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Theorem 1.1 (Yau). Let X be a 
ompa
t Kähler manifold of 
omplex di-mension n and let χ be a Kähler 
lass. Then for any smooth density v > 0on X su
h that ∫
X
v =

∫

X
χn, there exists a unique (smooth) Kähler metri


ω ∈ χ (i.e. ω = ω0 + i∂∂̄ϕ with ω0 ∈ χ ) su
h that ωn = (ω0 + i∂∂̄ϕ)n = v.Another breakthrough 
on
erning the study of 
omplex Monge-Ampère equa-tions was a
hieved by Bedford-Taylor [Be-Ta℄. They initiated a new methodfor the study of very degenerate 
omplex Monge-Ampère equations. In fa
t,by 
ombining these results, Koªodziej [Kol1℄ proved the existen
e of solutionsfor equations of type
(ω + i∂∂̄ϕ)n = v ,where ω a Kähler metri
 and v ≥ 0 a density in Lp or in some general Orli
zspa
es. However, in various geometri
 appli
ations, it is ne
essary to 
onsiderthe 
ase where ω is merely semipositive. This more di�
ult situation hasbeen examined �rst by Tsuji [Ts℄, and his te
hnique has been re
onsideredin the re
ent works [Ca-La℄, [Ti-Zha℄, [E-G-Z1℄ and [Pau℄.In this paper we push further the te
hniques developed so far and weobtain some very general and sharp results on the existen
e, uniqueness andregularity of the solutions of degenerate 
omplex Monge-Ampère equations.In order to de�ne the relevant 
on
ept of uniqueness of the solutions, weintrodu
e a suitable subset of the spa
e of 
losed (1, 1)-
urrents, namely thedomain of de�nition BT of the 
omplex Monge-Ampère operator �in the senseof Bedford-Taylor�: a 
urrent Θ is in BT if the the su

essive exterior powers
an be 
omputed as

Θk+1 = i∂∂̄(ϕΘk) ,where ϕ is a potential of Θ and ϕΘk is lo
ally of �nite mass. Then for everypseudoe�e
tive (1, 1)-
ohomology 
lass χ, we prove a monotone 
onvergen
eresult for exterior powers of 
urrents in the subset
BTχ := BT∩ χ .The uniqueness of the solutions of the degenerate 
omplex Monge-Ampèreequations in a reasonable 
lass of unbounded potentials has been a big issueand the obje
t of intensive studies, see e.g. [Ts℄, [Ti-Zha℄, [Blo1℄, [E-G-Z1℄.In this dire
tion, we introdu
e the subset
BTlog

χ ⊂ BTχ ,of (
losed positive) 
urrents T ∈ BTχ whi
h have a Monge-Ampère produ
t
T n possessing an L1-density su
h that

∫

X

− log(T n/Ω) Ω < +∞ ,2



for some smooth volume form Ω > 0. For example this is the 
ase when the
urrent T n possesses an L1-density with 
omplex analyti
 singularities (seeTheorem 6.1). We observe that the Ri

i operator is well de�ned in the 
lass
BTlog

χ .In the last se
tion we prove existen
e and �ne regularity properties of thesolutions of 
omplex Monge-Ampère equations with respe
t to a given degen-erate metri
 ω ≥ 0, when the right hand side possesses an L logn+ε L-densityor a density 
arrying 
omplex analyti
 singularities (see Theorems 6.2 and6.1). As a 
onsequen
e of this results, we derive the following generalizationof Yau's theorem.Theorem 1.2 Let X be a 
ompa
t Kähler manifold of 
omplex dimension nand let χ be a (1, 1)-
ohomology 
lass admitting a smooth 
losed semipositive
(1, 1)-form ω su
h that ∫

X
ωn > 0.(A) For any L logn+ε L-density v ≥ 0, ε > 0 su
h that ∫

X
v =

∫

X
χn, thereexists a unique 
losed positive 
urrent T ∈ BTχ su
h that T n = v. Moreover,this 
urrent possesses bounded lo
al potentials over X and 
ontinuous lo
alpotentials outside a 
omplex analyti
 set Σχ ⊂ X. This set depends only onthe 
lass χ and 
an be taken to be empty if the 
lass χ is Kähler.(B) In the spe
ial 
ase of a density v ≥ 0 possessing 
omplex analyti
 sin-gularities the 
urrent T is also smooth outside the 
omplex analyti
 subset

Σχ ∪ Z(v) ⊂ X, where Z(v) is the set of zeros and poles of v.The type of 
omplex Monge-Ampère equation solved in Theorem 6.1 is pre-
isely what is needed in order to 
onstru
t Kähler-Einstein metri
s over irre-du
ible singular Kähler spa
es with ample or trivial 
anoni
al sheaf. It 
anbe also used to 
onstru
t singular Kähler-Einstein metri
s over varieties ofgeneral type and to solve generalized equations of the form
Ric(ω) = −λω + ρ , λ ≥ 0 .The relevant L∞-estimate needed in the proof of Theorem 6.1 (in the 
aserelated with Kähler-Einstein metri
s) is obtained 
ombining the L∞-estimatein Statement (A) of Theorem 2.2 with an important iteration method in-vented by Yau [Yau℄ (see the Lemma 2.14). The main issue here is thatone 
an not use dire
tly the maximum prin
iple sin
e the referen
e metri
 isdegenerate.The proof of our Lapla
ian estimate in Theorem 6.1, whi
h is obtainedas a 
ombination of the ideas of in [Yau℄, [Ts℄, [Blo2℄, provides in parti
ular3



a drasti
 simpli�
ation of Yau's most general argument for 
omplex Monge-Ampère equations with degenerate right hand side. Moreover, it 
an beapplied immediately to 
ertain singular situations 
onsidered in [Pau℄ andit redu
es the Lapla
ian estimate in [Pau℄ to a quite simple 
onsequen
e(however, one should point out that the argument in [Pau℄ 
ontains a gapdue to the fa
t that the Lp-norm of the exponential exp(ψ1,ε − ψ2,ε) of ε-regularized quasi-plurisubharmoni
 fun
tions need not be uniformly boundedin ε under the assumption that exp(ψ1 −ψ2) is Lp, as our Lemma 5.4 
learlyshows if we do not 
hoose 
arefully the 
onstant A there). Theorem 6.1 givesalso some metri
 results for the geometry of varieties of general type. In thisdire
tion, we obtain the following results.Theorem 1.3 Let X be a smooth 
omplex proje
tive variety of general type.If the 
anoni
al bundle is nef, then there exists a unique 
losed positive 
ur-rent ω
E
∈ BTlog

2πc1(KX) solution of the Einstein equation
Ric(ω

E
) = − ω

E
. (1.1)This 
urrent possesses bounded lo
al potentials over X and de�nes a smoothKähler metri
 outside a 
omplex analyti
 subset Σ, whi
h is empty if andonly if the 
anoni
al bundle is ample.The existen
e part has been studied in [Ts℄, [Ca-La℄ and [Ti-Zha℄ by a Kähler-Ri

i �ow method. The importan
e of the uniqueness statement in Theorem1.3 is the following. If a 
urrent

ω
E
∈ BTlog

2πc1(KX)satis�es the Einstein equation (1.1) then it has bounded lo
al potentials. Inthe non nef 
ase we obtain the following statement.Theorem 1.4 Let X be a smooth variety of general type and let SB ⊂ Σ berespe
tively the stable and augmented stable base lo
us of the 
anoni
al bundle
KX . Then there exists a 
losed positive 
urrent ω

E
∈ 2πc1(KX) over X, withlo
ally bounded potentials over XrSB, solution of the Einstein equation (1.1)over X r SB, whi
h restri
ts to a smooth (non-degenerate) Kähler-Einsteinmetri
 over XrΣ. If ω

E
has minimal singularities, then ω

E
is unique in the
lass of 
urrents with minimal singularities in 2πc1(KX).Quite re
ently Tian and Koªodziej [Ti-Ko℄ proved a very parti
ular 
aseof our L∞-estimate. Their method, whi
h is 
ompletely di�erent, is basedon an idea developed in [De-Pa℄. Our L∞-estimate allows us to 
ompletelysolve the following 
onje
ture of Tian stated in [Ti-Ko℄.4



Conje
ture 1.5 Let (X,ωX) be a polarized 
ompa
t 
onne
ted Kähler man-ifold of 
omplex dimension n, let (Y, ωY ) be a 
ompa
t irredu
ible Kählerspa
e of 
omplex dimension m ≤ n, let π : X → Y be a surje
tive holo-morphi
 map and let 0 ≤ f ∈ L logn+ε L(X,ωnX), for some ε > 0 su
h that
1 =

∫

X
fωnX. Set Kt := {π∗ωY + tωX}

n > 0 for t ∈ (0, 1). Then the solutionsof the 
omplex Monge-Ampère equations
(π∗ωY + tωX + i∂∂̄ψt)

n = Kt f ω
n
X ,satisfy the uniform L∞-estimate Osc(ψt) := supX ψt − infX ψt ≤ C < +∞for all t ∈ (0, 1).The present manus
ript expands and 
ompletes a paper a

epted forpubli
ation in the International Journal of Mathemati
s, whi
h had to beshortened in view of the length of the manus
ript and of the demands ofreferees - in parti
ular it gives more details about the relation with the exis-ting litterature (see Appendix C).2 General L∞-estimates for the solutionsLet X be a 
ompa
t 
onne
ted 
omplex manifold of 
omplex dimension nand let γ be a 
losed real (1, 1)-
urrent with 
ontinuous lo
al potentials ora 
losed positive (1, 1)-
urrent with bounded lo
al potentials. Then to anydistribution Ψ on X su
h that γ + i∂∂̄Ψ ≥ 0 we 
an asso
iate a uniquelo
ally integrable and bounded from above fun
tion ψ : X → [−∞,+∞)su
h that the 
orresponding distribution 
oin
ides with Ψ and su
h that forany 
ontinuous or plurisubharmoni
 lo
al potential h of γ the fun
tion h+ψis plurisubharmoni
. The set of fun
tions ψ obtained in this way will bedenoted by Pγ . We set P0

γ := {ψ ∈ Pγ | supX ψ = 0}.De�nition 2.1 Let X be a 
ompa
t 
omplex manifold of 
omplex dimen-sion n. A 
losed positive (1, 1)-
urrent with bounded lo
al potentials su
hthat {γ}n :=
∫

X
γn > 0, will be 
alled big.If X is 
ompa
t Kähler, one knows by [De-Pa℄ that the 
lass {γ} is big if andonly if it 
ontains a Kähler 
urrent T = γ + i∂∂̄ψ ≥ εω (the inequality is inthe sense of 
urrents), for some Kähler metri
 ω on X and ε > 0.Basi
 fa
ts about Orli
z spa
es. Let P : R≥0 → R≥0, P (0) = 0, bea 
onvex in
reasing fun
tion and Ω > 0 be a smooth volume form over amanifold M and let X ⊂M be a Borel set of Ω-�nite volume. A

ording to5



[Ra-Re℄ we introdu
e the ve
tor spa
e
LP (X) :=

{

f : X → R ∪ {±∞} | ∃λ > 0 :

∫

X

P (|f |/λ) Ω < +∞

}

,(with the usual identi�
ation of fun
tions equal a.e.), equipped with the norm
‖f‖LP (X) := inf

{

λ > 0 |

∫

X

P (|f |/λ) Ω ≤ 1

}

.The spa
e LP (X) equipped with this norm is 
alled the Orli
z spa
e asso-
iated with the 
onvex fun
tion P . Moreover this norm is order preserving,i.e
‖f‖LP (X) ≤ ‖g‖LP (X) ,if |f | ≤ |g| a.e. If P (t) = |t|p, p ≥ 1, then LP (X) is the usual Lebesgue spa
e.More re�ned examples of Orli
z spa
es are given by the fun
tions
Pβ := t logβ(e+ t) ,and
Qβ := et

1/β

− 1 ,with β ≥ 1 . In these 
ases, we set
L logβ L(X) := LPβ(X) ,and
Exp1/β L(X) := LQβ(X) .An important 
lass of Orli
z spa
es is given by 
onsidering fun
tions P sat-isfying the �doubling property�: P (2t) ≤ 2CP (t) for some 
onstant C ≥ 1.This is the 
ase of the fun
tions |t|p and Pβ(t), but not the 
ase of Qβ(t). Forfun
tions satisfying the doubling 
ondition one has (see proposition 6 page77 in [Ra-Re℄)

LP (X) =

{

f : X → R ∪ {±∞} |

∫

X

P (|f |) Ω < +∞

}

,and
∫

X

P (‖f‖−1
LP (X)

|f |) Ω = 1for all f ∈ LP (X) r {0}. So in the parti
ular 
ase of the fun
tion Pβ, oneobtains the inequality
‖f‖L logβ L(X) ≤

∫

X

|f | logβ
(

e+ ‖f‖−1
L1(X)|f |

)

Ω , (2.1)6



sin
e ‖f‖L1(X) ≤ ‖f‖L logβ L(X). It is quite hard to get pre
ise estimates ofthe norm Exp1/β L(X), however it is easy to see that
‖1‖Exp1/β L(X) =

1

logβ(1 + 1/VolΩ(X))
. (2.2)The relation between the Orli
z spa
es L logβ L(X) and Exp1/β L(X) is ex-pressed by the Hölder inequality (see [Iw-Ma℄)

∣
∣
∣
∣

∫

X

fgΩ

∣
∣
∣
∣
≤ 2Cβ ‖f‖L logβ L(X) ‖g‖Exp1/β L(X) , (2.3)whi
h follows from the inequality xy ≤ Cβ(Pβ(x) + Qβ(y)) for all x, y ≥ 0.(Observe moreover that C1 = 1.)We de�ne the os
illation operator Osc := sup− inf . With the notationsso far introdu
ed we state the following result.Theorem 2.2 Let X be a 
ompa
t 
onne
ted Kähler manifold of 
omplexdimension n, let Ω > 0 be a smooth volume form, let γ be a big 
losed positive

(1, 1)-
urrent with 
ontinuous lo
al potentials. Let also ψ ∈ Pγ ∩ L
∞(X) bea solution of the degenerate 
omplex Monge-Ampère equation

(γ + i∂∂̄ψ)n = f Ω ,with f ∈ L logn+ε0 L(X) for some ε0 > 0. Then the following 
on
lusionshold.(A) There exists a uniform 
onstant C1 = C1(ε0, γ,Ω) > 0 su
h that for all
ε ∈ (0, ε0] we have an estimate

Osc(ψ) ≤ (C1/ε)
n2/ε Iγ,ε(f)

n
ε + 1 ,where

Iγ,ε(f) := {γ}−n
∫

X

f logn+ε
(
e+ {γ}−nf

)
Ω .(B) Assume that the solution ψ is normalized by the 
ondition supX ψ = 0and 
onsider also a solution ϕ ∈ Pγ ∩ L

∞(X), supX ϕ = 0 of the degenerate
omplex Monge-Ampère equation
(γ + i∂∂̄ϕ)n = gΩ ,7



with g ∈ L logn+ε0 L(X). Assume also Iγ,ε0(f), Iγ,ε0(g) ≤ K for some 
on-stant K > 0. Then there exists a 
onstant C2 = C2(ε0, γ,Ω, K) > 0 su
hthat
‖ϕ− ψ‖

L∞(X)
≤ 2C

α0

2

(

log ‖ϕ− ψ‖−1

L1(X,Ω)

)−α0

,

α0 :=
1

(n + 1 + n2/ε0)
,provided that the inequality ‖ϕ− ψ‖

L1(X,Ω)
≤ min{1/2, e−C2} holds.(C) Let (γt)t>0 be a family of 
urrents satisfying the same properties as γ,�x a �nite 
overing (Uα)α of 
oordinate starshaped open sets, and let us write

γt = i∂∂̄ht,α with ht,α plurisubharmoni
 over Uα, normalised by supUα ht,α =
0 and let C1,t := C1(ε0, γt,Ω), C2,t = C2(ε0, γt,Ω, K). Assume(C1) supt>0 maxα ‖ht,α‖L∞(Uα) < +∞ and(C2a) there exist a de
omposition of the type γt = θt+i∂∂̄ut, with θt smooth,
minX ut = 0, supt>0 maxX ut < +∞ and θt ≤ ({γt}

n)1/nω for some Kählermetri
 ω > 0 on X,or(C2b) the distributions γnt /Ω are represented by L1-fun
tions and
sup
t>0

{γt}
−n

∫

X

log
(
e+ {γt}

−nγnt /Ω
)
γnt < +∞ .Then supt>0 Cj,t < +∞ for j = 1, 2.Statement (C) will follow from the arguments of the proof of Statements (A)and (B) of Theorem 2.2.We start by proving a few basi
 fa
ts about pluripotential theory, in away whi
h is best adapted for the understanding of the proof of the theorem2.2. The reader 
an also 
onsult and 
ompare with the related results in[Be-Ta℄, [Dem1℄, [Dem2℄, [G-Z℄ and [Si
℄.Let X be a 
ompa
t 
omplex manifold of 
omplex dimension n, let γ bea big 
losed positive (1, 1)-
urrent with bounded lo
al potentials. Set

