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Abstract. The goal of this work is to prove the regularity of certain quasi-plurisubharmonic
upper envelopes. Such envelopes appear in a natural way in the construction of hermitian
metrics with minimal singularities on a big line bundle over a compact complex manifold.
We prove that the complex Hessian forms of these envelopes are locally bounded outside
an analytic set of singularities. It is furthermore shown that a parametrized version of this
result yields a priori inequalities for the solution of the Dirichlet problem for a degener-
ate Monge-Ampère operator ; applications to geodesics in the space of Kähler metrics are
discussed. A similar technique provides a logarithmic modulus of continuity for Tsuji’s “su-
percanonical” metrics, which generalize a well-known construction of Narasimhan-Simha.

Résumé. Le but de ce travail est de démontrer la régularité de certaines enveloppes
supérieures de fonctions quasi-plurisousharmoniques. De telles enveloppes apparaissent na-
turellement dans la construction des métriques hermitiennes à singularités minimales sur
un fibré en droites gros au dessus d’une variété complexe compacte. Nous montrons que
ces enveloppes possèdent un Hessien complexe localement borné en dehors d’un ensemble
analytique de singularités ; par ailleurs, une version avec paramètres de ce résultat per-
met d’obtenir des inégalités a priori pour la solution du problème de Dirichlet relatif à un
opérateur de Monge-Ampère dégénéré. Une technique similaire fournit un module de conti-
nuité logarithmique pour les métriques “super-canoniques” de Tsuji, lesquelles généralisent
une construction bien connue de Narasimhan-Simha.
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1 Main regularity theorem

Let X be a compact complex manifold and ω a hermitian metric on X , viewed
as a smooth positive (1, 1)-form. As usual we put dc = 1

4iπ (∂ − ∂) so that
ddc = 1

2iπ∂∂. Consider the ddc-cohomology class {α} of a smooth real d-closed
form α of type (1, 1) on X [ in general, one has to consider the Bott-Chern
cohomology group for which boundaries are ddc-exact (1, 1)-forms ddcϕ, but
in the case X is Kähler, this group is isomorphic to the Dolbeault cohomology
group H1,1(X) ]. Recall that a function ψ is said to be quasi-plurisubharmonic
(or quasi-psh) if and only iddcψ is locally bounded from below, or equivalently,
if it can be written locally as a sum ψ = ϕ + u of a psh function ϕ and a
smooth function u. More precisely, it is said to be α-plurisubharmonic (or
α-psh) if α + ddcψ ≥ 0. We denote by PSH(X,α) the set of α-psh functions
on X .

(1.1) Definition. The class {α} ∈ H1,1(X,R) is said to be pseudo-effective
if it contains a closed (semi-)positive current T = α+ ddcψ ≥ 0, and big if it

contains a closed “Kähler current” T = α + ddcψ such that T ≥ εω > 0 for

some ε > 0.

From now on in this section, we assume that {α} is big. We know by
[Dem92] that we can then find T0 ∈ {α} of the form

(1.2) T0 = α+ ddcψ0 ≥ ε0ω

with a possibly slightly smaller ε0 > 0 than the ε in the definition, and ψ0 a
quasi-psh function with analytic singularities, i.e. locally

(1.3) ψ0 = c log
∑

|gj |
2 + u, where c > 0, u ∈ C∞, gj holomorphic.

By [DP04], X carries such a class {α} if and only if X is in the Fujiki class
C of smooth varieties which are bimeromorphic to compact Kähler manifolds.
Our main result is

(1.4) Theorem. Let X be a compact complex manifold in the Fujiki class C,

and let α be a smooth closed form of type (1, 1) on X such that the cohomology

class {α} is big. Pick T0 = α+ddcψ0 ∈ {α} satisfying (1.2) and (1.3) for some

hermitian metric ω on X, and let Z0 be the analytic set Z0 = ψ−1
0 (−∞). Then

the upper envelope

ϕ := sup
{
ψ ≤ 0, ψ α-psh

}

is a quasi-plurisubharmonic function which has locally bounded second or-

der derivatives ∂2ϕ/∂zj∂zk on X r Z0, and moreover, for suitable constants

C, B > 0, there is a global bound

|ddcϕ|ω ≤ C(|ψ0| + 1)2eB|ψ0|
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which explains how these derivatives blow up near Z0. In particular ϕ is C1,1−δ

on XrZ0 for every δ > 0, and the second derivatives D2ϕ are in Lploc(XrZ0)
for every p > 0.

An important special case is the situation where we have a hermitian line
bundle (L, hL) and α = ΘL,hL

, with the assumption that L is big, i.e. that
there exists a singular hermitian h0 = hLe

−ψ0 which has analytic singularities
and a curvature current ΘL,h0

= α + ddcψ0 ≥ ε0ω. We then infer that the
metric with minimal singularities hmin = hLe

−ϕ has the regularity properties
prescribed by Theorem 1.4 outside of the analytic set Z0 = ψ−1

0 (−∞). In fact,
[Ber07, Theorem 3.4 (a)] proves in this case the slightly stronger result that ϕ
in C1,1 on XrZ0 (using the fact that X is then Moishezon and that the total
space of L∗ has a lot of holomorphic vector fields). The present approach is
by necessity different, since we can no longer rely on the existence of vector
fields when X is not algebraic. Even then, our proof will be in fact somewhat
simpler.

Proof. Notice that in order to get a quasi-psh function ϕ we should a priori re-
place ϕ by its upper semi-continuous regularization ϕ∗(z) = lim supζ→z ϕ(ζ),
but since ϕ∗ ≤ 0 and ϕ∗ is α-psh as well, ψ = ϕ∗ contributes to the envelope
and therefore ϕ = ϕ∗. Without loss of generality, after substracting a constant
to ψ0, we may assume ψ0 ≤ 0. Then ψ0 contributes to the upper envelope and
therefore ϕ ≥ ψ0. This already implies that ϕ is locally bounded on X r Z0.
Following [Dem94], for every δ > 0, we consider the regularization operator

(1.5) ψ 7→ ρδψ

defined by ρδψ(z) = Ψ(z, δ) and

(1.6) Ψ(z, w) =

∫

ζ∈TX,z

ψ
(
exphz(wζ)

)
χ(|ζ|2) dVω(ζ), (z, w) ∈ X × C,

where exph : TX → X , TX,z ∋ ζ 7→ exphz(ζ) is the formal holomorphic part
of the Taylor expansion of the exponential map of the Chern connection on
TX associated with the metric ω, and χ : R → R+ is a smooth function with
support in ] −∞, 1] defined by

χ(t) =
C

(1 − t)2
exp

1

t− 1
for t < 1, χ(t) = 0 for t ≥ 1,

with C > 0 adjusted so that
∫
|x|≤1χ(|x|2) dx = 1 with respect to the Lebesgue

measure dx on Cn. Also, dVω(ζ) denotes the standard hermitian Lebesgue
measure on (TX , ω). Clearly Ψ(z, w) depends only on |w|. With the relevant
change of notation, the estimates proved in sections 3 and 4 of [Dem94] (see
especially Theorem 4.1 and estimates (4.3), (4.5) therein) show that if one as-
sumes α+ddcψ ≥ 0, there are constants δ0,K > 0 such that for (z, w) ∈ X × C
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[0, δ0] ∋ t 7→ Ψ(z, t) +Kt2 is increasing,(1.7)

α(z) + ddcΨ(z, w) ≥ −Aλ(z, |w|)|dz|2−K
(
|w|2|dz|2+|dz||dw|+|dw|2),(1.8)

where A = sup|ζ|≤1,|ξ|≤1{−cjkℓmζjζkξℓξm} is a bound for the negative part
of the curvature tensor (cjkℓm) of (TX , ω) and

(1.9) λ(z, t) =
d

d log t
(Ψ(z, t) +Kt2) −→

t→0+

ν(ψ, z) (Lelong number).

In fact, this is clear from [Dem94] if α = 0, and otherwise we simply apply
the above estimates (1.7–1.9) locally to u+ψ where u is a local potential of α
and then subtract the resulting regularization U(z, w) of u which is such that

(1.10) ddc(U(z, w) − u(z)) = O(|w|2|dz|2 + |w||dz||dw| + |dw|2)

because the left hand side is smooth and U(z, w) − u(z) = O(|w|2). As a
consequence, the regularization operator ρδ transforms quasi-psh functions
into quasi-psh functions, while providing very good control on the complex
Hessian. We exploit this, again quite similarly as in [Dem94], by introducing
the Kiselman-Legendre transform (cf. [Kis78, Kis94])

(1.11) ψc,δ(z) = inf
t∈]0,δ]

ρtψ(z) +Kt2 −Kδ2 − c log
t

δ
, c > 0, δ ∈ ]0, δ0].

We need the following basic lower bound on the Hessian form.

