample line bundle on X. Then 2KX +L simultaneously generates the jets of orders1; : : : ; sp at arbitrary points x1; : : : ; xp 2 X so long as the interse
tion numbersLd � Y of L on all the algebrai
 subsets Y � X of dimension d satisfyLd � Y > 2d�1bn=d
d X1�j�p�(n+ 1)(4n+ 2sj + 1)� 2n �; 1 � d � n:Proof. Lemma (16.6) applied with F = KX + L and � = n + 1 shows thatthe desired property for the jets of 2KX + L o

urs if (n + 1)(KX + L) generatesthe jets of order (n+ 1)(n+ sj) + 1 at the points xj . Lemma (16.6) applied againwith F = pKX + (n + 1)L and � = 1 shows by des
ending indu
tion on p that itsuÆ
es that F generates all the jets of order (n+1)(n+ sj)+1+(n+1� p)(n+1)at the points xj . In parti
ular, for 2KX + (n+ 1)L it suÆ
es to obtain all the jetsof order (n+ 1)(2n+ sj � 1) + 1. Th. (16.5 b) then gives the desired 
ondition. �We 
on
lude by mentioning some immediate 
onsequen
es of th. 16.5, obtainedby taking L = �KX .16.8. Corollary. Let X be a proje
tive manifold of general type, with KXample and dimX = n. Then mKX is very ample for m � m0 = �3n+1n �+ 4.16.9. Corollary. Let X be a Fano variety (that is, a proje
tive manifoldsu
h that �KX is ample), of dimension n. Then �mKX is very ample for m �m0 = �3n+1n �.
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tive version of Matsusaka's big theoremWe en
ounter here the problem of �nding an expli
it integerm0 su
h thatmL isvery ample for m � m0. The existen
e of su
h a bound m0, depending only on thedimension and the 
oeÆ
ients of the Hilbert polynomial of L, was �rst establishedby Matsusaka [Mat72℄. Further Koll�ar and Matsusaka [KoM83℄ have shown thatone 
ould indeed �nd a bound m0 = m0(n;Ln;KX � Ln�1) dependent only onn = dimX and on the �rst two 
oeÆ
ients. Re
ently, Siu [Siu93℄ has obtained ane�e
tive version of the same result furnishing an expli
it \reasonable" bound m0(although this bound is unfortunately still far from being optimal). We explain herethe method of Siu, starting from some simpli�
ations and improvements suggestedin [Dem96℄. The starting point is the following lemma.17.1. Lemma. Let F and G be nef line bundles on X. If Fn > nFn�1 �G, thenany positive multiple k(F �G) admits a non-trivial se
tion for k � k0 suÆ
ientlylarge.Proof. The lemma 
an be proven as a spe
ial 
ase of the holomorphi
 Morseinequalities (see [Dem85℄, [Tra91℄, [Siu93℄, [Ang95℄). We give here a simpleproof, following a suggestion of F. Catanese. We 
an assume that F and G are veryample (if not, it suÆ
es to repla
e F and G by F 0 = pF +A and G0 = pG+A withA very ample and suÆ
iently positive to ensure large ampleness of any sum with annef bundle, then to 
hoose p > 0 large enough for whi
h F 0 and G0 satisfy the samenumeri
al hypothesis as F and G). Then O(k(F �G)) ' O(kF �G1�� � ��Gk) forarbitrary elements G1; : : : ; Gk of the linear system jGj. If we 
hoose su
h elementsGj in general position, the lemma follows from the Riemann-Ro
h formula appliedto the restri
tion morphism H0(X;O(kF ))!LH0(Gj ;O(kF�Gj ). �17.2. Corollary. Let F and G be nef line bundles over X. If F is big and ifm > nFn�1 �G=Fn, then O(mF �G) 
an be given a (possibly singular) Hermitianmetri
 h, having a positive de�nite 
urvature form, i.e. su
h that �h(mF �G) ��!; � > 0, for a K�ahler metri
 !.Proof. In fa
t, if A is ample and � 2 Q+ is small enough, Lemma (17.1)implies that a 
ertain multiple k(mF � G � �A) admits a se
tion. Let E be thedivisor of this se
tion and let ! = �(A) 2 
1(A) be a K�ahler metri
 representingthe 
urvature form of A. Then mF �G � �A+ 1kE 
an be given a singular metri
h with 
urvature form �h(mF �G) = ��(A) + 1k [E℄ � �!. �We now 
onsider the problem of obtaining a non-trivial se
tion of mL. Theidea of [Siu93℄ is to obtain a more general 
riterion for the ampleness of mL� Bwhen B is nef. In this way, we will be able to subtra
t from mL any undesiredmultiple of KX that would be added to L, by appli
ation of the Nadel VanishingTheorem (for this, we simply repla
e B, by B plus a multiple of KX + (n+ 1)L).17.3. Proposition. Let L be an ample line bundle on a proje
tive manifoldX of dimension n, and let B be an nef line bundle on X. Then KX + mL � Badmits a non-zero se
tion for an integer m satisfyingm � nLn�1 �BLn + n+ 1:



87 17. an effe
tive version of matsusaka's big theoremProof. Let m0 be the smaller integer > nLn�1�BLn . Then m0L � B 
an begiven a singular Hermitian metri
 h with positive de�nite 
urvature. By virtue ofthe Nadel vanishing theorem, we obtainHq(X;O(KX +mL�B)
J (h)) = 0 for q � 1;therefore P (m) = h0(X;O(KX +mL � B) 
 J (h)) is a polynomial for m � m0.Sin
e P is a polynomial of degree n whi
h is not identi
ally zero, there exists aninteger m 2 [m0;m0 + n℄ whi
h is not a root. Therefore there exists a non-trivialse
tion ofH0(X;O(KX +mL�B)) � H0(X;O(KX +mL�B)
J (h))for some m 2 [m0;m0 + n℄, as stated. �17.4. Corollary. If L is ample and B is nef, then mL� B has a non-zerose
tion for at least one integerm � n�Ln�1 �B + Ln�1 �KXLn + n+ 1�:Proof. A

ording to the result of Fujita (16.4), KX + (n + 1)L is nef. We
an therefore repla
e B by B +KX + (n + 1)L in Prop. (17.3). Corollary (17.4)follows. �17.5. Remark. We do not know if the bound obtained in the above 
orollaryis optimal, but it is 
ertainly not very far from being it. Indeed, even for B = 0, themultipli
ative fa
tor n 
annot be repla
ed by a number smaller than n=2. To seethis, take for example for X a produ
t C1 � � � � � Cn of 
urves Cj of large enoughgenus gj , and L = O(a1[p1℄) 
 � � � 
 O(an[pn℄); B = 0. Our suÆ
ient 
onditionso that jmLj 6= ; be
omes in this 
ase m �P(2gj � 2)=aj + n(n+ 1), while for ageneri
 
hoi
e of pj the bundle mL admits se
tions only if maj � gj for all j. Theina

ura
y of our inequality thus plays more on one multipli
ative fa
tor 2 whena1 = � � � = an = 1 and g1 � g2 � � � � � gn ! +1. In addition, the additive
onstant n+ 1 is already the best possible when B = 0 and X = Pn. �Up to this point, the method was not really sensitive to the presen
e of singu-larities (Lemma (17.1) is still true in the singular 
ase as is easily seen by passingto a desingularization of X). In the same way, as we observed with remark (15.16),the Nadel vanishing theorem still remains essentially valid. Prop. (17.3) 
an thenbe generalized as follows:17.6. Proposition. Let L be an ample line bundle on a proje
tive manifold Xof dimension n, and let B be an nef line bundle on X. For any (redu
ed) algebrai
subvariety Y of X of dimension p, there exists an integerm � pLp�1 � B � YLp � Y + p+ 1su
h that the sheaf !Y 
OY (mL�B) has a non-zero se
tion. �By applying a suitable indu
tion pro
edure relying on the results above, we
an now improve the e�e
tive bound obtained by Siu [Siu93℄ for Matsusaka's bigtheorem. Our statement will depend on the 
hoi
e of a 
onstant �n su
h that



j.-p. demailly, part ii: L2 estimations and vanishing theorems 88m(KX+(n+2)L)+G is very ample form � �n and all nef line bundles G. Theorem(0.2 
) shows that �n � �3n+1n � � 2n (a more elaborate argument 
on
erning there
ent results of Angehrn-Siu [AS94℄ allows us in fa
t to see that �n � n3�n2�n�1for n � 2). Of 
ourse, one expe
ts with this that �n = 1 for all n, if one believesthat the 
onje
ture of Fujita is true.17.7. Effe
tive version of Matsusaka's Big Theorem. Let L and Bbe nef line bundles on a proje
tive manifold X of dimension n. Assume that L isample and let H = �n(KX + (n+ 2)L). Then mL�B is very ample form � (2n)(3n�1�1)=2 (Ln�1 � (B +H))(3n�1+1)=2(Ln�1 �H)3n�2(n=2�3=4)�1=4(Ln)3n�2(n=2�1=4)+1=4 :In parti
ular mL is very ample form � Cn(Ln)3n�2�n+ 2 + Ln�1 �KXLn �3n�2(n=2+3=4)+1=4with Cn = (2n)(3n�1�1)=2(�n)3n�2(n=2+3=4)+1=4.Proof. We utilize Th. (3.1) and Prop. (17.6) to 
onstru
t by indu
tion asequen
e of algebrai
 subvarieties (not ne
essarily irredu
ible) X = Yn � Yn�1 �� � � � Y2 � Y1 su
h that Yp = [jYp;j is of dimension p, Yp�1 being obtained forea
h p � 2 as the union of the set of zeros of the se
tions�p;j 2 H0(Yp;j ;OYp;j (mp;jL�B))for suitable integers mp;j � 1. We pro
eed by indu
tion on the de
reasing valuesof the dimension p, and we seek to obtain with ea
h step an upper bound mp forthe integer mp;j .By virtue of Cor. (17.4), we 
an �nd an integer mn su
h that mnL�B admitsa non-trivial se
tion �n formn � nLn�1 � (B +KX + (n+ 1)L)Ln � nLn�1 � (B +H)Ln :Now suppose that the se
tions �n; : : : ; �p+1;j have already been 
onstru
ted. Onethen obtains by indu
tion a p-
y
le ~Yp = P�p;jYp;j de�ned by ~Yp = sum of thedivisors of zeros of the se
tions �p+1;j on the 
omponents ~Yp+1;j , where the multi-pli
ity �p;j of Yp;j � Yp+1;k is obtained by multiplying the 
orresponding multipli
-ity �p+1;k by the order of vanishing of �p+1;k along Yp;j . We obtain the equality of
ohomology 
lasses~Yp �X(mp+1;kL�B) � (�p+1;kYp+1;k) � mp+1L � ~Yp+1:By indu
tion, we then obtain the numeri
al inequality~Yp � mp+1 � � �mnLn�p:Now, for ea
h 
omponent Yp;j , Prop. (17.6) shows that there exists a se
tion of!Yp;j 
OYp;j (mp;jL�B) for a 
ertain integermp;j � pLp�1 �B � Yp;jLp � Yp;j + p+ 1 � pmp+1 � � �mnLn�1 � B + p+ 1:



89 17. an effe
tive version of matsusaka's big theoremWe have used here the obvious lower bound Lp�1 � Yp;q � 1 (this bound is besidesundoubtly one of weak points of the method...). The degree Yp;q by 
omparison toH admits the upper boundÆp;j := Hp � Yp;j � mp+1 � � �mnHp � Ln�p:The Hovanski-Teissier 
on
avity inequality gives(Ln�p �Hp) 1p (Ln)1� 1p � Ln�1 �H([Hov79℄, [Tei79, 82℄, also see [Dem93℄), whi
h makes it possible to express ourbounds in terms of only the interse
tion numbers Ln and Ln�1 �H . We then obtainÆp;j � mp+1 � � �mn (Ln�1 �H)p(Ln)p�1 :We have need of the following lemma, whi
h will be proven shortly.17.8. Lemma. Let H be a very ample line bundle on a proje
tive algebrai
manifold X, and let Y � X be an irredu
ible algebrai
 subvariety of dimension p.If Æ = Hp �Y is the degree of Y with support in H, the sheaf Hom�!Y ;OY ((Æ� p�2)H)� has a non-trivial se
tion.A

ording to Lemma (17.8), there exists a non-trivial se
tion ofHom�!Yp;j ;OYp;j ((Æp;j � p� 2)H)�:By 
ombining this se
tion with the se
tion of !Yp;j 
 OYp;j (mp;jL � B) already
onstru
ted, we obtain a se
tion of OYp;j (mp;jL � B + (Æp;j � p � 2)H) on Yp;j .We do not want H appearing at this stage, whi
h is why we will repla
e B byB+(Æp;q�p�2)H . We obtain then a se
tion �p;j of OYp;j (mp;jL�B) for a 
ertaininteger mp;j su
h thatmp;j � pmp+1 � � �mnLn�1 � (B + (Æp;j � p� 2)H) + p+ 1� pmp+1 � � �mnÆp;jLn�1 � (B +H)� p(mp+1 � � �mn)2 (Ln�1 �H)p(Ln)p�1 Ln�1 � (B +H):Consequently, by setting m = nLn�1 � (B+H), we obtain the des
ending indu
tiverelation mp �M (Ln�1 �H)p(Ln)p�1 (mp+1 � � �mn)2 for 2 � p � n� 1;on the basis of the initial value mn � M=Ln. Let (mp) be the sequen
e of num-bers obtained by this indu
tive formula by repla
ing the respe
tive inequalities byequalities. Thus we have mp � mp with mn�1 =M3(Ln�1 �H)n�1=(Ln)n andmp = LnLn�1 �Hm2p+1mp+1for 2 � p � n� 2. Then by indu
tionmp � mp =M3n�p (Ln�1 �H)3n�p�1(n�3=2)+1=2(Ln)3n�p�1(n�1=2)+1=2 :



j.-p. demailly, part ii: L2 estimations and vanishing theorems 90We now show that m0L�B is nef form0 = max(m2;m3; : : : ;mn;m2 � � �mnLn�1 � B):Indeed, let C � X be an arbitrary irredu
ible 
urve. Alternatively, C = Y1;j fora 
ertain j, or else there exists an integer p = 2; : : : ; n su
h that C is 
ontainedin YpnYp�1. If C � Yp;jnYp�1, then �p;j is not identi
ally zero on C. Therefore(mp;jL�B)�C is of positive degree or zero and(m0L�B) � C � (mp;jL�B) � C � 0:In addition, if C = Y1;j , then(m0L�B) � C � m0 �B � ~Y1 � m0 �m2 � � �mnLn�1 � B � 0:A

ording to the de�nition of �n (and the proof where su
h a 
onstant exists, 
f.(0.2
)), H +G is very ample for any nef line bundle G, in parti
ular H +m0L�Bis very ample. We again repla
e B by B +H . This substitution has the e�e
t ofrepla
ing M by the new 
onstant m = n(Ln�1 � (B + 2H)) and m0 bym0 = max(mn;mn�1; : : : ;m2;m2 � � �mnLn�1 � (B +H)):The latter term being the largest estimation of mp impliesm0�M (3n�1�1)=2 (Ln�1�H)(3n�2�1)(n�3=2)=2+(n�2)=2Ln�1�(B+H))(Ln)(3n�2�1)(n�1=2)=2+(n�2)=2+1� (2n)(3n�1�1)=2 (Ln�1�(B+H))(3n�1+1)=2(Ln�1�H)3n�2(n=2�3=4)�1=4(Ln)3n�2(n=2�1=4)+1=4 �Proof of lemma (17.8). Let X � PN be the embedding given by H , sothat H = OX (1). There exists a proje
tive linear map Pn ! Pp+1 for whi
h therestri
tion � : Y ! Pp+1 to Y is a �nite and birational morphism of Y onto analgebrai
 hypersurfa
e Y 0 of degree Æ in Pp+1. Let s 2 H0(Pp+1;O(Æ)) be thepolynomial of degree Æ de�ning Y 0. We 
laim that for any small Stein open subsetW � Pp+1 and any holomorphi
 p-form u, L2 on Y 0\W , there exists a holomorphi
(p+ 1)-form ~u, L2 on W , with values in O(Æ), su
h that ~u�Y 0\W = u ^ ds. In fa
t,this is pre
isely the 
on
lusion of the L2 extension theorem of Ohsawa-Takegoshi[OT87℄, [Ohs88℄ (also see [Man93℄ for a more general version of this result). One
an equally invoke standard arguments in lo
al algebra (see Hartshorne [Har77℄,th. III-7.11). Sin
e KPp+1 = O(�p� 2), the form ~u 
an be 
onsidered as a se
tionof O(Æ � p � 2) on W , 
onsequently the morphism of sheaves u 7! u ^ ds extendsto a global se
tion of Hom�!Y 0 ;OY 0(Æ� p� 2)�. The inverse image of �� furnishesa se
tion of Hom���!Y 0 ;OY ((Æ � p� 2)H)�. Sin
e � is �nite and generi
ally 1 : 1,it is easy to see that ��!Y 0 = !Y . The lemma follows. �17.9. Remark. In the 
ase of surfa
es (n = 2), we 
an take �n = 1 a

ordingto the result of I. Reider [Rei88℄, and the arguments developed above ensure thatmL is very ample for m � 4(L � (KX + 4L))2L2 :By working through the proof more 
arefully, it 
an be shown that the multipli
ativefa
tor 4 
an be repla
ed by 2. In fa
t, Fernandez del Busto has re
ently shown that