Pγ[0, 1] := {ϕ ∈ Pγ | 0 ≤ ϕ ≤ 1} ,

γϕ := γ + i∂∂̄ϕ and
Capγ(E) := sup

ϕ∈Pγ [0,1]

{γ}−n
∫

E

γnϕ ,8



for all Borel sets E ⊂ X. We remark that if (Ej)j , Ej ⊂ Ej+1 ⊂ X is afamily of Borel sets and E =
⋃

j Ej then 
learly, we have
Capγ(E) = lim

j→+∞
Capγ(Ej) . (2.4)Lemma 2.3 Let X be a 
ompa
t 
onne
ted 
omplex manifold of 
omplexdimension n, let γ be a 
losed real (1, 1)-
urrent with 
ontinuous lo
al poten-tials or a 
losed positive (1, 1)-
urrent with bounded lo
al potentials and let

Ω > 0 be a smooth volume form. Then there exist 
onstants α = α(γ,Ω) > 0,
C = C(γ,Ω) > 0 su
h that ∫

X
−ψΩ ≤ C and ∫

X
e−αψ Ω ≤ C for all ψ ∈ P0

γ .(We noti
e that the �rst inequality follows from the se
ond one.) The �rsttwo integral estimates of Lemma 2.3 are quite standard in the elementarytheory of plurisubharmoni
 fun
tions and the dependen
e of the 
onstants αand C on γ is only on the L∞ bound of its lo
al potentials (see e.g. [Hör℄ and[Skoda℄). To be more pre
ise in sight of the uniform estimate ∫
X
e−αψ Ω ≤ Cone 
an make the 
onstant α depending only on the 
ohomology 
lass of γas in [Ti1℄, but in this 
ase the 
onstant C will depend on the L∞ bound ofthe lo
al potentials of γ and on the volume form Ω. One 
an also make Cdepending only on the volume form Ω, but in this 
ase α will depend on the

L∞ bound of the lo
al potentials of γ and on the volume form Ω.The following lemma is the key te
hni
al tool whi
h allows to dedu
eStatement (C) of Theorem 2.2.Lemma 2.4 Let X be a 
ompa
t 
onne
ted Kähler manifold of 
omplex di-mension n and let γ be a big 
losed positive (1, 1)-
urrent with 
ontinuouslo
al potentials.(A) There exists a 
onstant C = C(γ) > 0 su
h that Capγ({ψ < −t}) ≤ C/tfor all ψ ∈ P0
γ and t > 0. Moreover the 
onstant C stays bounded for per-turbations of γ satisfying the hypothesis (C1) and (C2a) of Statement (C) inTheorem 2.2.(B) If γn/Ω ∈ L logL(X), for a smooth volume form Ω > 0 then the 
on-
lusion of Statement (A) holds with a 
onstant C = C(γ,Ω) > 0 whi
h staysbounded for perturbations of γ satisfying the hypothesis (C1) and (C2b) ofStatement (C) in Theorem 2.2.Proof. We �rst noti
e the obvious inequality

∫

ψ<−t

γnϕ ≤
1

t

∫

X

−ψ γnϕ

9



whi
h implies
Capγ({ψ < −t}) ≤

1

t
sup

ϕ∈Pγ [0,1]

{γ}−n
∫

X

−ψ γnϕ , (2.5)and we prove the following elementary 
laim.Claim 2.5 Let γ be a 
losed positive (1, 1)-
urrent with bounded lo
al po-tentials over a 
ompa
t 
omplex manifold X of 
omplex dimension n and let
ϕ, ψ ∈ Pγ su
h that 0 ≤ ϕ ≤ 1 and ψ ≤ 0. Then

∫

X

−ψ γnϕ ≤

∫

X

−ψ γn + n

∫

X

γn . (2.6)Proof. The fa
t that the 
urrent γ is positive implies ψc := max{ψ, c} ∈ Pγ ,
c ∈ R<0, so by the monotone 
onvergen
e theorem it is su�
ient to proveinequality (2.6) for ψ ∈ Pγ ∩ L∞(X). So assume this and let ω > 0 be ahermitian metri
 over X. By the regularization result of [Dem3℄ there existsa family of fun
tions (ψε)ε>0, ψε ∈ Pγ+εω ∩ C∞(X) su
h that ψε ↓ ψ as
ε → 0+. Consider now the integrals

Ij :=

∫

X

−ψ γj ∧ γn−jϕ ,for all j = 0, ..., n. Then Ij ≤ Ij+1 +
∫

X
γn. In fa
t by Stokes' formula

Ij = Ij+1 − lim
ε→0+

∫

X

ψε γ
j ∧ i∂∂̄ϕ ∧ γn−j−1

ϕ

= Ij+1 − lim
ε→0+

∫

X

i∂∂̄ψε ∧ ϕγ
j ∧ γn−j−1

ϕ

≤ Ij+1 +

∫

X

ϕγj+1 ∧ γn−j−1
ϕ ≤ Ij+1 +

∫

X

γn .In this way we dedu
e the required inequality I0 ≤ In + n
∫

X
γn. �The following 
laim will be very useful for the rest of the paper.Claim 2.6 Let (X,ω) be a polarized 
ompa
t 
onne
ted Kähler manifold of
omplex dimension n and let γ, T be 
losed positive (1, 1)-
urrents with 
on-tinuous (or more generally, bounded ) lo
al potentials. Then for all l = 0, ..., n

Cl := sup
ψ∈P0

γ

∫

X

−ψ T l ∧ ωn−l < +∞10



and γψ ∧ T l = T l ∧ γψ for all ψ ∈ Pγ.Proof. The proof of the 
onvergen
e of the 
onstants Cl goes by indu
tionon l = 0, ..., n. The statement is true for l = 0 by the �rst integral estimateof Lemma 2.3. So we assume it is true for l and we prove it for l + 1. Let
ψc := max{ψ, c} ∈ Pγ , c ∈ R<0. By the regularization result of [Dem3℄ we�nd (ψc,ε)ε>0, ψc,ε ∈ Pγ+εω ∩ C∞(X) su
h that ψc,ε ↓ ψc as ε → 0+. Let uswrite T = θ+ i∂∂̄u, with θ smooth, θ ≤ Kω and u bounded with infX u = 0.By using the monotone 
onvergen
e theorem and Stokes' formula, we expandthe integral

∫

X

−ψ T l+1 ∧ ωn−l−1 = lim
c→−∞

lim
ε→0+

∫

X

−ψc,ε T
l+1 ∧ ωn−l−1

= lim
c→−∞

lim
ε→0+





∫

X

−ψc,ε θ ∧ T
l ∧ ωn−l−1 −

∫

X

ψc,ε i∂∂̄u ∧ T
l ∧ ωn−l−1





≤ lim
c→−∞

lim
ε→0+





∫

X

−ψc,ε T
l ∧Kωn−l −

∫

X

u i∂∂̄ψc,ε ∧ T
l ∧ ωn−l−1





=

∫

X

−ψ T l ∧Kωn−l + lim
c→−∞

lim
ε→0+



−

∫

X

u (γψc,ε + εω) ∧ T l ∧ ωn−l−1

+

∫

X

u (γ + εω) ∧ T l ∧ ωn−l−1





≤ KCl + sup
X
u

∫

X

γ ∧ T l ∧ ωn−l−1 < +∞ ,by the indu
tive hypothesis. In sight of the symmetry of the exterior produ
twe remark that the de
reasing monotone 
onvergen
e theorem implies
lim
c→−∞

∫

X

(ψc − ψ)T l ∧ ωn−l = 0 ,whi
h means the 
onvergen
e of the mass ‖(ψc−ψ)T l‖ω(X) → 0 as c→ −∞,in parti
ular ψcT l → ψT weakly as c → −∞. So by the weak 
ontinuity ofthe i∂∂̄ operator we dedu
e
γψc ∧ T

l −→ γψ ∧ T l , (2.7)11



weakly as c→ −∞. Moreover the weak 
ontinuity of the i∂∂̄ operator impliesby indu
tion on l
T l ∧ γψc −→ T l ∧ γψ ,weakly as c→ −∞. This 
ombined with (2.7) implies γψ ∧ T l = T l ∧ γψ .�In the parti
ular 
ase T = γ big, the 
onstant

0 < C(γ) := n+ sup
ψ∈P0

γ

{γ}−n
∫

X

−ψ γn < +∞satis�es the 
apa
ity estimate of Statement (A) in Lemma 2.4, by inequality(2.5) and Claim 2.5. Thus if (γt)t>0 is a family satisfying the hypothesis
(C1) and (C2a) of Statement (C) in Theorem 2.2 and Kt = ({γt}

n)1/n, thenthe 
onstant C(γ) satis�es the stability properties of Statement (A) of theLemma 2.4, and we 
an use the indu
tion in the proof of Claim 2.6 with
T = γt, θ = θt, u = ut and K = Kt to get

C1 ≤ Kt

∫

X

−ψ ωn + sup
X
ut

∫

X

γt ∧ ω
n−1 ≤ Kt

∫

X

−ψ ωn +RKt

∫

X

ωn ,where R ≥ supX ut and in general
Cl+1 ≤ KtCl +R

∫

X

γl+1
t ∧ ωn−l−1 ≤ KtCl +RK l+1

t

∫

X

ωn .We dedu
e
Cn ≤ Kn

t

∫

X

−ψ ωn + nRKn
t

∫

X

ωn .We now prove Statement (B) of Lemma 2.4. In fa
t let f := {γ}−nγn/Ω ≥ 0.Then the uniform estimate for the integral
{γ}−n

∫

X

−ψ γn =
1

α

∫

X

−αψf Ωfollows from the elementary inequality −αψf ≤ e−αψ − 1 + f log(1 + f)
ombined with the uniform estimate ∫
X
e−αψΩ ≤ C of Lemma 2.3. In this
ase the required stability properties of the 
onstant C(γ,Ω) > 0 in the
apa
ity estimate are obvious. �

12



Lemma 2.7 (Comparison Prin
iple). Let X be a 
ompa
t 
omplex man-ifold of 
omplex dimension n and let γ be a 
losed real (1, 1)-
urrent withbounded lo
al potentials and 
onsider ϕ, ψ ∈ Pγ ∩ L
∞(X). Then

∫

ϕ<ψ

γnψ ≤

∫

ϕ<ψ

γnϕ .Proof. Let Θ :=
(
γ + i∂∂̄max{ϕ, ψ}

)n. By the inequality of measures
Θ ≥ I

ϕ≥ψ
γnϕ + I

ϕ<ψ
γnψ ,proved in [Dem1℄, we infer

∫

ϕ<ψ

Θ ≥

∫

ϕ<ψ

γnψ ,

∫

ϕ≥ψ

Θ ≥

∫

ϕ≥ψ

γnϕ .This 
ombined with Stokes' formula implies
∫

ϕ<ψ

γnψ ≤

∫

X

Θ −

∫

ϕ≥ψ

Θ ≤

∫

X

γnϕ −

∫

ϕ≥ψ

γnϕ =

∫

ϕ<ψ

γnϕ .

�We re
all now the following lemma due to Koªodziej [Kol1℄, (see also [Ti-Zhu1℄,[Ti-Zhu2℄).Lemma 2.8 Let a : (−∞, 0] → [0, 1], be a monotone non-de
reasing fun
-tion su
h that for some B > 0, δ > 0 the inequality
t a(s) ≤ B a(s+ t)1+δholds for all s ≤ 0, t ∈ [0, 1], s+t ≤ 0. Then for all S < 0 su
h that a(S) > 0and all D ∈ [0, 1], S +D ≤ 0 we have the estimate

D ≤ e(3 + 2/δ)B a(S +D)δ .The following lemma is a simple appli
ation of the main result in Bedford-Taylor [Be-Ta℄ and of the monotone in
reasing 
onvergen
e theorem in pluripo-tential theory.Lemma 2.9 Let X be a 
ompa
t 
onne
ted 
omplex manifold of 
omplexdimension n, let γ be a big 
losed positive (1, 1)-
urrent with 
ontinuous lo
al13



potentials and let Ω > 0 be a smooth volume form. Then there exist 
onstants
α = α(γ,Ω) > 0, C = C(γ,Ω) > 0 su
h that for all Borel sets E ⊂ X wehave

∫

E

Ω ≤ eαCe−α/Capγ(E)1/n . (2.8)In parti
ular Capγ(E) = 0 implies ∫
E

Ω = 0.Proof. It is su�
ient to prove this estimate for an arbitrary 
ompa
t set. Infa
t assume (2.8) for 
ompa
t sets and let (Kj)j, Kj ⊂ Kj+1 ⊂ E be a familyof 
ompa
t sets su
h that ∫
Kj

Ω →
∫

E
Ω as j → +∞. Set U := ∪jKj ⊂ Eand take the limit in (2.8) with E repla
ed by Kj. By (2.4) we dedu
e

∫

E

Ω ≤ eαCe−α/Capγ(U)1/n ≤ eαCe−α/Capγ(E)1/n .We prove now (2.8) for 
ompa
t sets K ⊂ X. For this purpose, 
onsider thefun
tion introdu
ed in [Si
℄, [G-Z℄
ΨK(x) := sup{ϕ(x) | ϕ ∈ Pγ , ϕ|K ≤ 0} .We remark that ΨK ≥ 0 over X and (ΨK)|K = 0 sin
e 0 ∈ Pγ by thepositivity assumption on γ. Assume

∫

K

Ω 6= 0 ,otherwise there is nothing to prove. In this 
ase there exists a 
onstant
CK > 0 su
h that supX ϕ ≤ CK for all ϕ ∈ Pγ , ϕ|K ≤ 0. In fa
t let

SK := {ϕ ∈ Pγ | ϕ|K ≤ 0}and set ϕ̃ := ϕ− supX ϕ. By 
ontradi
tion we would get a sequen
e ϕj ∈ SKsu
h that supX ϕj → +∞. This implies
sup
K
ϕ̃j → −∞and so ∫

K

−ϕ̃j Ω ≥ −

(∫

K

Ω

)

sup
K
ϕ̃j → +∞ ,whi
h 
ontradi
ts the �rst integral estimate of Lemma 2.3.Then it follows from quite standard lo
al arguments that the upper regular-ization Ψ∗

K ∈ Pγ. (Here we use the assumption that the lo
al potentials of14



γ are 
ontinuous.) Moreover Ψ∗
K ∈ L∞(X), Ψ∗

K ≥ 0 and Ψ∗
K = 0 over theinterior K0 of K.We re
all now the following well known 
onsequen
e of a result of Bedfordand Taylor [Be-Ta℄.Theorem 2.10 Let ϕ ∈ Pγ ∩ L

∞(X) and let B be an open 
oordinate ball.Then there exists ϕ̂ ∈ Pγ ∩L
∞(X), ϕ̂ ≥ ϕ su
h that γnϕ̂ = 0 on B and ϕ̂ = ϕon X rB. Moreover if ϕ1 ≤ ϕ2, then ϕ̂1 ≤ ϕ̂2.This implies the following quite standard fa
t in pluripotential theory [Si
℄,[Dem1℄, [G-Z℄.Corollary 2.11 Let K ⊂ X be a 
ompa
t set su
h that ∫

K
Ω 6= 0. Then theextremal fun
tion Ψ∗

K ∈ Pγ ∩ L
∞(X) satis�es Ψ∗

K ≥ 0 over X, Ψ∗
K = 0 overthe interior K0 of K and γnΨ∗

K
= 0 over X rK.Proof. By the 
lassi
al Choquet lemma there exists a sequen
e (ϕj)j ⊂ SK ,

ϕj ≥ 0 su
h that Ψ∗
K = (supj ϕj)

∗. We 
an assume that this sequen
e isin
reasing. Otherwise, set ϕ̃1 := ϕ1 and
ϕ̃j := max{ϕj , ϕ̃j−1} ∈ SK .Let B be an open 
oordinate ball in X rK and let ϕ̂j ∈ SK be a solution ofthe Diri
hlet problem γnϕ̂j = 0 over B as in Theorem 2.10. Thus the sequen
e

(ϕ̂j)j ⊂ SK is still in
reasing and Ψ∗
K = (supj ϕ̂j)

∗. Remember also that theplurisubharmoni
ity implies that Ψ∗
K = limj ϕ̂j almost everywhere. By themonotone in
reasing theorem from 
lassi
al pluripotential theory, we infer

γnΨ∗
K

= 0 on B, and the 
on
lusion follows from the fa
t that B is arbitrary.
�By using a basi
 fa
t about Lebesgue measure theory and the se
ond in-tegral estimate of Lemma 2.3 we get