(1.12) Lemma. For all c > 0 and δ ∈ ]0, δ0] we have

α+ ddcψc,δ ≥ −
(
Amin

(
c, λ(z, δ)

)
+Kδ2

)
ω.

Proof of lemma. In general an infimum infη∈E u(z, η) of psh functions z 7→
u(z, η) is not psh, but this is the case if u(z, η) is psh with respect to (z, η) and
u(z, η) depends only on Re η – in which case it is actually a convex function
of Re η – this fundamental fact is known as Kiselman’s infimum principle.
We apply it here by putting w = eη and t = |w| = eRe η. At all points of
Ec(ψ) = {z ∈ X ; ν(ψ, z) ≥ c} the infinimum occurring in (1.11) is attained
at t = 0. However, for z ∈ X r Ec(ψ) it is attained for t = tmin where

{
tmin = δ if λ(z, δ) ≤ c,
tmin < δ such that c = λ(z, tmin) = d

dt (Ψ(z, t) +Kt2)t=tmin
if λ(z, δ) > c.

In a neighborhood of such a point z ∈ XrEc(ψ), the infimum coincides with
the infimum taken for t close to tmin, and all functions involved have (modulo
addition of α) a Hessian form bounded below by −(Aλ(z, tmin) + Kδ2)ω by
(1.8). Since λ(z, tmin) ≤ min(c, λ(z, δ)), we get the desired estimate on the
dense open set X r Ec(ψ) by Kiselman’s infimum principle. However ψc,δ is
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quasi-psh on X and Ec(ψ) is of measure zero, so the estimate is in fact valid
on all of X , in the sense of currents. ⊓⊔

We now proceed to complete the proof or Theorem 1.4. Lemma 1.12 implies
the more brutal estimate

(1.13) α+ ddcψc,δ ≥ −(Ac+Kδ2)ω for δ ∈ ]0, δ0].

Consider the convex linear combination

θ =
Ac+Kδ2

ε0
ψ0 +

(
1 −

Ac+Kδ2

ε0

)
ϕc,δ

where ϕ is the upper envelope of all α-psh functions ψ ≤ 0. Since α+ddcϕ ≥ 0,
(1.2) and (1.13) imply

α+ ddcθ ≥ (Ac+Kδ2)ω −

(
1 −

Ac+Kδ2

ε0

)
(Ac+Kδ2)ω ≥ 0.

Also ϕ ≤ 0 and therefore ϕc,δ ≤ ρδϕ ≤ 0 and θ ≤ 0 likewise. In particular θ
contributes to the envelope and as a consequence we get ϕ ≥ θ. Coming back
to the definition of ϕc,δ, we infer that for every point z ∈ X r Z0 and every
δ > 0, there exists t ∈ ]0, δ] such that

ϕ(z) ≥
Ac+Kδ2

ε0
ψ0(z) +

(
1 −

Ac+Kδ2

ε0

)
(ρtϕ(z) +Kt2 −Kδ2 − c log t/δ)

≥
Ac+Kδ2

ε0
ψ0(z) + (ρtϕ(z) +Kt2 −Kδ2 − c log t/δ)

(using the fact that the infimum is ≤ 0 and reached for some t ∈ ]0, δ], as
t 7→ ρtϕ(z) is bounded for z ∈ X r Z0). Therefore we get

(1.14) ρtϕ(z) +Kt2 ≤ ϕ(z) +Kδ2 − (Ac+Kδ2)ε−1
0 ψ0(z) + c log

t

δ
.

Since t 7→ ρtϕ(z)+Kt2 is increasing and equal to ϕ(z) for t = 0, we infer that

Kδ2 − (Ac+Kδ2)ε−1
0 ψ0(z) + c log

t

δ
≥ 0,

or equivalently, since ψ0 ≤ 0,

t ≥ δ exp
(
− (A+Kδ2/c)ε−1

0 |ψ0(z)| −Kδ2/c
)
.

Now, (1.14) implies the weaker estimate

ρtϕ(z) ≤ ϕ(z) +Kδ2 + (Ac+Kδ2)ε−1
0 |ψ0(z)|,

hence, by combining the last two inequalities, we get
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ρtϕ(z) − ϕ(z)

t2

≤ K

(
1 +

( Ac

Kδ2
+ 1

)
ε−1
0 |ψ0(z)|

)
exp

(
2
(
A+K

δ2

c

)
ε−1
0 |ψ0(z)| + 2K

δ2

c

)
.

We exploit this by letting 0 < t ≤ δ and c tend to 0, in such a way that
Ac/Kδ2 converges to a positive limit ℓ (if A = 0, just enlarge A slightly and
then let A→ 0). In this way we get for every ℓ > 0

lim inf
t→0+

ρtϕ(z) − ϕ(z)

t2

≤ K
(
1 + (ℓ+ 1)ε−1

0 |ψ0(z)|
)
exp

(
2A

(
(1 + ℓ−1)ε−1

0 |ψ0(z)| + ℓ−1
))
.

The special (essentially optimal) choice ℓ = ε−1
0 |ψ0(z)| + 1 yields

(1.15) lim inf
t→0+

ρtϕ(z) − ϕ(z)

t2
≤ K(ε−1

0 |ψ0(z)|+1)2 exp
(
2A(ε−1

0 |ψ0(z)|+1)
)
.

Now, putting as usual ν(ϕ, z, r) = 1
πn−1r2n−2/(n−1)!

∫
B(z,r)

∆ϕ(ζ) dζ, we infer

from estimate (4.5) of [Dem94] the Lelong-Jensen like inequality

ρtϕ(z) − ϕ(z) =

∫ t

0

d

dτ
Φ(z, τ) dτ

≥

∫ t

0

dτ

τ

( ∫

B(0,1)

ν(ϕ, z, τ |ζ|)χ(|ζ|2) dζ −O(τ2)

)

≥ c(a) ν(ϕ, z, at) − C2t
2 where a < 1, c(a) > 0 and C2 ≫ 1,

=
c′(a)

t2n−2

∫

B(z,at)

∆ϕ(ζ) dζ − C2t
2(1.16)

where the third line is obtained by integrating for τ ∈ [a1/2t, t] and for ζ in
the corona a1/2 < |ζ| < a1/4 (here we assume that χ is taken to be decreasing
with χ(t) > 0 for all t < 1, and we compute the laplacian ∆ in normalized
coordinates at z given by ζ 7→ exphz(ζ)). Hence by Lebesgue’s theorem on
the existence almost everywhere of the density of a positive measure (see e.g.
[Rud66], 7.14), we find

(1.17) lim
t→0+

1

t2
(
ρtϕ(z) − ϕ(z)

)
≥ c′′(∆ωϕ)ac(z) − C2 a.e. on X

where the ac subscript means the absolutely continuous part of the measure
∆ωϕ. By combining (1.15) and (1.17) and using the quasi-plurisubharmonicity
of ϕ we conclude that

|ddcϕ|ω ≤ ∆ωϕ+ C3 ≤ C (|ψ0| + 1)2 e2Aε
−1

0
ψ0(z) a.e. on X r Z0
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for some constant C > 0. There cannot be any singular measure part µ in ∆ωϕ
either, since we now that the Lebesgue density would then be equal to +∞
µ-a.e. ([Rud66], 7.15), in contradiction with (1.15). This gives the required
estimates for the complex derivatives ∂2ϕ/∂zj∂zk. The other real derivatives
∂2ϕ/∂xi∂xj are obtained from ∆ϕ =

∑
k ∂

2ϕ/∂zk∂zk via singular integral
operators, and it is well-known that these operate boundedly on Lp for all
p <∞. Theorem (1.4) follows. ⊓⊔

(1.18) Remark. The proof gave us in fact the very explicit value B = 2Aε−1
0 ,

where A is an upper bound of the negative part of the curvature of (TX , ω).
The slightly more refined estimates obtained in [Dem94] show that we could
even replace B by the possibly smaller constant Bη = 2(A′ + η)ε−1

0 where

A′ = sup
|ζ|=1, |ξ|=1, ζ⊥ξ

−cjkℓmζjζkξℓξm,

and the dependence of the other constants on η could then be made explicit.

(1.19) Remark. In Theorem (1.4), one can replace the assumption that α
is smooth by the assumption that α has L∞ coefficients. In fact, we used
the smoothness of α only as a cheap argument to get the validity of estimate
(1.10) for the local potentials u of α. However, the results of [Dem94] easily
imply the same estimates when α is L∞, as both u and −u are then quasi-psh;
this follows e.g. from (1.8) applied with respect to a smooth α∞ and ψ = ±u
if we observe that λ(z, |w|) = O(|w|2) when |ddcψ|ω is bounded. Therefore,
only the constant K will be affected in the proof.

2 Applications to volume and Monge-Ampère measures

Recall that the volume of a big class {α} is defined, in the work [Bou02] of
S. Boucksom, as

(2.1) Vol({α}) = sup
T

∫

Xrsing(T )

T n,

with T ranging over all positive currents in the class {α} with analytic sin-

gularities, whose locus is denoted by sing(T ). If the class is not big then the
volume is defined to be zero. With this definition, it is clear that {α} is big
precisely when Vol({α}) > 0.