91 17. an effe
tive version of matsusaka's big theoremmL is very ample for m > 12�(L � (KX + 4L) + 1)2L2 + 3�;and an example of G. Xiao shows that this bound is essentially optimal (see[FdB94℄).Matsusaka's big theorem yields a number of other important �niteness results.One of the prototypes of these results is the following statement.17.10. Corollary. There exists only a �nite number of families of deforma-tions of polarized proje
tive manifolds (X;L) of dimension n, where L is an ampleline bundle for whi
h the interse
tion numbers Ln and KX � Ln�1 are �xed.Proof. Indeed, sin
e Ln and KX � Ln�1 are �xed, there in fa
t exists a 
al-
ulable integer m0 su
h that m0L is very ample. We then obtain an embedding� = �jm0Lj : X ! PN su
h that ��O(1) = �m0L. The image Y = �(X) is ofdegree deg(Y ) = ZY 
1�O(1)�n = ZX 
1(�m0L)n = mn0Ln:This implies that Y is a point of one of the 
omponents of the Chow s
heme ofalgebrai
 subvarieties Y of a given dimension and degree in PN for whi
h O(1)�Yis divisible by m0. More pre
isely a point of an open set 
orresponding to a non-singular subvariety. Sin
e the open set in question is a Zariski open set, it 
an haveonly a �nite number of irredu
ible 
omponents, when
e the 
orollary. �We 
an also show fromMatsusaka's Theorem (or even dire
tly from Cor. (16.9))that there is only a �nite number of families of deformations of Fano varieties of agiven dimension n. We use for this a fundamental result obtained independentlyby Koll�ar-Miyaoka-Mori [KoMM92℄ and Campana [Cam92℄, showing that thedis
riminant KnX is bounded by a 
onstant Cn dependent only on n. The e�e
tivebound obtained for very ample line bundles furnishes then (at the expense of somee�ort!) an e�e
tive bound for the number of Fano varieties.
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97 0. introdu
tionIn [D-I℄, the Hodge degeneration theorem and the Kodaira-Akizuki-Nakano vanishing theoremfor smooth proje
tive varieties over a �eld of 
hara
teristi
 zero are shown by methods of algebrai
geometry in 
hara
teristi
 p > 0. These present notes will serve as an introdu
tion to the subje
t,with the intention of keeping the non-spe
ialist in mind (who will be able to also 
onsult thepresentation of Oesterl�e [O℄). Thus we will assume known by the reader only some rudimentsof the theory of s
hemes (EGA I 1-4, [H2℄ II 2-3). On the other hand, we require of the readera 
ertain familiarity with homologi
al algebra. The results of [D-I℄ are expressed simply in thelanguage of derived 
ategories. Although it is possible to avoid there the re
ourse, see for example[E-V℄, we prefer to pla
e it in its 
ontext, whi
h appears more natural. However, to help thebeginner, we re
all in nÆ4 the basi
 de�nitions and some essential points.0. Introdu
tionLet X be a 
omplex analyti
 manifold. By the Poin
ar�e Lemma, the de Rham
omplex 
�X of holomorphi
 forms on X is a resolution of the 
onstant sheaf C . Asa result, the augmentation C ! 
�X de�nes an isomorphism (for all n)(0.1) Hn(X; C ) ��! HnDR(X) = Hn(X;
�X);where the se
ond term, 
alled the de Rham 
ohomology of X (in degree n), is then-th hyper
ohomology group of X with values in 
�X. The �rst spe
tral sequen
eof hyper
ohomology abuts to the de Rham 
ohomology of X(0.2) Ep;q1 = Hq(X;
pX)) Hp+qDR (X);whi
h is 
alled the Hodge to de Rham spe
tral sequen
e (or Hodge-Fr�oli
her) (
f.[De℄ nÆ9). Let us assume X is 
ompa
t. Then, by the �niteness theorem of Cartan-Serre, the Hq(X;
pX), and therefore all the terms of the spe
tral sequen
e (0.2) are�nite dimensional C -ve
tor spa
es. If we setbn = dimHnDR(X) = dimHn(X; C )(n-th Betti number of X) and hp;q = dimHq(X;
pX)(Hodge number), we have(0.3) bn � Xp+q=n hpq ;with equality for all n if and only if (0.2) degenerates at E1. Suppose in addition thatX is K�ahler. Then by Hodge theory, the Hodge spe
tral sequen
e of X degeneratesat E1 : this is the Hodge degeneration theorem ([De℄ 9.9). Denote by0 = Fn+1 � Fn � � � � � F p = F pHnDR(X) � � � � � F 0 = HnDR(X)the resulting �ltration of the Hodge spe
tral sequen
e (Hodge �ltration). By de-generation, one has a 
anoni
al isomorphism(0.4) Ep;q1 = Hq(X;
pX) ' Epq1 = F p=F p+1:We put Hp;q = F p \ F q ;where the bar denotes 
omplex 
onjugation on HnDR(X), de�ned by means of (0.1),and the isomorphism Hn(X; C ) ' Hn(X;R) 
 C . It follows thatHp;q = Hq;p:
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 illusie, frobenius and hodge degeneration 98Further, Hodge theory furnishes the following results ([De℄ 9.10):(a) the 
omposite homomorphismHp;q ,! F pHp+qDR (X)� F p=F p+1is an isomorphism (i.e. Hp;q is a 
omplement of F p+1 in F p); when
e, by 
omposingwith (0.4), determines an isomorphism(0.5) Hp;q ' Hq(X;
pX);(b) one has, for all n,(0.6) HnDR(X) = Mp+q=nHp;q;(Hodge de
omposition). These results apply in parti
ular to the 
omplex analyti
manifold X asso
iated to a smooth proje
tive s
heme X over C . The di�eren
ebetween (a) and (b), whi
h is of a trans
endental nature, utilizes 
omplex 
onju-gation in an essential way. The Hodge degeneration 
an in this 
ase be formulatedin a purely algebrai
 manner. The de Rham 
omplex of X is indeed the 
omplexof analyti
 sheaves asso
iated to the algebrai
 de Rham 
omplex 
�X of X over C(a 
omplex of sheaves in the Zariski topology, for whi
h the 
omponents are lo
allyfree 
oherent sheaves). The 
anoni
al morphism (of ringed spa
es) X! X indu
eshomomorphisms on the Hodge and de Rham 
ohomologiesHq(X;
pX)! Hq(X;
pX);(0.7) HnDR(X)! HnDR(X);(0.8)where HnDR(X) = Hn(X;
�X). We make use of the Hodge to algebrai
 de Rhamspe
tral sequen
e(0.9) Ep;q1 = Hq(X;
pX)) Hp+qDR (X);and a morphism of (0.9) in (0.2) indu
ing (0.7) and (0.8) respe
tively on the initialterms and the abutment. By the 
omparison theorem of Serre [GAGA℄, (0.7) isan isomorphism, and therefore the same holds for (0.8). Consequently, the degen-eration at E1 of (0.2) is equivalent to that of (0.9). In other words, if one setshp;q(X) = dimHq(X;
pX); hn(X) = dimHnDR(X);the Hodge degeneration theorem for X is expressed by the (purely algebrai
) relation(0.10) hn(X) = Xp+q=nhp;q(X):More generally, if X is a smooth and proper s
heme over a �eld k, one 
an 
onsiderthe de Rham 
omplex 
�X=k of X over k, and one still has a Hodge to de Rhamspe
tral sequen
e(0.11) Epq1 = Hq(X;
pX=k)) Hp+qDR (X=k)(where HnDR(X=k) = Hn(X;
�X=k)), formed of �nite-dimensional k-ve
tor spa
es.If k is of 
hara
teristi
 zero, the Hodge degeneration theorem implies the degener-ation of (0.11) at E1 : standard te
hniques (
f. nÆ6) indeed make it possible to goba
k initially to k = C , then with the aid of Chow's Lemma and of the resolutionof singularities one redu
es the proper 
ase to the proje
tive 
ase ([D0℄). There



99 1. s
hemes: differentials, the de rham 
omplexare those who have long sought for a purely algebrai
 proof of the degeneration of(0.11) at E1 for k of 
hara
teristi
 zero. Faltings [Fa1℄ was the �rst to give a proofof it independent of Hodge theory2. A simpli�
ation of 
rystalline te
hniques dueto Ogus [Og1℄, Fontaine-Messing [F-M℄ and Kato [Ka1℄ led, shortly thereafter, tothe elementary proof presented in [D-I℄. We refer to the introdu
tion of [D-I℄ andto [O℄ for a broad overview. We only indi
ate that the degeneration of (0.11) (fork of 
hara
teristi
 zero) is proven by redu
tion to the 
ase where k is of 
hara
-teristi
 p > 0, where, however, it 
an happen that the degeneration is automati
!This proof is based however on the help of some additional hypothesis on X (upperbound of the dimension, liftability) whi
h is suÆ
ient for our purposes (see 5.6 fora pre
ise statement). We explain in nÆ6 the well-known te
hnique whi
h allows usto go from 
hara
teristi
 p > 0 to 
hara
teristi
 zero. The degeneration theoremin 
hara
teristi
 p > 0 to whi
h we have just alluded follows from a de
ompositiontheorem (5.1), relying on some 
lassi
al properties of di�erential 
al
ulus in 
hara
-teristi
 p > 0 (Frobenius endomorphism and Cartier isomorphism), whi
h we re
allin nÆ3, after having summarized, in nÆ1 and 2, the formalism of di�erentials andsmoothness on s
hemes. The aforementioned de
omposition theorem furnishes atthe same time an algebrai
 proof of the Kodaira-Akizuki-Nakano vanishing theoremfor the smooth proje
tive varieties over a �eld of 
hara
teristi
 zero (6.10 and [De℄11.7). The last two se
tions are of a more te
hni
al nature: We outline the evolu-tion of the subje
t sin
e the publi
ation of [D-I℄, and, in the appendix, we des
ribesome 
omplementary results due to Mehta-Srinivas [Me-Sr℄ and Nakkajima [Na℄.1. S
hemes: di�erentials, the de Rham 
omplexWe re
all here the de�nition and basi
 properties of di�erential 
al
ulus overs
hemes. The reader will �nd a 
omplete treatment in (EGA IV 16.1-16.6); alsosee [B-L-R℄ 2.1 and [H2℄ II 8 for an introdu
tion.1.1. We say that a morphism of s
hemes i : T0 ! T is a thi
kening of order 1(or by abuse, that T is a thi
kening of order 1 of T0) if i is a 
losed immersion de�nedby an ideal of OT of square zero. If T and T0 are aÆne, with rings A and A0, su
h amorphism 
orresponds to a surje
tive homomorphism A! A0 for whi
h the kernelis an ideal of square zero. The s
hemes T and T0 have the same underlying spa
e,and the ideal a of i, annihilated by a, is a quasi-
oherent OT0 ( = OT =a)-module.Let j : X ! Z be an immersion, with ideal I (by de�nition, j is an isomorphismof X onto a 
losed subs
heme j(X) of a larger open subset U of Z, and I is thequasi-
oherent sheaf of ideals of U de�ning j(X) in U , (EGA I 4.1, 4.2)). Let Z1be the subs
heme3 of Z, with the same underlying spa
e as X , de�ned by the idealI2. Then j fa
tors (in a unique way) intoX j1�! Z1 h1�! Z2The purists observe that this proof, whi
h rests on the existen
e of the Hodge-Tate de
om-position for p-adi
 �etale 
ohomology of a smooth and proper variety over a lo
al �eld of unequal
hara
teristi
, is not entirely \algebrai
", in the sense of where it uses the 
omparison theoremof Artin-Grothendie
k between �etale 
ohomology and Betti 
ohomology for smooth and propervarieties over C .3At the expense of some abuse of notation, we will allow ourselves the 
exibility of inter-
hanging \immersion" (resp. \
losed immersion") and \subs
heme" (resp. \
losed subs
heme");that amounts here to negle
ting the isomorphism of X onto j(X).
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kening of order 1, with ideal I=I2; onesays that (j1; h1), or more simply Z1, is the �rst in�nitesimal neighbourhood of j(or of X in Z). The ideal I=I2 (whi
h is a quasi-
oherent OX -module) is 
alled the
onormal sheaf of j (or of X in Z). We denote it by NX=Z .1.2. Let f : X ! Y be a morphism of s
hemes, and let � : X ! Z := X�Y Xbe the diagonal morphism. This is an immersion (
losed if and only ifX is separatedover Y ) (EGA I 5.3). The 
onormal sheaf of � is 
alled the sheaf of K�ahler 1-di�erentials of f (or of X over Y ) and is denote by 
1X=Y ; we sometimes write
1X=A instead of 
1X=Y if Y is aÆne with ring A. Thus we have a quasi-
oherentOX -module, de�ned by(1.2.1) 
1X=Y = I=I2;where I is the ideal of �. Let X �1��! Z1 ! Z be the �rst in�nitesimal neighbour-hood of �. The two proje
tions of Z = X�Y X on X indu
e, by 
omposition withZ1 ! Z, two Y -morphisms p1; p2 : Z1 ! X , whi
h retra
t �1. The sheaf of ringsof the s
heme Z1, whi
h has the same underlying spa
e as X , is 
alled the sheafof prin
ipal parts of order 1 of X over Y , and is denoted by P1X=Y . We have, by
onstru
tion, an exa
t sequen
e of abelian sheaves(1.2.2) 0! 
1X=Y ! P1X=Y ! OX ! 0;split by ea
h of the ring homomorphisms j1; j2 : OX ! P1X=Y indu
ed from p1; p2.The di�eren
e j2� j1 is a homomorphism of abelian sheaves of OX in 
1X=Y , whi
his 
alled the di�erential, and whi
h is denoted by(1.2.3) dX=Y (or d) : OX ! 
1X=Y :IfM is an OX -module, a Y -derivation of OX inM is any homomorphism of sheavesof f�1(OY )-modules D : OX ! M (where f�1 denotes the inverse image fun
torfor abelian sheaves) su
h that D(ab) = aDb+ bDafor all lo
al se
tions a; b of OX . We denote by DerY (OX ;M), the set of Y -derivations of OX inM , whi
h is in a natural way an abelian group. The di�erentialdX=Y is a Y -derivation of OX in 
1X=Y . One shows that it is universal, in the sensethat for any Y -derivation D of OX in an OX -module M (not ne
essarily quasi-
oherent), there exists a unique homomorphism of OX -modules u : 
1X=Y ! Msu
h that u Æ dX=Y = D, i.e. the homomorphism(1.2.4) Hom(
1X=Y ;M)! DerY (OX ;M); u 7! u Æ dX=Yis an isomorphism. The sheaf Hom(
1X=Y ;OX) is 
alled the tangent sheaf of f (orof X over Y ), and is denoted by(1.2.5) TX=Y(or sometimes �X=Y ). For any open subset U of X , (1.2.4) gives an iso-morphism �(U; TX=Y ) ' DerY (OU ;OU ). Re
all that one 
alls a Y -point of X aY -morphism T ! X . By de�nition, X �Y X \parameterizes" the set of pairs of
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omplexY -points of X (i.e. represents the 
orresponding fun
tor on the 
ategory of Y -s
hemes). The geometri
 signi�
an
e of the �rst in�nitesimal neighbourhood Z1 ofthe diagonal of X over Y is that it parameterizes the pairs of Y -points of X neigh-bouring of order 1 (i.e. 
ongruent modulo an ideal of square zero): More pre
isely,if i : T0 ! T is a thi
kening of order 1, with ideal a, where T is a Y -s
heme, andif t1; t2 : T ! X are two Y -points of X whi
h 
oin
ide modulo a (i.e. su
h thatt1i = t2i = t0 : T0 ! X), then there exists a unique Y -morphism h : T ! Z1su
h that p1h = t1 and p2h = t2. Moreover, if t�1; t�2 : OX ! t0�OT 4 are thehomomorphisms of sheaves of rings asso
iated to t1 and t2, t�2� t�1 is a Y -derivationof X with values in t0�a, su
h that(1.2.6) (t�2 � t�1)(s) = h�(ds)for any lo
al se
tion s of OX , where h� : 
1X=Y ! t�0a is the homomorphism of OX -modules indu
ed by h (on the 
orresponding 
onormal sheaves of X in Z1 and T0in T ). If f is a morphism of aÆne s
hemes, 
orresponding to a ring homomorphismA! B, then Z = Spe
B
AB; � 
orresponds to the ring homomorphism sendingb1 
 b2 onto b1b2, with kernel J = �(Z; I). We have �(X;P1X=Y ) = (B 
A B)=J2,and we set(1.2.7) �(X;
1X=Y ) = 
1B=A:The B-module 
1B=A = J=J2, for whi
h the asso
iated quasi-
oherent sheaf is 
1X=Y ,is 
alled the module of K�ahler 1-di�erentials of B over A. The map d = dB=A =�(X; dX=Y ) : B ! 
1B=A is an A-derivation, satisfying a universal property that weleave to the reader to formulate. The homomorphisms j1; j2 : B ! (B 
A B)=J2of 1.1 are given by j1b = 
lass of b
 1; j2b = 
lass of 1
 b. Sin
e J is generatedby 1
 b� b
 1; 
1B=A is generated, as a B-module, by the image of d. It followsfrom this that if f is any given morphism of s
hemes, 
1X=Y is generated, as anOX -module, by the image of d.1.3. Any 
ommutative square(1.3.1) X 0 g�! Xf 0 # # fY 0 h�! Yde�nes in a 
anoni
al way, a homomorphism of OX0-modules(1.3.2) g�
1X=Y ! 
1X0=Y 0 ;whi
h sends 1
 g�1(dX=Y s) onto dX0=Y 0(1
 g�1(s)). (If E is an OX -module, byde�nition g�E = OX0
g�1(OX)g�1(E).) This is an isomorphism if the square (1.3.1)is 
artesian, i.e. if the morphism X 0 ! Y 0 �Y X is an isomorphism. Moreover, inthis 
ase, the 
anoni
al homomorphism(1.3.3) f 0�
1Y 0=Y � g�
1X=Y ! 
1X0=Yis an isomorphism.4Re
all that T and T0 have the same underlying spa
e.
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hemes. Then the 
anoni
al sequen
e of homomorphisms(1.4.1) f�
1Y=S ! 
1X=S ! 
1X=Y ! 0is exa
t.1.5. Let X i�! Zf # . gYbe a 
ommutative triangle, where i is an immersion, with ideal I . The di�erentialdZ=Y indu
es a homomorphism d : NX=Z ! i�
1Z=Y , and the sequen
e(1.5.1) NX=Z ! i�
1Z=Y ! 
1X=Y ! 0is exa
t.1.6. Let X = A nY = Y [T1; : : : ; Tn℄ be the aÆne spa
e of dimension n over Y .The OX -module 
1X=Y is free, with basis dTi (1 � i � n). If Y is aÆne, with ringA, and if s 2 A[T1; : : : ; Tn℄, then ds = P(�s=�Ti)dTi, where the �s=�Ti are theusual partial derivatives.Properties 1.3 to 1.6, for whi
h the veri�
ation is 
ompletely standard, arefundamental. It is by virtue of these that we 
an \
al
ulate" the modules of di�er-entials. For more details, see the indi
ated referen
es above.1.7. Let f : X ! Y be a morphism of s
hemes. For i 2 N, we denote by
iX=Y = �i
1X=Ythe i-th exterior produ
t of the OX -module 
1X=Y . (It is agreed that 
0X=Y = OX .)One shows that there exists a unique family of maps d : 
iX=Y ! 
i+1X=Y satisfyingthe following 
onditions:(a) d is a Y -anti-derivation of the exterior algebraL
iX=Y , i.e. d is f�1(OY )-linearand d(ab) = da ^ b+ (�1)ia ^ db for a homogenous of degree i,(b) d2 = 0,(
) da = dX=Y (a) for a of degree zero.The 
orresponding 
omplex is 
alled the de Rham 
omplex of X over Y and isdenoted by(1.7.1) 
�X=Y(or 
�X=A if Y is aÆne with ring A). It depends fun
torially on f : A square (1.3.1)gives a homomorphism of 
omplexes (whi
h is also a homomorphism of algebras)(1.7.2) 
�X=Y ! g�
�X0=Y 0 :However, one must be aware that even if for ea
h i, the homomorphism 
iX=Y !g�
iX0=Y 0 is the adjoint of a homomorphism g�
iX=Y ! 
iX0=Y 0 , one 
annot in