∫

K

Ω =

∫

K0

Ω =

∫

K0

e−αΨ∗
K Ω ≤

∫

X

e−αΨ∗
K Ω ≤ Ce−α supX Ψ∗

K .Set AK := supX Ψ∗
K . If AK > 1 set ϕ := A−1

K Ψ∗
K . Then 0 ≤ γΨ∗

K
≤ AKγϕand so ϕ ∈ Pγ [0, 1]. By 
orollary 2.11 we dedu
e

{γ}nA−n
K = A−n

K

∫

K

γnΨ∗
K

≤

∫

K

γnϕ ≤ {γ}n Capγ(K ) ,15



thus −αAK ≤ −α/Capγ(K )1/n by the bigness assumption on the 
urrent
γ. If AK ≤ 1 then Ψ∗

K ∈ Pγ [0, 1] and so
1 = {γ}−n

∫

K

γnΨ∗
K

≤ Capγ(K ) ≤ Capγ(X) = 1 .In both 
ases we rea
h the required 
on
lusion. �Proof of Theorem 2.2, part A.We 
an assume supX ψ = 0. Let Us := {ψ < s}, s ≤ 0, t ∈ [0, 1], s + t ≤ 0,
ϕ ∈ Pγ [−1, 0] and set

V := {ψ − s− t < tϕ} .Then we have in
lusions Us ⊂ V ⊂ Us+t. By using the Comparison Prin
iple(2.7) we infer
tn
∫

Us

γnϕ ≤

∫

Us

γntϕ ≤

∫

V

γntϕ ≤

∫

V

γnψ ≤

∫

Us+t

γnψ ,thus 
ombining this with Hölder inequality in Orli
z spa
es (2.3), formula(2.2) and Lemma 2.9 we obtain
tn Capγ(Us) ≤ {γ}−n

∫

Us+t

γnψ = {γ}−n
∫

Us+t

f Ω

≤ {γ}−nCε0‖f‖L logn+ε L(X) · ‖1‖Exp
1

n+ε L(Us+t)

=
{γ}−nCε0‖f‖L logn+ε L(X)

logn+ε (1 + 1/VolΩ(Us+t))

≤
{γ}−nCε0‖f‖L logn+ε L(X)

logn+ε
(

1 + e−αC−1eα/Capγ(Us+t)1/n
)

≤ Cε0(k/α)n+ε{γ}−n‖f‖L logn+ε L(X) Capγ(Us+t)
(n+ε)/n .(Here the 
onstant C > 0 depends on the same quantities as the 
onstant C1in Statement A and k > 0 is a 
onstant su
h that

k−1α/x ≤ log(1 + e−αC−1eα/x) ,for all x ∈ (0, 1]). So if we set δ := ε/n and
B := C1/n

ε0
(k/α)1+ε/nIγ,ε(f)1/n ,16



we dedu
e that the fun
tion a(s) := Capγ(Us)
1/n, s ≤ 0, satis�es the hypoth-esis of Lemma 2.8. (We use here the inequality (2.1).) Consider now thefun
tion κ(t) := KδB tδ, with 
onstant Kδ := e(3+2/δ). Remember also theuniform 
apa
ity estimate

a(s) ≤ C (−s)−1/n ,of Lemma 2.4. Let now η > 1 be arbitrary. We 
laim that a(Sη) = 0 for
−Sη = Cn(KδB η)n/δ + 1 .The fa
t that the fun
tion a is left 
ontinuous (by formula (2.4)) will implythat a(S1) = 0 also. Remark that Sη is a solution of the equation
C(−Sη − 1)−1/n = κ−1(η−1) ,where κ−1 is the inverse of the fun
tion κ. So if we assume by 
ontradi
tionthat a(Sη) > 0 we dedu
e by Lemmas 2.8 and 2.4

1 ≤ κ(a(Sη + 1)) ≤ κ(C(−Sη − 1)−1/n) = η−1 < 1 ,whi
h is a 
ontradi
tion. Thus if we set −I := max{s ≤ 0 | a(s) = 0} weobtain
I ≤ −S1 ≤ Cn(KδB)n/δ + 1 ,whi
h by arranging the 
oe�
ients yields the right hand side of the estimatein Statement A of Theorem 2.2. Moreover by de�nition Capγ(U−I) = 0, thus

VolΩ(U−I) = 0 by Lemma 2.9. The fa
t that the 
urrent γ has 
ontinuouslo
al potentials implies that the fun
tion ψ is upper semi
ontinuous, so theset U−I is open, thus empty. This implies the required 
on
lusion. �Proof of part B.Set a := max{‖ϕ‖L∞(X), ‖ψ‖L∞(X)}, 
onsider θ ∈ Pγ[0, 1], s ≥ 0, t ∈ [0, 1]and set
V :=

{

ϕ <
t

1 + a
θ +

(

1 −
t

1 + a

)

ψ − s− t

}

.Then the obvious inequality 0 ≤ − t
1+a

ψ ≤ at
1+a

implies the in
lusions
{ϕ− ψ < −s− t} ⊂ V ⊂ {ϕ− ψ < −s}. Thus by applying the ComparisonPrin
iple (2.7) as in [Kol2℄ we obtain

tn

(1 + a)n

∫

ϕ−ψ<−s−t

γnθ ≤

∫

V

[
t

1 + a
γθ +

(

1 −
t

1 + a

)

γψ

]n

≤

∫

V

γnϕ ≤

∫

ϕ−ψ<−s

γnϕ .17



By inverting the roles of ϕ and ψ in the previous inequality and by summingup we get
tn

(1 + a)n

∫

|ϕ−ψ|>s+t

γnθ ≤

∫

|ϕ−ψ|>s

(f + g) Ω .By taking the supremum over θ we obtain the 
apa
ity estimate
tn Capγ(|ϕ− ψ| > s+ t) ≤ (1 + a)n{γ}−n

∫

|ϕ−ψ|>s

(f + g) Ω , (2.9)for all s ≥ 0, t ∈ [0, 1]. Set Us := {|ϕ− ψ| > s} ⊂ X. By 
ombining Lemma2.9 with a 
omputation similar to the one in the proof of part A we obtain
tn Capγ(Us+t) ≤ (1 + a)n{γ}−nC ′

ε0‖f + g‖L logn+ε0 L(X) Capγ(Us)
(n+ε0)/n

≤ Bn Capγ(Us)
(n+ε0)/n ,where the 
onstant B > 0 depends on the same quantities as the 
onstant

C2 in Statement (B) of Theorem 2.2. We dedu
e that the fun
tion a(s) :=
Capγ(U−s)

1/n, s ≤ 0, satis�es the hypothesis of Lemma 2.8 with δ = ε0/n. Onthe other hand, the 
apa
ity estimate (2.9) 
ombined with Hölder's inequalityin Orli
z spa
es implies for all t ∈ [0, 1] the inequalities
tn Capγ(|ϕ− ψ| > 2t) ≤ (1 + a)n{γ}−n

∫

|ϕ−ψ|>t

(f + g) Ω

≤
(1 + a)n{γ}−n

t

∫

X

|ϕ− ψ|(f + g) Ω

≤
2(1 + a)n{γ}−n

t
‖ϕ− ψ‖ExpL(X)‖f + g‖L logL(X)

≤
4K(1 + a)n

t
‖ϕ− ψ‖ExpL(X) . (2.10)Claim 2.12 If ‖ϕ−ψ‖L1(X) ≤ 1/2, then there exists a 
onstant Ca > 0 su
hthat

‖ϕ− ψ‖ExpL(X) ≤ Ca/ log ‖ϕ− ψ‖−1
L1(X) .Proof. We assume ‖ϕ−ψ‖L1(X) > 0, otherwise there is nothing to prove. Set

Ck,a := k(e2a/k − 1)/(2a) ,18



k > 0. Then for all k > 0 and all x ∈ [0, 2a/k] the inequality ex − 1 ≤ Ck,a xholds. Thus the inequality |ϕ− ψ|/k ≤ 2a/k implies
∫

X

(
e|ϕ−ψ|/k − 1

)
Ω ≤ Ck,a

∫

X

|ϕ− ψ|

k
Ω .We get from there the impli
ation

‖ϕ− ψ‖L1(X) = k/Ck,a =⇒ ‖ϕ− ψ‖ExpL(X) ≤ k , (2.11)sin
e by de�nition
‖ϕ− ψ‖ExpL(X) := inf






k > 0 |

∫

X

(
e|ϕ−ψ|/k − 1

)
Ω ≤ 1






.So if we set µ(k) := k/Ck,a > 0 we dedu
e by the impli
ation (2.11)

‖ϕ− ψ‖ExpL(X) ≤ µ−1
(
‖ϕ− ψ‖L1(X)

)
, (2.12)where µ−1 : R>0 → R>0 is the inverse fun
tion of µ. Expli
itly

µ−1(y) = 2a/ log(1 + 2a/y) ,for all y > 0. Now there exists a 
onstant Ca > 0 su
h that
µ−1(y) ≤ Ca/ log(1/y) ,for all y ∈ (0, 1/2]. This 
ombined with (2.12) implies the 
on
lusion. �Combining Claim 2.12 with the estimate (2.10) we infer the 
apa
ity es-timate

a(−t) ≤
C

t1+1/n

(

log ‖ϕ− ψ‖−1
L1(X)

)−1/n

, (2.13)where the 
onstant C > 0 depends on the same quantities as the 
onstant
C2 in Statement B. Set now C2 := Cn(2KδB)n/δ > 0 (with Kδ > 0 as in theproof of Statement (A)) and de�ne

t := Cα0
2

(

log ‖ϕ− ψ‖−1
L1(X)

)−α0

.The hypothesis t ∈ (0, 1] 
ombined with the hypothesis of Claim 2.12 for
esthe 
ondition ‖ϕ− ψ‖L1(X) ≤ min{1/2, e−C2}. Moreover t is solution of theequation
C

t1+1/n

(

log ‖ϕ− ψ‖−1
L1(X)

)−1/n

= κ−1

(
t

2

)

,19



where κ−1 is the inverse of the fun
tion κ introdu
ed in the proof of part A.We 
laim that a(−2t) = 0. Otherwise, by Lemma 2.8 and inequality (2.13),we infer
0 < t ≤ κ(a(−t)) ≤ κ(κ−1(t/2)) = t/2 ,whi
h is absurd. We dedu
e

VolΩ(|ϕ− ψ| > 2t) = 0by Lemma 2.9. We prove now that the set
U2t = {|ϕ− ψ| > 2t} ⊂ X ,is empty, whi
h will imply the desired L∞-stability estimate. The fa
t that

|ϕ− ψ| ≤ 2t a.e. over X, implies
∣
∣
∣
∣
−

∫

B(x,r)

(ϕ− ψ) dλ

∣
∣
∣
∣
≤ 2t ,for all 
oordinate open balls B(x, r) ⊂ X. (The symbol −

∫

B
represents themean value operator.) By elementary properties of plurisubharmoni
 fun
-tions follows

ϕ(x) − ψ(x) = lim
r→0+

−

∫

B(x,r)

(ϕ− ψ) dλ ,for all x ∈ X. We infer |ϕ− ψ| ≤ 2t over X. �Corollary 2.13 Let (X,ω) be a polarized 
ompa
t 
onne
ted n-dimensionalKähler manifold, Ω > 0 a smooth volume form and γ ≥ 0 a big 
losed smooth
(1, 1)-form. Take also f ∈ L logn+δ L(X), δ > 0, su
h that ∫

X
γn =

∫

X
f Ωand let (fε)ε>0 ⊂ C∞(X) be a family 
onverging to f in the L logn+δ L(X)-norm as ε→ 0+, satisfying the integral 
ondition

∫

X

(γ + εω)n =

∫

X

fε Ω . (2.14)Then, for any real number λ ≥ 0, the unique solution of the non-degenerate
omplex Monge-Ampère equation
(γ + εω + i∂∂̄ψε)

n = fε e
λψεΩ , (2.15)given by the Aubin-Yau solution of the Calabi 
onje
ture (whi
h in the 
ase

λ = 0 is normalized by maxX ψε = 0) satis�es the uniform L∞-estimate
‖ψε‖L∞(X) ≤ C(δ, γ,Ω) Iγ,δ(f)

n
δ + 1.20



Proof. The existen
e of a regularizing family fε of f in L logn+δ L(X) followsfrom [Ra-Re℄ page 364 or [Iw-Ma℄, Theorem 4.12.2, page 79. We 
an alwaysassume the integral 
ondition (2.14) otherwise we multiply fε by a 
onstant
cε > 0 whi
h 
onverges to 1 by the normalizing 
ondition ∫

X
γn =

∫

X
f Ω.We distinguish two 
ases.Case λ = 0. The hypothesis (C1) and (C2a) of Statement (C) of Theo-rem 2.2 are obviously satis�ed for the family (γ + εω)ε. We dedu
e that the
onstant C1 = C1(δ , γ + εω , Ω) > 0 in the Statement of Theorem 2.2, Adoes not blow up as ε→ 0+. Moreover the uniform estimate

‖fε‖L logn+δ L(X) ≤ C ′‖f‖L logn+δ L(X) =: K (2.16)holds for all ε ∈ (0, 1). Thus by Theorem 2.2, A we obtain the requireduniform estimate ‖ψε‖L∞(X) ≤ C := C(δ, γ,Ω) Iγ,δ(f)
n
δ + 1.Case λ > 0. We start by proving the following lemma, whi
h is a parti-
ular 
ase of a more general result due to Yau (see [Yau℄, se
t. 6, page 376).Lemma 2.14 Let (X,ω) be a polarized 
ompa
t Kähler manifold of 
omplexdimension n, let h be a smooth fun
tion su
h that ∫
X
ωn =

∫

X
ehωn and let

ϕ ∈ Pω be the unique solution of the 
omplex Monge-Ampère equation
(ω + i∂∂̄ϕ)n = eh+λϕωn , (2.17)

λ > 0. Consider also two solutions ϕ′, ϕ′′ ∈ Pω of the 
omplex Monge-Ampère equation (ω + i∂∂̄ψ)n = ehωn su
h that minX ϕ
′ = 0 = maxX ϕ

′′.Then ϕ′′ ≤ ϕ ≤ ϕ′.Proof. The argument is a simpli�
ation, in our parti
ular 
ase, of Yau'soriginal argument for the proof of Theorem 4, se
t. 6 in [Yau℄. Set ϕ′
0 :=

ϕ′, ϕ′′
0 := ϕ′′ and 
onsider the solutions ϕ′

j, ϕ
′′
j of the 
omplex Monge-Ampèreequations given by the iteration

(ω + i∂∂̄ϕ′
j)
n = eh+(λ+1)ϕ′

j−ϕ
′
j−1 ωn , (2.18)

(ω + i∂∂̄ϕ′′
j )
n = eh+(λ+1)ϕ′′

j−ϕ
′′
j−1 ωn . (2.19)Noti
e that we 
an solve these equations even if the terms eh−ϕ′

j−1 , eh−ϕ′′
j−1are not normalized, see Lemma 2 page 378 in [Yau℄. Set L := λ + 1 and
onsider

(ω + i∂∂̄ϕ′
1)
n = eh+L(ϕ′

1−ϕ
′
0)+λϕ

′
0ωn ≥ eL(ϕ′

1−ϕ
′
0)ehωn = eL(ϕ′

1−ϕ
′
0)(ω + i∂∂̄ϕ′

0)
n .21



At a maximum point of ϕ′
1 − ϕ′

0 we have the inequality
(ω + i∂∂̄ϕ′

0)
n ≥ (ω + i∂∂̄ϕ′

1)
n .By plugging this into the previous one, we dedu
e ϕ′
1 ≤ ϕ′

0. We now prove byindu
tion the inequality ϕ′
j ≤ ϕ′

j−1. In fa
t by dividing (2.18)j with (2.18)j−1we get
(ω + i∂∂̄ϕ′

j)
n

(ω + i∂∂̄ϕ′
j−1)

n
= eL(ϕ′

j−ϕ
′
j−1)−(ϕ′

j−1−ϕ
′
j−2) ≥ eL(ϕ′

j−ϕ
′
j−1) .At a maximum point of ϕ′

j − ϕ′
j−1 we �nd again the inequality

(ω + i∂∂̄ϕ′
j)
n ≤ (ω + i∂∂̄ϕ′

j−1)
n .Combining this with the previous one we dedu
e ϕ′
j ≤ ϕ′

j−1. By applying aquite similar argument to (2.19) we obtain also ϕ′′
j−1 ≤ ϕ′′

j . We also proveby indu
tion the inequality ϕ′′
j ≤ ϕ′

j, whi
h is true by de�nition in the 
ase
j = 0. By dividing (2.18)j with (2.19)j we get

(ω + i∂∂̄ϕ′
j)
n

(ω + i∂∂̄ϕ′′
j )
n

= eL(ϕ′
j−ϕ

′′
j )−(ϕ′

j−1−ϕ
′′
j−1) ≤ eL(ϕ′

j−ϕ
′′
j ) ,by the indu
tion hypothesis ϕ′′

j−1 ≤ ϕ′
j−1. At a minimum point of ϕ′

j − ϕ′′
jwe get

(ω + i∂∂̄ϕ′
j)
n ≥ (ω + i∂∂̄ϕ′′

j )
n ,hen
e ϕ′′

j ≤ ϕ′
j. As a 
on
lusion, we have proved the sequen
e of inequalities

ϕ′′
0 ≤ ϕ′′

j−1 ≤ ϕ′′
j ≤ ϕ′

j ≤ ϕ′
j−1 ≤ ϕ′

0 . (2.20)We now prove a uniform estimate for the Lapla
ian of the potentials ϕ′
j . Theinequalities 2.20 imply 0 < 2n + ∆ωϕ