Now fix a smooth representative α in a pseudo-effective class {α}. We then
obtain a uniquely defined α-plurisubharmonic function ϕ = ψmin ≥ 0 with
minimal singularities defined as in Theorem (1.4) by

(2.2) ϕ := sup
{
ψ ≤ 0, ψ α-psh

}
;
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notice that the supremum is non empty by our assumption that {α} is pseudo-
effective. If {α} is big and ψ is α-psh and locally bounded in the complement
of an analytic Z ⊂ X , one can define the Monge-Ampère measure MAα(ψ)
by

(2.3) MAα(ψ) := 1XrZ(α + ddcψ)n

as follows from the work of Bedford-Taylor [BT76, BT82]. In particular, if
{α} is big, there is a well-defined positive measure on MAα(ϕ) = MAα(ψmin)
on X ; its total mass coincides with Vol({α}), i.e.

Vol({α}) =

∫

X

MAα(ϕ)

(this follows from the comparison theorem and the fact that Monge-Ampère
measures of locally bounded psh functions do not carry mass on analytic sets ;
see e.g. [BEGZ08]). Next, notice that in general the α-psh envelope ϕ = ψmin

corresponds canonically to α, so we may associate to α the following subset
of X :

(2.4) D = {ϕ = 0}.

Since ϕ is upper semi-continuous, the set D is compact. Moreover, a sim-
ple application of the maximum principle shows that α ≥ 0 pointwise on D
(precisely as in Proposition 3.1 of [Ber07]: at any point z0 where α is not
semi-positive, we can find complex coordinates and a small ε > 0 such that
ϕ(z) − ε|z − z0|

2 is subharmonic near z0, using the fact that ddcϕ ≥ −α or
rather the induced inequality between traces, and so integrating over a small
ball Bδ centered at z0 gives ϕ(z0) − 0 ≤

∫
Bδ
ϕ(z) − ε|z − z0|

2 < 0, showing
that z0 is not in D.

In particular, 1Dα is a positive (1, 1)-form on X . From Theorem (1.4) we
infer

(2.5) Corollary. Assume that X is a Kähler manifold. For any smooth closed

form α of type (1, 1) in a pseudo-effective class and ϕ ≤ 0 the α-psh upper

envelope we have

(2.6) MAα(ϕ) = 1Dα
n, D = {ϕ = 0},

as measures on X (provided the left hand side is interpreted as a suitable weak

limit) and

(2.7) Vol({α}) =

∫

D

αn ≥ 0.

In particular, {α} is big if and only if
∫
D
αn > 0.
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Proof. Let ω be a Kähler metric on X . First assume that the class {α} is
big and let Z0 be the singularity set of some strictly positive representative
α + ddcψ0 ≥ εω with analytic singularities. By Theorem (1.4), α + ddcϕ
is in L∞

loc(X r Z0). In particular (see [Dem89]) the Monge-Ampère measure
(α + ddcϕ)n has a locally bounded density on X r Z0 with respect to ωn.
Since by definition the Monge-Ampère measure puts no mass on Z0, it is
enough to prove the identity (2.6) pointwise almost enerywhere on X . To
this end, one argues essentially as in [Ber07] (where the class was assumed
to be integral). First a well-known local argument based on the solution of
the Dirichlet problem for (ddc)n (see e.g. [BT76, BT82], and also Proposition
1.10 in [BB08]) proves that the Monge-Ampère measure (α + ddcϕ)n of the
envelope ϕ vanishes on the open set (XrZ0)rD (this only uses the fact that
α has continuous potentials and the continuity of ϕ on X r Z0). Moreover,
Theorem (1.4) implies that ϕ ∈ C1(X r Z0) and

(2.8)
∂2ϕ

∂xi∂xj
∈ Lploc

for any p ∈ ]1,∞[ and i, j ∈ [1, 2n]. Even if this is slightly weaker than
the situation in [Ber07], where it was shown that one can take p = ∞, the
argument given in [Ber07] still goes through. Indeed, by well-known properties
of measurable sets,D has Lebesgue density limr→0 λ(D∩B(x, r))/λ(B(x, r) =
1 at almost every point x ∈ D, and since ϕ = 0 on D, we conclude that
∂ϕ/∂xi = 0 at those points (if the density is 1, no open cone of vertex x can
be omitted and thus we can approach x from any direction by a sequence
xν → x). But the first derivative is Hölder continuous on D r Z0, hence
∂ϕ/∂xi = 0 everywhere on D r Z0. By repeating the argument for ∂ϕ/∂xi
which has a derivative in Lp (L1 would even be enough), we conclude from
Lebesgue’s theorem that ∂2ϕ/∂xi∂xj = 0 a.e. on DrZ0, hence α+ddcϕ = α
on D r E where the set E has measure zero with respect to ωn. This proves
formula (2.6) in the case of a big class.

Finally, assume that {α} is pseudo-effective but not big. For any given
positive number ε we let αε = α + εω and denote by Dε the corresponding
set (2.4). Clearly αε represents a big class. Moreover, by the continuity of the
volume function up to the boundary of the big cone [Bou02]

(2.9) Vol({αε}) → Vol({α}) ( = 0)

as ε tends to zero. Now observe that D ⊂ Dε (there are more (α + εω)-psh
functions than α-psh functions and so ϕ ≤ ϕε ≤ 0 ; clearly ϕε increases with
ε and ϕ = limε→0 ϕε ; compare with Proposition 3.3 in [Ber07]). Therefore

∫

D

αn ≤

∫

Dε

αn ≤

∫

Dε

αnε ,

where we used that α ≤ αε in the second step. Finally, since by the big
case treated above, the right hand side above is precisely Vol({αε}), letting
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ε tend to zero and using (2.9) proves that
∫
D
αn = 0 = Vol({α}) [and that

MAα(ϕ) = 0 if we interpret it as the limit of MAαε
(ϕε)]. This concludes the

proof. ⊓⊔
In the case when {α} is an integer class, i.e. when it is the first Chern class

c1(L) of a holomorphic line bundle L over X , the result of the corollary was
obtained in [Ber07] under the additional assumption that X be a projective

manifold – it was conjectured there that the result was also valid for integral
classes over non-projective Kähler manifold.

(2.10) Remark. In particular, the corollary shows that, if {α} is big, there is
always an α-plurisubharmonic function ϕ with minimal singularities such that
MAα(ϕ) has a L∞-density with respect to ωn. This is a very useful fact when
dealing with big classes which are not Kähler (see for example [BBGZ09]).

3 Application to regularity of a boundary value problem

and a variational principle

In this section we will see how the main theorem may be intepreted as a
regularity result for (1) a free boundary value problem for the Monge-Ampère
operator and (2) a variational principle. For simplicity we only consider the
case of a Kähler class.

3.1 A free boundary value problem for the Monge-Ampère
operator

Let (X,ω) be a Kähler manifold. Given a function f ∈ C2(X) consider the
following free boundary value problem





MAω(u) = 0 on Ω,

u = f on ∂Ω,

du = df

for a pair (u,Ω), where u is an ω-psh function on Ω which is in C1(Ω) and Ω is
an open set in X . We have used the notation ∂Ω := ΩrΩ, but no regularity
of the boundary is assumed. The reason why the set Ω is assumed to be part
of the solution is that, for a fixed Ω, the equations are overdetermined. Setting
u := ϕ + f and Ω := X r D where ϕ is the upper envelope with respect to
α := ddcf + ω, yields a solution. In fact, by Theorem (1.4) u ∈ C1,1−δ(Ω) for
any δ > 0.

3.2 A variational principle

Fix a form α in a Kähler class {α}, possessing continuous potentials. Consider
the following energy functional defined on the convex space PSH(X,α) ∩ L∞

of all α-psh functions which are bounded on X :
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(3.2.1) E [ψ] :=
1

n+ 1

n∑

j=0

∫

X

ψ(α + ddcψ)j ∧ αn−j

This functional seems to first have appeared, independently, in the work of
Aubin and Mabuchi in Kähler-Einstein geometry (in the case when α is a
Kähler form). More geometrically, up to an additive constant, E can be defined
as a primitive of the one form on PSH(X,α) ∩ L∞ defined by the measure
valued operator ψ 7→ MAα(ψ).

As shown in [BB08] (version 1) the following variational characterization of
the envelope ϕ holds:

(3.2.2) Proposition. The functional

ψ 7→ E [ψ] −

∫

X

ψ(α+ ddcψ)n

achieves its minimum value on the space PSH(X,α) ∩ L∞ precisely when ψ
is equal to the envelope ϕ (defined with respect to α). Moreover, the minimum

is achieved only at ϕ, up to an additive constant.