103 smoothness and liftingsgeneral de�ne a 
omplex g�
�X=Y for whi
h the di�erential is a Y 0-anti-derivation
ompatible with that of 
�X0=Y 0 .2. Smoothness and liftingsThere are a number of ways of presenting the theory of smooth morphisms.We follow (or rather, summarize) here the presentation of EGA, where smoothnessis de�ned by the existen
e of in�nitesimal liftings (EGA IV 17). In addition to itselegan
e, this de�nition has the advantage of transposing itself to other 
ontexts,for example that of the geometri
 logarithm (
f. [I6℄). Other points of view areadopted in (SGA 1 II and III), where the emphasis is pla
ed on the notion of an�etale morphism, and [B-L-R℄ 2.2, where this is the ja
obian 
riterion (
f. 2.8),whi
h is taken as the starting point.2.1. Let f : X ! Y be a morphism of s
hemes. We say that f is lo
allyof �nite type (resp. lo
ally of �nite presentation) if, for any point x of X , thereexists an aÆne open neighbourhood U of x and an aÆne open neighbourhood Vof y = f(x) su
h that f(U) � V and that the homomorphism of rings A ! Basso
iated to U ! V makes B an A-algebra of �nite type (i.e. a quotient of analgebra of polynomials A[t1; : : : ; tn℄) (resp. of �nite presentation (i.e. a quotient ofan algebra of polynomials A[t1; : : : ; tn℄ by an ideal of �nite type)). If Y is lo
allyNoetherian, \lo
ally of �nite type" is equivalent to \lo
ally of �nite presentation",and if it is, then it follows that X is lo
ally Noetherian.If f : X ! Y is lo
ally of �nite presentation, the OX -module 
iX=Y is of �nitetype for all i, therefore 
oherent if Y is lo
ally Noetherian.2.2. Let f : X ! Y be a morphism of s
hemes. We say that f is smooth (resp.net (or non-rami�ed), resp. �etale) if f is lo
ally of �nite presentation and if thefollowing 
ondition is satis�ed:For any 
ommutative diagram(2.2.1) Xg0 % # fT0 i�! T ! Ywhere i is a thi
kening of order 1 (1.1), there exists, lo
ally in the Zariski topologyon T , a (resp. at most one, resp. a unique) Y -morphism g : T ! X su
h thatgi = g0. It follows immediately from the de�nition that the 
omposite of two smoothmorphisms (resp. net, resp. �etale) is smooth (resp. net, resp. �etale), and that iff : X ! Y is smooth (resp. net, resp. �etale), it is the same with the morphismf 0 : X 0 ! Y 0 indu
ed by a base 
hange Y 0 ! Y . If for i = 1; 2; fi : Xi ! Y issmooth (resp. net, resp. �etale), the �ber produ
t f = f1 �Y f2 : X1 �Y X2 ! Yis therefore smooth (resp. net, resp. �etale). Additionally it is immediate that theproje
tion of the aÆne line A 1Y = Y [t℄! Y is smooth, and it is therefore the samefor the proje
tion of the spa
e A nY ! Y .Remarks 2.3. (a) Be
ause of the uniqueness whi
h allows a gluing together,we 
an omit in the de�nition of �etale, lo
ally in the Zariski topology. On the otherhand, we 
annot do it in the de�nition of smooth. There exist a 
ohomologi
alobstru
tion that we will later spe
ify, to the existen
e of a global extension g of g0.
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 illusie, frobenius and hodge degeneration 104(b) If n is an integer � 1, we say that a morphism of s
hemes i : T0 ! T is athi
kening of order n if i is a 
losed immersion de�ned by an ideal I su
h thatIn+1 = 0. If Tm denotes the 
losed subs
heme of T de�ned by Im+1, i itself fa
torsinto a sequen
e of thi
kenings of order 1 :T0 ! T1 ! � � � ! Tm ! Tm+1 ! � � � ! Tn:In De�nition 2.2, we 
an therefore repla
e thi
kening of order 1 by thi
kening oforder n.The following proposition summarizes the essential properties of di�erentialsasso
iated to smooth morphisms (resp. net, resp. �etale).Proposition 2.4. (a) If f : X ! Y is smooth (resp. net), the OX -module
1X=Y is lo
ally free of �nite type (resp. zero).(b) In the situation of 1.4, if f is smooth, the sequen
e (1.4.1) extended by a zeroto the left(2.4.1) 0! f�
1Y=S ! 
1X=S ! 
1X=Y ! 0is exa
t and lo
ally split. In parti
ular, if f is �etale, the 
anoni
al homomor-phism f�
1Y=S ! 
1X=S is an isomorphism.(
) In the situation of 1.5, if f is smooth, the sequen
e (1.5.1) extended by a zeroto the left(2.4.2) 0! NX=Z ! i�
1Z=Y ! 
1X=Y ! 0is exa
t and lo
ally split. In parti
ular, if f is �etale, the 
anoni
al homomor-phism NX=Z ! i�
1Z=Y is an isomorphism.2.5. The veri�
ation of 2.4 is not diÆ
ult (EGA IV 17.2.3), but unfortunatelysomewhat s
attered in (EGA 0IV 20). Here is an outline.The key ingredient is the following. If f : X ! Y is a morphism of s
hemesand I a quasi-
oherent OX -module, we 
all a Y -extension of X by I , a Y -morphismi : X ! X 0 whi
h is a thi
kening of order 1 with ideal I . Two Y -extensionsi1 : X ! X1 and i2 : X ! X2 of X by I are said to be equivalent if there exists aY -isomorphism g of X1 onto X2 su
h that gi1 = i2 and that g indu
es the identityon I . An analogous 
onstru
tion to this is the \Baer sum" for extensions of modulesover a ring asso
iated to the set ExtY (X; I)of equivalen
e 
lasses of Y -extensions of X by I with a stru
ture of an abeliangroup, with neutral element the trivial extension de�ned by the algebra of dualnumbers OX � I .Assertion (
) follows immediately from the de�nition: The smoothness of findeed implies that the �rst in�nitesimal neighbourhood i1 of i retra
ts lo
ally ontoX , and the 
hoi
e of a retra
tion r permits the splitting (2.4.2) (by the derivationasso
iated to IdZ1 � i1 Æ r, 
f. (1.2.6)).Assume f is smooth. If I is a quasi-
oherent OX -module and if i : X ! Z is aY -extension ofX by I , the sequen
e (2.4.2) is therefore an extension of OX -modulese(i) of 
1X=Y by I . One 
an show that i 7! e(i) gives an isomorphism(2.5.1) ExtY (X; I)! Ext1OX (
1X=Y ; I)
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f. [I1℄ I, 
hap. II, 1.1.9. We de�ne an inverse of (2.5.1) by asso
iating to anextension M of 
1X=Y by I , the Y -extension Z of X de�ned in the following way:Identify, via j1, the sheaf of prin
ipal parts P1X=Y (1.2.2) with the ring of dualnumbers OX � 
1X=Y , and denote by F = OX �M the ring of dual numbers overM ; the extension M makes F an f�1(OY )-extension of P1X=Y by I . That is, ifE = F �P1X=Y OX is the \pull-ba
k" of F by the homomorphism j2 = j1 + dX=Y :OX ! P1X=Y , then E is a f�1(OY )-extension of OX by I , whi
h de�nes the Y -extension Z). Sin
e f is smooth, any Y -extension of X by I is lo
ally trivial, andtherefore by virtue of (2.5.1), it follows from this that the sheaf Ext1OX (
1X=Y ; I)(asso
iated to the presheaf U 7! Ext1OU (
1U=Y ; IjU )) is zero, and therefore also thatExt1OU (
1U=Y ; J) = 0 for all open subsets U ofX and all quasi-
oherentOU -modulesJ . Sin
e 
1X=Y is of �nite type (2.1), it follows that 
1X=Y is lo
ally free of �nitetype, whi
h proves the part of (a) relative to the smooth 
ase. (The relative partof the net 
ase is immediate: For any Y -s
heme X , if i : X ! Z is the trivialY -extension of X by a quasi-
oherent OX -module I , the set of Y -retra
tions of Zon X is identi�ed with Hom(
1X=Y ; I) by r 7! r � r0, where r0 
orresponds to thenatural inje
tion of OX in OX�I , 
f. (1.2.6).) In parti
ular, it follows from (a) and(2.5.1) that if X is an aÆne s
heme and is smooth over Y , we have ExtY (X; I) = 0for any quasi-
oherent OX -module I . Finally, we arrive at (b), by using, for X;Y; SaÆne, and any given f , the natural exa
t sequen
e (EGA 0IV 20.2.3)(2.5.2) 0! DerY (OX ; I)! DerS(OX ; I)! DerS(OY ; f�I)!��! ExtY (X; I)! ExtS(X; I)! ExtS(Y; f�I);where the arrows other than � are the obvious arrows of fun
toriality, and � asso-
iates to an S-derivation D : OY ! f�I the Y -extension de�ned by the ring of dualnumbers OX � I and the homomorphism a 7! f�a+Da of OY in f�(OX � I).Observe that if f : X ! Y is a morphism lo
ally of �nite presentation of aÆnes
hemes (i.e. 
orresponding to a homomorphism of rings A ! B making B anA-algebra of �nite presentation), then, for that f is smooth, it is ne
essary andsuÆ
ient that for any quasi-
oherent OX -module I , we have ExtY (X; I) = 0 (thesuÆ
ien
y rises from the de�nition, and the ne
essity was already noted above).Assertions 2.4 (b) and (
) have 
onverses, whi
h furnish a very 
onvenient 
rite-ria of smoothness. Their ver�
ation is easy, starting from previous 
onsiderations.Proposition 2.6. (a) In the situation of 1.4, assume gf smooth. If the se-quen
e (2.4.1) is exa
t and lo
ally split, then f is smooth. If the 
anoni
al homo-morphism f�
1Y=S ! 
1X=S is an isomorphism, then f is �etale.(b) In the situation of 1.5, assume g smooth. If the sequen
e (2.4.2) is exa
t andlo
ally split, then f is smooth. If the 
anoni
al homomorphism NX=Z ! i�
1Z=Y isan isomorphism, then f is �etale.2.7. Let f : X ! Y be a smooth morphism, assume given x a point of X , anddenote by k(x) the residue �eld of the lo
al ring OX;x. Let s1; : : : ; sn be se
tions ofOX in a neighbourhood of x for whi
h the di�erentials form a basis of 
1X=Y at x,i.e., 
hosen su
h that the images (dsi)x of dsi in 
1X=Y;x form a basis of this moduleover OX;x, or su
h that the images (dsi)x of dsi in 
1X=Y 
 k(x) form a basis of
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tor spa
e over k(x). Sin
e 
1X=Y is lo
ally free of �nite type, there exists anopen neighbourhood U of x su
h that the si are de�ned over U and that the dsiform a basis of 
1X=Y jU . The sj then de�ne a Y -morphism of U in the aÆne spa
eof dimension n over Y :s = (s1; : : : ; sn) : U ! A nY = Y [t1; : : : ; tn℄:A

ording to 1.6 and 2.6 (a), s is �etale. We say that the si form a lo
al 
oordinatesystem of X on Y over U (or, if U is not spe
i�ed, at x). A smooth morphism istherefore lo
ally 
omposed of an �etale morphism and of the proje
tion of a standardaÆne spa
e.2.8. Now assume given the situation of 1.5, by assuming g is smooth, and letx be a point of X . A

ording to 2.4 (
) and 2.6 (b), for that f to be smoothin a neighbourhood of x, it is ne
essary and suÆ
ient that there exists se
tionss1; : : : ; sr of I in a neighbourhood of x, generating Ix and su
h that the (dsi)(x)are linearly independent in 
1Z=Y (x) = 
1Z=Y 
k(x) (where k(x) is the residue �eldof OZ;x, whi
h is also that of OX;x). For this reason, 2.6 (b) is referred to as theja
obian 
riterion.Suppose f is smooth in a neighbourhood of x (or at x, like one says sometimes),and let s1; : : : ; sr be se
tions of I generating I in a neighbourhood of x. Then, forthat the si de�nes a minimal system of generators of Ix (i.e. indu
es a basis ofI 
 k(x) = Ix=mxIx, or still forms a basis of I=I2 = NX=Z in a neighbourhoodof x), it is ne
essary and suÆ
ient that the (dsi)(x) are linearly independent in
1Z=Y (x)5. Therefore, wherever this is the 
ase, if we supplement the si by se
tionssj (r+1 � j � r+n) of OZ in a neighbourhood of x su
h that the (dsi)(x) (1 � i �r+n) form a basis of 
1Z=Y (x), then the si (1 � i � n) de�ne an �etale Y -morphisms from an open neighbourhood U of x in Z into the aÆne spa
e A n+rY , su
h thatU \X is the inverse image of the linear subspa
e with equations t1 = � � � = tr = 0:U \X ! U# # fA nY ! A n+rYIn algebrai
 geometry, this statement plays the role of the impli
it fun
tion theorem.2.9. Let k be a �eld and let f : X ! Y = Spe
 k be a morphism. Assuming fsmooth, then X is regular (i.e. for any point x of X , the lo
al ring OX;x is regular,i.e. its maximal ideal mx 
an be generated by a regular sequen
e of parameters);moreover, if x is a 
losed point, k(x) is a �nite separable extension of k, and thedimension of OX;x is equal to the dimension dimxX of the irredu
ible 
omponentof X 
ontaining x and of the rank of 
1X=Y at x. Conversely, if k is perfe
t, and ifX is regular, then f is smooth.More generally, we have the following 
riterion, left as an easy veri�
ation from2.7 and 2.8 :5Or still that the sequen
e (si) is OZ-regular at x, i.e. that the 
orresponding Kozul 
omplexis a resolution of OX in a neighbourhood of x (
f. (SGA 6 VII 1.4) and (EGA IV 17.12.1)).



107 smoothness and liftingsProposition 2.10. Let f : X ! Y be a morphism lo
ally of �nite presentation(2.1). The following 
onditions are equivalent :(i) f is smooth;(ii) f is 
at and the geometri
 �bers of f are regular s
hemes.(We say that f is 
at if for any point x of X , OX;x is a 
at module over OY;f(x).A geometri
 �ber of f is the redu
ed s
heme of a �ber Xy = X�Y Spe
 k(y) of f ata point y by an extension of s
alars to an algebrai
 
losure of k(y).) If f : X ! Yis smooth, and x is a point of X , the integerdimx(f) := dimk(x) 
1X=Y 
 k(x) = rgOX;x
1X=Y;xis 
alled the relative dimension of f at x. By the 
lassi
al theory of dimension(EGA IV 17.10.2), this is the dimension of the irredu
ible 
omponent of the �berXf(x) 
ontaining x. Sin
e 
1X=Y is lo
ally free of �nite type, it is a lo
ally 
onstantfun
tion of x. It is zero if and only if f is �etale, in other words, f is �etale if andonly if f is lo
ally of �nite presentation, 
at and net (it is this 
riterion whi
h istaken as the de�nition of an �etale in (SGA 1 I)).If f is smooth and of pure relative dimension r, i.e. of 
onstant relative di-mension equal to the integer r, then the de Rham 
omplex 
�X=Y (1.7.1) is zero indegree > r, and 
iX=Y is lo
ally free of rank �ri�; in parti
ular, 
rX=Y is an invertibleOX -module.Smooth morphisms o

upy a 
entral pla
e in the theory of in�nitesimal defor-mations. The following two propositions summarize this. They are however of amore te
hni
al nature than the pre
eeding statements, and as they will be usefulonly in the proof of 5.1, we will advise the reader to refer to it at that time there.Proposition 2.11. Assume given a diagram (2.2.1), with f smooth. Let I bethe ideal of i.(a) There exists an obstru
tion
(g0) 2 Ext1(g�0
1X=Y ; I)for whi
h the vanishing is ne
essary and suÆ
ient for the existen
e of a Y -morphism (global) g : T ! X extending g0 (i.e. su
h that gi = g0).(b) If 
(g0) = 0, the set of extensions g of g0 is an aÆne spa
e underHom(g�0
1X=Y ; I).Sin
e 
1X=Y is lo
ally free of �nite type, there is a 
anoni
al isomorphism(2.11.1) Ext1(g�0
1X=Y ; I) ' H1(T0;Hom(g�0
1X=Y ; I))(and Hom(g�0
1X=Y ; I) ' g�0TX=Y 
I , where TX=Y is the tangent sheaf (1.2.5)). SetG = Hom(g�0
1X=Y ; I). A

ording to (1.2.6), if U is an open subs
heme of T with
orresponding U0 over T0, two extensions of g0jU0 to U \di�er" by a se
tion of Gover U0 (and being given an extension, one 
an modify it by \adding" a se
tion ofG). Sin
e g0 lo
ally extends by de�nition of the smoothness of f , we then 
on
ludethat the sheaf P over T0 asso
iating to U0 the set of extensions of g0jU0 to U , is atorsor under G. Assertions (a) and (b) follow from this: 
(g0) is the 
lass of thistorsor. More expli
itly, if (Ui)i2E is an open 
overing of T and gi an extension ofg0 over Ui, then, over Ui \ Uj , gi � gj is a Y -derivation Dij of OX with values in
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1X=Y into g0 �(IjUi\Uj ), i.e. �nally a se
tionof G over Ui \ Uj , and the (gij) form a 
o
y
le, for whi
h the 
lass is 
(g0).Note that if T (or what amounts to the same T0) is aÆne, thenH1(T0;Hom(g�0
1X=Y ; I)) = 0and 
onsequently g0 admits a global extension to T .Proposition 2.12. Assume given i : Y0 ! Y a thi
kening of order 1 withideal I, and f0 : X0 ! Y0 a smooth morphism.(a) There exists an obstru
tion!(f0) 2 Ext2(
1X0=Y0 ; f�0 I)for whi
h the vanishing is ne
essary and suÆ
ient for the existen
e of a smoothlifting X0 over Y , i.e. by de�nition, of a smooth Y -s
heme X equipped with aY0-isomorphism Y0 �Y X ' X06.(b) If !(f0) = 0, the set of isomorphism 
lasses of liftings of X0 over Y is anaÆne spa
e under Ext1(
1X0=Y0 ; f�0 I) (where by de�nition, if X1 and X2 areliftings of X0, an isomorphism of X1 onto X2 is a Y -isomorphism of X1 onX2 indu
ing the identity on X0).(
) If X is a lifting of X0 over Y , the group of automorphisms of X (i.e. Y -automorphisms of X indu
ing the identity on X0) is naturally identi�ed withHom(
1X0=Y0 ; f�0 I).Sin
e 
1X0=Y0 is lo
ally free of �nite type, there is, for all i 2 Z, a 
anoni
alisomorphism(2.12.1) Exti(
1X0=Y0 ; f�0 I) ' H i(X0;Hom(
1X0=Y0 ; f�0 I))(andHom(
1X0=Y0 ; f�0 I) ' TX0=Y0
f�0 I). If X0 is aÆne, the se
ond term of (2.12.1)is zero for i � 1, and 
onsequently there exists a lifting of X0 over Y , and two su
hliftings are isomorphi
.2.13. Here is an outline of the proof of 2.12. The data of a lifting X is equiv-alent to that of a 
artesian squareX0 j�! Xf0 # # fY0 i�! Y;with f smooth. let J be the ideal of thi
kness j. The 
atness of f (2.10) impliesthat the homomorphism f�0 I ! J indu
ed from this square is an isomorphism.(It is moreover easy to verify that 
onversely, if X is a Y -extension of X0 by Jsu
h that the 
orresponding homomorphism f�0 I ! J is an isomorphism, then Xis automati
ally a lifting of X0.) Assertion (
) is therefore a parti
ular 
ase of 2.11(b). The identi�
ation 
onsists of asso
iating with an automorphism u of X the\derivation" u�IdX . Similarly, if X1 and X2 are two liftings of X0, 2.11 (a) impliesthat X1 and X2 are isomorphisms if X0 is aÆne, and that the set of isomorphisms6In this se
tion, when we speak of a lifting of a smooth Y0-s
heme, it will be impli
it, unlessmentioned to the 
ontrary, that we are thinking of it as a smooth lifting.
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artier isomorphismof X1 over X2 is then an aÆne spa
e under Hom(
1X0=Y0 ; f�0 I). Assertions (a) and(b) 
ome about formally. The veri�
ation of (b) is analogous to that of 2.11: IfX1 and X2 are two liftings of X0, the \di�eren
e" of their isomorphism 
lasses isthe 
lass of the torsor under Hom(
1X0=Y0 ; f�0 I) of the lo
al isomorphisms of X1on X2. (We also observe that the 
lasses of Y -extensions X1 and X2 of X0 byf�0 I di�er by a unique Y0-extension of X0 by f�0 I , and invoke (2.5.1).) Finally,we indi
ate the 
onstru
tion of the obstru
tion !(f0), by assuming for simpli
itythat X0 is separated. First of all, by the ja
obian 
riterion (2.8), the existen
eof a global lifting is assured in the 
ase where X0 and Y0 are aÆne, and f0 isasso
iated to a homomorphism of rings A0 ! B0, where B0 is the quotient of anA0-algebra of polynomials A0[t1; : : : ; tn℄ by the ideal generated by a sequen
e ofelements (g1; : : : ; gr) su
h that the dgi are linearly independent at every point xof X0 (to arbitrarily lift the gi). Sin
e (always a

ording to (2.8)) f0 is lo
ally ofthe pre
eding form, we 
an 
hoose an open aÆne 
overing U = ((Ui)0)i2E of X0,and for ea
h i, a lifting Ui of (Ui)0 over Y . Sin
e X0 has been assumed separated,ea
h interse
tion (Uij)0 = (Ui)0 \ (Uj)0 is aÆne, and 
onsequently, we 
an 
hoosean isomorphism of liftings uij of Uij(Uij)0 over Ujj(Uij )0 . On a triple interse
tion(Uijk)0 = (Ui)0 \ (Uj)0 \ (Uk)0, the automorphism uijk = u�1ki ujkuij of Uij(Uijk)0di�ers from the identity by a se
tion
ijk = u�ijk � Idof the sheaf Hom(
1X0;Y0 ; f�0 I). One veri�es that (
ijk) is a 2-
o
y
le of U withvalues in Hom(
1X0;Y0 ; f�0 I), where the 
lass of this 
o
y
le inH2(X0;Hom(
1X0;Y0 ; f�0 I))does not depend on the 
hoi
es, and that it vanishes if and only if on a re�ne-ment 
overing, the uij 
an be modi�ed in a way in whi
h they glue on the tripleinterse
tion, and also de�ne a global lifting X of X0. This is the stated obstru
tion.Remark 2.14. The theory of gerbes [Gi℄ and that of the 
otangent 
omplex[I1℄, one or the other, allows us to get rid of the separation assumption made above,and espe
ially gives a more 
on
eptual proof of 2.12.3. Frobenius and Cartier isomorphismThe general referen
es for this se
tion are (SGA 5 XV 1) for the de�nitions andbasi
 properties of Frobenius morphisms, absolute and relative, and [K1℄ 7 for theCartier isomorphism (
f. also [I2℄ 0 2 and [D-I℄ 1).In this se
tion, p denotes a �xed prime number.3.1. We say that a s
heme X is of 
hara
teristi
 p if pOX = 0, i.e. if themorphism X ! Spe
Z fa
tors (ne
essary in a unique way) through Spe
 Fp . IfX is a s
heme of 
hara
teristi
 p, we de�ne the absolute Frobenius morphism ofX (or, simply Frobenius endomorphism, if there is no fear of 
onfusion) to be theendomorphism of X whi
h is the identity over the underlying spa
e of X , and theraising to the p-th power on OX . We denote it by FX . If X is aÆne with ring A; FX
orresponds to the Frobenius endomorphism FA of A; a 7! ap. Let f : X ! Y be
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hemes. Then there is a 
ommutative square(3.1.1) X FX��! Xf # # fY FY��! Y:Denote by X(p) (or X 0, if there is no ambiguity) the s
heme (Y; FY )�Y X indu
edfrom X by the 
hange of base FY . The morphism FX de�nes a unique Y -morphismF = FX=Y : X ! X 0, giving rise to a 
ommutative diagram(3.1.2) X FX��! X 0 ! Xf & # # fY FY��! Y;where the upper 
omposite is FX and the square is 
artesian. We 
all F the relativeFrobenius of X over Y . The morphisms of the upper line indu
e homeomorphismson the underlying spa
es (FY is a \universal homeomorphism", i.e. a homeomor-phism and the remainder after any 
hange of base). If Y is aÆne with ring A,and X is the aÆne spa
e A nY = Spe
B, where B = A[t1; : : : ; tn℄, then X 0 = A nY 7,and the morphisms F : X ! X 0 and X 0 ! X 
orrespond respe
tively to thehomomorphisms ti 7! tpi and ati 7! apti (a 2 A).Proposition 3.2. Let Y be a s
heme of 
hara
teristi
 p, and f : X ! Y asmooth morphism of pure relative dimension n (2.10). Then the relative FrobeniusF : X ! X 0 is a �nite and 
at morphism, and the OX0-algebra F�OX is lo
allyfree of rank pn. In parti
ular, if f is �etale, F is an isomorphism, i.e. the square(3.1.1) is 
artesian.We �rst treat the 
ase where n = 0, whi
h requires some 
ommutative algebra:The point is that F is �etale, be
ause a

ording to 2.6 (a), an �etale Y -morphismbetween Y -s
hemes is automati
ally �etale, and that a morphism whi
h is both �etaleand radi
al8 is an open immersion ((SGA 1 I 5.1) or (EGA IV 17.9.1)). Then the
ase where X is the aÆne spa
e A nY is immediate: The monomials Q tmii , with0 � mi < p� 1 form a basis of F�OX over OX0 . The general 
ase is dedu
ed from2.7.Remarks 3.3. (a) Sin
e, a

ording to 2.10, 
iX=Y is lo
ally free over OX ofrank �ni�, it follows from 3.2 that F�
iX=Y is lo
ally free over OX0 of rank pn�ni�.(b) The statement of 3.2 relative to n = 0 admits a 
onverse: If Y is of 
hara
teristi
p and if X is a Y -s
heme su
h that the relative Frobenius FX=Y is an isomorphism,then X is �etale over Y (SGA 5 XV 1 Prop. 2). When Y is the spe
trum of a �eld,this is \Ma
 Lane's 
riteria".7It is not true in general that X and X0 are isomorphi
 as Y -s
hemes, it is the ex
eptional
ase here.8A morphism g : T ! S is said to be radi
al if g is inje
tive and, for any point t of T , withimage in S, the residue �eld extension k(s)! k(t) is radi
al.