′
j ≤ C Bj, where Bj > 0 satis�es theuniform estimate

0 ≥ C1B
1

n−1

j −
(

2n+ max
X

∆ωϕ
′
j−1

)

B−1
j − C0 , (2.21)

C0, C1 > 0, whi
h is obtained by applying the maximum prin
iple in asimilar way as in Yau's proof of the se
ond order estimate for the solution ofthe Calabi 
onje
ture [Yau℄. (It 
an also be obtained by setting δ = l = h = 0and ω̃ε = ω in step (B) in the proof of Theorem 6.1, (see Appendix B). In the
ase n = 1 the uniform estimate 0 < 2n + ∆ωϕ
′
j ≤ C ′ follows immediately22



from the inequalities (2.20).) Fix now a 
onstant C2 > 0 su
h that theinequality
C1 x

1+ 1
n−1 ≥ (C0 + 2C)x− C2 ,holds for all x ≥ 0. This implies by (2.21) the estimate

2(2n+ ∆ωϕ
′
j) ≤ 2C Bj ≤

(

2n+ max
X

∆ωϕ
′
j−1

)

+ C2 ,thus
2n+ max

X
∆ωϕ

′
j ≤ 2−j

(

2n+ max
X

∆ωϕ
′
0

)

+ C2 ,by iteration. By taking the derivative in the Green Formula (see [Aub℄, Th.4.13 page 108) we get the identity
dxϕ

′
j = −

∫

X

dxGω(x, ·) ∆ωϕ
′
j ω

n ,whi
h implies the estimate
|∇ωϕ

′
j |ω ≤ Cω max

X
∆ωϕ

′
j ≤ K .By applying the 
omplex version of the Evans-Krylov theory [Ti2℄ we de-du
e the uniform estimate ‖ϕ′

j‖C2,α(X) ≤ K ′. This 
ombined with (2.18)implies that the monotone sequen
e (ϕ′
j)j 
onverges in the C2,α-topology tothe unique solution ϕ of the 
omplex Monge-Ampère equation (2.17). Thenthe 
on
lusion follows from the inequalities (2.20). �Consider now the solutions ψ′

ε, ψ′′
ε , minX ψ

′
ε = 0 = maxX ψ

′′
ε of the 
om-plex Monge-Ampère equation (2.15) for λ = 0. By applying Lemma 2.14 wededu
e ψ′′

ε ≤ ψε ≤ ψ′
ε for all ε > 0. By the argument in the 
ase λ = 0, weinfer ‖ψ′

ε‖L∞(X), ‖ψ
′′
ε‖L∞(X) ≤ C, thus ‖ψε‖L∞(X) ≤ C. �3 Currents with Bedford-Taylor type singular-itiesIn the situation we have to 
onsider, the relevant 
lass of 
urrents whi
h 
anbe used as the input of Monge-Ampère operators is de�ned as follows.De�nition 3.1 On a 
omplex manifold, we 
onsider the 
lass BT of 
losedpositive (1, 1)-
urrents Θ whose exterior produ
ts Θk, 0 ≤ k ≤ n, 
an bede�ned indu
tively in the sense of Bedford-Taylor, namely, if Θ = i∂∂̄ψon any open set, then ψΘk is lo
ally of �nite mass and Θk+1 = i∂∂̄(ψΘk)for k < n. 23



Noti
e that the lo
al �niteness of the mass of ψΘk is independent ofthe 
hoi
e of the psh potential ψ, and that this assumption allows indeedto 
ompute indu
tively i∂∂̄(ψΘk) in the sense of 
urrents. Now, if χ is a
(1, 1)-
ohomology 
lass, we set

BTχ = BT∩ χ. (3.1)Let γ ≥ 0 be a 
losed positive (1, 1)-
urrent with 
ontinuous lo
al potentials.We de�ne 
orresponding 
lasses of potentials
P BTγ :=

{
ϕ ∈ Pγ | γ + i∂∂̄ϕ ∈ BT{γ}

}
,

P BT0
γ := {ϕ ∈ P BTγ | sup

X
ϕ = 0} .Let ϕ ∈ P BTγ with zero Lelong numbers. It is well known from the work ofthe �rst author [Dem4℄ (whi
h be
omes drasti
ally simple in this parti
ular
ase), that there exists a family (ϕε)ε>0, ϕε ∈ Pγ+εω ∩ C∞(X), su
h that

ϕε ↓ ϕ as ε ↓ 0+. In the 
ase the Lelong numbers of ϕ are not zero we 
an
hose R > 0 su�
iently big su
h that 0 ≤ γ + Rω + i∂∂̄ϕε for all ε ∈ (0, 1)and ϕε ↓ ϕ as ε→ 0+. We have the following 
ru
ial result.Theorem 3.2 (Degenerate monotone 
onvergen
e result).Let (X,ω) be a polarized 
ompa
t Kähler manifold of 
omplex dimension nand let γ, T be 
losed positive (1, 1)-
urrents with bounded lo
al potentials.Then the following statements hold true.(A) For all ϕ ∈ P BTγ, ϕ ≤ 0 and k, l ≥ 0, k + l ≤ n, k ≤ n− 1
∫

X

−ϕγkϕ ∧ T
l ∧ ωn−k−l < +∞ , and γk+1

ϕ ∧ T l = T l ∧ γk+1
ϕ .(B) Let ϕ ∈ P BTγ, ϕ ≤ 0 with zero Lelong numbers and ϕε ∈ Pγ+εω ∩

C∞(X), su
h that ϕε ↓ ϕ as ε → 0+. Then for all k, l ≥ 0, k + l ≤ n,
k ≤ n− 1

ϕε (γϕε + εω)k ∧ T l −→ ϕγkϕ ∧ T
l , (3.2)

(γϕε + εω)k+1 ∧ T l −→ γk+1
ϕ ∧ T l , (3.3)weakly as ε→ 0+.(C) Let ϕ ∈ P BTγ, ϕ ≤ 0 and ϕε ∈ Pγ+Rω ∩ C∞(X) su
h that ϕε ↓ ϕ as

ε → 0+. Then for all k, l ≥ 0, k + l ≤ n, k ≤ n− 1

ϕε (γϕε +Rω)k ∧ T l −→ ϕ (γϕ +Rω)k ∧ T l , (3.4)
(γϕε +Rω)k+1 ∧ T l −→ (γϕ +Rω)k+1 ∧ T l , (3.5)24



weakly as ε→ 0+.As follows immediately from the proof, the statement of this theorem stillholds if we repla
e T l with a produ
t T1∧ ....∧Tl, where the 
urrents Tj havethe same properties as T . As a matter of fa
t, we wrote the statement inthe previous spe
ial 
ase only for the sake of notation simpli
ity. However,in the 
ourse of the proof, it is useful to noti
e that statements 
on
erningterms involving T l are still valid if we repla
e T l with γr ∧ T l−r.Proof. Statement (3.3) follows from (3.2) by using the weak 
ontinuity ofthe i∂∂̄ operator. The argument for Statement (B) is the same as for (C).Proof of (A).We denote by Ak,l the spe
ial 
ase of Statement (A) in the the-orem for the relative indi
es (k, l). We prove Statements Ak,l, l = 0, ..., n− kby using an indu
tion on k = 0, ..., n− 1. We remark that Claim 2.6 assertsStatement (A) in full generality for k = 0. So we assume Statement Ak−1,•and we prove Ak,l, l = 0, ..., n−k by using an indu
tion on l. We remark that
Ak,0 holds by the hypothesis ϕ ∈ P BTγ . So we assume Ak,l and we prove
Ak,l+1. In fa
t let ϕc := max{ϕ, c} ∈ Pγ , c ∈ R<0. By the regularizationresult in [Dem4℄ let (ϕc,ε)ε>0, ϕc,ε ∈ Pγ+εω ∩ C∞(X) su
h that ϕc,ε ↓ ϕc as
ε → 0+ and write T = θ + i∂∂̄u, with θ smooth, θ ≤ Kω and u boundedwith infX u = 0. By using the monotone 
onvergen
e theorem, the symmetryof the wedge produ
t provided by the indu
tive hypothesis in k and Stokes'

25



formula, we expand the integral
∫

X

−ϕγkϕ ∧ T
l+1 ∧ ωn−k−l−1

= lim
c→−∞

lim
ε→0+

∫

X

−ϕc,ε γ
k
ϕ ∧ T

l+1 ∧ ωn−k−l−1

= lim
c→−∞

lim
ε→0+

∫

X

−ϕc,ε T
l+1 ∧ γkϕ ∧ ω

n−k−l−1

= lim
c→−∞

lim
ε→0+

∫

X

−ϕc,ε θ ∧ T
l ∧ γkϕ ∧ ω

n−k−l−1

− lim
c→−∞

lim
ε→0+

∫

X

ϕc,ε i∂∂̄u ∧ T
l ∧ γkϕ ∧ ω

n−k−l−1

≤ lim
c→−∞

lim
ε→0+

∫

X

−ϕc,ε γ
k
ϕ ∧ T

l ∧Kωn−k−l

− lim
c→−∞

lim
ε→0+

∫

X

u i∂∂̄ϕc,ε ∧ γ
k
ϕ ∧ T

l ∧ ωn−k−l−1

= K

∫

X

−ϕγkϕ ∧ T
l ∧ ωn−k−l

− lim
c→−∞

lim
ε→0+

∫

X

u (γϕc,ε + εω) ∧ γkϕ ∧ T
l ∧ ωn−k−l−1

+ lim
c→−∞

lim
ε→0+

∫

X

u (γ + εω) ∧ γkϕ ∧ T
l ∧ ωn−l−1

≤ K

∫

X

−ϕγkϕ ∧ T
l ∧ ωn−k−l + sup

X
u

∫

X

γ ∧ γkϕ ∧ T
l ∧ ωn−l−1 < +∞ ,by the indu
tive hypothesis in l. We now prove the symmetry relation

γk+1
ϕ ∧ T l = T l ∧ γk+1

ϕ . (3.6)The de
reasing monotone 
onvergen
e theorem implies
lim
c→−∞

∫

X

(ϕc − ϕ) γkϕ ∧ T
l ∧ ωn−k−l = 0 ,26



whi
h means the 
onvergen
e of the mass ‖(ϕc − ϕ) γkϕ ∧ T l‖ω(X) → 0 as
c→ −∞. In parti
ular

ϕc γ
k
ϕ ∧ T

l −→ ϕγkϕ ∧ T ,weakly as c→ −∞. So by the weak 
ontinuity of the i∂∂̄ operator we dedu
e
γϕc ∧ γ

k
ϕ ∧ T

l −→ γk+1
ϕ ∧ T l , (3.7)weakly as c → −∞. The symmetry of the wedge produ
t provided by theindu
tive hypothesis in k implies

γϕc ∧ γ
k
ϕ ∧ T

l = γϕc ∧ T
l ∧ γkϕ = T l ∧ γϕc ∧ γ

k
ϕBy the other hand (3.7)k,0 
ombined with the weak 
ontinuity of the i∂∂̄operator implies, by an indu
tion on l

T l ∧ γϕc ∧ γ
k
ϕ −→ T l ∧ γk+1

ϕ ,weakly as c→ −∞. This 
ombined with (3.7) implies the required symmetry(3.6).Proof of (B). For all k = 0, ..., n − 1 and l = 0, ..., n − k we 
onsiderthe following statement Bk,l: for all p = 0, ..., k

ϕε γ
p
ϕ ∧ (γϕε + εω)k−p ∧ T l −→ ϕγkϕ ∧ T

l , (3.8)
i∂∂̄ϕε ∧ γ

p
ϕ ∧ (γϕε + εω)k−p ∧ T l −→ i∂∂̄ϕ ∧ γkϕ ∧ T

l , (3.9)
γpϕ ∧ (γϕε + εω)k−p+1 ∧ T l −→ γk+1

ϕ ∧ T l , (3.10)
ϕγpϕ ∧ (γϕε + εω)k−p ∧ T l −→ ϕγkϕ ∧ T

l , (3.11)weakly as ε → 0+. We remark that (3.9) follows from (3.8) by the weak
ontinuity of the i∂∂̄ operator. By 
ombining (3.9) with the weak 
ontinuityof the i∂∂̄ operator we obtain
(γϕε + εω) ∧ γpϕ ∧ (γϕε + εω)k−p ∧ T l −→ γk+1

ϕ ∧ T l ,weakly as ε → 0+. On the other hand the symmetry of the wedge produ
tproved in part (A) of the theorem implies
(γϕε + εω) ∧ γpϕ ∧ (γϕε + εω)k−p ∧ T l = (γϕε + εω)k−p+1 ∧ T l ∧ γpϕ

= γpϕ ∧ (γϕε + εω)k−p+1 ∧ T l .27



In this way we dedu
e (3.10). The statements B0,• are true by the proof ofClaim 2.6. We now prove by indu
tion on k = 0, ..., n − 1 that Statements
Bk,l, l = 0, ..., n− k hold true. In fa
t we prove the following 
laim.Claim 3.3 If Bj,• holds true for all j = 0, ..., k− 1, then Bk,l holds also truefor all l = 0, ..., n− k.As pointed out before in order to prove Bk,l it is su�
ient to show (3.8) and(3.11). The proof of (3.11) is quite similar to the proof of (3.8) that we nowexplain. We �rst prove by indu
tion on s = 0, ..., k − p the inequality

∫

X

−ϕε γ
p
ϕ ∧ (γϕε + εω)k−p ∧ T l ∧ ωn−k−l

≤

∫

X

−ϕγp+sϕ ∧ (γϕε + εω)k−p−s ∧ T l ∧ ωn−k−l

+
s−1∑

r=0

∫

X

(ϕε − ϕ) γp+rϕ ∧ (γϕε + εω)k−p−r−1 ∧ γ ∧ T l ∧ ωn−k−l

−
s−1∑

r=0

∫

X

εϕ γp+rϕ ∧ (γϕε + εω)k−p−r−1 ∧ T l ∧ ωn−k−l+1. (3.12)Inequality (3.12) is obviously true for s = 0. (Here we adopt the usual
onvention of negle
ting a sum when it runs over an empty set of indi
es.)Before pro
eding to the proof of the inequality (3.12), we need to point outtwo useful fa
ts.1) Let α be a smooth 
losed real (q, q)-form, R be a 
losed positive (r, r)-
urrent, v ≥ 0 be a measurable fun
tion su
h that ∫
X
vR∧ωn−r < +∞. Thisimplies that the 
urrents i∂∂̄v∧R := i∂∂̄(v R) and i∂∂̄v∧α∧R := i∂∂̄(vα∧R)are well de�ned. Then the Leibniz formula implies

α ∧ i∂∂̄v ∧ R = i∂∂̄v ∧ α ∧ R . (3.13)2) Thanks to part (A) of the theorem we have
∫

X

−ϕγp+rϕ ∧ γh ∧ T l ∧ ωn−p−r−h−l < +∞for all h = 0, ..., k − p− r − 1. By (3.13) this implies
∫

X

−ϕγp+rϕ ∧ (γϕε + εω)k−p−r−1 ∧ T l ∧ ωn−k−l+1 < +∞ ,28



so the 
urrent
S := ϕγp+rϕ ∧ (γϕε + εω)k−p−r−1 ∧ T lis well de�ned and we 
an de�ne the 
urrent

i∂∂̄ϕ ∧ γp+rϕ ∧ (γϕε + εω)k−p−r−1 ∧ T l := i∂∂̄S .Then the integration by parts formula
∫

X

i∂∂̄ϕε ∧ S ∧ ωn−k−l =

∫

X

ϕε i∂∂̄S ∧ ωn−k−l
an be written expli
itly as
∫

X

i∂∂̄ϕε ∧ ϕγ
p+r
ϕ ∧ (γϕε + εω)k−p−r−1 ∧ T l ∧ ωn−k−l

=

∫

X

ϕε i∂∂̄ϕ ∧ γp+rϕ ∧ (γϕε + εω)k−p−r−1 ∧ T l ∧ ωn−k−l . (3.14)We suppose now the inequality (3.12) true for s and we prove it for s + 1.We start by expanding, thanks to formula (3.13), the integral
I :=

∫

X

−ϕγp+sϕ ∧ (γϕε + εω)k−p−s ∧ T l ∧ ωn−k−l

=

∫

X

−ϕγp+sϕ ∧ (γ + εω) ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l

+

∫

X

−ϕγp+sϕ ∧ i∂∂̄ϕε ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l

=

∫

X

−εϕ γp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l+1

−

∫

X

ϕγp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ γ ∧ T l ∧ ωn−k−l

−

∫

X

i∂∂̄ϕε ∧ ϕγ
p+s
ϕ ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l .
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By applying the integration by parts formula (3.14) to the last integral wededu
e
I =