Hence, the main theorem above can be interpreted as a regularity result
for the functions in PSH(X,α) ∩ L∞ minimizing the functional (3.2.1) in
the case when α is assumed to have L∞

loc coefficients. More generally, a simi-
lar variational characterization of ϕ can be given the case of a big class [α]
[BBGZ09].

4 Degenerate Monge-Ampère equations and geodesics in

the space of Kähler metrics

Assume that (X,ω) is a compact Kähler manifold and that Σ is a Stein mani-
fold with strictly pseudoconvex boundary, i.e. Σ admits a smooth strictly psh
non-positive function ηΣ which vanishes precisely on ∂Σ. The corresponding
product manifold will be denoted by M := Σ ×X . By taking pull-backs, we
identify ηΣ with a function on M and ω with a semi-positive form on M . In
this way, we obtain a Kähler form ωM := ω + ddcηΣ on M . Given a function
f on M and a point s in Σ we use the notation fs := f(s, ·) for the induced
function on X .

Further, given a closed (1, 1) form α on M with bounded coefficients and
a continuous function f on ∂M , we define the upper envelope:

(4.1) ϕα,f := sup
{
ψ : ψ ∈ PSH(M,α) ∩C0(M), ψ∂M ≤ f

}
.

Note that when Σ is a point and f = 0 this definition coincides with the one
introduced in section 1. Also, when F is a smooth function on the whole of
M , the obvious translation ψ 7→ ψ′ = ψ − F yields the relation
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(4.2) ϕβ,f−F = ϕα,f − F where β = α+ ddcF.

The proof of the following lemma is a straightforward adaptation of the proof
of Bedford-Taylor [BT76] in the case when M is a strictly pseudoconvex do-
main in Cn.

(4.3) Lemma. Let α be a closed real (1, 1)-form on M with bounded coef-

ficients, such that α|{s}×X ≥ ε0ω is positive definite for all s ∈ Σ. Then

the corresponding envelope ϕ = ϕα,0 vanishes on the boundary of M and is

continuous on M . Moreover, MAα(ϕ) vanishes in the interior of M .

Proof. By (4.2) we have ϕα,0 = ϕβ,0 + CηΣ where β = α + CddcηΣ can
be taken to be positive definite on M for C ≫ 1, as is easily seen from
the Cauchy-Schwarz inequality and the hypotheses on α. Therefore, we can
assume without loss of generality that α is positive definite on M . Since 0 is a
candidate for the supremum defining ϕ it follows immediately that 0 ≤ ϕ and
hence ϕ∂M = 0. To see that ϕ is continuous on ∂M (from the inside) take an
arbitrary candidate ψ for the sup and observe that

ψ ≤ −CηΣ

for C ≫ 1, independent of ψ. Indeed, since ddcψ ≥ −α there is a large posi-
tive constant C such that the function ψ + CηΣ is strictly plurisubharmonic
on Σ × {x} for all x. Thus the inequality above follows from the maximum
principle applied to all slices Σ × {x}. All in all, taking the sup over all such
ψ gives

0 ≤ ϕ ≤ −CηΣ .

But since ηΣ|∂M = 0 and ηΣ is continuous it follows that ϕ(xi) → 0 = ϕ(x),
when xi → x ∈ ∂M .

Next, fix a compact subset K in the interior of M and ε > 0. Let
Mδ := {ηΣ < −δ} where δ is sufficiently small to make sure that K is con-
tained in M4δ. By the regularization results in [Dem92] or [Dem94], there
is a sequence ϕj in PSH(M,α − 2−jα) ∩ C0(Mδ/2) decreasing to the upper
semi-continuous regularization ϕ∗. By replacing ϕj with (1 − 2−j)−1ϕj , we
can even assume ϕj ∈ PSH(M,α) ∩ C0(Mδ/2). Put

ϕ′
j := max{ϕj − ε, CηΣ} on Mδ, and ϕ′

j := CηΣ on M rMδ.

On ∂Mδ we have CηΣ = −Cδ and we can take j so large that

ϕj < −CηΣ + ε/2 = Cδ + ε/2,

so we will have ϕj − ε < CηΣ as soon as 2Cδ ≤ ε/2. We simply take ε = 4Cδ.
Then ϕ′

j is a well defined continuous α-psh function on M , and ϕ′
j is equal to

ϕj − ε on K ⊂M4δ as CηΣ ≤ −4Cδ ≤ −ε ≤ ϕj − ε there. In particular, ϕ′
j is

a candidate for the sup defining ϕ, hence ϕ′
j ≤ ϕ ≤ ϕ∗ and so
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ϕ∗ ≤ ϕj ≤ ϕ′
j + ε ≤ ϕ∗ + ε

on K. This means that ϕj converges to ϕ uniformly on K and therefore ϕ is
continuous on K. All in all this shows that ϕ ∈ C0(M). The last statement of
the proposition follows from standard local considerations for envelopes due
to Bedford-Taylor [BT76] (see also the exposition made in [Dem89]). ⊓⊔

(4.4) Theorem. Let α be a closed real (1, 1)-form on M with bounded coef-

ficients, such that α|{s}×X ≥ ε0ω is positive definite for all s ∈ Σ. Consider

a continuous function f on ∂M such that fs ∈ PSH(X,αs) for all s ∈ ∂Σ.

Then the upper envelope ϕ = ϕα,f is the unique α-psh continuous solution of

the Dirichlet problem

(4.5) ϕ = f on ∂M, (ddcu+ α)dimM = 0 on the interior M◦.

Moreover, if f is C1,1 on ∂M then, for any s in Σ, the restriction ϕs of

ϕ on {s} × X has a ddc in L∞
loc. More precisely, we have a uniform bound

|ddcϕs|ω ≤ C a.e. on X, where C is a constant independent of s.

Proof. Without loss of generality, we may assume as in Lemma (4.4) that α
is positive definite on M . Also, after adding a positive constant to f , which
only has the effect of adding the same constant to ϕ = ϕα,f , we may suppose
that sup∂M f > 0 (this will simplify a little bit the arguments below).

Continuity. Let us first prove the continuity statement in the theorem. In
the case when f extends to a smooth function F in PSH(M, (1 − ε)α) the
statement follows immediately from (4.2) and Lemma (4.3) since

f − F = 0 on ∂M and β = α+ ddcF ≥ εα ≥ εε0ω.

Next, assume that f is smooth on ∂M and that fs ∈ PSH(X, (1 − ε)αs) for

all s ∈ ∂Σ. If we take a smooth extension f̃ of f to M and C ≫ 1, we will get

α+ ddc(f̃(x, s) + CηΣ(s)) ≥ (ε/2)α

on a sufficiently small neighborhood V of ∂M (again by using Cauchy-
Schwarz). Therefore, after enlarging C if necessary, we can define

F (x, s) = maxε(f̃(x, s) + CηΣ(s), 0)

with a regularized max function maxε, in such a way that the maximum is
equal to 0 on a neighborhood of M r V (C ≫ 1 being used to ensure that

f̃ + CηΣ < 0 on M r V ). Then F equals f on ∂M and satisfies

α+ ddcF ≥ (ε/2)α ≥ (εε0/2)ω

on M , and we can argue as previously. Finally, to handle the general case
where f is continuous with fs ∈ PSH(X,αs) for every s ∈ Σ, we may,
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by a parametrized version of Richberg’s regularization theorem applied to
(1 − 2−ν)f + C 2−ν (see e.g. [Dem91]), write f as a decreasing uniform limit
of smooth functions fν on ∂M satisfying fν,s ∈ PSH(X, (1 − 2−ν−1)αs) for
every s ∈ ∂Σ. Then ϕω,f is a decreasing uniform limit on M of the continu-
ous functions ϕω,fν

(as follows easily from the definition of ϕω,f as an upper
envelope). Observe also that the uniqueness of a continuous solution of the
Dirichlet problem (4.5) results from a standard application of the maximum
principle for the Monge-Ampère operator. This proves the general case of the
continuity statement.

Smoothness. Next, we turn to the proof of the smoothness statement. Since the
proof is a straightforward adaptation of the proof of the main regularity result
above we will just briefly indicate the relevant modification. Quite similarly
to what we did in section 1, we consider an α-psh function ψ with ψ ≤ f on
∂M , and introduce the fiberwise transform Ψs of ψs on each {s} ×X which
is defined in terms of the exponential map exph : TX → X , and we put

Ψ(z, s, t) = Ψs(z, t).