111 3. frobenius and 
artier isomorphism3.4. Let Y be a s
heme of 
hara
teristi
 p and f : X ! Y a morphism. Setd = dX=Y (1.2.3). If s is a lo
al se
tion of OX , one has d(sp) = psp�1ds = 0. Sin
ed(sp) = F �X(ds) = F �(1
 ds), it follows that(a) the 
anoni
al homomorphisms (1.3.2) asso
iated to (FX ; FY ) and F ,F �X
1X=Y ! 
1X=Y ; F �
1X0=Y ! 
1X=Yare zero;(b) the di�erential of the 
omplex F�
�X=Y is OX0-linear; in parti
ular, the sheavesof 
y
les Zi, with boundaries Bi and the 
ohomology Hi = Zi=Bi of the 
omplexF�
�X=Y are OX0 -modules, and the exterior produ
t a
ting on the graded OX0 -moduleLZiF�
�X=Y (resp. LHiF�
�X=Y ) is a graded anti-
ommutative algebra.These fa
ts are at the sour
e of mira
les of di�erential 
al
ulus in 
hara
teristi
p. The prin
ipal result is the following theorem, due to Cartier [C℄ :Theorem 3.5. Let Y be a s
heme of 
hara
teristi
 p and f : X ! Y amorphism.(a) There exists a unique homomorphism of graded OX -algebras
 :M
iX0=Y !MHiF�
�X=Y ;satisfying the following two 
onditions :(i) for i = 0; 
 is given by the homomorphism F � : OX0 ! F�OX ;(ii) for i = 1; 
 sends 1
ds to the 
lass of sp�1ds in H1F�
�X=Y (where 1
dsdenotes the image of the se
tion ds of 
1X=Y in 
1X0=Y .(b) If f is smooth, 
 is an isomorphism.In 
ase (b), 
 is 
alled the Cartier isomorphism, and is denoted by C�1. Itsinverse, or the 
omposite MZiF�
�X=Y !M
iX0=Yof its inverse with the proje
tion of LZi onto LHi, where Zi denotes the sheafof 
y
les of F�
�X=Y in degree i, is denoted by C. It is this latter homomorphismwhi
h was initially de�ned by Cartier, and whi
h we sometimes 
all the Cartieroperation. The adopted presentation in 3.5 is due to Grothendie
k (handwrittennotes), and detailed in [K1℄ 7.When Y is a perfe
t s
heme, i.e. su
h that FY is an automorphism, for ex-ample if Y is the spe
trum of a perfe
t �eld, one of the most signi�
ant 
ases forappli
ations is this: If f is smooth, C�1 gives by 
omposition with the isomorphismM
iX=Y !M(FY )X �
iX0=Y(where (FY )X ;X 0 ! X is the isomorphism indu
ed from FY by 
hange of base) anisomorphism C�1abs :M
iX=Y !MHiFX �
�X=Ythat we 
all the absolute Cartier isomorphism.Corollary 3.6. Let Y be a s
heme of 
hara
teristi
 p and f : X ! Y asmooth morphism. Then for any i, the sheaves of OX0-modulesF�
iX=Y ; ZiF�
�X=Y ; BiF�
�X=Y ; HiF�
�X=Y
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ally free of �nite type (where Zi resp. Bi denotes the sheaf of 
y
les resp.boundaries in degree i).Taking into a

ount 3.3 (a) and the exa
tness of F�, it suÆ
es to apply 3.5 (b),while pro
eeding by des
ending indu
tion on i.We brie
y indi
ate the proof of 3.5, a

ording to [K1℄ 7. For (a), it amountsto the same, taking into a

ount (1.3.2), to 
onstru
t the 
omposite of 
 with thehomomorphism L
iX=Y ! L(FY )X �
1X0=Y , i.e. a homomorphism of gradedOX -algebras 
abs :M
iX=Y !MHiFX �
�X=Ysatisfying the analogous 
onditions to (i) and (ii), i.e. given in degree zero byF �X , and in degree 1 sending ds to the 
lass of sp�1ds. However the map ofOX in H1FX �
�X=Y sending a lo
al se
tion s of OX onto the 
lass of sp�1dsis a Y -derivation (this is a result of the identity p�1((X + Y )p � Xp � Y p) =P0�i�p p�1�pi�Xp�iY i in Z[X;Y ℄). By (1.2.4), it de�nes the desired homomor-phism (
abs)1. Sin
e the exterior algebra L
iX=Y is stri
tly anti-
ommutative(\stri
tly" means to say that the elements of odd degree are of square zero), it is like-wise of its sub-quotientLHiFX �
�X=Y , and 
onsequently there exists a unique ho-momorphism of graded algebras 
abs extending the homomorphisms (
abs)0 = F �Xand (
abs)1. For (b), one 
an assume, a

ording to 2.7, that f fa
tors intoX g�! A nY h�! Y;where h is the 
anoni
al proje
tion and g is �etale. Given the square (3.1.1) relativeto g, being 
artesian a

ording to 3.2, it is likewise the same of the analogous squarewith the relative Frobenius to Y(3.6.1) X F�! X 0g # # g0Z F�! Z 0;where one sets for abbreviation A nY = Z. A

ording to 2.4 (b), the homomorphismg�
iZ=Y ! 
iX=Y is an isomorphism. The square (3.6.1) being 
artesian and F�nite, thus furnishes an isomorphism of 
omplexes of OX -modules(3.6.2) g0�F�
�Z=Y ! F�
�X=Y :Sin
e g0 is �etale, therefore 
at, the homomorphism(3.6.3) g0�HiF�
�Z=Y ! HiF�
�X=Yindu
ed from (3.6.2) is an isomorphism. Sin
e on the other hand g0�
iZ0=Y ! 
iX0=Yis an isomorphism (g0 being �etale), it follows (by fun
toriality of 
) that it suÆ
esto prove (b) for Z. By analogous arguments (extension of s
alars and K�unneth) one
an easy redu
e to Y = Spe
 Fp and n = 1, i.e. Z = Spe
 Fp [t℄. Then Z 0 = Z, themonomials 1; t; : : : ; tp�1 form a basis of F�OZ over OZ , and sin
e the di�erentiald : F�OZ ! F�
1Z = (F�OZ)dt sends ti onto iti�1dt, one 
on
ludes thatH0F�
�Z=Fp(resp. H1F�
�Z=Fp) is free over OZ with basis 1 (resp. tp�1dt), and therefore that
 is an isomorphism.



113 3. frobenius and 
artier isomorphism3.7. There is a 
lose link between Cartier isomorphism and Frobenius lifting.This was known by Cartier, and it serves as motivation for its 
onstru
tion. Thede
omposition and degeneration theorems of [D-I℄ originates from this, see nÆ5. It
onsists of the following.Let i : T0 ! T be a thi
kening of order 1 and g0 : S0 ! T0 a 
at morphism.By lifting to a T0-s
heme S0 over T one extends a 
at T -s
heme over S equippedwith a T0-isomorphism T0 �T S ' S0, i.e. a 
artesian squareS0 j�! Sg0 # # gT0 i�! Twith g 
at. If I (resp. J) is the ideal of thi
kening i (resp. j), the 
atness of gimplies that the 
anoni
al homomorphism g�0I ! J is an isomorphism (
f. 2.13).Take for i the thi
kening Spe
 Fp ! Spe
Z=p2Z, of the ideal generated by p.Let Y0 be a s
heme of 
hara
teristi
 p, and let Y be a lifting of Y0 over Z=p2Z. Theideal of Y0 in Y is therefore pOY , and the 
atness of Y over Z=p2Z implies thatmultipli
ation by p indu
es an isomorphism(3.7.1) p : OY0 ��! pOY :Now let f0 : X0 ! Y0 be a smooth morphism of Fp -s
hemes. Denote byF0 : X0 ! X 00the Frobenius of X0 relative to Y0. Assume given a (smooth) lifting X (resp. X 0)of X0 (resp. X 00) over Y and a Y -morphism F : X ! X 0 lifting F0, i.e. su
h thatthe square X0 ! XF0 # # FX 00 ! X 0
ommutes. (We have seen that there exists obstru
tions to the existen
e of X; X 0,and F , 
f. 2.11 and 2.12, and that these obje
ts, whenever they exist, are notunique. We will return to this later.)Proposition 3.8. Let f0 : X0 ! Y0 and F : X ! X 0 be given as in 3.7.Then:(a) multipli
ation by p indu
es an isomorphismp : 
1X0=Y0 ��! p
1X=Y :(b) the image of the 
anoni
al homomorphismF � : 
1X0=Y ! F�
1X=Yis 
ontained in pF�
1X=Y .(
) Denote by 'F : 
1Xp0 =Y0 ! F0�
1X0=Y0
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ed from F � by division by p", i.e. the unique homo-morphism rendering the square 
ommutative
1X0=Y F���! pF0 �
1X=Y# " p
1X00=Y0 ! F0 �
1X0=Y0 :Then the image of 'F is 
ontained in the kernel of the di�erential of the deRham 
omplex, i.e. in the sheaf of 
y
les Z1F0 �
�X0=Y0 , and the 
omposite of'F with the proje
tion on H1F0 �
�X0=Y0 is the Cartier isomorphism C�1 indegree 1 (
f. 3.5).Assertion (a) is trivial, (b) follows from 3.4 (a), and (
) is immediate from (a),(b) and the 
hara
terization of the Cartier isomorphism. Indeed, if a is a lo
alse
tion of OX , with redu
tion a0 module p, and a0 lifts in OX0 the image a00 of a0in OX00 , we have F �a0 = ap + pbfor a lo
al se
tion b of OX . (This is be
ause the redu
tion modulo p of F �a0 isF �0 a00 = ap0.) Consequently F �(d0) = pap�1da+ pdb;hen
e(3.8.1) 'F (da00) = ap�10 da0 + db0;for whi
h (
) follows at on
e.3.9. Suppose, as is in pra
ti
e, and one of the more important 
ases, that Y0is the spe
trum of a perfe
t �eld k of 
hara
teristi
 p. Then the spe
trum Y of thering W2(k) of Witt ve
tors of length 2 over k lifts Y0 over Z=p2Z (besides, due toan isomorphism, it is the unique (
at) lifting of Y0). Re
all that W2(k) is the set ofpairs (a1; a2) of elements of k, equipped with addition and multipli
ation given by(a1; a2) + (b1; b2) = (a1 + b1; S2(a; b));(a1; a2)(b1; b2) = (a1b1; P2(a; b));where S2(a; b) = a2 + b2 + p�1(ap�11 + bp�11 � (a1 + b1)p);P2(a; b) = bp1a2 + b2ap1:The homomorphismW2(k)! k is given by (a1; a2) 7! a1. If k = Fp , then W2(k) 'Z=p2Z, the isomorphism being given by (a1; a2) 7! �(a1)+ p�(a2), where � denotesthe multipli
ative se
tion of Z=p2Z! Fp . (For an overall dis
ussion of the theoryof Witt ve
tors, see [S℄ II 6, [D-G℄ V.)In this 
ase, if X0 is a smooth Y0-s
heme (i.e. a smooth k-s
heme), and sin
ethe absolute Frobenius of Y0 is an automorphism, lifting X0 over Y = Spe
W2(k)is equivalent to lifting X 00, and a

ording to 2.12, the obstru
tion to the existen
e
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ategories and spe
tral sequen
esof su
h a lifting is found in Ext2(
1X0 ;OX0) ' H2(X0; TX0) 9. If this obstru
-tion is zero, one 
an 
hoose a lifting X 0 of X 00 and a lifting X of X0, and thenthe obstru
tion to a lifting F : X ! X 0 of the relative Frobenius F0 is found inExt1(F �0
1X00 ;OX0) ' Ext1(
1X00 ; F0 �OX0) (2.11)10. In every 
ase, these two ob-stru
tions are lo
ally zero, and even as soon as X0 is aÆne. The 
hoi
e of a liftingF furnishes then, a

ording to 3.8, a relatively expli
it des
ription of the Cartierisomorphism in degree 1 (and therefore in every degree, by multipli
ativity).4. Derived 
ategories and spe
tral sequen
esThere are many referen
e sour
es on this subje
t at various levels. The readerwith pressing obligations 
an 
onsult [I3℄, whi
h 
an be used as an introdu
tionand 
ontains a broad bibliography. We will limit ourselves here by re
alling somefundamental points whi
h we will use in the following se
tion.4.1. Let A be an abelian 
ategory (in pra
ti
e, A will be the 
ategory of OX -modules of a s
heme X). We denote by C(A) the 
ategory of A-
omplexes, withdi�erential of degree 1, and further denote by L� (or L) for su
h a 
omplex� � � ! Li ! Li+1 ! � � � :We say that L is with lower bounded degree (resp. upper, resp. with bounded degree)if Li = 0 for i suÆ
iently small (resp. suÆ
iently large, resp. outside of a boundedinterval of Z). We denote by ZiL = Ker d : Li ! Li+1; BiL = Im d : Li�1 !Li; H iL = ZiL=BiL, respe
tively the obje
ts of 
y
les, boundaries and 
ohomologyin degree i. If A is the 
ategory of OX -modules, we write C(X) in pla
e of C(A),and often HiL instead of H iL for an obje
t of C(X) (in order to indi
ate that ita
ts on the 
ohomology sheaf in degree i, and not on the global 
ohomology groupH i(X;L)).For n 2 Z, the naive trun
ation L�n (resp. L�n) of a 
omplex L is the quotient(resp. the sub
omplex) of L whi
h 
oin
ides with L in degree � n (resp. � n) andhas zero 
omponents elsewhere. The 
anoni
al trun
ation ��nL (resp. ��nL) is thesub
omplex (resp. quotient) of L with 
omponents Li for i < n; ZiL for i = nand 0 for i > n (resp: Li for i > n; Li=BiL for i = n and 0 for i < n). One sets�<nL = ��n�1L. The in
lusion ��nL ,! L indu
es an isomorphism on H i for i � n.The proje
tion L� ��nL indu
es an isomorphism on H i for i � n. For n 2 Z, thetranslate L[n℄ of a 
omplex L is the 
omplex with 
omponents L[n℄i = Ln+i andwith di�erential dL[n℄ = (�1)ndL. A 
omplex L is said to be 
on
entrated in degreer (resp. in the interval [a; b℄) if Li = 0 for i 6= r (resp. i =2 [a; b℄). An obje
t E of Ais often 
onsidered as a 
omplex 
on
entrated in degree zero. The 
omplex E[�n℄is then 
on
entrated in degree n, with 
omponent E in this degree.9We omit here, for abbreviation, =Y0 in the notation of di�erentials.10One 
an show ( [Me-Sr℄ Appendix) that the obstru
tion to a 
hoi
e of (X;X0; F )su
h that X0 is the inverse image of X by the Frobenius automorphism of W2(k) is found inExt1(
X00 ; B1F�
�X0 ); more pre
isely, su
h a triplet (X;X0; F ) exists if and only if the extension
lass 0! B1F�
�X0 ! Z1F�
�X0 C�! 
1X00 ! 0(parti
ular 
ase i = 1 of the Cartier isomorphism 3.5) is zero. See [Sr℄ for an appli
ation toanother proof of the prin
ipal theorem of [D-I℄.
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omplexes u : L ! M is 
alled a quasi-isomorphism ifH iu is an isomorphism for all i. We say that a 
omplex K is a
y
li
 if H iK = 0for all i.If u : L!M is a homomorphism of 
omplexes, the 
one N = C(u) of u is the
omplex de�ned by N i = Li+1�M i, with di�erential d(x; y) = (�dLx; ux+ dMy).For that u to be a quasi-isomorphism, it is ne
essary and suÆ
ient that C(u) isa
y
li
.4.2. Denote by K(A) the 
ategory of 
omplexes of A up to homotopy, i.e.the 
ategory having the same obje
ts as C(A) but for whi
h the set of arrows ofL in M is the set of homotopy 
lasses of morphisms of L into M . The derived
ategory of A, denoted by D(A), is the 
ategory indu
ed from K(A) by formallyreversing the (homotopy 
lasses of) quasi-isomorphisms: The quasi-isomorphismsof K(A) be
ome isomorphisms in D(A) and D(A) is universal for this property.When A is the 
ategory of OX -modules over a ringed spa
e X , we write D(X)instead of D(A). The 
ategories K(A) and D(A) are additive 
ategories, and onehas 
anoni
al additive fun
torsC(A)! K(A)! D(A):The 
ategory D(A) has the same obje
ts as C(A). Its arrows are 
al
ulated \byfra
tions" from those of K(A): An arrow u : L!M of D(A) is de�ned by a 
oupleof arrows of C(A) of the typeL s � L0 f�!M or L g�!M 0 t �M;where s and t are quasi-isomorphisms. More pre
isely, one shows that the homo-topy 
lasses of quasi-isomorphisms with sour
e M (resp. target L) form a �ltered
ategory11 (resp. the opposite of a �ltered 
ategory) and that one hasHomD(A)(L;M) = lim�!t:M!M 0 HomK(A)(L;M 0) = lim�!s:L0!LHomK(A)(L0;M)as t (resp. s) runs over the pre
eeding 
ategory (resp. its opposite). If L; M are
omplexes, we set, for i 2 Z,Exti(L;M) = HomD(A)(L;M [i℄) = HomD(A)(L[�i℄;M):The fun
tors H i and the 
anoni
al trun
ation fun
tors ��i; ��i on C(A) naturallyextend to D(A). On the other hand, it is not the same as the naive trun
ationfun
tors.4.3. We denote by D+(A) (resp. D�(A), resp. Db(A)) the full sub
ate-gory of D(A) formed from 
omplexes L 
ohomologi
ally bounded below (resp. above,resp. bounded), i.e. su
h that H iL = 0 for i small enough (resp. large enough,resp. outside a bounded interval). If A 
ontains suÆ
iently many inje
tives (i.e. ifany obje
t of A embeds in an inje
tive), for example if A is the 
ategory of OX -modules over a s
heme X , then any obje
t of D+(A) is isomorphi
 to a 
omplex,with bounded below degree, formed from inje
tives, and the 
ategory D+(A) isequivalent to the full sub
ategory of K(A) formed from su
h 
omplexes.11A 
ategory I is said to be �ltered if it satis�es the following 
onditions (a) and (b):(a) For any two arrows f; g : i! j, there exists an arrow h : j ! k su
h that hf = hg.(b) Assume given any obje
ts i and j, there exists an obje
t k and arrows f : i! k, g : j ! k.
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ategories and spe
tral sequen
es4.4. The 
ategories K(A) and D(A) are not in general abelian, but possess atriangle 
ategory stru
ture, in the sense of Verdier [V℄. This stru
ture is de�ned bythe family of distinguished triangles. A triangle is a sequen
e of arrows T = (L !M ! N ! L[1℄) of K(A) (resp. D(A)). A morphism of T in T 0 = (L0 ! M 0 !N 0 ! L0[1℄) is a triplet (u : L! L0; v :M !M 0; w : N ! N 0) su
h that the threesquares formed with u; v; w; u[1℄ 
ommute. A triangle is said to be distinguishedif it is isomorphi
 to a triangle of the formL u�!M i�! C(u) p�! L[1℄;where u is the 
one of a morphism of 
omplexes u, and i (resp. p) denotes theobvious in
lusion (resp. the opposite of the proje
tion). Any short exa
t sequen
eof 
omplexes 0 ! E u�! F ! G ! 0 de�nes a distinguished triangle D(A), bymeans of the natural quasi-isomorphism C(u)! G, and any distinguished triangleof D(A) is isomorphi
 to a triangle of this type.Any distinguished triangle T = (L! M ! N ! L[1℄) of D(A) gives rise to along exa
t sequen
e� � � ! H iL! H iM ! H iN d�! H i+1L! � � � ;� � � ! Exti(E;L)! Exti(E;M)! Exti(E;N)! Exti+1(E;L)! � � � ;� � � ! Exti(N;E)! Exti(M;E)! Exti(L;E)! Exti+1(N;E)! � � � ;for E 2 ob D(A). If the triangle T is asso
iated to a short exa
t sequen
e givenexpli
itly above, the operator d of the �rst of these sequen
es is the usual boundaryoperator (this is the reason for the 
onvention of sign in the de�nition of p).4.5. Let L be a 
omplex of A and i 2 Z. The quotient ��iL=��i�1L is mappedquasi-isomorphi
ally onto H iL[�i℄. Therefore there is a 
anoni
al distinguishedtriangle from D(A) ��i�1L! ��iL! H iL[�i℄! ��i�1L[1℄:We similarly de�ne a 
anoni
al distinguished triangleH i�1L[�i+ 1℄! ��i�1L! ��iL! H i�1L[�i+ 2℄:Finally,�[i�1;i℄L := ��i�1��iL = ��i��i�1L = (0! Li�1=BiL! ZiL! 0)de�nes a distinguished triangleH i�1L[�i+ 1℄! �[i�1;i℄L! H iL[�i℄!;whi
h furnishes a 
anoni
al element(4.5.1) 
i 2 Ext2(H iL;H i�1L):The triplet (H i�1L; H iL; 
i) is an invariant of L in D(A). It permits its re
on-stru
tion up to an isomorphism if L is 
ohomologi
ally 
on
entrated in degree i�1and i. One 
an show that the 
i universally realizes the di�erential d2 of the spe
tralsequen
es of derived fun
tors applied to L (
f. Verdier's theorem12, or [D3℄).12Whi
h should be appearing soon in Ast�erique.