∫

X

−ϕε γ
p+s+1
ϕ ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l

+

∫

X

ϕε γ ∧ γ
p+s
ϕ ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l

−

∫

X

ϕγp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ γ ∧ T l ∧ ωn−k−l

−

∫

X

εϕ γp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l+1 .By 
ombining the symmetry of the wedge produ
t proved in part (A) withformula (3.13) we get
γ ∧ γp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ T l = γ ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ γp+sϕ

= (γϕε + εω)k−p−s−1 ∧ γ ∧ T l ∧ γp+sϕ

= γp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ γ ∧ T l .By plugging this into the previous expression of I we obtain
I =

∫

X

−ϕε γ
p+s+1
ϕ ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l

+

∫

X

(ϕε − ϕ) γp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ γ ∧ T l ∧ ωn−k−l

−

∫

X

εϕ γp+sϕ ∧ (γϕε + εω)k−p−s−1 ∧ T l ∧ ωn−k−l+1 ,
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whi
h implies inequality (3.12) for s+ 1. For s = k − p the inequality (3.12)rewrites as
∫

X

−ϕε γ
p
ϕ ∧ (γϕε + εω)k−p ∧ T l ∧ ωn−k−l ≤

∫

X

−ϕγkϕ ∧ T
l ∧ ωn−k−l

+

k−1∑

r=p

∫

X

(ϕε − ϕ) γrϕ ∧ (γϕε + εω)k−r−1 ∧ γ ∧ T l ∧ ωn−k−l

−
k−1∑

r=p

∫

X

εϕ γrϕ ∧ (γϕε + εω)k−r−1 ∧ T l ∧ ωn−k−l+1 .By using the indu
tive 
onvergen
e hypothesis (3.8)j,•, (3.11)j,• in Bj,• for
j ≤ k − 1 we dedu
e

lim sup
ε→0+

∫

X

−ϕε γ
p
ϕ ∧ (γϕε + εω)k−p ∧ T l ∧ ωn−k−l

≤

∫

X

−ϕγkϕ ∧ T
l ∧ ωn−k−l < +∞ , (3.15)by Statement A. (We 
an always arrange ϕε ≤ 0 for all ε ∈ (0, 1) by 
hanging

ϕ into ϕ−C.) Thus by weak 
ompa
tness of the mass there exists a sequen
e
(εj)j , εj ↓ 0+ and a 
urrent of order zero Θ ∈ D′

n−k−l,n−k−l(X) su
h that
ϕεj γ

p
ϕ ∧ (γϕεj + εj ω)k−p ∧ T l −→ Θ ,weakly as j → +∞. So for any smooth and strongly positive form α ofbidegree (n− k − l, n− k − l), we have

ϕεj γ
p
ϕ ∧ (γϕεj + εj ω)k−p ∧ T l ∧ α −→ Θ ∧ α ,weakly as j → +∞. The fa
t that ϕεj ↓ ϕ and

γpϕ ∧ (γϕεj + εj ω)k−p ∧ T l ∧ α −→ γkϕ ∧ T
l ∧ α ,weakly as j → +∞, by the 
onvergen
e indu
tive hypothesis (3.10)k−1,l,implies

Θ ∧ α ≤ ϕγkϕ ∧ T
l ∧ α ,
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thanks to Lemma (3.9), page 189 in [Dem2℄. Thus Θ ≤ ϕγkϕ∧T
l . Combiningthis with the inequality (3.15) we obtain

∫

X

Θ ∧ ωn−k−l ≤

∫

X

ϕγkϕ ∧ T
l ∧ ωn−k−l

≤ lim inf
ε→0+

∫

X

ϕε γ
p
ϕ ∧ (γϕε + εω)k−p ∧ T l ∧ ωn−k−l

≤ lim
j→+∞

∫

X

ϕεj γ
p
ϕ ∧ (γϕεj + εj ω)k−p ∧ T l ∧ ωn−k−l

=

∫

X

Θ ∧ ωn−k−l .We dedu
e Trω(ϕγ
k
ϕ ∧ T l − Θ) = 0, whi
h implies ϕγkϕ ∧ T l = Θ sin
e

0 ≤ ϕγkϕ ∧ T
l − Θ. This proves Statement Bk,l. �We introdu
e also the subsets

P̂ BTγ :=

{

ϕ ∈ P BT0
γ |

∫

X

−ϕγnϕ < +∞

}

+ R ⊂ P BTγ ,

P̂ BT0
γ := {ϕ ∈ P̂ BTγ | sup

X
ϕ = 0} .Without 
hanges in the proof of Theorem 3.2 we get the following 
orollary.Corollary 3.4 For all ϕ ∈ P̂ BTγ, ϕ ≤ 0, the assertions A), B) and C) ofTheorem 3.2 hold for all k = 0, ..., n.Let now Θ be a 
losed positive (n−1, n−1)-
urrent and 
onsider the L2-spa
e

L2(X,Θ) :=






α ∈ Γ(X,Λ1,0T ∗

X) |

∫

X

iα ∧ ᾱ ∧ Θ < +∞





/

Θ−a.e

,equipped with the hermitian produ
t 〈α, β〉Θ :=
∫

X
iα∧ β̄ ∧Θ, whi
h is wellde�ned by the polarization identity. The Θ-almost everywhere equivalen
erelation is de�ned by : α ∼ β i�

∫

X

i(α− β) ∧ (α− β) ∧ Θ = 0 .32



The subs
ript �Θ-a.e.� in the de�nition of L2(X,Θ) above is �Θ-almosteverywhere. Let αk, α ∈ L2(X,Θ). We say that the sequen
e αk 
onverges
L2(X,Θ)-weakly to α if

∫

X

iα ∧ β̄ ∧ Θ = lim
k→+∞

∫

X

iαk ∧ β̄ ∧ Θ ,for all β ∈ L2(X,Θ). Let ϕ ∈ P0
γ su
h that ∫

X
−ϕΘ ∧ ω < +∞. Thenone 
an de�ne ∂ϕ ∧ Θ := ∂(ϕΘ). We write ∂ϕ ∈ L2(X,Θ) if there exists

α ∈ L2(X,Θ) su
h that ∂(ϕΘ) = α∧Θ in the sense of 
urrents. In this 
asewe write ∫

X

i∂ϕ ∧ ∂̄ϕ ∧ Θ :=

∫

X

iα ∧ ᾱ ∧ Θ .With these notations we have the following 
orollary.Corollary 3.5 Let (X,ω) be a polarized 
ompa
t Kähler manifold of 
omplexdimension n and let γ, T be 
losed positive (1, 1)-
urrents with bounded lo
alpotentials, let Θ be a 
losed positive (n− 1, n− 1)-
urrent and 
onsider ϕ ∈
P̂ BTγ, ϕ ≤ 0, ψ ∈ Pγ ∩L

∞(X), ψ ≤ 0. Then for all k, l ≥ 0, k+ l ≤ n− 1,
∫

X

i∂ϕ ∧ ∂̄ϕ ∧ γkϕ ∧ T
l ∧ ωn−k−l−1 < +∞ , (3.16)

∫

X

i∂ψ ∧ ∂̄ψ ∧ Θ < +∞ . (3.17)Moreover let (ϕε)ε>0, (ψε)ε>0 ⊂ C∞(X), ϕε ∈ Pγ+Rω, ψε ∈ Pγ+εω su
h that
ϕε ↓ ϕ, ψε ↓ ψ as ε → 0+. Then

lim
ε→0+

∫

X

i∂(ϕε − ϕ) ∧ ∂̄(ϕε − ϕ) ∧ γkϕ ∧ T
l ∧ ωn−k−l−1 = 0 , (3.18)

lim
ε→0+

∫

X

i∂(ψε − ψ) ∧ ∂̄(ψε − ψ) ∧ Θ = 0 . (3.19)Proof. By integrating by parts we obtain
∫

X

i∂ϕε ∧ ∂̄ϕε ∧ γ
k
ϕ ∧ T

l ∧ ωn−k−l−1

= −

∫

X

ϕε i∂∂̄ϕε ∧ γ
k
ϕ ∧ T

l ∧ ωn−k−l−133



=

∫

X

ϕε (γ +Rω) ∧ γkϕ ∧ T
l ∧ ωn−k−l−1

−

∫

X

ϕε (γϕε +Rω) ∧ γkϕ ∧ T
l ∧ ωn−k−l−1 .By the proof of Theorem 3.2, B we 
an take the limit, so

0 ≤ lim
ε→0+

∫

X

i∂ϕε ∧ ∂̄ϕε ∧ γ
k
ϕ ∧ T

l ∧ ωn−k−l−1

=

∫

X

ϕ (γ − γϕ) ∧ γ
k
ϕ ∧ T

l ∧ ωn−k−l−1 < +∞ . (3.20)On the other hand the weak 
onvergen
e of the sequen
e
ϕε γ

k
ϕ ∧ T

l ∧ ωn−k−l−1 −→ ϕγkϕ ∧ T
l ∧ ωn−k−l−1 ,
ombined with the weak 
ontinuity of the ∂ operator implies

∂ϕε ∧ γ
k
ϕ ∧ T

l ∧ ωn−k−l−1 −→ ∂ϕ ∧ γkϕ ∧ T
l ∧ ωn−k−l−1 ,weakly as ε → 0+. Then the L2(X, γkϕ ∧ T l ∧ ωn−k−l−1)-weak 
ompa
tnessprovided by (3.20) implies (3.16) and the L2(X, γkϕ ∧ T l ∧ ωn−k−l−1)-weak
onvergen
e ∂ϕε → ∂ϕ as ε→ 0+. This implies

∫

X

i∂ϕ ∧ ∂̄ϕ ∧ γkϕ ∧ T
l ∧ ωn−k−l−1

= lim
ε→0+

∫

X

i∂ϕε ∧ ∂̄ϕ ∧ γkϕ ∧ T
l ∧ ωn−k−l−1

= lim
ε→0+

∫

X

−ϕε i∂∂̄ϕ ∧ γkϕ ∧ T
l ∧ ωn−k−l−1

= lim
ε→0+

∫

X

−ϕε (γ − γϕ) ∧ γ
k
ϕ ∧ T

l ∧ ωn−k−l−1

=

∫

X

−ϕ (γ − γϕ) ∧ γ
k
ϕ ∧ T

l ∧ ωn−k−l−1

= lim
ε→0+

∫

X

i∂ϕε ∧ ∂̄ϕε ∧ γ
k
ϕ ∧ T

l ∧ ωn−k−l−1 ,34



by identity (3.20). This implies (3.18) by elementary fa
ts about Hilbertspa
es. The proof of (3.17) and (3.19) is quite similar. �The 
on
lusion of the 
orollary 3.5 still holds true if we repla
e the 
urrent
γkϕ ∧ T

l ∧ ωn−k−l−1 with a sum of 
urrents
Ξ :=

∑

k+l≤n−1

Ck,l γ
k
ϕ ∧ T

l ∧ ωn−k−l−1 ,where Ck,l ∈ R su
h that Ξ ≥ 0. We infer the linearity formula
∫

X

i∂ϕ ∧ ∂̄ϕ ∧ Ξ =
∑

k+l≤n−1

Ck,l

∫

X

i∂ϕ ∧ ∂̄ϕ ∧ γkϕ ∧ T
l ∧ ωn−k−l−1 .4 Uniqueness of the solutionsWe start with a renormalization result for the density volume form of a bigand nef (1, 1)-
ohomology 
lass. This uses [De-Pa℄ in a 
ru
ial way.Lemma 4.1 Let X be a 
ompa
t Kähler manifold of 
omplex dimension n,let T be a big 
losed positive (1, 1)-
urrent with 
ontinuous lo
al potentials.Then there exist a big 
losed positive (1, 1)-
urrent γ with 
ontinuous lo
alpotentials, 
ohomologous to T and a 
omplex analyti
 subset Z ⊂ X su
hthat γ is a smooth Kähler metri
 over X r Z.Proof. Let α be a smooth 
losed (1, 1)-form representing the 
ohomology 
lassof T . The assumption on T means that we 
an write T = α+i∂∂̄ψ ≥ 0 where

ψ is a 
ontinuous quasi-plurisubharmoni
 fun
tion. By the approximationtheorem of [Dem4℄, there exists a de
reasing sequen
e ψj of smooth quasi-plurisubharmoni
 fun
tions 
onverging to ψ su
h that
α + i∂∂̄ψj ≥ −

1

j
ω,in parti
ular the 
lass {T} = {α} is nef (i.e. numeri
ally e�e
tive in the senseof [Dem4℄) and big. By Theorem 0.5 of [De-Pa℄, there also exists a Kähler
urrent Θ = α + i∂∂̄ϕ ∈ {α}, with Θ ≥ εω (in the sense of 
urrents) and

ε > 0, su
h that ϕ has logarithmi
 poles on some analyti
 subset Z ⊂ Xand ϕ is smooth on X r Z. If we 
onsider ϕj := max(ϕ, ψ − j), then
ϕj is a 
ontinuous quasi-subharmoni
 fun
tion whi
h 
oin
ides with ϕ on aneighborhood of the 
ompa
t set

Kj = {z ∈ X r Z ; ψ(z) − ϕ(z) ≤ j − 1} .35



Clearly we have α + i∂∂̄ϕj ≥ 0 on X and
α+ i∂∂̄ϕj = α + i∂∂̄ϕ = Θ ≥ εω on a neighborhood of Kj .Therefore if we put Φ =

∑

j≥1 2−jϕj, then Φ is a 
ontinuous quasi-plurisub-harmoni
 potential on X (noti
e that there is uniform 
onvergen
e sin
e
−j − C1 ≤ ϕj ≤ C2 on X), and there exists a 
ontinuous fun
tion λ ≥ 0 on
X su
h that α + i∂∂̄Φ ≥ λ and λ(x) > 0 on ⋃Kj = X r Z. By Ri
hberg'sapproximation theorem applied on X r Z (invoking e.g. [Dem2℄, Theorem(I.5.21) with the error fun
tion 1

2
λ(x) > 0 on X rZ), we 
an �nd a fun
tion

Ψ ∈ Pα ∩ C
∞(X r Z) ,su
h that Φ ≤ Ψ ≤ Φ + 1

2
λ and α + i∂∂̄Ψ ≥ 1

2
λ > 0 on X r Z ; this impliesthat Ψ has a 
ontinuous extension to X su
h that Ψ = Φ on Z, and alsothat the extension satis�es γ := α + i∂∂̄Ψ ≥ 1
2
λ ≥ 0 everywhere on X bystandard arguments of potential theory. �Theorem 4.2 Let X be a 
ompa
t 
onne
ted Kähler manifold of 
omplexdimension n and let γ be a big 
losed positive (1, 1)-
urrent with 
ontinuouslo
al potentials.(A) Let ψ ∈ P0

γ ∩ L
∞(X) and ϕ ∈ P BT0

γ su
h that
(γ + i∂∂̄ψ)n = (γ + i∂∂̄ϕ)n .Then ψ = ϕ.(B) Let ψ, ϕ ∈ Pγ ∩ L

∞(X) su
h that
e−λψ(γ + i∂∂̄ψ)n = e−λϕ(γ + i∂∂̄ϕ)n .with λ > 0. Then ψ = ϕ.Proof of A. By the ∂∂̄-lemma and by the previous statement 4.1 we 
anassume that the 
urrent γ is a smooth Kähler metri
 in the 
omplementXrZof an analyti
 set. The identity γnϕ = γnψ implies ϕ ∈ P̂ BT0

γ by Claim 2.6. Let
ϕε, ψε be as in the statement of 
orollary 3.5 and set u := ψ−ϕ, uε := ψε−ϕε.Let us also re
all the formula

αk − βk = (α− β) ∧
k−1∑

l=0

αl ∧ βk−l−1 .
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From this we dedu
e
0 =

∫

X

−u(γnψ − γnϕ) = lim
ε→0+

∫

X

−uε(γ
n
ψ − γnϕ)

= lim
ε→0+

n−1∑

l=0

∫

X

−uε i∂∂̄u ∧ γ
l
ψ ∧ γn−l−1

ϕ

= lim
ε→0+

n−1∑

l=0

∫

X

i∂uε ∧ ∂̄u ∧ γ
l
ψ ∧ γn−l−1

ϕ

=

n−1∑

l=0

∫

X

i∂u ∧ ∂̄u ∧ γlψ ∧ γn−l−1
ϕ =: I , (4.1)sin
e ∂uε → ∂u in L2(X, γlψ ∧ γn−l−1

ϕ ) by 
orollary 3.5. Inspired by an ideaof S. Bªo
ki [Blo1℄, we will prove by indu
tion on k = 0, ..., n− 1 that
∫

X

i∂u ∧ ∂̄u ∧ γrψ ∧ γsϕ ∧ γ
k = 0 (4.2)for all r, s ≥ 0, r + s = n − k − 1. For k = 0 this follows from (4.1). So weassume (4.2) for k − 1 and we prove it for k. In fa
t 
onsider the identity