Then essentially the same calculations as in the previous case show that all
properties of Ψ are still valid with the constantK depending on the C1,1-norm
of the local potentials u(z, s) of α, the constant A depending only on ω and
with

∂Ψ(z, s, t)/∂(log t) := λ(z, s, t) → ν(ψs),

as t → 0+, where ν(ψs) is the Lelong number of the function ψs on X at z.
Moreover, the local vector valued differential dz should be replaced by the
differential d(z, s) = dz + ds in the previous formulas. Next, performing a
Kiselman-Legendre transform fiberwise we let

ψc,δ(z, s) := (ψs)c,δ(z)

Then, using a parametrized version of the estimates of [Dem94] and the prop-
erties of Ψ(z, s, w) as in section 1, arguments derived from Kiselman’s infimum
principle show that

(4.6) α+ ddcψc,δ ≥ (−Amin(c, λ(z, s, δ)) −Kδ2)ωM ≥ −(Ac+Kδ2)ωM ,

where ωM is the Kähler form on M . In addition to this, we have |ψc,δ − f | ≤
K ′δ2 on ∂M by the hypothesis that f is C1,1. For a sufficiently large constant
C1, we infer from this that θ = (1 − C1(Ac + Kδ2))ψc,δ satisfies θ ≤ f on
∂M (here we use the fact that f > 0 and hence that ψ0 ≡ 0 is a candidate
for the upper envelope). Moreover α + ddcθ ≥ 0 on M thanks to (4.6) and
the positivity of α. Therefore θ is a candidate for the upper envelope and so
θ ≤ ϕ = ϕf,α. Repeating the arguments of section 1 almost word by word,
we obtain for (ρtϕ)(z, s) := Φ(z, s, t) the analogue of estimate (1.15) which
reduces simply to
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lim inf
t→0+

ρtϕ(z, s) − ϕ(z, s)

t2
≤ C2,

as ψ0 ≡ 0 in the present situation. The final conclusion follows from (1.16)
and the related arguments already explained. ⊓⊔

In connection to the study of Wess-Zumino-Witten type equations [Don99],
[Don02] and geodesics in the space of Kähler metrics [Don99], [Don02], [Che00]
it is useful to formulate the result of the previous theorem as an extension
problem from ∂Σ, in the case when α(z, s) = ω(z) does not depend on s. To
this end, let F : ∂Σ → PSH(X,ω) be the map defined by F (s) = fs. Then the
previous theorem gives a continuous “maximal plurisubharmonic” extension
U of F to Σ, where U(s) := us so that U : ∂Σ → PSH(X,ω).

Let us next specialize to the case when Σ := A is an annulus R1 < |s| < R2

in C and the boundary data f(x, s) is invariant under rotations s 7→ s eiθ.
Denote by f0 and f1 the elements in PSH(X,ω) corresponding to the two
boundary circles of A. Then the previous theorem furnishes a continuous path
f t in PSH(X,ω), if we put t = log |s|, or rather t = log(|s|/R1)/ log(R2/R1)
to be precise. Following [PS08] the corresponding path of semi-positive forms
ωt := ω+ddcf t will be called a (generalized) geodesic in PSH(X,ω) (compare
also with Remark 4.8).

(4.7) Corollary. Assume that the semi-positive closed (1, 1) forms ω0 and

ω1 belong to the same Kähler class {ω} and have bounded coefficients. Then

the geodesic ωt connecting ω0 and ω1 is continuous on [0, 1] ×X, and there

is a constant C such that ωt ≤ Cω on X, i.e. ωt has uniformly bounded

coefficients.

In particular, the previous corollary shows that the space of all semi-
positive forms with bounded coefficients, in a given Kähler class, is “geodesi-
cally convex”.

(4.8) Remark. As shown in the work of Semmes, Mabuchi and Donaldson,
the space of Kähler metrics Hω in a given Kähler class {ω} admits a natural
Riemannian structure defined in the following way (see [Che00] and references
therein). First note that the map u 7→ ω + ddcu identifies Hω with the space
of all smooth and strictly ω-psh functions, modulo constants. Now identifying
the tangent space of Hω at the point ω + ddcu ∈ Hω with C∞(X)/R, the
squared norm of a tangent vector v at the point u is defined as

∫

X

v2(ω + ddcu)n/n!.

Then the potentials f t of any given geodesic ωt in Hω are in fact solutions
of the Dirichlet problem (4.5) above, with Σ an annulus and t := log |s|, see
[Che00]. However, the existence of a geodesic ut in Hω connecting any given
points u0 and u1 is an open and even dubious problem. In the case when Σ
is a Riemann surface, the boundary data f is smooth with αs + ddcfs > 0
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on X for s ∈ ∂Σ it was shown in [Che00] that the solution ϕ of the Dirichlet
problem (4.5) has a total Laplacian which is bounded on M . See also [Blo08]
for a detailed analysis of the proof in [Che00] and some refinements. On the
other hand it is not known whether αs + ddcϕs > 0 for all s ∈ Σ, even under
the assumption of rotational invariance which appears in the case of geodesics
as above. However, see [CT08] for results in this direction. A case similar
to the degenerate setting in the previous corollary was also considered very
recently in [PS08], building on [Blo08].

(4.9) Remark. Note that the assumption f ∈ C2(∂M) is not sufficient to
obtain uniform estimates on the total Laplacian on M with respect to ωM of
the envelope u up to the boundary. To see this let Σ be the unit-ball in C2

and write s = (s1, s2) ∈ C2. Then f(s) := (1 + Re s1)
2−ε is in C4−2ε(∂M)

and u(x, s) := f(s) is the continuous solution of the Dirichlet problem (4.5).
However, u is not in C1,1(M) at (x ; −1, 0) ∈ ∂M for any x ∈ X . Note that
this exemple is the trivial extension of the exemple in [CNS86] for the real
Monge-Ampère equation in the disc.

5 Regularity of “supercanonical” metrics

LetX be a compact complex manifold and (L, hL,γ) a holomorphic line bundle
over X equipped with a singular hermitian metric hL,γ = e−γhL with satisfies∫
e−γ < +∞ locally on X , where hL is a smooth metric on L. In fact, we

can more generally consider the case where (L, hL,γ) is a “hermitian R-line
bundle”; by this we mean that we have chosen a smooth real d-closed (1, 1)
form αL on X (whose ddc cohomology class is equal to c1(L)), and a specific
current TL,γ representing it, namely TL,γ = αL + ddcγ, such that γ is a
locally integrable function satisfying

∫
e−γ < +∞. An important special case

is obtained by considering a klt (Kawamata log terminal) effective divisor ∆.
In this situation ∆ =

∑
cj∆j with cj ∈ R, and if gj is a local generator of

the ideal sheaf O(−∆j) identifying it to the trivial invertible sheaf gjO, we
take γ =

∑
cj log |gj |

2, TL,γ =
∑
cj [∆j ] (current of integration on ∆) and αL

given by any smooth representative of the same ddc-cohomology class; the klt
condition precisely means that

(5.1)

∫

V

e−γ =

∫

V

∏
|gj |

−2cj < +∞

on a small neighborhood V of any point in the support |∆| =
⋃
∆j (condition

(5.1) implies cj < 1 for every j, and this in turn is sufficient to imply ∆ klt if
∆ is a normal crossing divisor; the line bundle L is then the real line bundle
O(∆), which makes sens as a genuine line bundle only if cj ∈ Z). For each klt
pair (X,∆) such that KX+∆ is pseudo-effective, H. Tsuji [Ts07a, Ts07b] has
introduced a “supercanonical metric” which generalizes the metric introduced
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by Narasimhan and Simha [NS68] for projective algebraic varieties with ample
canonical divisor. We take the opportunity to present here a simpler, more
direct and more general approach.

We assume from now on that KX +L is pseudo-effective, i.e. that the class
c1(KX) + {αL} is pseudo-effective, and under this condition, we are going
to define a “supercanonical metric” on KX + L. Select an arbitrary smooth
hermitian metric ω on X . We then find induced hermitian metrics hKX

on
KX and hKX+L = hKX

hL on KX + L, whose curvature is the smooth real
(1, 1)-form

α = ΘKX+L,hKX+L
= ΘKX ,ω + αL.

A singular hermitian metric on KX + L is a metric of the form hKX+L,ϕ =
e−ϕhKX+L where ϕ is locally integrable, and by the pseudo-effectivity as-
sumption, we can find quasi-psh functions ϕ such that α + ddcϕ ≥ 0. The
metrics on L and KX + L can now be “subtracted” to give rise to a metric

hL,γh
−1
KX+L,ϕ = eϕ−γhLh

−1
KX+L = eϕ−γh−1

KX
= eϕ−γdVω

on K−1
X = ΛnTX , since h−1

KX
= dVω is just the hermitian (n, n) volume form

on X . Therefore the integral
∫
X
hL,γh

−1
KX+L,ϕ has an intrinsic meaning, and

it makes sense to require that

(5.2)

∫

X

hL,γh
−1
KX+L,ϕ =

∫

X

eϕ−γdVω ≤ 1

in view of the fact that ϕ is locally bounded from above and of the assump-
tion

∫
e−γ < +∞. Observe that condition (5.2) can always be achieved by

subtracting a constant to ϕ. Now, we can generalize Tsuji’s supercanonical
metrics on klt pairs (cf. [Ts07b]) as follows.