lu
 illusie, frobenius and hodge degeneration 1184.6. Let L be an obje
t of Db(A). We say that L is de
omposable if L isisomorphi
, in D(A), to a 
omplex with zero di�erential. If L is de
omposable,and if u : L0 ! L is an isomorphism of D(A), with L0 having zero di�erential,then u indu
es isomorphisms L0i ! H iL. In parti
ular L0 has bounded degree andL0 =LL0i[�i℄ (in C(A)) (4.1), therefore(4.6.1) L 'MH iL[�i℄(in D(A)). Conversely, if L satis�es (4.6.1), L is trivially de
omposable. If L isde
omposable, one 
alls a de
omposition of L the 
hoi
e of an isomorphism (4.6.1)indu
ing the identity on H i for all i. There exists a �nite sequen
e of obstru
tionsto the de
omposability of L: The �rst are the 
lasses 
i (4.5.1); if the 
i are zero,there are se
ondary obstru
tions in Ext3(H iL;H i�2L), et
. In addition, if L isde
omposable, L admits in general many de
ompositions.In the following se
tion, we are espe
ially interested in the 
ase when L is
on
entrated in degree 0 and 1 : L = (L0 ! L1). In this 
ase:a) the 
lass 
1 2 Ext2(H1L;H0L) is the obstru
tion to the de
omposability of L;b) the giving of a de
omposition of L is equivalent to that of a morphismH1L[�1℄ ! L indu
ing the identity on H1;
) The set of de
ompositions of L is an aÆne spa
e under Ext1(H1L;H0L) ([D-I℄3.1).4.7. We now return for example to [H1℄, II for the de�nition of the derivedfun
tors L
; RHom 13, RHom; Rf�; Lf�; R� in the derived 
ategoryD(X), whereX is a variable s
heme, and the des
ription of 
ertain remarkable relations betweenthese fun
tors. We need only re
all that these fun
tors are, 
ompared to ea
hargument, exa
t fun
tors, i.e. transform distinguished triangles to distinguishedtriangles, and are \
al
ulated" in the following way:(a) For E 2 ob D(X); F 2 ob D�(X); E L
F ' E 
 F 0 if F ' F 0 in D(X), withF 0 having upper bounded degree (4.1) and with 
at 
omponents. For given F ,there exists a quasi-isomorphism F 0 ! F with F 0 of the pre
eding type; moreoverthe homotopy 
lasses of su
h quasi-isomorphisms form a 
oinitial system (in the
ategory of 
lasses of quasi-isomorphisms with target F , 
f. 4.2).(b) For E 2 ob D(X); F 2 ob D+(X), if F ' F 0, with F 0 having lower boundeddegree and with inje
tive 
omponents, then RHom(E;F ) ' Hom�(E;F 0) andRHom(E;F ) ' Hom�(E;F 0). For given F , there exists a quasi-isomorphismF ! F 0 with F 0 of the pre
eding type (and the homotopy 
lasses of su
hquasi-isomorphisms form a 
o�nal system).(
) For f : X ! Y and E 2 ob D+(X), if E ' E0, with E0 having lower boundeddegree and with 
asque 
omponents (for example, inje
tive), then Rf�E ' f�E0and R�(X;E) ' �(X;E0). One simply writes H i(X;E) instead of H iR�(X;E);and more generally, one de�nes in the same way, Rf� : D+(X; f�1(OY ))! D+(Y ),where D(X; f�1(OY )) denotes the derived 
ategory of the 
ategory of 
omplexesof f�1(OY )-modules (the de Rham 
omplex 
�X=Y is su
h a 
omplex).(d) For f : X ! Y and F 2 ob D�(Y ); Lf�F ' f�F 0 if F ' F 0, with F 0 havingupper bounded degrees and with 
at 
omponents.13An error of sign slipped into the de�nition of the 
omplex Hom�(L;M) in [H1℄ p. 64: Foru 2 Hom(Li;M i+n), it ne
essarily reads du = d Æ u+ (�1)n+1u Æ d.



119 5. de
omposition, degeneration and vanishing theorems4.8. It 
an be said that spe
tral sequen
es are perhaps one of the most avoidedobje
ts in mathemati
s, and yet at the same time, are one of the most usefulalgebrai
 tools for 
ohomology. This is parti
ularly true of derived 
ategories, whi
hsometimes 
ontributes to this, but they remain essential. There are many referen
es,the oldest ([C-E℄, XV) being one of the best. In these notes, we will be espe
iallyinterested in the spe
tral sequen
e 
alled the Hodge to de Rham, for whi
h we willre
all the de�nition.Let T : A! B be an additive fun
tor between abelian 
ategories. Assume thatA has suÆ
iently many inje
tives. Then T admits a right derived fun
torRT : D+(A)! D+(B);whi
h is 
al
ulated by RT (K) ' T (K 0) if K ! K 0 is a quasi-isomorphism withK 0 with bounded below degree and with inje
tive 
omponents. The obje
ts of
ohomology H i Æ RT : D+(A) ! B are denoted by RiT . For K 2 ob D(A), withbounded below degree, there is a spe
tral sequen
e(4.8.1) Eij1 = RjT (Ki)) R�T (K);
alled the �rst spe
tral sequen
e of hyper
ohomology of T . It is obtained in thefollowing way: Chooses a resolution K ! L of K by a bi
omplex L, su
h thatea
h 
olumn Li� is an inje
tive resolution of Ki. If sL denotes the asso
iatedsimple 
omplex, the resulting homomorphism of 
omplexes K ! sL is a quasi-isomorphism, therefore RT (K) ' T (sL) = sT (L); RT (Ki) ' T (Li�), and the�ltration of sT (L) by the �rst degree of L given rise to (4.8.1).Let K be a �eld and X a k-s
heme. The group (
f. (1.7.1) and 4.7 (
))(4.8.2) H iDR(X=k) = H i(X;
�X=k) = �(Spe
 k;Rif�(
�X=k))(where f : X ! Spe
 k is the stru
ture morphism) is 
alled i-th de Rham 
ohomol-ogy group of X=k. This is a k-ve
tor spa
e. The spe
tral sequen
e (4.8.1) relative tothe fun
tor �(X; �) and the 
omplex 
�X=k is 
alled the Hodge to de Rham spe
tralsequen
e of X=k :(4.8.3) Eij1 = Hj(X;
iX=k)) H�DR(X=k):This is a spe
tral sequen
e of k-ve
tor spa
es. The groups Hj(X;
iX=k) are 
alledthe Hodge 
ohomology groups of X over k. If X is proper over k ([H2℄ II 4) (forexample, proje
tive over k, i.e. a 
losed subs
heme of a proje
tive spa
e Pnk),and sin
e the 
iX=k are 
oherent sheaves (2.1), the �niteness theorem of Serre-Grothendie
k ([H2℄ III 5.2 in the proje
tive 
ase, (EGA III 3) in the general 
ase)implies that the Hodge 
ohomology groups of X over k are �nite dimensional k-ve
tor spa
es. By the spe
tral sequen
e (4.8.3), it follows from this that the deRham 
ohomology groups HnDR(X=k) are also �nite dimensional over k. Moreover,for ea
h n, one has(4.8.4) Xi+j=n dimkHj(X;
iX=k) � dimkHnDR(X=k);with equality for all n if and only if the Hodge to de Rham spe
tral sequen
e of Xover k degenerates at E1, i.e. the di�erential dr is zero for all r � 1.
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omposition, degeneration andvanishing theorems in 
hara
teristi
 p > 0p > 0p > 0In this se
tion, as in nÆ3; p will denote a �xed prime number.The main result is the following theorem ([D-I℄ 2.1, 3.7):Theorem 5.1. Let S be a s
heme of 
hara
teristi
 p. Assume given a (
at)lifting T of S over Z=p2Z (3.7). Let X be a smooth S-s
heme, and let us denote asin 3.1, F : X ! X 0 the relative Frobenius of X=S. Then if X 0 admits a (smooth)lifting over T , the 
omplex of OX0 -modules �<pF�
�X=S (4.1) is de
omposable in thederived 
ategory D(X 0) of OX0-modules (4.6).5.2. Before beginning the proof, note that a de
omposition of �<pF�
�X=S isequivalent to giving an arrow of D(X 0)Mi<p HiF�
�X=S [�i℄! F�
�X=Sindu
ing the identity on Hi for all i < p. A

ording to Cartier's theorem (3.5), thisdata is still equivalent to that of an arrow of D(X 0)(5.2.1) ' :Mi<p 
iX0=S [�i℄! F�
�X=Sindu
ing C�1 on Hi for all i < p. The proof in fa
t 
onsists of asso
iating 
anoni-
ally su
h an arrow ' to ea
h lifting of X 0 over T . It in
ludes three steps.Step A. We start by treating the 
ase where F admits a global lifting.Proposition 5.3. Under the hypothesis of 5.1, assume that F : X ! X 0admits a global lifting G : Z ! Z 0, where Z (resp. Z 0) lifts X (resp. X 0) over T .Let(5.3.1) 'G :M
iX0=S [�i℄! F�
�X=Sbe the homomorphism of 
omplexes, with i-th 
omponent 'iG, de�ned in the follow-ing way: '0G = F � : OX ! F�OX ; '1G : 
1X0=S ! F�
1X=Sis the homomorphism \G�=p" de�ned in 3.8 (
). For i � 1; 'iG is 
omposed with�i'1G and of the produ
t �iF�
1X=S ! F�
iX=S . Then 'G is a quasi-isomorphism,indu
ing the Cartier isomorphism C�1 on Hi for all i.This is immediate.Step B. This is the prin
ipal step. We show that the giving of a lifting Z 0 ofX 0 over T allows us to de�ne a de
omposition of ��1F�
�X=S , i.e. a homomorphism'1Z0 : 
1X0=S [�1℄! F�
�X=Sof D(X 0) (and not C(X 0)) indu
ing C�1 over H1. With this intention, we needto 
ompare the homomorphisms '1G of (5.3.1) asso
iated to any other lifting of Fwith target Z 0.



121 5. de
omposition, degeneration and vanishing theoremsLemma 5.4. To any pair (G1 : Z1 ! Z 0; G2 : Z2 ! Z 0) of liftings of F isasso
iated 
anoni
ally a homomorphism(5.4.1) h(G1; G2) : 
1X0=S ! F�OXsu
h that '1G2 �'1G1 = dh(G1; G2). If G3 : Z3 ! Z 0 is a third lifting of F , one has(5.4.2) h(G1; G2) + h(G2; G3) = h(G1; G3):Let us suppose initially that Z1 and Z2 are isomorphi
 (in the sense of 2.12(b)). Choose an isomorphism u : Z1 ��! Z2. Then G2u and G1 lift F , i.e. extendto Z1 the 
omposite X F�! Z ,! Z 0. Therefore a

ording to 2.11 (b), they di�er bya homomorphism hu of F �
1X0=S in OX , or what amounts to the same, of 
1X0=Sin F�OX . If v is a se
ond isomorphism of Z1 onto Z2, then taking into a

ount3.4 (a), it follows from 2.11 (b) that u and v di�er by a homomorphism \u� v" :
1X=S ! OX , therefore G2u and G2v di�er by the 
omposite of \u � v" and thehomomorphism F �
1X0=S ! 
1X=S , whi
h is zero, a fortiori G2u = G2v. Thereforehu does not depend on the 
hoi
e of u. Sin
e Z1 and Z2 are lo
ally isomorphi
a

ording to 2.11 (a), we dedu
e from this a homomorphism (5.4.1) 
hara
terizedby the property that if u is an isomorphism of Z1 onto Z2 over an open subset U ofX (re
all still that Z1; Z2 and X have the same underlying spa
e), the restri
tionof h(G1; G2) to U is the homomorphism hu, the \di�eren
e" between G1 and G2u.The formula '1G2 � '1G1 = dh(G1; G2) follows from the expli
it des
ription of '1Ggiven in (3.8.1), and formula (5.4.2) is immediate.Now �x the lifting Z 0 of X 0 over T . A

ording to 2.11 (a) and 2.12 (a), we 
an
hoose an open 
overing U = (Ui)i2I of X in su
h a way that we have for ea
h i, alifting Zi of Ui over T and a lifting Gi : Zi ! Z 0 of FjUi . We then arrange for ea
hi, a homomorphism of 
omplexesfi = '1Gi : 
1X0=SjUi [�1℄! F�
�X=SjUi14of (5.3.1), and for ea
h pair (i; j), a homomorphismhij = h(GijUij ; GjjUij ) : 
1X0=SjUij ! F�
�X=SjUiof (5.4.1), where Uij = Ui \ Uj . These datum are 
onne
ted byfj � fi = dhij (on Uij);hij + hjk = hik (on Uijk = Ui \ Uj \ Uk):They make it possible to de�ne a homomorphism of 
omplexes of OX0 -modules'1Z0;(U ;(Gi)) : 
1X0=S [�1℄! �C(U ; F�
�X=S);where �C(U ; F�
�X=S) is the simple 
omplex asso
iated to the �Ce
h bi
omplex of the
overing U with values in F�
�X=S . The 
omponents of this 
omplex are given by�C(U ; F�
�X=S)n = Ma+b=n �Cb(U ; F�
aX=S)14We identify the underlying spa
es of X and X0 by means of F (3.1).
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ed by the di�erential of the de Rham
omplex and d2 is, in bidegree (a; b), equal to (�1)a(P(�1)i�i) (see [G℄ 5.2 or [H2℄III 4.2). In parti
ular,�C(U ; F�
�X=S)1 = �C1(U ; F�OX)� �C0(U ; F�
1X=S):The morphism '1Z0;(U ;(Gi)) is de�ned as having for 
omponents, ('1; '2) in degree1, with ('1!)(i; j) = hij(!)jUij ; ('2!)(i) = fi(!)jUi :Using the fa
t that the fi are morphisms of 
omplexes, together with the above for-mulas 
onne
ting the fi and the hij , it follows that '1Z0;(U ;(Gi)) is thus a well-de�nedmorphism of 
omplexes. We also has at our disposal the natural augmentation� : F�
�X=S ! �C(U ; F�
�X=S);whi
h is a quasi-isomorphism, be
ause for any a, the 
omplex C(U ; F�
aX=S) is aresolution of F�
aX=S (
f. [Go℄ or [H2℄ lo
. 
it.). We then de�ne'1Z0 : 
1X0=S [�1℄! F�
�X=Sto be the arrow of D(X 0) 
omposed with '1Z0;(U ;(Gi)) and with the inverse of � (4.2).If (U = (Ui)i2I ; (Gi)i2I ) and (V = (Vj)j2J ; (Gj)j2J ) are two 
hoi
es of systemsof Frobenius liftings, then by 
onsidering the 
overing U`V , indexed by I` J ,formed from the Ui and from Vj , it follows that '1Z0 does not depend on 
hoi
es(
f. [D-I℄ p. 253). Moreover '1Z0 indu
es C�1 on H1: The question is indeed lo
al,therefore we 
an arrange for a global lifting of F , and apply 5.3. This 
ompletesstep B.Step C. We again �x a lifting Z 0 of X 0, and show how to extend the de
om-position of ��1F�
�X=S de�ned by 'iZ0 (i = 0; 1) to a de
omposition of �<pF�
�X=S .We use for this the multipli
ative stru
ture of the de Rham 
omplex. From '1Z0 wededu
e, for all i � 1, an arrow of D(X 0)('1Z0)L
i = '1Z0 L
� � � L
'1Z0 : (
1X0=S [�1℄)L
i ! (F�
�X=S)L
i:Sin
e 
1X0=S is lo
ally free of �nite type, we have (4.7 (a))(�) (
1X0=S [�1℄)L
i ' (
1X0=S)
i[�i℄;and similarly, sin
e the F�
aX=S are lo
ally free of �nite type (3.3 (a)),(��) (F�
�X=S)L
i ' (F�
�X=S)
i:We then de�ne for i < p, 'iZ0 : 
iX0=S [�i℄! F�
�X=Sas the 
omposite (via (�) and (��)) of the standard antisymmetrization arrow
iX0=S [i℄! (
1X0=S)
i[�i℄; !1 ^ � � � ^ !i 7! 1i! X�2Gi sgn(�)!�(1) ^ � � � ^ !�(i)



123 5. de
omposition, degeneration and vanishing theorems(well de�ned be
ause of the assumption i < p), of the arrow ('1Z0)L
i, and of theprodu
t arrow (F�
�X=S)
i ! F�
�X=S . Sin
e the antisymmetri
ation arrow is ase
tion of the proje
tion of (
1X0=S)
i onto 
iX0=S , the multipli
ative property ofthe Cartier isomorphism results in 'iZ0 indu
ing C�1 over Hi, and this 
ompletesthe proof of the theorem.Taking into a

ount 3.9, we then dedu
e:Corollary 5.5. Let k be a perfe
t �eld of 
hara
teristi
 p, and let X bea smooth s
heme over S = Spe
 k. If X is lifted over T = Spe
W2(k), then�<pF�
�X=S is de
omposable in D(X 0). Moreover, if X is of dimension < p, thenF�
�X=S is de
omposable.Remark 5.5.1. A

ording to 5.3, if X is smooth over Spe
 k and if X andF are lifted over W2(k), then F�
�X=S is de
omposable (and this is without theassumption of dimension on X). This is the 
ase for example if X is aÆne. On theother hand, if X is proper, it is rare that X admits a lifting over W2(k) where Fis lifted. One 
an show that if X and F are lifted, then X is ordinary, i.e. satis�esHj(X;Bi
�X=S) = 0 for all (i; j) (
f. 8.6). The notion of an ordinary variety, whi
hmakes sense only in non-zero 
hara
teristi
, was initially introdu
ed for 
urves andabelian varieties. It intervenes in rather many questions in algebrai
 geometry. See[I4℄ for an introdu
tion and the referen
es 
ited there.Corollary 5.6. Let k be a perfe
t �eld of 
hara
teristi
 p, and let X be asmooth and proper k-s
heme, of dimension < p. If X is lifted over W2(k), thespe
tral sequen
e of Hodge to de Rham (4.8.3) of X over kEij1 = Hj(X;
iX=k)) H�DR(X=k)degenerates at E1.By virtue of the 
ompatibility of 
i by a 
hange of base (1.3.2), the absoluteFrobenius isomorphism FS : S ! S (where S = Spe
 k) indu
es, for all (i; j), anisomorphism F �SHj(X;
iX=k) ��! Hj(X 0;
iX0=k), and in parti
ular, we havedimkHj(X;
iX=K) = dimkHj(X 0;
iX0=k):In addition, sin
e F : X ! X 0 is a homeomorphism, one has 
anoni
ally, for all n,Hn(X 0; F�
�X=k) ��! Hn(X;
�X=k) = HnDR(X=k):Finally, if X is lifted over W2(k), a de
omposition ' :L
iX0=S [�i℄ ��! F�
�X=S ofF�
�X=S in D(X 0) indu
es, for all n, an isomorphismMi+j=nHj(X 0;
iX0=k) ��! Hn(X 0; F�
�X=k):It follows from this that one has, for all n,Xi+j=n dimkHj(X;
iX=k) = dimkHnDR(X=k);and a

ording to 4.8, this results in the degeneration at E1 of the Hodge to deRham spe
tral sequen
e.
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 illusie, frobenius and hodge degeneration 1245.7. For the remaining part to follow, the reader 
an 
onsult [H2℄ II, III. Letk be a ring and X a proje
tive k-s
heme, i.e. admits a 
losed k-immersion i in astandard proje
tive spa
e P = Prk = Projk[t0; : : : ; tn℄. Let L be an invertible sheafover X . Re
all that:(i) L is very ample if one has L ' i�OP (1) for su
h a 
losed immersion i, whi
hmeans that there exists global se
tions sj 2 �(X;L) (0 � j � r) de�ning a 
losedimmersion x 7! (s0(x); : : : ; sr(x)) of X in P ;(ii) L is ample, if there exists n > 0 su
h that L
n is very ample.Assume L ample. Then, a

ording to Serre's theorem ([H2℄ II 5.17, III 5.2):(a) For any 
oherent sheaf E on X , there exists an integer n0 su
h that for anyn � n0; E 
 L
n is generated by a �nite number of its global se
tions, i.e. aquotient of ONX for suitable N .(b) For any 
oherent sheaf E on X , there exists an integer n0 su
h that for anyn � n0 and all i � 1, one has H i(X;E 
 L
n) = 0:The theorem whi
h follows is an analog in 
hara
teristi
 p, of the Kodaira-Akizuki-Nakano vanishing theorem [KAN℄, [AkN℄:Theorem 5.8. Let k be a �eld of 
hara
teristi
 p, and let X be a smoothproje
tive k-s
heme. Let L be an ample invertible sheaf on X. Then if X is of puredimension d < p (
f. 2.10) and is lifted over W2(k), we haveHj(X;L
 
iX=k) = 0 for i+ j > d;(5.8.1) Hj(X;L
�1 
 
iX=k) = 0 for i+ j < d:(5.8.2)This is a 
orollary of 5.5, due to Raynaud. The proof is analogous to that of5.6, starting from 5.5. First of all, by the Serre duality theorem ([H2℄ III 7.7, 7.12),ifM is an invertible sheaf on X , and if i+i0 = d = j+j0, then the �nite dimensionalk-ve
tor spa
es Hj(X;M 

iX=k) and Hj0(X;M
�1

i0X=k) are 
anoni
ally dual.Formulas (5.8.1) and (5.8.2) are therefore equivalent. It will be more 
onvenient toprove (5.8.2). By Serre's vanishing theorem (5.7 (b)), there exists n � 0 su
h thatHj(X;L
pn 
 
iX=k) = 0 for all j > 0 and all i. By Serre duality, it follows thatHj(X;L
�pn 
 
iX=k) = 0 for all j < d and all i, and in parti
ular for all (i; j)su
h that i+ j < d. Pro
eeding by des
ending indu
tion on n, it therefore suÆ
esto prove the following assertion:(�) if M is an invertible sheaf over X satisfying Hj(X;M
p 
 
iX=k) = 0 for all(i; j) su
h that i + j < d, then Hj(X;M 
 
iX=k) = 0 for all (i; j) su
h thati+ j < d.Note as in 5.1, X 0 is the s
heme indu
ed from X by the 
hange of base by theabsolute Frobenius of S = Spe
 k. If FX denotes the absolute Frobenius of X ,we have a 
anoni
al isomorphism F �XM ' M
p, indu
ed by the map m 7! m
p,and therefore an isomorphism F 0 �M 0 ' M
p, where F : X ! X 0 is the relativeFrobenius and M 0 is the inverse image of M over X 0. We dedu
e, for all i, thefollowing isomorphisms of OX0 -modules(��) M 0 
 F�
iX=k ' F�(F �M 0 
 