γk = γkψ − i∂∂̄ψ ∧
k−1∑

l=0

γlψ ∧ γ
k−l−1 and set Ξ := γrψ ∧ γ

s
ϕ ∧

k−1∑

l=0

γlψ ∧ γ
k−l−1 .By applying several times 
orollary 3.5 and by integrating by parts we derive

∫

X

i∂u ∧ ∂̄u ∧ γrψ ∧ γsϕ ∧ γ
k = lim

ε→0+

∫

X

i∂uε ∧ ∂̄u ∧ γ
r
ψ ∧ γsϕ ∧ γ

k

= lim
ε→0+





∫

X

i∂uε ∧ ∂̄(uγr+kψ ∧ γsϕ) −

∫

X

i∂uε ∧ ∂̄(u i∂∂̄ψ ∧ Ξ)




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= lim
ε→0+





∫

X

i∂uε ∧ ∂̄u ∧ γ
r+k
ψ ∧ γsϕ +

∫

X

uε i∂∂̄u ∧ i∂∂̄ψ ∧ Ξ





=

∫

X

i∂u ∧ ∂̄u ∧ γr+kψ ∧ γsϕ − lim
ε→0+

∫

X

uε i∂∂̄ψ ∧ (γϕ − γψ) ∧ Ξ

≤ I + lim
ε→0+

∫

X

i∂uε ∧ ∂̄ [ψ (γϕ − γψ) ∧ Ξ ]

= lim
ε→0+





∫

X

i∂uε ∧ ∂̄ψ ∧ γϕ ∧ Ξ −

∫

X

i∂uε ∧ ∂̄ψ ∧ γψ ∧ Ξ





=

∫

X

i∂u ∧ ∂̄ψ ∧ γϕ ∧ Ξ −

∫

X

i∂u ∧ ∂̄ψ ∧ γψ ∧ Ξ . (4.3)Set χ = ϕ or χ = ψ. Then the Cau
hy-S
hwarz inequality implies
∣
∣
∣
∣
∣
∣

∫

X

i∂u ∧ ∂̄ψ ∧ γχ ∧ Ξ

∣
∣
∣
∣
∣
∣

≤





∫

X

i∂u ∧ ∂̄u ∧ γχ ∧ Ξ





1/2



∫

X

i∂ψ ∧ ∂̄ψ ∧ γχ ∧ Ξ





1/2

= 0 ,by the indu
tive hypothesis. This 
ombined with (4.3) implies (4.2) for k.So at the end of the indu
tion we get 0 =
∫

X
i∂u ∧ ∂̄u ∧ γn−1. This implies

ϕ = ψ by elementary properties of plurisubharmoni
 fun
tions.Proof of B. By applying the 
omparison prin
iple (2.7) as in [E-G-Z1℄ weget ∫

ϕ<ψ

γnψ ≤

∫

ϕ<ψ

γnϕ =

∫

ϕ<ψ

eλ(ϕ−ψ)γnψ ,whi
h implies ∫
ϕ<ψ

γnψ = 0 sin
e eλ(ϕ−ψ) < 1. This implies that the inequality
ϕ ≥ ψ holds γnψ-almost everywhere, thus the inequality

γnϕ = eλ(ϕ−ψ)γnψ ≥ γnψ ,holds γnψ-almost everywhere. By symmetry we also dedu
e that γnψ ≥ γnϕholds γnϕ-almost everywhere. The fa
t that the potentials ϕ and ψ satis�es
γnϕ = eλ(ϕ−ψ)γnψ (4.4)38



implies that a property holds γnψ-almost everywhere if and only if it holds
γnϕ-almost everywhere. We infer γnψ = γnϕ, hen
e ψ − ϕ = Const by part (A),and equality (4.4) now implies ψ = ϕ. �We now show a uniqueness result in the non-nef 
ase. We denote by UBϕ ⊂ Xthe unbounded lo
us of a quasi-plurisubharmoni
 fun
tion ϕ. Let us �rst re-
all the following well known lemma [Dem1℄, [Be-Bo℄.Lemma 4.3 Let (X,ω) be a 
ompa
t Kähler manifold of 
omplex dimen-sion n, T a 
losed positive (q, q)-
urrent on X, θ a smooth 
losed real (1, 1)-form and ϕ a quasi-plurisubharmoni
 fun
tion su
h that θ+i∂∂̄ϕ ≥ 0 over X.Then the following holds(A) For all k = 1, ..., n− q

∫

XrUBϕ

(θ + i∂∂̄ϕ)k ∧ T ∧ ωn−k−q < +∞ .(B) If in addition ϕ has zero Lelong numbers, then
∫

XrUBϕ

(θ + i∂∂̄ϕ)k ∧ T ∧ ωn−k−q ≤

∫

X

θk ∧ T ∧ ωn−k−q ,for all k = 1, ..., n− q.
Proof . Set Θ := θ + i∂∂̄ϕ ≥ 0. Let (ϕε)ε>0 ⊂ C∞(X,R) su
h that ϕε ↓ ϕas ε → 0 and let C > 0 be a su�
iently big 
onstant su
h that Θε :=
θ + i∂∂̄ϕε ≥ −Cω for all ε ∈ (0, 1). By the monotone de
reasing theorem inpluripotential theory we infer that

(Θε + Cω)k ∧ T −→ (Θ + Cω)k ∧ T ,weakly over the open set U := X r UBϕ as ε → 0. We infer
∫

U

Θk ∧ T ∧ ωn−k−q ≤

∫

U

(Θ + Cω)k ∧ T ∧ ωn−k−q

≤ lim inf
ε→0

∫

U

(Θε + Cω)k ∧ T ∧ ωn−k−q

≤

∫

X

(θ + Cω)k ∧ T ∧ ωn−k−q < +∞ ,39



whi
h 
on
ludes the proof of statement (A). Statement (B) follows from thefa
t that, thanks to the work in [Dem4℄, we 
an repla
e the loss of positivity
onstant C with 
onstants Cε > 0 su
h that Cε ↓ 0 as ε → 0. �The following lemma 
an be found in [Be-Bo℄ and is based on a simple bute�
ient in
reasing singularity approa
h introdu
ed by the �rst named au-thor.Lemma 4.4 Let X be a 
ompa
t Kähler manifold of 
omplex dimension n,let T be a 
losed positive (n−q, n−q)-
urrent, q ≥ 1, let θ be a smooth 
losedreal (1, 1)-form and 
onsider ϕ, ψ ∈ Pθ su
h that ϕ ≥ ψ over X. Then
∫

XrUBψ

(θ + i∂∂̄ϕ)q ∧ T ≥

∫

XrUBψ

(θ + i∂∂̄ψ)q ∧ T .

Proof . Consider the 
losed positive 
urrent Θ := (θ + i∂∂̄ψ)q−1 ∧ T over
X r UBψ. In order to 
on
lude, it is su�
ient to prove the inequality

∫

XrUBψ

(θ + i∂∂̄ϕ) ∧ Θ ≥

∫

XrUBψ

(θ + i∂∂̄ψ) ∧ Θ , (4.5)thanks to the symmetry of the wedge produ
t and to an obvious indu
tion.(Noti
e that the integral on the left hand side of the inequality (4.5) is also�nite by the same type of argument as in the proof of Lemma 4.3.) Let
C > 0 be a su�
iently big 
onstant su
h that i∂∂̄ψ ≥ −Cω and set ψε :=
(1 + ε)ψ ∈ Pθε, with θε := θ + εCω. Then the inequality (4.5) will follow byletting ε → 0 in the inequality

∫

XrUBψ

(θε + i∂∂̄ϕ) ∧ Θ ≥

∫

XrUBψ

(θε + i∂∂̄ψε) ∧ Θ , (4.6)that we prove now. Let k > 0 be an arbitrary 
onstant. The fa
t that
ϕ− k > ψε over the open set {ψ < −k/ε} implies

∫

XrUBψ

(θε + i∂∂̄ϕ) ∧ Θ =

∫

XrUBψ

(
θε + i∂∂̄max{ϕ− k , ψε}

)
∧ Θ =: I ,by Stokes' formula. Let L ⊂ X r UBψ be an arbitrary 
ompa
t set and let

U ⊂ U ⊂ X r UBψ be an open set su
h that L ⊂ U ⊂ {ψε ≥ −R} for asu�
iently big 
onstant R > 0. We infer
I ≥

∫

U

(
θε + i∂∂̄max{ϕ− k , ψε}

)
∧ Θ ≥

∫

L

(θε + i∂∂̄ψε) ∧ Θ ,40



for k su
h that ϕ − k < −R over X. Then the inequality (4.6) follows bytaking the supremum over L. �We now de�ne the potential with minimal singularities
ϕθ(x) := sup

{
ψ(x) | ψ ∈ P0

θ

}
,and we observe that ϕθ ∈ P0

θ . Let θ′ ∈ {θ} be another element in the
ohomology 
lass of θ. We write θ = θ′ + i∂∂̄u. By de�nition, we infer
ϕθ + u − C ≤ ϕθ′ and ϕθ′ − u − C ′ ≤ ϕθ for some 
onstants C,C ′ > 0. ByLemmas 4.3 and 4.4 we infer the equality

∫

XrUBθ

(θ + i∂∂̄ϕθ)
q ∧ T = max

ψ∈Pθ

∫

XrUBψ

(θ + i∂∂̄ψ)q ∧ T < +∞ .Noti
e that the 
losed set UBθ depends only on the 
ohomology 
lass {θ}.In the 
ase UBθ is 
ontained in a 
omplete pluripolar set E ⊂ X, the trivialextension of the 
urrent
IXrE (θ + i∂∂̄ϕθ)

q ,over X is 
losed and positive by the Skoda-El Mir extension theorem, whi
happlies thanks to Lemma 4.3. Moreover this extension is independent of Eby the de�nition of UBθ. In fa
t the 
urrent (θ + i∂∂̄ϕθ)
q , does not 
arryany mass on pluripolar sets 
ontained in the open set X r UBθ, sin
e ϕθ islo
ally bounded over this set. In this 
ase we will still denote by (θ+ i∂∂̄ϕθ)

qthe extension over X. In this setting we 
an de�ne the 
ohomology invariant
{θ}[q] · {T} :=

∫

X

(θ + i∂∂̄ϕθ)
q ∧ T = max

ψ∈Pθ

∫

XrUBψ

(θ + i∂∂̄ψ)q ∧ T < +∞ .In general the number α[q] · {ω}n−q asso
iated to a pseudoe�e
tive 
lass α ∈
H1,1(X,R) over a 
ompa
t Kähler manifold (X,ω) of 
omplex dimension nis not a 
ohomology invariant, so we will denote it by α[q] · ωn−q. Howeverthe numeri
al dimension of α, namely the number

ν(α) := max{q ∈ {0, ..., n} | α[q] · ωn−q > 0 } .is well de�ned. In fa
t it is independent of the 
hoi
e of the Kähler met-ri
 ω sin
e the tra
e operator 
ontrols the mass of a positive (q, q)-
urrent.We prove now the following degenerate version of the Comparison Prin
iplewhi
h is also based on the in
reasing singularity approa
h previously used.(Compare with the statement and the proof of 
orollary 1.4 in [Be-Bo℄).41



Lemma 4.5 (Degenerate Comparison Prin
iple). Let X be a 
ompa
tKähler manifold of 
omplex dimension n, let θ be a smooth 
losed real (1, 1)-form and 
onsider ϕ, ψ ∈ Pθ su
h that ϕ ≥ ψ−K for some 
onstant K > 0.Then ∫

{ϕ<ψ}rUBψ

(θ + i∂∂̄ψ)n ≤

∫

{ϕ<ψ}rUBψ

(θ + i∂∂̄ϕ)n .Proof. For any set E ⊂ X we put Eψ := E r UBψ and de�ne the 
losedpositive 
urrent Θ :=
(
θ + i∂∂̄max{ϕ, ψ}

)n over Xψ. We start by provingthe inequality
∫

Xψ

(θ + i∂∂̄ϕ)n ≥

∫

Xψ

Θ . (4.7)Let R > 0 be a su�
iently big 
onstant su
h that i∂∂̄ψ ≥ −Rω and set
ψε := (1 + ε)ψ ∈ Pθε , with θε := θ+ εRω. The fa
t that ϕ > ψε on the openset {ψ < −K/ε} implies

∫

Xψ

(θε + i∂∂̄ϕ)n =

∫

Xψ

(
θε + i∂∂̄max{ϕ, ψε}

)n
,by Stokes' formula. We infer

∫

Xψ

(θ + i∂∂̄ϕ)n = lim inf
ε→0

∫

Xψ

(
θε + i∂∂̄max{ϕ, ψε}

)n
≥

∫

Xψ

Θ .by the weak 
onvergen
e
Θε :=

(
θε + i∂∂̄max{ϕ, ψε}

)n
−→ Θ , (4.8)as ε → 0 over the open set Xψ. In order to prove the 
onvergen
e (4.8) werestri
t our 
onsiderations to an arbitrary open set U ⊂ U ⊂ Xψ. Let C > 0be a 
onstant su
h that ψ ≥ −C over U . Then the fun
tion

Φε := max{ϕ+ εC, ψε + εC} ∈ Pθε ,de
reases to max{ϕ, ψ} over U as ε → 0 and satis�es Θε =
(
θε + i∂∂̄Φε

)n.Then the 
onvergen
e (4.8) over U follows from the monotone de
reasing the-orem in pluripotential theory. On the other hand the inequality of measures
Θ ≥ I

ϕ≥ψ
θnϕ + I

ϕ<ψ
θnψ ,42



over the open set Xψ (see [Dem1℄), implies
∫

{ϕ<ψ}ψ

Θ ≥

∫

{ϕ<ψ}ψ

θnψ ,

∫

{ϕ≥ψ}ψ

Θ ≥

∫

{ϕ≥ψ}ψ

θnϕ .This 
ombined with the inequality (4.7) implies
∫

{ϕ<ψ}ψ

θnψ ≤

∫

Xψ

Θ −

∫

{ϕ≥ψ}ψ

Θ ≤

∫

Xψ

θnϕ −

∫

{ϕ≥ψ}ψ

θnϕ =

∫

{ϕ<ψ}ψ

θnϕ .

�Corollary 4.6 Let X be a 
ompa
t Kähler manifold of 
omplex dimension
n, Ω > 0 a smooth volume form and θ a smooth 
losed real (1, 1)-form.Assume that ϕj ∈ Pθ, j = 1, 2 is su
h that UBϕj is a zero measure set and

(θ + i∂∂̄ϕj)
n = eϕjΩover X r UBϕj . If ϕ1 ≥ ϕ2 − K over X, for some 
onstant K > 0 then

ϕ1 ≥ ϕ2 over X. In parti
ular if there exists a Kähler-Einstein 
urrent
ω
E

∈ 2πc1(KX), then this 
urrent is unique in the 
lass of 
urrents withminimal singularities in 2πc1(KX).Proof. We set E := {ϕ1 < ϕ2} r UBϕ2 and we apply the degenerate
omparison prin
iple 4.5 as before. We obtain
∫

E

(θ + i∂∂̄ϕ2)
n ≤

∫

E

(θ + i∂∂̄ϕ1)
n =

∫

E

eϕ1−ϕ2(θ + i∂∂̄ϕ2)
n .We infer 0 =

∫

E
eϕ2Ω, and so ϕ1 ≥ ϕ2 almost everywhere over X, thuseverywhere by elementary properties of quasi-plurisubharmoni
 fun
tions.�5 Generalized Kodaira lemmaWe �rst re
all a few standard de�nitions of algebrai
 and analyti
 geometrywhi
h will be useful in our situation.De�nition 5.1 Let (X,ω) be a 
ompa
t Kähler manifold.(A) A modi�
ation of X is a bimeromorphi
 morphism µ : X̃ → X of
ompa
t 
omplex manifolds with 
onne
ted �bers. Then there is a smallestanalyti
 set Z ⊂ X su
h that the restri
tion µ : X̃ r µ−1(Z) → X r Z is abiholomorphism; we say that Exc(µ) = µ−1(Z) is the ex
eptional lo
us of µ.(B) A 
lass χ ∈ H1,1(X,R) is 
alled big if there exist a 
urrent T ∈ χ su
hthat T ≥ εω, for some ε > 0. 43



By a result of [De-Pa℄, a nef 
lass χ on a 
ompa
t Kähler manifold is big ifand only if ∫
X
χn > 0. By the proof of Theorem 3.4 in [De-Pa℄ we obtain thefollowing generalization of Kodaira's lemma.Lemma 5.2 Let X be a 
ompa
t Kähler manifold and χ ∈ H1,1(X,R) bea big 
lass. Then there exist a modi�
ation µ : X̃ → X of X, an e�e
tiveintegral divisor D on X̃ with support |D| ⊃ Exc(µ) and a number δ ∈ Q>0,su
h that the 
lass µ∗χ− δ{D} is Kähler.We asso
iate to χ the set Iχ of triples (µ,D, δ) satisfying the generalized Ko-daira lemma 5.2, and a 
omplex analyti
 set Σχ whi
h we 
all the augmentedsingular lo
us of χ, de�ned as