(5.3) Definition. Let X be a compact complex manifold and let (L, hL) be

a hermitian R-line bundle on X associated with a smooth real closed (1, 1)
form αL. Assume that KX+L is pseudo-effective and that L is equipped with a

singular hermitian metric hL,γ = e−γhL such that
∫
e−γ < +∞ locally on X.

Take a hermitian metric ω on X and define α = ΘKX+L,hKX+L
= ΘKX ,ω+αL.

Then we define the supercanonical metric hcan of KX + L to be

hKX+L,can = inf
ϕ
hKX+L,ϕ i.e. hKX+L,can = e−ϕcanhKX+L, where

ϕcan(x) = sup
ϕ
ϕ(x) for all ϕ with α+ ddcϕ ≥ 0,

∫

X

eϕ−γdVω ≤ 1.

In particular, this gives a definition of the supercanonical metric onKX+∆
for every klt pair (X,∆) such that KX + ∆ is pseudo-effective, and as an
even more special case, a supercanonical metric on KX when KX is pseudo-
effective.
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In the sequel, we assume that γ has analytic singularities, otherwise not
much can be said. The mean value inequality then immediately shows that
the quasi-psh functions ϕ involved in definition (5.3) are globally uniformly
bounded outside of the poles of γ, and therefore everywhere on X , hence the
envelopes ϕcan = supϕ ϕ are indeed well defined and bounded above. As a
consequence, we get a “supercanonical” current Tcan = α + ddcϕcan ≥ 0 and
hKX+L,can satisfies

(5.4)

∫

X

hL,γh
−1
KX+L,can =

∫

X

eϕcan−γdVω < +∞.

It is easy to see that in Definition (5.3) the supremum is a maximum and
that ϕcan = (ϕcan)∗ everywhere, so that taking the upper semicontinuous
regularization is not needed. In fact if x0 ∈ X is given and we write

(ϕcan)∗(x0) = lim sup
x→x0

ϕcan(x) = lim
ν→+∞

ϕcan(xν) = lim
ν→+∞

ϕν(xν)

with suitable sequences xν → x0 and (ϕν) such that
∫
X
eϕν−γdVω ≤ 1, the

well-known weak compactness properties of quasi-psh functions in L1 topology
imply the existence of a subsequence of (ϕν) converging in L1 and almost
everywhere to a quasi-psh limit ϕ. Since

∫
X
eϕν−γdVω ≤ 1 holds true for

every ν, Fatou’s lemma implies that we have
∫
X e

ϕ−γdVω ≤ 1 in the limit. By
taking a subsequence, we can assume that ϕν → ϕ in L1(X). Then for every
ε > 0 the mean value −

∫
B(xν ,ε)

ϕν satisfies

−

∫

B(x0,ε)

ϕ = lim
ν→+∞

−

∫

B(xν ,ε)

ϕν ≥ lim
ν→+∞

ϕν(xν) = (ϕcan)∗(x0),

hence we get ϕ(x0) = limε→0 −
∫
B(x0,ε)

ϕ ≥ (ϕcan)∗(x0) ≥ ϕcan(x0), and there-

fore the sup is a maximum and ϕcan = ϕ∗
can.

By elaborating on this argument, we can infer certain regularity properties
of the envelope. However, there is no reason why the integral occurring in (5.4)
should be equal to 1 when we take the upper envelope. As a consequence,
neither the upper envelope nor its regularizations participate to the family
of admissible metrics. This is the reason why the estimates that we will be
able to obtain are much weaker than in the case of envelopes normalized by
a condition ϕ ≤ 0.

(5.5) Theorem. Let X be a compact complex manifold and (L, hL) a holo-

morphic R-line bundle such that KX + L is big. Assume that L is equipped

with a singular hermitian metric hL,γ = e−γhL with analytic singularities

such that
∫
e−γ < +∞ (klt condition). Denote by Z0 the set of poles of a

singular metric h0 = e−ψ0hKX+L with analytic singularities on KX + L and

by Zγ the poles of γ (assumed analytic). Then the associated supercanonical

metric hcan is continuous on X r (Z0 ∪ Zγ) and possesses some computable

logarithmic modulus of continuity.



Regularity of plurisubharmonic upper envelopes 19

Proof. With the notation already introduced, let hKX+L,ϕ = e−ϕhKX+L be a
singular hermitian metric such that its curvature satisfies α + ddcϕ ≥ 0 and∫
X e

ϕ−γdVω ≤ 1. We apply to ϕ the regularization procedure defined in (1.6).
Jensen’s inequality implies

eΦ(z,w) ≤

∫

ζ∈TX,z

eϕ(exphz(wζ)) χ(|ζ|2) dVω(ζ).

If we change variables by putting u = exphz(wζ), then in a neighborhood of
the diagonal of X ×X we have an inverse map logh : X ×X → TX such that
exphz(logh(z, u)) = u and we find for w small enough
∫

X

eΦ(z,w)−γ(z)dVω(z)

≤

∫

z∈X

( ∫

u∈X

eϕ(u)−γ(z)χ

(
| logh(z, u)|2

|w|2

)
1

|w|2n
dVω(logh(z, u))

)
dVω(z)

=

∫

u∈X

P (u,w) eϕ(u)−γ(u)dVω(u)

where P is a kernel on X ×D(0, δ0) such that

P (u,w) =

∫

z∈X

1

|w|2n
χ

(
| logh(z, u)|2

|w|2

)
eγ(u)−γ(z)dVω(logh(z, u))

dVω(u)
dVω(z).

Let us first assume that γ is smooth (the case where γ has logarithmic poles
will be considered later). Then a change of variable ζ = 1

w logh(z, u) shows
that P is smooth and we have P (u, 0) = 1. Since P (u,w) depends only on |w|
we infer

P (u,w) ≤ 1 + C0|w|
2

for w small. This shows that the integral of z 7→ eΦ(z,w)−C0|w|2 will be at most
equal to 1, and therefore if we define

(5.6) ϕc,δ(z) = inf
t∈]0,δ]

Φ(z, t) +Kt2 −Kδ2 − c log
t

δ

as in (1.10), the function ϕc,δ(z) ≤ Φ(z, δ) will also satisfy

(5.7)

∫

X

eϕc,δ(z)−C0δ
2−γ(z)dVω ≤ 1.

Now, thanks to the assumption that KX + L is big, there exists a quasi-psh
function ψ0 with analytic singularities such that α + ddcψ0 ≥ ε0ω. We can
assume

∫
X
eψ0−γdVω = 1 after adjusting ψ0 with a suitable constant. Consider

a pair of points x, y ∈ X . We take ϕ so that ϕ(x) = ϕcan(x) (this is possible
by the above discussion). We define

(5.8) ϕλ = log
(
λeψ0 + (1 − λ)eϕ

)
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with a suitable constant λ ∈ [0, 1/2] which will be fixed later, and obtain
in this way regularized functions Φλ(z, w) and ϕλ,c,δ(z). This is obviously a
compact family and therefore the associated constants K needed in (5.6) are
uniform in λ. Also, as in section 1, we have

(5.9) α+ ddcϕλ,c,δ ≥ −(Ac+Kδ2)ω for all δ ∈ ]0, δ0].

Finally, we consider the linear combination

(5.10) θ =
Ac+Kδ2

ε0
ψ0 +

(
1 −

Ac+Kδ2

ε0

)
(ϕλ,c,δ − C0δ

2).

Clearly,
∫
X
eϕλ−γdVω ≤ 1, and therefore θ also satisfies

∫
X
eθ−γdVω ≤ 1 by

Hölder’s inequality. Our linear combination is precisely taken so that α +
ddcθ ≥ 0. Therefore, by definition of ϕcan, we find that

(5.11) ϕcan ≥ θ =
Ac+Kδ2

ε0
ψ0 +

(
1 −

Ac+Kδ2

ε0

)
(ϕλ,c,δ − C0δ

2).

Assume x ∈ X r Z0, so that ϕλ(x) > −∞ and ν(ϕλ, x) = 0. In (5.6), the
infimum is reached either for t = δ or for t such that c = t ddt(Φλ(z, t) +Kt2).
The function t 7→ Φλ(z, t) + Kt2 is convex increasing in log t and tends to
ϕλ(z) as t→ 0. By convexity, this implies

c = t
d

dt
(Φλ(z, t) +Kt2) ≤

(Φλ(x, δ0) +Kδ20) − (Φλ(z, t) +Kt2)

log(δ0/t)

≤
C1 − ϕλ(x)

log(δ0/t)
≤
C1 + |ψ0(z)| + log(1/λ)

log(δ0/t)
,

hence

(5.12)
1

t
≤ max

(
1

δ
,

1

δ0
exp

(C1 + |ψ0(z)| + log(1/λ)

c

))
.

This shows that t cannot be too small when the infimum is reached. When t
is taken equal to the value which achieves the infimum for z = y, we find

(5.13) ϕλ,c,δ(y) = Φλ(y, t) +Kt2 −Kδ2 − c log
t

δ
≥ Φλ(y, t) +Kt2 −Kδ2.