1X=k) ' F�(M
p 
 
iX=k):



125 5. de
omposition, degeneration and vanishing theoremsLet us 
onsider the spe
tral sequen
e (4.8.1) relative to the fun
tor T = �(X 0; �)and on the 
omplex K =M 0 
 F�
�X=k :Eij1 = Hj(X 0;M 0 
 F�
iX=k)) H�(X 0;M 0 
 F�
�X=k):The hypothesis and (��) imply that Eij1 = 0 for i+ j < d. ThereforeHn(X 0;M 0 
 F�
�X=k) = 0 for n < d:But like, a

ording to 5.5, F�
�X=k is de
omposable, we have (in D(X 0))F�
�X=k 'M
iX0=k[�i℄;therefore Hn(X 0;M 0 
 F�
�X=k) ' Mi+j=nHj(X 0;M 0 
 
iX0=k);and therefore Hj(X 0;M 0 
 
iX0=k) = 0 for i+ j < d:The 
on
lusion (�) follows from this, sin
e we haveF �SHj(X;M 
 
iX=k) ' Hj(X 0;M 0 
 
iX0=k)(
f. the end of the proof of 5.6).Remarks 5.9. The reader will �nd in [D-I℄ many 
omplements of the afore-mentioned results. Here are some.1. Let us assume given the hypothesis of 5.1. Then:(a) X 0 is lifted over T if and only if ��1F�
�X=S is de
omposable in D(X 0)(or, what amounts to the same, �<pF�
�X=S is). Re
all that there existsan obstru
tion ! 2 Ext2(
1X0=S ;OX0) to the lifting of X 0 (2.12 (a) and3.7.1)), and that taking into a

ount the Cartier isomorphism, this is inthe same group that is found the obstru
tion 
1 to the de
omposabilityof ��1F�
�X=S (4.6(a)): One 
an show with some 
onvenient 
onventionsof signs, that ! = 
1.(b) If X 0 is lifted over T , the set of isomorphism 
lasses of liftings of X 0 is anaÆne spa
e under Ext1(
1X0=S ;OX) (2.12 (b) and (3.7.1)), and (alwaystaking into a

ount the Cartier isomorphism) the set of de
ompositionsof ��1F�
�X=S is an aÆne spa
e under the same group (4.6(
)): One 
anshow that the map Z 0 7! 'Z0 
onstru
ted in the proof of 5.1 is an aÆnebije
tion between these two spa
es.(
) In fa
t, there is in [D-I℄ 3.5 a statement 
overing (a) and (b), by ap-pealing to the theory gerbes of Giraud [Gi℄.2. The degeneration theorem 5.6 has a relative variant. We work under theassumption of 5.1, and denote by f : X ! S the stru
ture morphism.Consider then the spe
tral sequen
e (4.8.1) relative to the fun
tor f� andthe 
omplex 
�X=S ,Eij1 = Rjf�
iX=S ) R�f�(
�X=S);whi
h is 
alled the relative Hodge to de Rham spe
tral sequen
e (of X overS). Then if X is smooth and proper of relative dimension < p, and if X 0
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tral sequen
e degenerates at E1 and the sheavesRjf�
iX=S are lo
ally free of �nite type. ([D-I℄ 4.1.5).3. The latter assertion of 5.5 and the 
on
lusions of 5.6 and 5.8 still remain trueif one only assumes X of dimension � p ([D-1℄ 2.3). This is a 
onsequen
eof Grothendie
k duality for the morphism F .4. There exists many examples of smooth and proper surfa
es X over an alge-brai
ally 
losed �eld k of 
hara
teristi
 p for whi
h the Hodge to de Rhamspe
tral sequen
e does not degenerate at E1 and whi
h does not satisfy thevanishing property of Kodaira-Akizuki-Nakano type of 5.8. (Taking intoa

ount (3) if p = 2, or 5.6 and 5.8 if p > 2, these surfa
es are thereforenot lifted over W2(k).) See ([D-I℄ 2.6 and 2.10) for a bibliography on thissubje
t.5. Formulas (5.8.1) and (5.8.2) are still useful if d = 2 � p; X is liftable overW2(k) and L is only assumed numeri
ally positive, i.e. satis�es L � L > 0and L � O(D) � 0 for any e�e
tive divisor D, see [D-I℄ 2.6. From 
hara
teristi
 p > 0p > 0p > 0 to 
hara
teristi
 zero6.0. There exists a standard te
hnique in algebrai
 geometry, whi
h allowsone to prove 
ertain statements of geometri
 nature15, formulas over a base �eld of
hara
teristi
 zero, from analogous statements over a �eld of 
hara
teristi
 p > 0,even a �nite �eld. Roughly speaking, it 
onsists of a given base �eld K, whi
h is in
hara
teristi
 zero, as an indu
tive limit of its Z-sub-algebras of �nite type Ai: Dataon K, provided that they satisfy 
ertain �niteness 
onditions, arise by extension ofs
alars from similar data on one of the Ai, say Ai0 = B. It is then enough to solvethe similar problem on T = Spe
B, that whi
h is seemingly more diÆ
ult. Theadvantage however, is that the 
losed points of T are then the spe
trum of a �nite�eld, and that in a sense whi
h one 
an spe
ify, there are many su
h points, so thatit is enough to 
he
k the statement posed on T after suÆ
ient spe
ialization to thesepoints. There is the business dealing with a problem of 
hara
teristi
 p > 0, whereone has the range of 
orresponding methods (Frobenius, Cartier isomorphism, et
.);moreover one 
an exploit the fa
t of being able to 
hoose the 
hara
teristi
 largeenough.The two ingredients of the method are: (a) results of passing to the limit, pre-sented in great generality in (EGA IV 8), allowing the \spreading out" of 
ertaindata and properties on K, to similar data and properties on B; (b) density prop-erties of 
losed points on s
hemes su
h that the s
hemes are of �nite type over a�eld or over Z (EGA IV 10).6.1. Let ((Ai)i2I ; uij : Ai ! Aj (i � j)) be a �ltered indu
tive system of rings,with indu
tive limit A, and denote by ui : Ai ! A the 
anoni
al homomorphism.The two very important examples are: (i) a ring A written as an indu
tive limitof its sub-Z-algebras of �nite type; (ii) the lo
alization Ap of a ring A at a primeideal p written as an indu
tive limit of lo
alizations Af (= A[1=f ℄) for f =2 p.The prototype of problems and results of type (a) above is the following. Let(Ei) = ((Ei)i2I ; vij : Ei ! Ej) be an indu
tive system of Ai-modules, havingfor indu
tive limit the A-module E. Let us agree to say that (Ei) is 
artesian if,15I.e. stable by base extension, as opposed to statements of arithmeti
 nature, where thebase plays an essential role.



127 6. from 
hara
teristi
 p > 0 to 
hara
teristi
 zerofor any i � j; vij (whi
h is an Ai-linear homomorphism of Ei into Ej 
onsideredas an Ai-module via uij) indu
es, by adjun
tion, an isomorphism (Aj-linear) ofu�ijEi = Aj 
Ai Ei in Ej . In this 
ase, the 
anoni
al homomorphism vi : Ei ! Eindu
es for all i, an isomorphism u�iEi (= A
Ai Ei) ��! E. Let ((Fi)i 2 I; wij) bea se
ond indu
tive system of Ai-modules. If (Ei) is 
artesian, the HomAi(Ei; Fi)form an indu
tive system of Ai-modules: The transition map for i � j asso
iatedto fi : Ei ! Fi is the homomorphism Ej ! Fj 
omposed with the inverse of theisomorphism of Aj
Ei in Ej de�ned by vij , from Aj 
fi : Aj 
Ei ! Aj
Fi, andfrom the map of Aj 
 Fi in Fj de�ned by wij . If F denotes the indu
tive limit ofthe Fi, one has analogous maps of HomAi(Ei; Fi) into HomA(E;F ), whi
h de�nesa homomorphism(6.1.1) ind limHomAi(Ei; Fi)! HomA(E;F ):We 
an then pose the following two questions :(1) Being given an A-module E, does there exist i0 2 I and an Ai0 -module Ei0su
h that E results from Ei0 by an extension of s
alars of Ai0 to A (or, thatwhi
h amounts to the same, does there exist a 
artesian indu
tive system (Ei),indexed by fi 2 I ji � i0g, for whi
h the limit is E) ?(2) If there exists i0 su
h that (Ei) and (Fi) are 
artesian for i � i0, is the map(6.1.1) (where the indu
tive limit is rea
hed for i � i0) an isomorphism ?There is a positive answer to the two questions with the help of hypothesis of�nite presentation. (Re
all that a module is said to be �nitely presented if it isthe 
okernel of a homomorphism between free modules of the �nite type.) Morepre
isely, there is the following statement, whi
h 
an be veri�ed immediately:Lemma 6.1.2. With the pre
eding notation:(a) If E is a �nitely presented A-module, there exists i0 2 I and an Ai0 -module of�nite presentation Ei0 su
h that u�i0Ei0 ' E.(b) Let (Ei); (Fi) be two indu
tive systems, 
artesian for i � i0, with respe
tiveindu
tive limits E and F . Then if Ei0 is �nitely presented, the map (6.1.1) isan isomorphism.It follows from this that if E is �nitely presented, the Ei0 whi
h arises byextension of s
alars is essentially unique, in this sense that if Ei1 is another 
hoi
e(Ei0 and Ei1 both being two �nite presentations), there exists i2 with i2 � i1 andi2 � i0 su
h that Ei0 and Ei1 be
ome isomorphisms by extensions of s
alars to Ai2 .The Si = Spe
Ai form a proje
tive system of s
hemes for whi
h S = Spe
A isthe proje
tive limit. If (Xi; vij : Xj ! Xi) is a proje
tive system of Si-s
hemes, wesay that this system is 
artesian for i � i0 if, for i0 � i � j, the transition arrowvij gives a 
artesian square Xj ! Xi# #Sj ! Si:In this 
ase, the S-s
heme indu
ed from Xi0 by extension of s
alars to S is theproje
tive limit of Xi. If (Yi) is a se
ond proje
tive system of Si-s
hemes, 
artesianfor i � i0, the proje
tive limit Y (= S �Si0 Yi0) of the HomSi(Xi; Yi) form a
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tive system, and one has an analogous map to (6.1.1):(6.1.3) proj limHomSi(Xi; Yi)! HomS(X;Y ):We 
an then formulate similar questions to (1) and (2) above. They have similaranswers, with the 
ondition of repla
ing the hypothesis of �nite presentation formodules by the hypothesis of �nite presentation for s
hemes (a morphism of s
hemesX ! Y is said to be a �nite presentation if it is lo
ally of �nite presentation (2.1)and \quasi-
ompa
t and quasi-separated", whi
h means that X is a �nite union ofopen aÆne subsets U� over an open aÆne subset V� of Y and that the interse
tionsU� \U� have the same property; if Y is Noetherian, X is �nitely presented over Yif and only if X is of �nite type over Y , i.e. lo
ally of �nite type over Y (2.1) andNoetherian):Proposition 6.2. (a) If X is an S-s
heme of �nite presentation, there existsi0 2 I and an Si0 -s
heme Xi0 of �nite presentation for whi
h X is indu
ed by abase 
hange.(b) If (Xi); (Yi) are two proje
tive systems of Si-s
hemes, 
artesian for i � i0, andif Xi0 and Yi0 are �nitely presented over Si0 , then the map (6:1:3) is bije
tive.As in the pre
eding, it follows from this that Xi0 of 6.2 (a) is essentially unique(two su
h s
hemes be
ome Si-isomorphi
 for i large enough). Moreover, the usualproperties of an S-s
heme of �nite presentation (or of a morphism between su
h)are already determined to some extent, over Si for i large enough. Here are some,whi
h are useful statements in themselves (the reader will �nd a long list in (EGAIV 8, 11.2, 17.7)):Proposition 6.3. Let X be an S-s
heme of �nite presentation. We assumethat X has one of the following properties P: proje
tive, proper, smooth. Thenthere exists i0 2 I and an Si0-s
heme Xi0 of �nite presentation, having the sameproperty P, for whi
h X is indu
ed by base 
hange.The 
ase where P is \proje
tive" is easy: X is the 
losed subs
heme of astandard proje
tive spa
e P = PrS de�ned by an ideal lo
ally of �nite type. ItsuÆ
es to lift P , and then the 
losed immersion (i.e. the 
orresponding quotient ofOP , 
f. 6.11). The \proper" 
ase is less immediate, but roughly, it goes ba
k to a
lassi
al result, namely Chow's Lemma (
f. EGA IV 8.10.5). The \smooth" 
ase isa little more diÆ
ult (whi
h uses 
riterion 2.10), see (EGA IV 11.2.6 and 17.7.8).With regard to the properties of type (b) evoked in 6.0, we will only have need ofthe following result:Proposition 6.4. Let S be a s
heme of �nite type over Z. Then:(a) If x is a 
losed point of S, the residue �eld k(x) is a �nite �eld,(b) All lo
ally 
losed nonempty 
omponents Z of S 
ontain a 
losed point of S.For the proof, we refer to (EGA IV 10.4.6, 10.4.7), or in the 
ase where S isaÆne, this goes ba
k to (Bourbaki, Alg. Com. V, by 3, nÆ 4) (this is a 
onsequen
eof Hilbert's theorem of zeros).We will need to apply 6.4 (b) to the 
ase where Z is the smooth part of S; Sbeing assumed integral16 :16A s
heme is said to be integral if it is redu
ed and irredu
ible.



129 6. from 
hara
teristi
 p > 0 to 
hara
teristi
 zeroProposition 6.5. Let S be an integral s
heme of �nite type over Z. The setof points x of S for whi
h S is smooth over Spe
Z is a nonempty open set of S. Inparti
ular, if A is a Z-algebra of �nite type, and integral, there exists s 2 A; s 6= 0,su
h that Spe
As is smooth over Z.The openness of the set of smooth points of a morphism lo
ally of �nite presen-tation is a general fa
t, whi
h is a 
onsequen
e for example of the ja
obi 
riterion2.6 (a), 
f. (EGA IV 12.1.6.). That in the present 
ase this open set is nonemptyfollows from a lo
al variant of 2.10 and from the fa
t that the generi
 �ber of S issmooth over Q at its generi
 point, Q being perfe
t.We will �nally have to use some standard results of 
ompatability of dire
timages by a base 
hange (or, as one says sometimes, of 
ohomologi
al 
leanliness).Not wanting to weigh down our exposition, we will state them only in the 
asewhere it will be useful for us to have, for the Hodge 
ohomology and the de Rham
ohomology.Proposition 6.6. Let S be an aÆne s
heme17, Noetherian, integral, and f :X ! S a smooth and proper morphism.(a) The sheaves Rjf�
iX=S and Rnf�
�X=S are 
oherent. There exists a nonemptyopen set U of S su
h that, for any (i; j) and any n, the restri
tions to U ofthese sheaves are lo
ally free of �nite type.(b) For any i 2 Z and for any morphism g : S0 ! S, if f 0 : X 0 ! S0 denotesthe indu
ed s
heme of X by base 
hange via g, the 
anoni
al arrows of D(S0)(a

ording to base 
hange)Lg�Rf�
iX=S ! Rf 0�
iX0=S0(6.6.1) Lg�Rf�
�X=S ! Rf 0�
�X0=S0(6.6.2)are isomorphisms.(
) Fix i 2 Z and assume that for any j, the sheaf Rjf�
iX=S is lo
ally free overS, of 
onstant rank hij . Then for any j, the base 
hange arrow (indu
ed from(6.6.1))(6.6.3) g�Rjf�
iX=S ! Rjf 0�
iX0=S0is an isomorphism. In parti
ular, Rjf 0�
iX0=S0 is lo
ally free of rank hij .(d) Suppose that for all n, Rnf�
�X=S is lo
ally free of 
onstant rank hn. Then forall n, the 
hange of base arrow (indu
ed from (6.62))(6.6.4) g�Rnf�
�X=S ! Rnf 0�
�X0=S0is an isomorphism. In parti
ular, Rnf 0�
�X0=S0 is lo
ally free of rank hn.Let us brie
y indi
ate the proof. The fa
t that the Rjf�
iX=S are 
oherentis a parti
ular 
ase of the �niteness theorem of Grothendie
k (EGA III 3) (or[H2℄ III 8.8 in the proje
tive 
ase). The 
oheren
e of Rnf�
�X=S follows fromthis by the relative Hodge to de Rham spe
tral sequen
e (5.9(2)). For the se
ond17The hypothesis \aÆne" is unne
essary; we use it only to fa
ilitate the proof of (b).
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 illusie, frobenius and hodge degeneration 130assertion of (a), denote by A the (integral) ring of S; K its �eld of fra
tions, whi
his therefore the lo
al ring of S at its generi
 point �. We set for abbreviationRjf�
iX=S = Hij ; Rnf�
�X=S = Hn. The �ber of Hij (resp. Hn) at � is freeof �nite type (a K-ve
tor spa
e of �nite dimension), and is the indu
tive limit ofHijjD(s) (resp. HnjD(s)), for s transversing A; D(s) denoting \the open 
omplement"of s, i.e. Spe
As = X � V (s). By 6.1.2 it follows from this that there existss su
h that HijjD(s) (resp. HnjD(s)) are free of �nite type. For (b), we 
hoose a�nite 
overing U of X by open aÆne sets, denote by U 0 the open 
overing of X 0indu
ed from U by base 
hange. Sin
e S is aÆne and that X is proper, thereforeseparated over S, the �nite interse
tions of open sets in U are aÆne and similarly the�nite interse
tions of open sets in U 0 are (relatively) aÆne18 over S0. Consequently(
f. [H2℄ III 8.7), Rf�
iX=S (resp. Rf 0�
iX0=S0) is represented by f� �C(U ;
iX=S)(resp. f 0� �C(U 0;
iX0=S0)), where we denote here by �C(U ; �) the alternating 
omplexof 
o
hains. By the 
ompatability of 
i by a base 
hange, there is a 
anoni
alisomorphism of 
omplexesg�f� �C(U ;
iX=S) ��! f 0� �C(U 0;
iX0=S0):Sin
e the 
omplex f� �C(U ;
iX=S) is bounded and with 
at 
omponents, this isomor-phism realizes the isomorphism (6.6.1). Similarly, Rf�
�X=S (resp. Rf 0�
�X0=S0))is represented by f� �C(U ;
�X=S) (resp. f 0� �C(U 0;
�X0=S0)) (where �C denotes this timethe asso
iated simple 
omplex of the �Ce
h bi
omplex), and one has a 
anoni
alisomorphism of 
omplexesg�f� �C(U ;
�X=S) ��! f 0� �C(U 0;
�X0=S0);whi
h realizes the isomorphism (6.6.2). Assertions (
) and (d) follow from (b) andfrom the following lemma, for whi
h we leave the veri�
ation to the reader:Lemma 6.7. Let A be a Noetherian ring and E a 
omplex of A-modules su
hthat H i(E) are proje
tive of �nite type for any i and zero for almost all i. Then:(a) E is isomorphi
, in D(A), to a bounded 
omplex with proje
tive 
omponents of�nite type.(b) If E is bounded and with proje
tive 
omponents of �nite type, for any A-algebraB, and for all i, the 
anoni
al homomorphismB 
A H i(E)! H i(B 
A E)is an isomorphism.Remarks 6.8. (a) A 
omplex of A-modules, isomorphi
 inD(A), to a bounded
omplex with proje
tive 
omponents of �nite type is said to be perfe
t. One must beaware that if E is perfe
t, it is not true in general, that the H i(E) are proje
tive of�nite type. One 
an show that under the hypothesis of 6.6, the 
omplexes Rf�
iX=Sand Rf�
�X=S are perfe
t over S (and not only over U). The notion of a perfe
t
omplex plays an important role in numerous questions in algebrai
 geometry.(b) In the statements of 6.6 
on
erning 
iX=S , one 
an repla
e 
iX=S by any lo
allyfree OX -module F of �nite type (even 
oherent and relatively 
at over S): The18A morphism of s
hemes is said to be aÆne if the inverse image of any aÆne open set isaÆne.