Σχ :=
⋂

(µ,D,δ)∈Iχ

µ(|D|) . (5.1)A trivial approximation argument shows that the set Σχ depends only on thehalf line R>0χ. In the 
ase the 
lass χ is Kähler, (idX , 0, 1) ∈ Iχ, thus Σχ = ∅.Conversely, if Σχ = ∅, it is 
lear that the 
lass χ must be Kähler : in fa
t,if ω̃µ,D,δ is a Kähler metri
 in µ∗χ − δ{D}, then Θ = µ∗(ω̃µ,D,δ + δ[D]) is aKähler 
urrent 
ontained in the 
lass χ, whi
h is smooth on X r µ(|D|) andpossesses logarithmi
 poles on µ(|D|) ; by taking the regularized upper enve-lope of a �nite family of potentials of su
h 
urrents Θj with ⋂µ(|Dj|) = ∅,we obtain a (smooth) Kähler metri
 on X. In the 
ase the 
lass χ is integralor rational, the set Σχ 
an be 
hara
terized as follows.Lemma 5.3 Let L be a big line bundle over a 
ompa
t Kähler manifold.Then the 
lass χ := c1(L) satis�es
SB(L) ⊂ Σχ =

⋂

E∈Div+(X), δ∈Q>0,

χ−δ{E} ample

|E| , (5.2)where SB(L) is the stable base lo
us of L, i.e. the interse
tion of the base lo
iof all line bundles kL, and E runs over all e�e
tive integral divisors of X.Proof. First noti
e that the existen
e of a big line bundle implies that X isMoishezon. This 
ombined with the assumption that X is Kähler shows that
X must in fa
t be proje
tive (see [Moi℄, and also [Pet1℄, [Pet2℄ for a simpleproof). The in
lusion SB(L) ⊂ Σχ in (5.2) is quite easy: Let (µ,D, ρ) ∈ Iχ.Then Kodaira's theorem implies that {α} := µ∗χ− ρ{D} is a Q-ample 
lasson X̃ and so the integer multiples kα are base point free for k large enough.Therefore the base lo
us of kµ∗L is 
ontained in |D|. This shows that SB(L)44



is 
ontained in the interse
tion of the sets µ(|D|), whi
h is pre
isely equal to
Σχ by de�nition. Now, if H is an ample divisor on X, we have

µ∗(χ− ε{H}) = ρ{D} + {α} − ε{µ∗H}and, again, α − εµ∗H is ample for ε ∈ Q>0 small. We infer that the baselo
us of k(L− εH) is 
ontained in Σχ for k large and su�
iently divisible. Ifwe pi
k any divisor E in the linear system of k(L− εH), then L− 1
k
E ≡ εHis an ample 
lass, and the interse
tion of all these divisors E is 
ontainedin Σχ. Therefore ⋂

E∈Div+(X), δ∈Q>0,

χ−δ{E} ample

|E| ⊂ Σχ.The opposite in
lusion is obvious. �The following lemma gives us an important 
lass of densities whi
h willbe allowable as the right hand side of degenerate 
omplex Monge-Ampèreequations.Lemma 5.4 Let X be a 
ompa
t 
omplex manifold, let Ω > 0 be a smoothvolume form and let σj ∈ H0(X,Ej), τr ∈ H0(X,Fr), j = 1, ..., N , r =
1, ...,M be, non identi
ally zero, holomorphi
 se
tions of some holomorphi
ve
tor bundles over X su
h that the integral 
ondition

∫

X

N∏

j=1

|σj |
2lj ·

M∏

r=1

|τr|
−2hr Ω < +∞holds for some real numbers lj ≥ 0, hr ≥ 0. Then the integrand fun
tionbelongs to some Lp spa
e, p > 1, and for A ≥ A0 ≥ 0 large enough, thefamily of fun
tions

Gε :=

N∏

j=1

(|σj|
2 + εA)lj ·

M∏

r=1

(|τr|
2 + ε)−hr , ε ∈ [0, 1)
onverges in Lp-norm to the fun
tion G0 when ε → 0. In fa
t, for N 6= 0and lj > 0, one 
an take A0 := (

∑

r hr)/(minj lj).Proof. By blowing-up the 
oherent ideals generated by the 
omponents ofany of the se
tions σj , τr, we obtain a modi�
ation µ : X̃ → X su
h thatthe pull-ba
k of these ideals by µ is a divisorial ideal. Using Hironaka'sdesingularization theorem, we 
an even assume that all divisors obtained inthis way form a family of normal 
rossing divisors in X̃. Then ea
h square45



|σj ◦ µ|
2 (resp. |τr ◦ µ|2) 
an be written as the square |zα|2 (resp. |zβ |2) ofa monomial in suitable lo
al 
oordinates U on a neighborhood of any pointof X̃, up to invertible fa
tors. The Ja
obian of µ 
an also be assumed to beequal to a monomial zγ , up to an invertible fa
tor. In restri
tion to su
h aneighborhood U , the 
onvergen
e of the integral is equivalent to that of

∫

U

|zγ |2
N∏

j=1

|zαj |2lj
M∏

r=1

|zβr |−2hr dz.Noti
e also that X̃ 
an be 
overed by �nitely many su
h neighborhoods, by
ompa
tness. Now it is 
lear that if the integral is 
onvergent, then theintegrand must be in some Lp, p > 1, be
ause the integrability 
onditionis pre
isely that ea
h 
oordinate zj appears with an exponent > −1 in the
n-tuple

γ +
∑

ljαj −
∑

hrβr ,(so that we 
an still repla
e lj , hr with plj, phr with p 
lose to 1). In orderto prove the 
onvergen
e of the fun
tions Gε in the Lp norm we distinguishtwo 
ases. In the 
ase where lj = 0 for all j, the 
laim follows immediatelyfrom the monotone 
onvergen
e theorem. The other possible 
ase is lj > 0for all j. In this 
ase the 
onvergen
e statement will follow if we 
an provethat for A large enough the fun
tions
|zγ |2

N∏

j=1

(|zαj |2 + εA)lj
M∏

r=1

(|zβr |2 + ε)−hr
onverge in Lp-norm as ε → 0. This is trivial my monotoni
ity when N = 0.When N > 0 and lj > 0, we have
N∏

j=1

(|zαj |2 + εA)lj ≤ C
( N∏

j=1

(|zαj |2lj + εAmin lj
)

,

M∏

r=1

(|zβr |2 + ε)−hr ≤ ε−
P

hr ,so it is su�
ient to take A ≥ (
∑
hr)/(min lj) to obtain the desired uniform

Lp-integrability in ε. �6 Existen
e and higher order regularity of so-lutionsWe are ready to prove the following fundamental existen
e theorem.46



Theorem 6.1 Let X be a 
ompa
t 
onne
ted Kähler manifold of 
omplexdimension n ≥ 2, let ω ≥ 0 be a big 
losed smooth (1, 1)-form and let Ω > 0be a smooth volume form. Consider also σj ∈ H0(X,Ej), τr ∈ H0(X,Fr),
j = 1, ..., N , r = 1, ...,M be non identi
ally zero holomorphi
 se
tions ofsome holomorphi
 ve
tor bundles over X, su
h that the integral 
ondition

∫

X

N∏

j=1

|σj |
2lj ·

M∏

r=1

|τr|
−2hr Ω =

∫

X

ωn (6.1)holds for 
ertain real numbers lj ≥ 0, hr ≥ 0. Then there exists a uniquesolution ϕ ∈ P BTω of the degenerate 
omplex Monge-Ampère equation
(ω + i∂∂̄ϕ)n =

N∏

j=1

|σj |
2lj ·

M∏

r=1

|τr|
−2hr eλϕ Ω , λ ≥ 0 , (6.2)whi
h in the 
ase λ = 0 is normalized by supX ϕ = 0. Moreover let Σ{ω} bethe augmented singular lo
us of the (1, 1)-
ohomology 
lass {ω} as de�nedin (5.1), whi
h is empty if the 
lass {ω} is Kähler, and 
onsider the 
omplexanalyti
 sets

S ′ := Σ{ω} ∪

(
⋃

r

{τr = 0}

)

, S := S ′ ∪

(
⋃

j

{σj = 0}

)

.Then ϕ ∈ Pω ∩ L
∞(X) ∩ C0(X r Σ{ω}) ∩ C

1,1(X r S ′) ∩ C∞(X r S) .Proof. We �rst assume the existen
e of an e�e
tive divisor D in X and of asmall number δ > 0 su
h that {ω} − δ{D} is a Kähler 
lass on X. (We willlater be able to remove this assumption thanks to Lemma 5.2). By using theLelong-Poin
aré formula we infer the existen
e of a smooth hermitian metri
on O(D) su
h that
0 < ωδ := ω − 2πδ[D] + δ i∂∂̄ log |s|2 ,with div(s) = D. By 
onvention we will put δ = 0 if ω is a Kähler metri
 (sothat ωδ = ω in that 
ase), and in general we will denote by |D| the supportof the divisor D.(A) Setup.For the sake of simpli
ity of notation we assume N = M = 1. The general
ase would be entirely similar and we leave it to the reader. Let α > 0 be47



a Kähler metri
, let ε ∈ (0, 1) and let cε be a normalizing 
onstant for theintegral 
ondition
ecε
∫

X

(|σ|2 + εA)l

(|τ |2 + ε)h
Ω =

∫

X

(ω + εα)n , (6.3)with A := h/l. Condition (6.1) 
ombined with Lemma 5.4 implies cε → 0,when ε → 0+. Observe that here ω + εα is a Kähler metri
 for every ε > 0.Consider the standard solutions ϕε ∈ C∞(X) of the 
omplex Monge-Ampèreequations
(ω + εα+ i∂∂̄ϕε)

n = ecε
(|σ|2 + εA)l

(|τ |2 + ε)h
eλϕε Ω , (6.4)given by the Aubin-Yau solution of the Calabi 
onje
ture. As usual, in the
ase λ = 0, we normalize the solution ϕε with the 
ondition maxX ϕε = 0.Noti
e that the integral 
ondition (6.3) implies that a non identi
ally zerosolution ϕε 
hanges signs in the 
ase λ > 0. By 
ombining Lemma 5.4 withthe estimate of 
orollary 2.13 we obtain a uniform bound for the os
illations,

Osc(ϕε) ≤ C. Set now
ω̃ε := ωδ + εα ,and

ψε := ϕε − δ log |s|2 .As the notation indi
ates, we will keep δ �xed (until step (E)). Then we geta Kähler metri
 de�ned over X
ω̂ε := ω + εα + i∂∂̄ϕε = ω̃ε + i∂∂̄ψε + 2πδ[D], (6.5)thus ω̂ε = ω̃ε + i∂∂̄ψε over X r |D|. In this setting, equation (6.4) 
an berewritten as

(ω̃ε + i∂∂̄ψε)
n = eF

ε+λδ log |s|2+λψε ω̃nε (6.6)on X r |D|, with F ε := f ε + l · aε − h · bε, and with
f ε := cε + log(Ω/ω̃nε ) , aε := log(|σ|2 + εA) , bε := log(|τ |2 + ε) .(Here the supers
ripts in ε are indi
es and not powers.) Let Cω̃ε be the Chern
urvature form of the Kähler metri
 ω̃ε > 0 and let

γε := min
x∈X

min
ξ,η∈TX,xr0x

Cω̃ε(ξ ⊗ η, ξ ⊗ η)|ξ|−2
ω̃ε
|η|−2

ω̃ε
.48



(We remark that the minimum is always a
hieved by an easy 
ompa
tnessargument, see e.g. [Kat℄, Chap II, Se
t. 5.1, Theorem 5.1, page 107.) Weobserve that the family of metri
s (ω̃ε)ε has bounded geometry for δ �xedand ε ∈ [0, 1] arbitrary. In parti
ular, for all ε ∈ [0, 1]

γε ≥ Γ , |f ε| ≤ K0 , λ(ωδ − ω) + i∂∂̄f ε ≥ −K0 ω̃ε .Moreover we 
an assume i∂∂̄aε , i∂∂̄bε ≥ −K0 ω̃ε , (see Appendix A.)(B) The Lapla
ian estimate.This estimate is obtained as a 
ombination of ideas of Yau, Bªo
ki and Tsuji,[Yau℄, [Blo2℄, [Ts℄. Consider the 
ontinuous fun
tion Λε : X → (0,+∞) givenby the maximal eigenvalue of ω̂ε = ω̃ε + i∂∂̄ψε with respe
t to the Kählermetri
 ω̃ε,
Λε(x) := max

ξ∈TX,xr0x
(ω̃ε + i∂∂̄ψε)(ξ, Jξ)|ξ|

−2
ω̃ε
,i.e. we extend Λε over |D| by 
ontinuity, as is permitted by (6.5). Consideralso the 
ontinuous fun
tion over X r |D|,

Aε := log Λε − k · ψε + h · bε ,with 0 < k := 2(1 + hK0/2 −K1) and
K1 := min{−[λ + (1 + l)K0/(2n)] , Γ} < −λ .The reason for this 
ru
ial 
hoi
e will be 
lear in a moment. The singularityof the fun
tion ψε implies the existen
e of a maximum of the fun
tion Aε ata 
ertain point xε ∈ X r |D|. Let gε be a smooth real valued fun
tion in aneighborhood of xε in X r |D| su
h that ω̃ε = i

2
∂∂̄gε, and let uε := gε + 2ψε.Then

ω̃ε + i∂∂̄ψε =
i

2
∂∂̄uε .For the simpli
ity of notation, we just put g = gε and u = uε from now on,and we also set ul,m̄ := ∂2u

∂zl∂z̄m
. Let (z1, . . . , zn) be ω̃ε-geodesi
 holomorphi

oordinates 
entered at the point xε, su
h that the metri
 ω̂ε = ω̃ε + i∂∂̄ψε
an be written in diagonal form in xε. Expli
itly, we have the lo
al expression

ω̃ε = i
2

∑

l,m gl,m̄ dzl ∧ dz̄m, with
gl,m̄ = δl,m −

∑

j,k

Cj,k̄
l,m̄zj z̄k +O(|z|3) , gj,k̄,l,m̄(xε) = −Cj,k̄

l,m̄ ,

Cω̃ε(xε) =
∑

j,k,l,m

Cj,k̄
l,m̄ dzj ⊗ dzl ⊗ dz̄k ⊗ dz̄m .49



and i
2
∂∂̄u = i

2

∑

l ul,l̄ dzl ∧ dz̄l, with 0 < u1,1̄ ≤ ... ≤ un,n̄ at the point xε. Forevery ζ ∈ Cn we set gζ,ζ̄ :=
∑

l,m gl,m̄ ζl ζ̄m. Then
Λε(x) = max

ξ∈TX,xr0x

∂∂̄u(ξ1,0, ξ0,1)

∂∂̄g(ξ1,0, ξ0,1)
= max

|ζ|=1

uζ,ζ̄
gζ,ζ̄

,and so Λε(xε) = un,n̄(xε), with un,n̄
gn,n̄

≤ Λε. We also set
Ãε := log

un,n̄
gn,n̄

− k · ψε + h · bε .Then Ãε ≤ Aε, with Ãε(xε) = Aε(xε). This implies that the fun
tion Ãε alsorea
hes a maximum at the point xε, thus ∆ω̂εÃε(xε) ≤ 0. All the subsequent
omputations in this part of the proof will be made at the point xε. By thelo
al expressions for the Ri

i tensor we obtain
∂2
n,n̄ log det(uj,k̄) =

∑

l,p

(

un,n̄,l,p̄ −
∑

s,t

un,l,s̄ u
s,t̄ un̄,t,p̄

)

up,l̄

=
∑

p

un,n̄,p,p̄
up,p̄

−
∑

p,q

|un,p,q̄|
2

up,p̄ uq,q̄
,and in a similar way ∂2

n,n̄ log det(gj,k̄) =
∑

p gn,n̄,p,p̄. Then by di�erentiatingwith respe
t to the operator ∂2
n,n̄ the identity (6.6), whi
h 
an be rewrittenas

log det(uj,k̄) = F ε + λδ log |s|2 + λ(u− g)/2 + log det(gj,k̄) ,we obtain
∑

p

un,n̄,p,p̄
up,p̄

−
∑

p,q

|un,p,q̄|
2

up,p̄ uq,q̄
= f εn,n̄ + λ[(ωδ)n,n − ωn,n]/2

+ l · aεn,n̄ − h · bεn,n̄

+ λ(un,n̄ − 1)/2 +
∑

p

gn,n̄,p,p̄ .
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Combining this with the inequality ∆ω̂εÃε(xε) ≤ 0, we get
0 ≥

∑

p

Ãp,p̄
up,p̄

=
∑

p

(
un,n̄,p,p̄
up,p̄ un,n̄

−
|un,n̄,p|

2

up,p̄ u
2
n,n̄

+
k/2 + h · bεp,p̄ − gn,n̄,p,p̄

up,p̄

)