Since z 7→ Φλ(z, t) is a convolution of ϕλ, we get a bound of the first order
derivative

|DzΦλ(z, t)| ≤ ‖ϕλ‖L1(X)
C2

t
≤
C3

t
,

and with respect to the geodesic distance d(x, y) we infer from this

(5.14) Φλ(y, t) ≥ Φλ(x, t) −
C3

t
d(x, y).
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A combination of (5.11), (5.13) and (5.14) yields

ϕcan(y) ≥
Ac+Kδ2

ε0
ψ0(y) +

(
1−

Ac+Kδ2

ε0

)(
Φλ(x, t)+Kt

2−Kδ2−
C3

t
d(x, y)

)

≥
Ac+Kδ2

ε0
ψ0(y) +

(
1 −

Ac+Kδ2

ε0

)(
ϕλ(x) −Kδ2 −

C3

t
d(x, y)

)

≥ log
(
λeψ0(x)+(1−λ)eϕ(x)

)
− C4

(
(c+δ2)(|ψ0(y)|+1)+

1

t
d(x, y)

)
,

≥ ϕcan(x) − C5

(
λ+(c+δ2)(|ψ0(y)|+1)+

1

t
d(x, y)

)
,

if we use the fact that ϕλ(x) ≤ C6, ϕ(x) = ϕcan(x) and log(1−λ) ≥ −(2 log 2)λ
for all λ ∈ [0, 1/2]. By exchanging the roles of x, y and using (5.12), we see
that for all c > 0, δ ∈ ]0, δ0] and λ ∈ ]0, 1/2], there is an inequality
(5.15)
∣∣ϕcan(y)− ϕcan(x)

∣∣ ≤ C5

(
λ+ (c+ δ2)

(
max(|ψ0(x)|, |ψ0(y)|) + 1

)
+

1

t
d(x, y)

)

where

(5.16)
1

t
≤ max

(
1

δ
,

1

δ0
exp

(C1 + max(|ψ0(x)|, |ψ0(y)|) + log(1/λ)

c

))
.

By taking c, δ and λ small, one easily sees that this implies the continuity of
ϕcan on X r Z0. More precisely, if we choose

δ = d(x, y)1/2, λ =
1

| log d(x, y)|
,

c =
C1+max(|ψ0(x)|, |ψ0(y)|)+

∣∣ log | log d(x, y)|
∣∣

log δ0/d(x, y)1/2

with d(x, y) < δ20 < 1, we get 1
t ≤ d(x, y)−1/2, whence an explicit (but cer-

tainly non optimal) modulus of continuity of the form

∣∣ϕcan(y) − ϕcan(x)
∣∣ ≤ C7

(
max(|ψ0(x)|, |ψ0(y)|) + 1

)2

∣∣ log | log d(x, y)|
∣∣ + 1

| log d(x, y)| + 1
.

When the weight γ has analytic singularities, the kernel P (u,w) is no longer
smooth and the volume estimate (5.7). In this case, we use a modification
µ : X̂ → X in such a way that the singularities of γ ◦ µ are divisorial, given
by a divisor with normal crossings. If we put

L̂ = µ∗L−K bX/X = µ∗L− E

(E the exceptional divisor), then we get an induced singular metric on L̂
which still satisfies the klt condition, and the corresponding supercanonical
metric on K bX + L̂ is just the pull-back by µ of the supercanonical metric on
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KX +L. This shows that we may assume from the start that the singularities
of γ are divisorial and given by a klt divisor ∆. In this case, a solution to the
problem is to introduce a complete hermitian metric ω̂ of uniformly bounded
curvature on X r |∆| by using the Poincaré metric on the punctured disc as
a local model transversally to the components of ∆. The Poincaré metric on
the punctured unit disc is given by

|dz|2

|z|2(log |z|)2

and the singularity of ω̂ along the component ∆j = {gj(z) = 0} of ∆ is given
by

ω̂ =
∑

−ddc log | log |gj || modC∞.

Since such a metric has bounded geometry and this is all that we need for the
calculations of [Dem94] to work, the estimates that we have made here are
still valid, especially the crucial lower bound α+ ddcϕλ,c,δ ≥ −(Ac+Kδ2) ω̂.
In order to compensate this loss of positivity, we need a quasi-psh function ψ̂0

such that α+ddcψ̂0 ≥ ε0ω̂, but such a lower bound is possible by adding terms
of the form −ε1 log | log |gj || to our previous quasi-psh function ψ0. Now, with
respect to the Poincaré metric, a δ-ball of center z0 in the punctured disc is
contained in the corona

|z0|
e−δ

< |z| < |z0|
eδ

,

and it is easy to see from there that the mean value of |z|−2a on a δ-ball
of center z0 is multiplied by at most |z0|

−2aδ. This implies that a function
of the form ϕ̂c,δ = ϕc,δ + C9δ

∑
log |gj| will actually give rise to an integral∫

X
eϕ̂c,δ−γdVω ≤ 1. We see that the term δ2 in (5.15) has to be replaced by a

term of the form

δ
∑

max
(
| log |gj(x)||, | log |gj(x)||

)
.

This is enough to obtain the continuity of ϕcan on X r (Z0 ∪ |∆|), as well as
an explicit logarithmic modulus of continuity. ⊓⊔

(5.17) Algebraic version. Since the klt condition is open and KX + L is
assumed to be big, we can always perturb L a little bit, and after blowing-up
X , assume that X is projective and that (L, hL,γ) is obtained as a sum of
Q-divisors

L = G+∆

where ∆ is klt and G is equipped with a smooth metric hG (from which hL,γ
is inferred, with ∆ as its poles, so that ΘL,hL,γ

= ΘG,LG
+ [∆]). Clearly this

situation is “dense” in what we have been considering before, just as Q is
dense in R. In this case, it is possible to give a more algebraic definition of the
supercanonical metric ϕcan, following the original idea of Narasimhan-Simha
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[NS68] (see also H. Tsuji [Ts07a]) – the case considered by these authors is
the special situation where G = 0, hG = 1 (and moreover ∆ = 0 and KX

ample, for [NS68]). In fact, if m is a large integer which is a multiple of the
denominators involved in G and ∆, we can consider sections

σ ∈ H0(X,m(KX +G+∆)).

We view them rather as sections of m(KX + G) with poles along the sup-
port |∆| of our divisor. Then (σ ∧ σ)1/mhG is a volume form with integrable
poles along |∆| (this is the klt condition for ∆). Therefore one can normalize
σ by requiring that ∫

X

(σ ∧ σ)1/mhG = 1.

Each of these sections defines a singular hermitian metric on KX + L =
KX +G+∆, and we can take the regularized upper envelope

(5.18) ϕalg
can =

(
sup
m,σ

1

m
log |σ|2hm

KX+L

)∗

of the weights associated with a smooth metric hKX+L. It is clear that
ϕalg

can ≤ ϕcan since the supremum is taken on the smaller set of weights
ϕ = 1

m log |σ|2hm
KX+L

, and the equalities

eϕ−γdVω = |σ|
2/m
hm

KX+L
e−γdVω

= (σ ∧ σ)1/me−γhL = (σ ∧ σ)1/mhL,γ = (σ ∧ σ)1/mhG

imply
∫
X
eϕ−γdVω ≤ 1. We claim that the inequality ϕalg

can ≤ ϕcan is an equa-
lity. The proof is an immediate consequence of the following statement based
in turn on the Ohsawa-Takegoshi theorem and the approximation technique
of [Dem92].

(5.19) Proposition. With L = G + ∆, ω, α = ΘKX+L,hKX+L
, γ as above

and KX + L assumed to be big, fix a singular hermitian metric e−ϕhKX+L

of curvature α + ddcϕ ≥ 0, such that
∫
X
eϕ−γdVω ≤ 1. Then ϕ is equal to a

regularized limit

ϕ =

(
lim sup
m→+∞

1

m
log |σm|2hm

KX+L

)∗

for a suitable sequence of sections σm ∈ H0(X,m(KX + G + ∆)) with∫
X(σm ∧ σm)1/mhG ≤ 1.

Proof. By our assumption, there exists a quasi-psh function ψ0 with analytic
singularity set Z0 such that

α+ ddcψ0 ≥ ε0ω > 0
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and we can assume
∫
C
eψ0−γdVω < 1 (the strict inequality will be useful later).