131 6. from 
hara
teristi
 p > 0 to 
hara
teristi
 zero
on
lusions of (a), (b) and (
) are still valid on the 
ondition of repla
ing 
iX0=S0by the inverse image sheaf F 0 of F over X 0. Similarly, the 
omplex Rf�F is perfe
tover S.We are now able to state and prove the promised appli
ation of 5.6:Theorem 6.9 (Hodge Degeneration Theorem). Let K be a �eld of 
hara
ter-isti
 zero, and X a smooth and proper K-s
heme. Then the Hodge spe
tral sequen
eof X over K (4.8.3) Eij1 = Hj(X;
iX=K)) H�DR(X=K)degenerates at E1.Set dimK Hj(X;
iX=K) = hij ; dimHnDR(X=K) = hn. It suÆ
es to prove thatfor all n; hn =Pi+j=n hij (
f. (4.8.3)). Write K as an indu
tive limit of the family(A�)�2L of its sub-Z-algebras of �nite type. A

ording to 6.3, there exists � 2 Land a smooth and proper S�-s
heme X� (where S� = Spe
A�) for whi
h X isindu
ed by base 
hange Spe
K ! S�. Even if it means to repla
e A� by A�[t�1℄for a suitable nonzero t 2 A�, we 
an assume, a

ording to 6.5, that S� is smoothover Spe
Z. Abbreviate A� by A, S� by S; X� by X, and denote by f : X! S thestru
ture morphism. Again by repla
ing A by A[t�1℄, we 
an a

ording to 6.6 (a),assume that the sheaves Rjf�
iX=S (resp. Rnf�
�X=S) are free of 
onstant rank,ne
essarily equal then to hij (resp. hn) a

ording to 6.6 (
) and (d). Sin
e therelative dimension of X over S is a lo
ally 
onstant fun
tion and that X is quasi-
ompa
t, one 
an in addition 
hoose an integer d whi
h bounds this dimension atany point of X and therefore the dimension of the �bers of X over S at any pointof S. Applying 6.4 (b) to Z = Spe
A[1=N ℄ for suitable N (say, the produ
t ofprime numbers � d), one 
an 
hoose a 
losed point s of S, for whi
h the residue�eld k = k(s) (a �nite �eld) is of 
hara
teristi
 p > d. Sin
e S is smooth overSpe
Z, the 
anoni
al morphism Spe
 k ! S (a 
losed immersion) is extended (byde�nition of smoothness (2.2)) to a morphism g : Spe
W2(k)! S, where W2(k) isthe ring of Witt ve
tors of length 2 over k (3.9). Denote by Y = Xs the �ber ofX over s = Spe
 k and Y1 the s
heme over Spe
W2(k) indu
ed from X by the base
hange g. We therefore have 
artesian squares:Y ! Y1 ! X  X# # # #s ! Spe
W2(k) g�! S  Spe
K:By 
onstru
tion, Y is a smooth and proper k-s
heme of dimension < p, lifted overW2(k). Therefore a

ording to 5.6, the Hodge to de Rham spe
tral sequen
e of Yover k degenerates at E1. We therefore have for all n,Xi+j=n dimkHj(Y;
iY=k) = dimkHnDR(Y=k):But a

ording to 6.6 (
) and (d), we have for all (i; j) and for all n,dimkHj(Y;
iY=k) = hij ; dimkHnDR(Y=k) = hn:ThereforePi+j=n hij = hn for all n, for whi
h the proof follows.
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 illusie, frobenius and hodge degeneration 132Theorem 6.10 (Kodaira-Akizuki-NakanoVanishing Theorem [KAN℄, [AkN℄).Let K be a �eld of 
hara
teristi
 zero, X a smooth proje
tive K-s
heme of pure di-mension d, and L an ample invertible sheaf on X. Then we have:Hj(X;L
 
iX=K) = 0 for i+ j > d;(6.10.1) Hj(X;L
�1 
 
iX=K) = 0 for i+ j < d:(6.10.2)We dedu
e 6.10 from 5.8 just like 6.9 from 5.6. We need for this a result ofpassing to the limit for modules, generalizing and 
larifying 6.1.2 (
f. (EGA IV 8.5,8.10.5.2)):Proposition 6.11. Assume given, as in 6.1, a �ltered proje
tive system ofaÆne s
hemes (Si)i2I , with limit S. Let i0 2 I; Xi0 be a Si0-s
heme of �nitepresentation and 
onsider the indu
ed proje
tive 
artesian system (Xi) for i � i0,with limit X = S �Si0 Xi0 .(a) If E is a �nitely presented OX -module, there exists i � i0 and a OXi-moduleEi of �nite presentation for whi
h E is indu
ed by extension of s
alars. IfE is lo
ally free (resp. lo
ally free of rank r), there exists j � i su
h thatEj = OXj 
OXi Ei is lo
ally free (resp. lo
ally free of rank r). If X is proje
tiveover S and E is an ample invertible OX -module (resp. very ample) (5.7), thereexists j � i su
h that Xj is proje
tive over Sj and Ej is ample invertible (resp.very ample).(b) Let Ei0 ; Fi0 be �nitely presented OX -modules, and 
onsider the systems (Ei);(Fi) whi
h are indu
ed by extension of s
alars over the Xi for i � i0, as well asthe modules E and F whi
h are indu
ed by extension of s
alars over X. Thenthere is a natural mapind limi�i0 HomOXi (Ei; Fi)! HomOX (E;F );whi
h is bije
tive.The proof of (b), then of the �rst two assertions of (a), brings us ba
k to 6.1.2.For the latter part of (a), it suÆ
es treat the 
ase where E is very ample, i.e.
orresponds to a 
losed immersion h : X ! P = PrS su
h that h�OP (1) ' E. Fori suÆ
iently large, one lifts h by an Si-morphism hi : Xi ! Pi = PrSi and E byinvertible Ei over Xi. Even if it means to in
rease i, hi is a 
losed immersion andthe isomorphism h�OP (1) ' E 
omes from an isomorphism h�iOPi(1) ' Ei; Ei isthen very ample.Proving 6.10. Pro
eeding as in the proof of 6.9, and moreover applying 6.11,one 
an �nd a subring A of K of �nite type and smooth over Z, a smooth proje
tivemorphism f : X! S = Spe
A of pure relative dimension d, for whi
h X ! Spe
Kis indu
ed by base 
hange, and an ample invertible OX -module L for whi
h L isindu
ed by extension of s
alars. By virtue of 6.6 and 6.8 (b), one 
an assume, evenif it means to repla
e A by A[t�1℄, that the sheaves Rjf�(M

iX=S), whereM = L(resp. L
�1), are free of �nite type, of 
onstant rank, ne
essarily equal, a

ordingto 6.8 (b), to hij(L) = dimK Hj(X;L
 
iX=K) (resp. hij(L
�1) = Hj(X;L
�1 

iX=K)). Let us 
hoose then g : Spe
W2(k)! S as in the proof of 6.9. The inverseimage sheaf Ls of L over Y = Xs is ample. A

ording to 6.6 and 6.8 (b), one hasdimkHj(Y;Ls 

iY=k) = hij(L), and dimkHj(Y;L
�1s 

iY=k) = hij(L
�1). The
on
lusion then follows from 5.8.



133 7. re
ent developments and open problemsRemark 6.12. In a similar manner, the Ramanujam vanishing theorem onsurfa
es [Ram℄ follows from the variant of 5.8 relative to the numeri
ally positivesheaves (
f. 5.9 (5)).7. Re
ent developments and open problemsA. Divisors with normal 
rossings, semi-stable redu
tion, and loga-rithmi
 stru
tures.7.1. Let S be a s
heme, X a smooth S-s
heme, and D a 
losed subs
hemeof X . We say that D is a divisor with normal 
rossings relative to S (or simply,relative) if, \lo
ally for the �etale topology on X", the 
ouple (X;D) is \isomorphi
"to the 
ouple formed from the standard aÆne spa
e A nS = S[t1; : : : ; tn℄ and fromthe divisor V (t1 � � � tr) of the equation t1 � � � tr = 0, for 0 � r � n (the 
ase r = 0
orresponds to t1 � � � tr = 1 and V (t1 � � � tr) = ;). This means that there exists an�etale 
overing (Xi)i2I of X (i.e. a family of �etale morphisms Xi ! X for whi
hthe union of the images is X) su
h that, if Di = Xi �X D is the 
losed subs
hemeindu
ed by D on Xi, there exists an �etale morphism Xi ! A nS for whi
h there is a
artesian square Di ! Xi# #V (t1 � � � tr) ! A nS(n and r dependant on i). In other words, that there exists a 
oordinate system(x1; : : : ; xn) on Xi in the sense of 2.7 (de�ning the �etale morphism Xi ! A nS )su
h that Di is the 
losed subs
heme of the equation x1 � � �xr = 0. This de�ni-tion is modeled after the analogous de�nition in 
omplex analyti
 geometry (
f.[D1℄), where \lo
ally for the �etale topology" is repla
ed by \lo
ally for the 
lassi
altopology", and \�etale morphism" by \lo
al isomorphism". A standard example ofa divisor with normal 
rossings relative to S = Spe
 k; k a �eld of 
hara
teristi
di�erent from 2, is the 
ubi
 with double point D = Spe
 k[x; y℄=(y2 � x2(x � 1))in the aÆne plane X = Spe
 k[x; y℄. (Observe in this example that there does notexist a system of 
oordinates (xj) as above on a Zariski open 
overing of X , an�etale extension (extra
tion of a square root of x � 1) being ne
essary for to makepossible su
h a system in a neighbourhood of the origin.)The notion of a divisor with the normal 
rossingsD ,! X relative to S is stableby �etale lo
alization over X and by base 
hange S0 ! S.If D ,! X is a relative divisor with normal 
rossings, and if j : U = XnD ,! Xis the in
lusion of the open 
omplement, we de�ne a sub
omplex(7.1.1) 
�X=S(logD)of j�
�U=S , 
alled the de Rham 
omplex of X=S with logarithmi
 poles along D,by the 
ondition that a lo
al se
tion ! of j�
iU=S belong to 
iX=S(logD) if andonly if ! and d! have at most a simple pole along D (i.e. are su
h that if f isa lo
al equation of D; f! (resp. f d!) is a se
tion of 
iX=S (resp. 
i+1X=S) (NB.f is ne
essarily a nonzero divisor in OX)). One easily sees that the OX -modules
iX=S(logD) are lo
ally free of �nite type, that 
iX=S(logD) = �i
1X=S(logD),and that if as above, (x1; : : : ; xn) are 
oordinates on an X 0 �etale neighbourhood
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1X=S(logD) is free with basis(dx1=x1; : : : ; dxr=xr; dxr+1; : : : ; dxn).There is a natural variant in 
omplex analyti
 geometry of the 
onstru
tion(7.1.1) (
f. [D1℄). If S = Spe
 C and D � X is a(n algebrai
) divisor with normal
rossings, the 
omplex of analyti
 sheaves asso
iated to (7.1.1) on the analyti
 spa
eXan asso
iated to X , 
�X=C (logD)an = 
�Xan=C (logDan);
al
ulates the trans
endental 
ohomology of U with values in C : There is a 
anoni
alisomorphism (in the derived 
ategory D(Xan; C ))(7.1.2) Rj�C ' 
�X=S(logD)an;and 
onsequently an isomorphism(7.1.3) H i(Uan; C ) ' H i(Xan;
�X=S(logD)an)(lo
. 
it.). Moreover, if X is proper over C , the 
omparison theorem of Serre[GAGA℄ allows us to dedu
e from (7.1.3) the isomorphism(7.1.4) H i(Uan; C ) ' H i(X;
�X=S(logD)):Moreover the �ltration F of H�(X;
�X=S(logD)), being the out
ome of the �rstspe
tral sequen
e of hyper
ohomology of X with values in 
�X=S(logD),(7.1.5) Epq1 = Hq(X;
pX=S(logD)) Hp+q(X;
�X=S(logD))is the Hodge �ltration of the natural mixed Hodge stru
ture of H�(Uan;Z) de�nedby Deligne, and the spe
tral sequen
e (7.1.5) degenerates at E1 ([D2℄).Just as in the 
ase where D = ; (6.9), this degeneration 
an be shown byredu
tion to 
hara
teristi
 p > 0. Indeed, we have the following result whi
hgeneralizes 5.1 and for whi
h the proof is analogous ([D-I℄ 4.2.3):Theorem 7.2. Let S be a s
heme of 
hara
teristi
 p > 0; S� a 
at lifting of Sover Z=p2Z; X a smooth S-s
heme and D � X a relative divisor with normal 
ross-ings. Denote by F : X ! X 0 the relative Frobenius of X=S. If the 
ouple (X 0; D0)admits a lifting (X 0�; D0�) over S�, where X 0� is smooth and D0� � X 0� is a rel-ative divisor with normal 
rossings, the 
omplex of OX -modules �<pF�
�X=S(logD)is de
omposable in the derived 
ategory D(X 0).The reader will �nd in [D-I℄ various 
omplements to 7.2 and in [E-V℄ anotherpresentation of the same results, and some appli
ations of the theorems pertainingto ampleness and vanishing results.7.3. The pre
eeding theory extends without mu
h 
hange to a 
lass of mor-phisms whi
h are no longer smooth, but not far from this, namely the morphismsthat are said to be \of semi-stable redu
tion". Let T be a s
heme. The prototypeof su
h morphisms is the morphisms : A nT = T [x1; : : : ; xn℄! A 1T = T [t℄; t 7! x1 � � �xn (n � 1):In other words, if S = A 1T , the s
heme A nT , 
onsidered as S-s
heme by s, is thesub-S-s
heme of A nS = S[x1; : : : ; xn℄ = T [x1; : : : ; xn; t℄ with equation x1 � � �xn = t.



135 7. re
ent developments and open problemsThe morphism s is smooth outside 0 and its �ber at 0 is the divisor D with equa-tion (x1 � � �xn = 0), a divisor with normal 
rossings relative to T , but not withS (a \verti
al" divisor). More generally, if S is a smooth T -s
heme of relativedimension 1 and E � S a relative divisor with normal 
rossings (if T is the spe
-trum of an algebrai
ally 
losed �eld, E is therefore simply a �nite set of rationalpoints of S), we say that the S-s
heme X has semi-stable redu
tion along E if,lo
ally for the �etale topology (over X and over S) the morphism X ! S is ofthe form s Æ g, with g smooth, s being the morphism 
onsidered above. The di-visor D = X �S E � X is then a divisor with normal 
rossings relative to T(but not to S)19. An elementary example is furnished by the \Legendre family"X = Spe
 k[x; y; t℄=(y2 � x(x � 1)(x � t)) over S = Spe
 k[t℄, (k a �eld of 
har-a
teristi
 6= 2), whi
h has semi-stable redu
tion on f0g [ f1g, the �ber at ea
hof these points being isomorphi
 to the 
ubi
 with double point 
onsidered above.The interest in the notion of semi-stable redu
tion 
omes from the semi-stable re-du
tion 
onje
ture, whi
h roughly asserts that lo
ally, after suitable rami�
ationof the base, a smooth morphism 
an be extended to a morphism with semi-stableredu
tion. This 
onje
ture was established by Grothendie
k-Deligne-Mumford andArtin-Winters ([G℄, [A-W℄, [D-M℄) in any 
hara
teristi
 but relative dimension 1,and Mumford ([M℄) in 
hara
teristi
 zero and arbitrary relative dimension.If f : X ! S has semi-stable redu
tion along E, we de�ne the de Rham 
omplexwith relative logarithmi
 poles(7.3.1) !�X=S = 
�X=S(logD=E);with 
omponents !iX=S = �i!1X=S , where !1X=S is the quotient of 
1X=T (logD)by the image of f�
1S=T (logE) and the di�erential is indu
ed from that of
�X=T (logD) by passing to the quotient. This 
omplex has lo
ally free 
ompo-nents of �nite type (in the 
ase of the morphism s above, !1X=S is isomorphi
 to(LOXdxi=xi)=OX(P dxi=xi) (therefore free with basis dxi=xi; i � 2)). It in-du
es on the smooth open part U of X over S the usual de Rham 
omplex 
�U=S ,and one 
an show that this is the unique extension over X of this 
omplex whi
hhas lo
ally free 
omponents of �nite type. Moreover, if one sets for abbreviation,!�X=T = 
�X=T (logD); !�S=T = 
�S=T (logE), there is an exa
t sequen
e(7.3.2) 0! !1S=T 
 !�X=S [�1℄! !�X=T ! !�X=S ! 0;where the arrow to the left is given by a
b 7! f�a^b. This exa
t sequen
e plays animportant role in the regularity theorem of the Gauss-Manin 
onne
tion (
f. [K2℄and the arti
le of Bertin-Peters in this volume). There also exists a variant of these
onstru
tions in 
omplex analyti
 geometry. Assume that T = Spe
 C , that S is asmooth 
urve over C ; E � S the divisor redu
ed to a point 0, and that f : X ! Sis a morphism with semi-stable redu
tion at f0g, with �ber Y at 0. (Y is thereforea divisor with normal 
rossings in X relative to C .) We 
onsider the 
omplex(7.3.3) !�Y = C f0g 
OS !�X=S ;with 
omponents the lo
ally free sheaves of �nite type !iY = OY 
OX !iX=S . Steen-brink [St℄ has shown that the 
omplex analogue !�Y an over Y an (whi
h is also the19One 
an similarly de�ne a notion of semi-stable redu
tion along E without the hypothesison the relative dimension of S over T , 
f. [I5℄.
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omplex of sheaves asso
iated to !�Y over Y an) embodies the 
omplex of neighbour-ing 
y
les R	(C ) of f at 0, so that if moreover f is proper, H�(Y; !�Y ) \
al
ulates"H�(Xant ; C ) for t \
lose enough" to 0. Steenbrink also shows (under this extrahypothesis) that the spe
tral sequen
es(7.3.4) Epq1 = Rqf�!pX=S ) Rp+qf�!�X=Sand(7.3.5) Epq1 = Hq(Y; !pY )) Hp+q(Y; !�Y )degenerate at E1 and that the sheaves Rqf�!pX=S are lo
ally free of �nite typeand of formation 
ompatible with any base 
hange. These results form part of the
onstru
tion of a limiting mixed Hodge stru
ture on H�(Xant ;Z) for t tending to 0(lo
. 
it.). They 
an by themselves, be proven by redu
tion to 
hara
teristi
 p > 0([I5℄). For T of 
hara
teristi
 p > 0, and f : X ! S with semi-stable redu
tionalong E � S, the 
omplexes !�X=S and(7.3.6) !�D = OD 
OS !�X=S(where D = E �S X) indeed give rise to Cartier morphisms (of the type of 3.5),and under the hypothesis of a suitable lifting modulo p2, �<pF�!�X=S and �<pF�!�Dde
ompose (in D(X 0)). (See [I5℄ 2.2 for a pre
ise statement, whi
h generalizes 7.2and other 
orollaries (degeneration and vanishing statements).)7.4. The 
omplex !�D above does not depend only on D, but on X=S. Itdoes depend on it however lo
ally (in a neighbourhood of D). While seeking toelu
idate the additional stru
ture on D ne
essary for the de�nition, J.-M. Fontaineand the author were led to introdu
e the notion of logarithmi
 stru
ture. Thispaved the way to a theory, logarithmi
 geometry, as a natural extension of thetheory of s
hemes. Widely developed by K. Kato and his s
hool, it makes possibleto unify the various 
onstru
tions of 
omplexes with logarithmi
 poles 
onsideredabove and to 
onsider the tori
 varieties of Mumford et al. and the morphismswith semi-stable redu
tion as parti
ular 
ases of a novel notion of smoothness. See[I6℄ for an introdu
tion. The pre
eding de
omposition, degeneration and vanishingresults admit generalizations in this program, see [Ka2℄ and [Og2℄.B. Degeneration mod pn and 
rystals.7.5. The de
omposition Theorem 5.1 was originally obtained as a by-produ
tof the work of Ogus [Og1℄, Fontaine-Messing [F-M℄ and Kato [Ka1℄ by 
rystalline
ohomology (see [I4℄ for a panorama of this theory). The link (a small te
hnique)between 5.1 and the point of view of 
rystalline is expli
it in [D-I℄ 2.2 (iv). We limitourselves to a statement of a degeneration result mod pn ([F-M℄, [Ka1℄) analogousto 5.6:Theorem 7.6. Let k be a perfe
t �eld of 
hara
teristi
 p > 0; W =W (k) thering of Witt ve
tors over k; X a smooth and proper W -s
heme of relative dimension< p. Then for any integer n � 1, the Hodge to de Rham spe
tral sequen
e(7.6.1) Eij1 = Hj(Xn;
iXn=Wn)) H i+jDR (Xn=Wn)



137 7. re
ent developments and open problemsdegenerates at E1, where Wn =Wn(k) =W=pnW denotes the ring of Witt ve
torsof length n over k and Xn the s
heme over Wn indu
ed from X by redu
tion modulopn (i.e. by extension of s
alars of W to Wn).7.7. For n = 1, we haveWn =Wn(k) =W=pnW and we re
over statement 5.6,apart from whi
h in 7.6, we assume given a lifting of X over W (rather than overW2)20. Under the hypothesis of 7.6, it is not true in general, for n � 2, that the deRham 
omplex 
�Xn=Wn (whi
h is, a priori, only a 
omplex of sheaves ofWn-modulesover Xn (or X1, Xn and X1 having the same underlying spa
e)) is de
omposablein the 
orresponding derived 
ategory D(X1;Wn). However, the results of Ogus([Og1℄ 8.20) imply that if � denotes the Frobenius automorphism ofWn; ��
�Xn=Wnis isomorphi
 in the derived 
ategoryD(X1;Wn) of sheaves ofWn-modules overX1,to the 
omplex 
�Xn;Wn(p) indu
ed from 
�Xn;Wn by multiplying the di�erential by p.(NB. For n = 1, we have 
�Xn=Wn(p) =L
iX1=k[�i℄.) The 
on
lusion of 7.6 
omesabout easily, like various additional properties of H�DR(Xn=Wn) (stru
ture 
alled\of Fontaine-La�aille" - in
luding in parti
ular the fa
t that the Hodge �ltration isformed from dire
t fa
tors), see [F-M℄ and [Ka1℄.7.8. The degeneration and de
omposition results for whi
h we dis
ussed un-til now 
arry over to de Rham 
omplexes of s
hemes, possibly with logarithmi
poles. More generally, we 
an 
onsider the de Rham 
omplexes with 
oeÆ
ients inmodules with integrable 
onne
tions. Many generalizations of this type have beenobtained: For Gauss-Manin 
oeÆ
ients [I5℄, of sheaves of Fontaine-La�aille [Fa2℄,of T -
rystals [Og2℄ (besides these last obje
ts providing a 
ommon generalizationof the previous two).C. Open problems.7.9. Let k be a perfe
t �eld of 
hara
teristi
 p > 0; X a smooth k-s
hemeof dimension d; X 0 the s
heme indu
ed from X by base 
hange by the Frobeniusautomorphism of k; F : X ! X 0 the relative Frobenius (3.1). We have seen in5.9 (1) (a) (with S = Spe
 k; T = Spe
W2(k)) that the following 
onditions areequivalent :(i) X 0 - or, that whi
h amounts to the same here, X - is lifted (by a smooth andproper s
heme) over W2(k);(ii) ��1F�
�X=k is de
omposable in D(X 0) (4.6);(iii) �<pF�
�X=k is de
omposable in D(X 0).We say that X is DR-de
omposable if F�
�X=k is de
omposable (in D(X 0)). Aswe have observed in 5.2, this 
ondition is equivalent, taking into a

ount the Cartierisomorphism (3.5), to the existen
e of an isomorphismM
iX0=k[�i℄ ��! F�
�X=kof D(X 0) indu
ing C�1 on Hi. The arguments of 5.6 and 5.8 show that:20In fa
t, Ogus has shown { albeit more diÆ
ult { that being given n � 1 and Z smooth andproper over Wn of dimension < p, then if Z admits a lifting (smooth and proper) over Wn+1, theHodge to de Rham spe
tral sequen
e of Z=Wn degenerates at E1 ([Og2℄ 8.2.6). This result trulygeneralizes 5.6.
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omposable, the Hodge to de Rham spe
tralsequen
e of X=k degenerates at E1.(b) If X is proje
tive over k, of pure dimension d, and DR-de
omposable, and if Lis an invertible ample sheaf over X , one has the vanishing results of Kodaira-Akizuki-Nakano (5.8.1) and (5.8.2).By virtue of the equivalen
e between 
onditions (i) and (ii) above, a ne
essary
ondition for that X is DR-de
omposable is that X is lifted overW2(k). A

ordingto [D-I℄, it is suÆ
ient if d � p (5.5 and 5.9 (3)). We are unaware if it is alwaystrue in general:Problem 7.10. Let X be a smooth k-s
heme of dimension d > p, liftable overW2(k). Is it the 
ase that X is DR-de
omposable ?7.11. Re
all (5.5.1) that if X and F lift over W2(k); X is DR-de
omposable;this is the 
ase if X is aÆne, or is a proje
tive spa
e over k. As indi
ated in [D-I℄2.6 (iv), if X is liftable over W2(k) and if, for any integer n � 1, the produ
tmorphism (
1X=k)
n ! 
nX=k admits a se
tion, then X is DR-de
omposable (see8.1 for a proof). This se
ond 
ondition is 
he
ked in parti
ular if X is parallelizable,i.e. if 
1X=k is a free OX -module (or, that whi
h amounts to the same, the tangentbundle TX=k, dual of 
1X=k, is trivial), therefore for example if X is an abelianvariety. By a theorem of Grothendie
k (
f. [Oo℄ and [I7℄ Appendix 1), any abelianvariety over k is lifted overW2(k) (and similarly overW (k)). Therefore any abelianvariety over k is DR-de
omposable. Another interesting 
lass of liftable k-s
hemes(over W (k)) is formed from 
omplete interse
tions in Prk (see the expose of Deligne(SGA 7 XI) for the de�nitions and basi
 properties of these obje
ts). But wedo not know if those are DR-de
omposable. The �rst unknown 
ase is that of a(smooth) quadri
 of dimension 3 in 
hara
teristi
 2. We also don't know if theGrassmannians, and more generally, 
ag varieties, whi
h are, albeit liftable overW (k), are DR-de
omposable (the only known example is proje
tive spa
e!).Problem 7.10, with \liftable over W2(k)" repla
ed by \liftable over W (k)", isalso an open problem. On the other hand, we 
an repla
e \liftable over W (k)"by \liftable over A", where A is a totally rami�ed extension of W (k) ( = ring of
omplete dis
rete valuations, �nite and 
at over W (k), with residue �eld k, and ofdegree > 1 overW (k)): Lang [L℄ has indeed 
onstru
ted in any 
hara
teristi
 p > 0,a smooth proje
tive k-surfa
e X liftable over su
h a ring A of degree 2 over W (k)su
h that the Hodge to de Rham spe
tral sequen
e of X=k does not degenerate atE1. 7.12. The de
omposition statements to whi
h we referred to at the end of 7.3apply in parti
ular to a smooth 
urve S over T = Spe
 k and with a s
heme Xover S having semi-stable redu
tion along a divisor with normal 
rossings E � S(therefore �etale over k), for whi
h 
ertain hypothesis of liftability modulo p2 aresatis�ed. More pre
isely, if we assume that:(i) There exists a lifting (E� � S�) of (E � S) over W2 = W2(k) (with S�smooth and E� a relative divisor with normal 
rossings, i.e. �etale over W2),admitting a lifting F� : S� ! S� of the Frobenius (absolute) of S su
h that(F�)�1(E�) = pE� 21,21This notation denotes the divisor indu
ed from E� by the raising to the p-th power of itslo
al equations.



139 8. appendix: parallelizability and ordinary(ii) f is lifted by f� : X� ! S� having semi-stable redu
tion along E�, then�<pF�!�X=S and �<pF�!�D (where D = E �S X) are de
omposable, (and there-fore F�!�X=S and F�!�D are also if X is of relative dimension < p over S).7.13. The relative result of !�D suggests the following problem of a di�erent
hara
teristi
. Now denote by S the spe
trum of W = W (k), and E = Spe
 k the
losed point of S. Let X be an S-s
heme. By analogy with the de�nition given in7.3, we say that X has semi-stable redu
tion if, lo
ally in the �etale topology (on Xand on S), X is smooth over the subs
heme of A nS = S[x1; : : : ; xn℄ with equationx1 � � �xn = p. Assume that X has semi-stable redu
tion. Then X is a regulars
heme, its �ber XK at the generi
 point Spe
K of S (K = the �eld of fra
tionsof W ) is smooth, and its �ber D = E �S X at the 
losed point is a \divisor withnormal 
rossings" in X . In this situation, we de�ne a 
omplex !�X=S analogousto (7.3.1), whi
h is the unique extension, with lo
ally free 
omponents of a �nitetype of the de Rham 
omplex of U over S, where U is the smooth open part of Xover S. If X = S[x1; : : : ; xn℄=(x1 � � �xn� p), the OX -module !1X=S , 
onsidered as asubsheaf of 
1XK=K , is identi�ed with (LOXdxi=xi)=OX(P dxi=xi). The 
omplex!�D, de�ned by the formula (7.3.6), has lo
ally free 
omponents of �nite type overD, and 
oin
ides with the de Rham 
omplex 
�D=k over the smooth open part ofD. One has !iX=S = �i!1X=S and !iD = �i!1D. A

ording to a result of Hyodo [Hy℄(generalized by Kato in [Ka2℄), the 
omplex !�D gives rise to a Cartier isomorphismC�1 : !iD0 ' HiF�!�D. The 
omplexes !�X=S and !�D play an important role in there
ent developments of the theory of p-adi
 periods (
f. [I4℄ for a general view).Problem 7.14. With the notation of 7.13, let X be a semi-stable S-s
hemewith �ber D at the 
losed point of S. Is it the 
ase that �<pF�!�D is de
omposable(in D(D0)) ?Note that the de
omposability of �<pF�!�D is equivalent to that of ��1F�!�D(same argument as in step C of the proof of 5.1). The answer is yes a

ording to5.5 if X is smooth over S. (NB. What was 
alled X (resp. S) in 5.5 is here D (resp.E).) The answer is still yes (for trivial 
ohomologi
al reasons (
f. 4.6 (a))) if X isaÆne, or if X is of relative dimension � 1. But the general 
ase is unknown.7.15. Finally, with regard to the vanishing theorem, we 
annot prove by themethods of 
hara
teristi
 p > 0, the 
lassi
al results of Grauert-Riemens
hneideror Kawamata-Viehmeg. Neither 
an we generalize 5.9 (5) in dimension > 2. See[E-V℄ for a dis
ussion of these questions.8. Appendix: parallelizability and ordinaryIn this se
tion, k denotes a perfe
t �eld of 
hara
teristi
 p > 0. We denote byWn = Wn(k) the ring of Witt ve
tors of length n over k. We begin by giving aproof of the result mentioned in 7.11:Proposition 8.1. Let X be a smooth k-s
heme. Assume that X lifts over W2and that for any n � 1, the produ
t morphism (
1X=k)
n ! 
nX=k admits a se
tion.Then X is DR-de
omposable (7.9).We will have need of the following lemma:
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heme over S; Z 0 a(smooth) lifting of X 0 over T . Let'1 : 
1X0=S [�1℄! F�
�X=Sbe the homomorphism '1Z0 of D(X 0) de�ned in step B of the proof of 5:1, and forn � 1,  n : (
1X0=S)
n[�n℄! F�
�X=Sthe 
omposite homomorphism � Æ ('1)L
n, where � : (F�
�X=S)L
n ! F�
�X=S isthe produ
t homomorphism. Likewise, we denote by � : (
1X0=S)
n ! 
nX0=S theprodu
t homomorphism. Then for any lo
al se
tion ! of (
1X0=S)
n, one hasHn n(!) = C�1 Æ �(!);where C�1 : 
nX0=S ! HnF�
�X=S is the Cartier isomorphism.Proof. It suÆ
es to show this for ! of the form !1 
 � � � 
 !n, where !i is alo
al se
tion of 
1X0=S . By fun
toriality in the Ei 2 D(X 0), of the produ
tH1E1 
 � � � 
 H1En ! Hn(E1 L
 � � � L
En); a1 
 � � � 
 an 7! a1 � � � an;one has Hn(('1)L
n)(!1 
 � � � 
 !n) = (H1'1)(!1) � � � (H1'1)(!n)in Hn((F�
�X=S)L
n). Sin
e H1'1 = C�1, it follows thatHn n(!1 
 � � � 
 !n) = C�1(!1) ^ � � � ^ C�1(!n)in HnF�
�X=S , and therefore thatHn n(!1 
 � � � 
 !n) = C�1(!1 ^ � � � ^ !n) = C�1 Æ �(!1 
 � � � 
 !n)by the multipli
ative property of the Cartier morphism.Proof of 8.1. Let us 
hoose for ea
h n, a se
tion s of the produ
t � :(
1X=k)
n ! 
nX=k. Still let � and s be the morphisms relative to X 0 whi
h resultfrom this. Let us 
hoose (
f. 3.9) a lifting Z 0 of X 0 over W2, and de�ne  n as in8.2, with '1 = '1Z0 . Let 'n : 
nX0=k[�n℄! F�
�X=Sbe the 
omposite morphism  n Æ s (where s still denotes, by abuse of notation, the
orresponding se
tion of (
1X=k [�1℄)
n ! 
nX=k[�n℄). It is a question of 
he
kingthat Hn'n = C�1. However, a

ording to 8.2, if a is a lo
al se
tion of 
nX0=k, thenHn'n(a) = (Hn n)(sa) = C�1(�sa) = C�1(a);that whi
h 
ompletes the proof.Corollary 8.3. Let X be a smooth parallelizable k-s
heme, i.e. su
h that theOX -module 
1X=k is free (of �nite type). Then for X to be DR-de
omposable, it isne
essary and suÆ
ient that X lifts over W2.



141 8. appendix: parallelizability and ordinaryProof. It suÆ
es to prove the suÆ
ien
y. One 
an assume that k is alge-brai
ally 
losed. Let us 
hoose a rational point x of X over k and an isomorphism� : 
1X=k ' f�E, where f : X ! Spe
 k is the proje
tion and E is the k-ve
torspa
e x�(
1X=k). Via �, a se
tion of the surje
tive homomorphism E
n ! �nEextends to a se
tion of (
1X=k)
n ! 
nX=k . Now apply 8.1.Re
all (5.5.1) the following de�nition:Definition 8.4. Let X be a smooth and proper k-s
heme. We say that X isordinary if for any (i; j), one has Hj(X;B
iX=k) = 0, where B
iX=k = d
i�1X=k isthe sheaf of boundaries in degree i, of the de Rham 
omplex.This 
ondition is equivalent to Hj(X 0; F�B
iX=k) = 0 for any (i; j). Re
all(3.6) that F�B
iX=k = BiF�
�X=k and F�Z
iX=k = ZiF�
�X=k are lo
ally free OX -modules of �nite type.8.5. For a given smooth and proper k-s
hemeX , there exists a link, highlightedby Mehta and Srinivas [Me-Sr℄, between the properties to be DR-de
omposable,parallelizable, and ordinary. This link expresses itself by the means of a 
on
ept
lose to that of DR-de
omposability, introdu
ed earlier by Mehta and Ramanathan[Me-Ra℄, whi
h is the following. We say that a smooth k-s
heme X is Frobenius-de
omposable (\Frobenius-split") if the 
anoni
al homomorphism OX0 ! F�OXadmits a retra
tion, i.e. the exa
t sequen
e of OX0-modules (
f. 3.5)(8.5.1) 0! OX0 ! F�OX d�! F�B
1X=k ! 0is split. We �rst observe that if X is Frobenius-de
omposable, X is liftable overW2(or, that whi
h amounts to the same (5.9 (1) (a)), �<pF�
�X=k is de
omposable):The obstru
tion to the lifting, whi
h is the 
lass of the extension0! OX0 ! F�OX d�! F�Z
1X=k C�! 
1X0=k ! 0;
omposed with (8.5.1) and the extension(8.5.2) 0! F�B
1X=k ! F�Z
1X=k C�! 
1X0=k ! 0;is zero. In general, we are unaware if \Frobenius-de
omposable" implies \DR-de
omposable". This is the 
ase a

ording to 8.3, if X is parallelizable. But the
onverse is false. Indeed one has the following result ([Me-Sr℄ 1.1): If X is a smoothand proper k-s
heme, parallelizable, then the following 
onditions are equivalent:(a) X is Frobenius de
omposable;(b) the extension (8.5.2) is split;(
) X is ordinary;(d) (forX of pure dimension d) the homomorphism F � : Hd(X 0;OX0)! Hd(X;OX)indu
ed by the Frobenius is an isomorphism.In parti
ular, if X is ordinary and parallelizable, X lifts over W2 (Nori-Srinivas([Me-Sr℄ Appendix) show in fa
t that for X proje
tive, X lifts to a smooth pro-je
tive s
heme over W ). Moreover { this is the prin
ipal result of [Me-Sr℄ { if k isalgebrai
ally 
losed and X 
onne
ted, there exists a Galois �etale lifting Y ! X oforder of a power of p su
h that Y is an abelian variety.If X is proje
tive and smooth over k, ordinary and parallelizable, Nori-Srinivas(lo
. 
it.) show more pre
isely that there exists a unique 
ouple (Z; FZ), where Z
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tive and smooth) of X over W2 (resp. Wn (n � 2 given), resp.W ) and FZ : Z ! Z 0 a lifting of F : X ! X 0, where Z 0 is the inverse image of Zby the Frobenius automorphism of W2 (resp. Wn, resp. W ). The existen
e anduniqueness of this lifting, said 
anoni
al, was �rst established by Serre-Tate [Se-Ta℄in the 
ase of abelian varieties. As indi
ated in 5.5.1, this result admits a 
onverse,without the assumption of parallelizability.Proposition 8.6. Let X be a smooth and proper k-s
heme. Assume that thereexists s
hemes Z and Z 0 lifting respe
tively X and X 0 over W2 and a W2-morphismG : Z ! Z 0 lifting F : X ! X 0 22. Then X is ordinary.This result was obtained independently by Nakkajima [Na℄.8.7. Proof of 8.6. Let G : Z ! Z 0 be a lifting of F and ' = 'G :L
iX0 [�i℄! F�
�X the asso
iated homomorphism of 
omplexes, de�ned in (5.3.1)(one omits =k from the notation of di�erentials). This homomorphism sends 
iX0into F�Z
iX (notation of 8.4) and splits the exa
t sequen
e (
f. 3.5)(8.7.1) 0! F�B
iX ! F�Z
iX C�! 
iX0 ! 0:We prove, by des
ending indu
tion on i, that H�(X;B
iX) = 0 (i.e. thatHn(X;B
iX) = 0 for all n). For i > dimX; B
iX = 0. Fix i and assume that weproved H�(X;B
jX) = 0 for j � i. Then we show that H�(X;B
i�1X ) = 0. By theexa
t 
ohomology sequen
e asso
iated to the exa
t sequen
e(8.7.2) 0! F�Z
i�1X ! F�
i�1X d�! F�B
iX ! 0;the indu
tion hypothesis implies that for any n, one hasHn(X 0; F�Z
i�1X ) ��! Hn(X;
i�1X );and therefore(8.7.3) dimHn(X 0; F�Z
i�1X ) = dimHn(X;
i�1X ) = dimHn(X 0;
i�1X0 ):The sequen
e (8.7.1) (relative to i� 1) being split, implies that the exa
t sequen
eof 
ohomology gives the short exa
t sequen
e0! Hn(X 0; F�B
i�1X )! Hn(X 0; F�Z
i�1X ) C�! Hn(X 0;
i�1X0 )! 0:The equality (8.7.3) implies that in this situation C is an isomorphism, and thereforethat Hn(X 0; F�B
i�1X ) = 0, whi
h 
on
ludes the proof.Remark 8.8. The reader familiar with logarithmi
 stru
tures will have ob-served that 8.6 and its proof extends to the 
ase where k is repla
ed by a loga-rithmi
 point k = (k;M) with underlying point k and X by a log s
heme X =(X;L) log smooth and of Cartier type over k ([Ka2℄), proper over k. If one as-sumes that (X;F ) is lifted over W2(k) (
f. [Hy-Ka℄ 3.1), then X is ordinary, i.e.Hj(X;B!iX) = 0 for all i and all j.
22We do not assume that Z0 is the inverse image of Z by the Frobenius of W2.
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