For m ≥ p ≥ 1, this defines a singular metric exp(−(m − p)ϕ − pψ0)h
m
KX+L

on m(KX + L) with curvature ≥ pε0ω, and therefore a singular metric

hL′ = exp(−(m− p)ϕ− pψ0)h
m
KX+Lh

−1
KX

on L′ = (m−1)KX +mL, whose curvature ΘL′,hL′ ≥ (pε0−C0)ω is arbitrary
large if p is large enough. Let us fix a finite covering of X by coordinate
balls. Pick a point x0 and one of the coordinate balls B containing x0. By
the Ohsawa-Takegoshi extension theorem applied on the ball B, we can find
a section σB of KX + L′ = m(KX + L) which has norm 1 at x0 with respect
to the metric hKX+L′ and

∫
B
|σB|

2
hKX+L′

dVω ≤ C1 for some uniform constant

C1 depending on the finite covering, but independent of m, p, x0 . Now, we
use a cut-off function θ(x) with θ(x) = 1 near x0 to truncate σB and solve a
∂-equation for (n, 1)-forms with values in L to get a global section σ onX with
|σ(x0)|hKX +L′ = 1. For this we need to multiply our metric by a truncated

factor exp(−2nθ(x) log |x − x0|) so as to get solutions of ∂ vanishing at x0.
However, this perturbs the curvature by bounded terms and we can absorb
them again by taking p larger. In this way we obtain

(5.20)

∫

X

|σ|2hKX+L′
dVω =

∫

X

|σ|2hm
KX+L

e−(m−p)ϕ−pψ0dVω ≤ C2.

Taking p > 1, the Hölder inequality for congugate exponents m, m
m−1 implies

∫

X

(σ ∧ σ)
1
mhG =

∫

X

|σ|
2/m
hm

KX+L
e−γdVω

=

∫

X

(
|σ|2hm

KX+L
e−(m−p)ϕ−pψ0

) 1
m

(
e(1−

p
m

)ϕ+ p
m
ψ0−γ

)
dVω

≤ C
1
m

2

(∫

X

(
e(1−

p
m

)ϕ+ p
m
ψ0−γ

) m
m−1

dVω

) m−1

m

≤ C
1
m

2

(∫

X

(
eϕ−γ

)m−p
m−1

(
e

p
p−1

(ψ0−γ)
) p−1

m−1

dVω

)m−1

m

≤ C
1
m

2

(∫

X

e
p

p−1
(ψ0−γ)dVω

) p−1

m

using the hypothesis
∫
X
eϕ−γdVω ≤ 1 and another application of Hölder’s

inequality. Since klt is an open condition and limp→+∞

∫
X e

p
p−1

(ψ0−γ)dVω =∫
X e

ψ0−γdVω < 1, we can take p large enough to ensure that

∫

X

e
p

p−1
(ψ0−γ)dVω ≤ C3 < 1.

Therefore, we see that
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∫

X

(σ ∧ σ)
1
mhG ≤ C

1
m

2 C
p−1

m

3 ≤ 1

for p large enough. On the other hand

|σ(x0)|
2
hKX+L′

= |σ(x0)|
2
hm

KX+L
e−(m−p)ϕ(x0)−pψ0(x0) = 1,

thus

(5.21)
1

m
log |σ(x0)|

2
hm

KX+L
=

(
1 −

p

m

)
ϕ(x0) +

p

m
ψ0(x0)

and, as a consequence

1

m
log |σ(x0)|

2
hm

KX+L
−→ ϕ(x0)

whenever m → +∞, p
m → 0, as long as ψ0(x0) > −∞. In the above argu-

ment, we can in fact interpolate in finitely many points x1, x2, . . . , xq pro-
vided that p ≥ C4q. Therefore if we take a suitable dense subset {xq} and a
“diagonal” sequence associated with sections σm ∈ H0(X,m(KX + L)) with
m≫ p = pm ≫ q = qm → +∞, we infer that

(5.22)

(
lim sup
m→+∞

1

m
log |σm(x)|2hm

KX +L

)∗

≥ lim sup
xq→x

ϕ(xq) = ϕ(x)

(the latter equality occurring if {xq} is suitably chosen with respect to ϕ). In
the other direction, (5.20) implies a mean value estimate

1

πnr2n/n!

∫

B(x,r)

|σ(z)|2hm
KX+L

dz ≤
C5

r2n
sup
B(x,r)

e(m−p)ϕ+pψ0

on every coordinate ball B(x, r) ⊂ X . The function |σm|2hm
KX+L

is plurisubhar-

monic after we correct the non necessarily positively curved smooth metric
hKX+L by a factor of the form exp(C6|z−x|

2), hence the mean value inequality
shows that

1

m
log |σm(x)|2hm

KX +L
≤

1

m
log

C5

r2n
+ C6r

2 + sup
B(x,r)

(
1 −

pm
m

)
ϕ+

pm
m
ψ0.

By taking in particular r = 1/m and letting m → +∞, pm/m → 0, we see
that the opposite of inequality (5.22) also holds. ⊓⊔

(5.23) Remark. We can rephrase our results in slightly different terms. In
fact, let us put

ϕalg
m = sup

σ

1

m
log |σ|2hm

KX +L
, σ ∈ H0(X,m(KX +G+∆)),

with normalized sections σ such that
∫
X(σ ∧ σ)1/mhG = 1. Then ϕalg

m is quasi-
psh (the supremum is taken over a compact set in a finite dimensional vector
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space) and by passing to the regularized supremum over all σ and all ϕ in
(5.21) we get

ϕcan ≥ ϕalg
m ≥

(
1 −

p

m

)
ϕcan(x) +

p

m
ψ0(x).

As ϕcan is bounded from above, we find in particular

0 ≤ ϕcan − ϕalg
m ≤

C

m
(|ψ0(x)| + 1).

This implies that (ϕalg
m ) converges uniformly to ϕcan on every compact subset

of X ⊂ Z0, and in this way we infer again (in a purely qualitative manner)
that ϕcan is continuous on X r Z0. Moreover, we also see that in (5.18) the
upper semicontinuous regularization is not needed on XrZ0 ; in case KX+L
is ample, it is not needed at all and we have uniform convergence of (ϕalg

m )
towards ϕcan on the whole of X . Obtaining such a uniform convergence when
KX+L is just big looks like a more delicate question, related e.g. to abundance
of KX + L on those subvarieties Y where the restriction (KX + L)|Y would
be e.g. nef but not big.

(5.24) Generalization. In the general case where L is a R-line bundle and
KX + L is merely pseudo-effective, a similar algebraic approximation can be
obtained. We take instead sections

σ ∈ H0(X,mKX + ⌊mG⌋ + ⌊m∆⌋ + pmA)

where (A, hA) is a positive line bundle,ΘA,hA
≥ ε0ω, and replace the definition

of ϕalg
can by

ϕalg
can =

(
lim sup
m→+∞

sup
σ

1

m
log |σ|2hmKX+⌊mG⌋+pmA

)∗

,(5.25)

∫

X

(σ ∧ σ)
2
mh

1
m

⌊mG⌋+pmA
≤ 1,(5.26)

where m≫ pm ≫ 1 and h
1/m
⌊mG⌋ is chosen to converge uniformly to hG.

We then find again ϕcan = ϕalg
can, with an almost identical proof – though

we no longer have a sup in the envelope, but just a lim sup. The analogue
of Proposition (5.19) also holds true in this context, with an appropriate
sequence of sections σm ∈ H0(X,mKX + ⌊mG⌋ + ⌊m∆⌋ + pmA).

(5.27) Remark. The envelopes considered in section 1 are envelopes con-
strained by an L∞ condition, while the present ones are constrained by an L1

condition. It is possible to interpolate and to consider envelopes constrained
by an Lp condition. More precisely, assuming that 1

pKX+L is pseudo-effective,
we look at metrics e−ϕh 1

p
KX+L and normalize them with the Lp condition
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∫

X

epϕ−γdVω ≤ 1.

This is actually an L1 condition for the induced metric on pL, and therefore
we can just apply the above after replacing L by pL. If we assume moreover
that L is pseudo-effective, it is clear that the Lp condition converges to the
L∞ condition ϕ ≤ 0, if we normalize γ by requiring that

∫
X
e−γdVω = 1.

(5.28) Remark. It would be nice to have a better understanding of the
supercanonical metrics. In case X is a curve, this should be easier. In fact X
then has a hermitian metric ω with constant curvature, which we normalize
by requiring that

∫
X ω = 1, and we can also suppose

∫
X e

−γω = 1. The class
λ = c1(KX + L) ≥ 0 is a number and we take α = λω. Our envelope is
ϕcan = supϕ where λω + ddcϕ ≥ 0 and

∫
X
eϕ−γω ≤ 1. If λ = 0 then ϕ must

be constant and clearly ϕcan = 0. Otherwise, if G(z, a) denotes the Green
function such that

∫
X
G(z, a)ω(z) = 0 and ddcG(z, a) = δa − ω(z), we find

ϕcan(z) ≥ sup
a∈X

(
λG(z, a) − log

∫

z∈X

eλG(z,a)−γ(z)ω(z)

)

by taking already the envelope over ϕ(z) = λG(z, a) − Const. It is natural to
ask whether this is always an equality, i.e. whether the extremal functions are
always given by one of the Green functions, especially when γ = 0.
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