− nk/2

=
∑

p,q

|un,p,q̄|
2

up,p̄ uq,q̄ un,n̄
−
∑

p

|un,n̄,p|
2

up,p̄ u2
n,n̄

+
fn,n̄ + λ[(ωδ)n,n − ωn,n − 1]/2 + l · aεn,n̄ − h · bεn,n̄

un,n̄

+
∑

p

(
gn,n̄,p,p̄
un,n̄

+
k/2 + h · bεp,p̄ − gn,n̄,p,p̄

up,p̄

)

− (nk − λ)/2 .We observe at this point that the sum of the two �rst terms following these
ond equality is nonnegative and the trivial inequality
−
h · bεn,n̄
un,n̄

+
∑

p

h · bεp,p̄
up,p̄

≥
∑

p

−h ·K0/2

up,p̄
.By plugging these inequalities in the previous 
omputations and by using thede�nition of the 
onstants k and K1, we get

0 ≥
∑

p

(
K1 − Cn,n̄

p,p̄

un,n̄
+

−K1 + Cn,n̄
p,p̄

up,p̄
+

1

up,p̄

)

− (nk − λ)/2

≥
∑

p

(Cn,n̄
p,p̄ −K1)(un,n̄ − up,p̄)

up,p̄ un,n̄
+
∑

p

1

up,p̄
− C0 ,where C0 > 0 and all the following 
onstants are independents of ε. Letdenote by (x1, ..., xn) the real part of the 
omplex 
oordinates (z1, ..., zn).Then the inequality Cn,n̄

p,p̄ = Cω̃ε(
∂
∂xn

⊗ ∂
∂xp

, ∂
∂xn

⊗ ∂
∂xp

)(xε) ≥ γε ≥ Γ implies
0 ≥

∑

p

1

up,p̄
− C0 ≥

(

un,n̄
∏

p up,p̄

) 1
n−1

− C0

= e
−λψε−λδ log |s|2−Fε

n−1 u
1

n−1
n,n̄ − C0 .51



Consider now the fun
tion Bε := eAε = Λε e
−k·ψε+h·bε. Then xε is also amaximum point for Bε over X r |D| and the previous inequality 
an bewritten as

0 ≥ e
(k−λ)ψε−λδ log |s|2−h·bε−Fε

n−1
(xε) Bε(xε)

1
n−1 − C0

= e
(k−λ)ϕε−δk log |s|2−l·aε−fε

n−1
(xε) Bε(xε)

1
n−1 − C0 .Then by the inequalities k − λ > 0, |s|2 ≤ C, aε ≤ C and |f ε| ≤ K0, we getthe estimate

0 ≥ C1 e
(k−λ)
n−1

minX ϕε Bε(xε)
1

n−1 − C0 .In 
on
lusion we have found over X r |D| the estimates
0 < 2n+ ∆ω̃εϕε − δ∆ω̃ε log |s|2 = Trω̃ε(ω̃ε + i∂∂̄ψε)

≤ 2nΛε ≤ 2n ek·ψε−h·b
ε

Bε(xε)

≤
C2 e

k·ϕε−(k−λ)minX ϕε

|s|2δk(|τ |2 + ε)h
≤
C2 e

kOsc(ϕε)

|s|2δk |τ |2h
.(Here Trω̃ε is the tra
e operator with respe
t to the Kähler metri
 ω̃ε.) Thelast inequality follows from the fa
t that λminX ϕε ≤ 0, sin
e a non iden-ti
ally zero solution ϕε 
hanges signs in the 
ase λ > 0. Then using theinequality

∣
∣δ∆ω̃ε log |s|2

∣
∣ = |Trω̃ε(ω − ωδ)| ≤ C3over X r |D|, we dedu
e the singular Lapla
ian estimate

−C3 < 2n+ ∆ω̃εϕε ≤
C2 e

kOsc(ϕε)

|s|2δk |τ |2h
+ C3 .(C) Higher order estimates.By the previous estimates we infer 0 < 2ul,l̄ < Trω̃ε(ω + εα+ i∂∂̄ϕε) ≤ 2Υε,for all l = 1, ..., n, with

Υε :=
C2 e

kOsc(ϕε)

|s|2δk(|τ |2 + ε)h
.The equation (6.4) 
an be rewritten as

(ω + εα + i∂∂̄ϕε)
n = eF

ε+λϕε ω̃nε .52



We infer
eF

ε+λϕε =
∏

l

ul,l̄ ≤ Υn−1
ε um,m̄ ,for all m = 1, ..., n. The fa
t that a non identi
ally zero solution ϕε 
hangessigns in the 
ase λ > 0 implies λminX ϕε ≥ −λOsc(ϕε). Thus

eF
ε−λOsc(ϕε) Υ1−n

ε ω̃ε ≤ ω + εα+ i∂∂̄ϕε .Then an elementary 
omputation yields the singular estimate
C−1

4 |s|2δk(n−1) |σ|2l |τ |2h(n−2) e−knOsc(ϕε) ω̃ε

≤ ω + εα+ i∂∂̄ϕε ≤
C4 e

kOsc(ϕε)

|s|2δk |τ |2h
ω̃ε . (6.7)Moreover the fa
t that ϕε ∈ Pω+εα implies

2|∂∂̄ϕε|ω̃ε ≤ ∆ω̃εϕε + 2 Trω̃ε(ω + εα) .At this step of the proof we 
onsider
S ′ := |D| ∪

(⋃

r

{τr = 0}
)

, S := S ′ ∪
(⋃

j

{σj = 0}
)

.By the Interpolation Inequalities [Gi-Tru℄ we �nd that for any 
oordinate
ompa
t set K ⊂ X r S ′ there are uniform 
onstants CK > 0 su
h that
max
K

|∇
Cn
ϕε| ≤ CK

(

max
K

∆
Cn
ϕε + max

K
|ϕε|
)

.Therefore, we 
an apply the 
omplex version of Evans-Krylov theory [Ti2℄on every 
ompa
t set K ⊂ X r S to get uniform 
onstants C2,K > 0 su
hthat ‖ϕε‖C2,η(K) ≤ C2,K for some η ∈ (0, 1). Now, let U ⊂ X rS be an openset and let ξ ∈ O(TX)(U). We rewrite the 
omplex Monge-Ampère equation(6.4) under the form
(ω + εα+ i∂∂̄ϕε)

n = eHε+λϕεαn ,with
Hε := cε + log(Ω/αn) + l · aε − h · bε .By taking the derivative with respe
t to the 
omplex ve
tor �eld ξ, we obtain(see the proof of formula 11 in [Pal℄)

∆ω̂ε(ξ . ϕε) − 2λ ξ . ϕε = −Trω̂ε Lξ(ω + εα) + Trα Lξα + 2ξ .Hε , (6.8)53



By the uniform estimates (6.7) and ‖ϕε‖C2,η(K) ≤ C2,K it follows that theoperator ∆ω̂ε is uniformly ellipti
 with 
oe�
ients uniformly bounded in
Cη-norm at least, over any 
ompa
t set K ⊂ U . The right hand side ofequation (6.8) is also uniformly bounded in Cη-norm at least, over K. Bythe standard regularity theory for linear ellipti
 equations [Gi-Tru℄ we de-du
e ‖ξ . ϕε‖C2,η(K) ≤ C ′

K for all ε > 0. We infer the uniform estimate
‖ϕε‖C3,η(K) ≤ C3,K .In its turn, this estimate implies that the 
oe�
ients of the Lapla
ian ∆ω̂εand the right hand side of equation (6.8) are uniformly bounded in C1,η-normat least. By iteration we get the uniform estimates ‖ϕε‖Cr,η(K) ≤ Cr,K forall ε > 0 and r ∈ N. We infer that the family (ϕε)ε>0 ⊂ C∞(X r S) ispre
ompa
t in the smooth topology.(CI) The smooth regularity.By elementary properties of plurisubharmoni
 fun
tions (see [Dem2℄, 
hap-ter 1), the uniform estimate ‖ϕε‖L∞(X) ≤ C implies the existen
e of a L1-
onvergent sequen
e (ϕj)j , ϕj := ϕεj , εj ↓ 0 with limit ϕ ∈ Pω ∩ L∞(X).We 
an assume that a.e.-
onvergen
e holds also. The pre
ompa
tness of thefamily (ϕε)ε>0 ⊂ C∞(XrS) in the smooth topology implies the 
onvergen
eof the limits

(ω + i∂∂̄ϕ)n = lim
l→+∞

(ω + i∂∂̄ϕj)
n = lim

j→+∞
Gj e

λϕj+cjΩ = G0 e
λϕΩ (6.9)over X r S, with cj := cεj , Gj := Gεj and

Gε := (|σ|2 + εA)l (|τ |2 + ε)−h .The fa
t that ϕ is a bounded potential implies that the global 
omplexMonge-Ampère measure (ω+i∂∂̄ϕ)n does not 
arry any mass on 
omplex ana-lyti
 sets. We infer that ϕ is a global bounded solution of the 
omplex Monge-Ampère equation (6.2) whi
h belongs to the 
lass Pω ∩L∞(X)∩C∞(XrS).(CII) The C1,1-regularity.Let U ⊂⊂ X r S ′ be a 
oordinate open set. By a 
lassi
al result in [Gi-Tru℄(see Theorem 8.32, page 210) for all open sets U ′ ⊂⊂ U there exists a 
on-stant C = C(U ′, U) > 0 su
h that for all η ∈ (0, 1) the uniform estimate
‖ϕε‖C1,η(U ′) ≤ C

(
‖ϕε‖L∞(U) + ‖∆

Cn
ϕε‖L∞(U)

) (6.10)holds. By applying the As
oli-Arzela theorem to the sequen
e (ϕj)j , we inferthe uniform estimate ‖ϕ‖C1,η(U ′) ≤ C ′ for all η ∈ (0, 1), thus ϕ ∈ C1,1(XrS ′).54



(D) Uniqueness of the solution.We now prove the uniqueness of the solution ϕ in the 
lass P BTω. In the
ase λ = 0 this follows immediately from Theorem 4.2. In the 
ase λ > 0 let
ψ ∈ P BTω be an other solution. The fa
t that ψ ∈ Pω implies that we 
ansolve the degenerate 
omplex Monge-Ampère equation

(ω + i∂∂̄u)n = G0 e
λψ Ω , (6.11)with the methods so far explained, so as to obtain a solution u ∈ P0

ω∩L
∞(X).In fa
t we 
onsider the solutions uε of the non-degenerate 
omplex Monge-Ampère equations

(ω + εα+ i∂∂̄uε)
n = Gε e

λψε+c′ε Ω ,with ψε ↓ ψ, ψε ∈ C∞(X), ψε ≤ C, i∂∂̄ψε ≥ −K0 ω̃ε and c′ε being a normal-izing 
onstant 
onverging to 0 as ε→ 0. By 
ombining Lemma 5.4 with thedominated 
onvergen
e theorem we infer that the familyGε e
λψε+c′ε 
onvergesin Lp-norm to G0 e

λψ. These 
onditions are su�
ient to provide the singularLapla
ian estimate of step (B). Thus by the C1,η-
ompa
tness argument ofstep (CII) we infer the existen
e of the solution u of the degenerate 
omplexMonge-Ampère equation (6.11).By the uniqueness result in the 
ase λ = 0 we infer u = ψ − supX ψ, thus
ψ ∈ L∞(X). Then the required uniqueness follows immediately from Theo-rem 4.2 (B).(E) Eliminating the assumption on the existen
e of divisors D in X.By se
tion 5, the divisors D whi
h we have assumed to exist in X up to now,
an only be 
onstru
ted (at least, in the non-proje
tive 
ase) by applyinga blow-up pro
ess to X, i.e. we 
an �nd a modi�
ation µ : X̃ → X of X,a divisor D in X̃ with |D| ⊃ Exc(µ) and a number δ > 0 su
h that the
lass {µ∗ω} − δ{D} is Kähler on X̃. For this reason, we use pull-ba
k theMonge-Ampère equation by µ so as to transform equation (6.2) into

(µ∗ω + i∂∂̄Φ)n =

N∏

j=1

|σj ◦ µ|
2lj ·

M∏

r=1

|τr ◦ µ|
−2hr eλΦ µ∗Ω , λ ≥ 0 .Here µ∗Ω is no longer a positive volume form on X̃ but we have µ∗Ω = |Jµ|2Ω̃where Ω̃ is su
h a volume form, and |Jµ|2 is the square of the Ja
obian of µexpressed with respe
t to the pair (Ω, Ω̃). Observe that Jµ is just a se
tionof the relative 
anoni
al divisor KX̃/X and that |Jµ|2 is its norm with respe
tto the metri
 indu
ed by (Ω, Ω̃). Thus our equation again takes the form

(µ∗ω + i∂∂̄Φ)n = |Jµ|2
N∏

j=1

|σj ◦ µ|
2lj ·

M∏

r=1

|τr ◦ µ|
−2hr eλΦ Ω̃ ,55



and it is 
lear that the analogue of 
ondition (6.1)
0 <

∫

X̃

µ∗ωn =

∫

X̃

|Jµ|2
N∏

j=1

|σj ◦ µ|
2lj ·

M∏

r=1

|τr ◦ µ|
−2hr Ω̃ ,holds. By steps (A)�(D), we obtain a unique solution

Φ ∈ Pµ∗ω ∩ L
∞(X̃) ∩ C1,1(X̃ r S̃ ′

µ,D,δ) ∩ C
∞(X̃ r S̃µ,D,δ) ,with

S̃ ′
µ,D,δ = |D| ∪

(⋃

r

{τr ◦ µ = 0}
)

,

S̃µ,D,δ = S̃ ′
µ,D,δ ∪

(⋃

j

{σj ◦ µ = 0}
)

∪ Exc(µ).A
tually, taking the union with Exc(µ) will not be needed sin
e |D| ⊃ Exc(µ).Moreover j∗qµ∗ω = 0, where jq : µ−1(q) →֒ X̃, q ∈ µ(Exc(µ)) is the in
lusionmap. Thus
Φ ◦ jq ∈ Psh(µ−1(q))sin
e Φ ∈ Pµ∗ω ∩ L∞(X̃). By hypothesis µ−1(q) is 
ompa
t and 
onne
ted,whi
h implies that Φ is 
onstant along the �bers µ−1(q). Therefore we 
ande�ne ϕ := π∗Φ ∈ Pω ∩L

∞(X). The fa
t that ϕ is bounded implies that the
urrent (ω+ i∂∂̄ϕ)n does not 
arry any mass on 
omplex analyti
 sets. This,
ombined with the fa
t that
µ : X̃ r Exc(µ) → X r µ(Exc(µ))is a biholomorphism, implies (see Theorem 4.2) that ϕ is the unique solutionin Pω ∩ L∞(X) of the 
omplex Monge-Ampère equation (6.2) with the re-quired C1,1, C∞-regularity over the adequate subsets of X r µ(|D|). We set�nally

Σ{ω} =
⋂

(µ,D,δ)∈I{ω}

µ(|D|) ,

S ′ = Σ{ω} ∪
(⋃

r

{τr = 0}
)

, S = S ′ ∪
(⋃

j

{σj = 0}
)

.Then the 
on
lusion about the Pω ∩L∞(X)∩C1,1(XrS ′)∩C∞(XrS) reg-ularity of the solution ϕ follows by letting (µ,D, δ) ∈ I{ω} vary. The proof ofthe uniqueness of the solution ϕ in the 
lass P BTω is the same as in step D,56



modulo the use of modi�
ations.(F) C0 regularity on X r Σ{ω}.The proof will be 
omplete if we show that ϕ ∈ C0(X r Σ{ω}). This followsfrom the following statement. �Theorem 6.2 . Let X be a 
ompa
t 
onne
ted Kähler manifold of 
omplexdimension n ≥ 2, let ω ≥ 0 be a big 
losed smooth (1, 1)-form and let Ω > 0be a smooth volume form. Let also f ∈ L logn+δ L(X), δ > 0 su
h that
∫

X
ωn =

∫

X
f Ω and λ ≥ 0 be a real number. Then there exists a uniquesolution ϕ ∈ PBTω of the degenerate 
omplex Monge-Ampère equation

(ω + i∂∂̄ϕ)n = f eλϕΩ , (6.12)whi
h in the 
ase λ = 0 is normalized by supX ϕ = 0. The solution ϕ is inthe 
lass Pω ∩ L∞(X) ∩ C0(X r Σ{ω}) and satis�es the L∞-estimate
‖ϕ‖L∞(X) ≤ C(δ, ω,Ω) Iω,δ(f)

n
δ + 1 .Moreover the 
onstant C(δ, ω,Ω) > 0 stays bounded for perturbations of ω ≥

0 as in Statement (C) of Theorem 2.2.
Proof . We 
onsider a regularizing family (fj)j ⊂ C∞(X), fj > 0 of f in
L logn+δ L(X). (The existen
e of su
h family follows from [Ra-Re℄ page 364or [Iw-Ma℄, Theorem 4.12.2, page 79.) We 
an assume as usually ∫

X
ωn =

∫

X
fj Ω. By the proof of Theorem 6.1 and the L∞-estimate in 
orollary2.13 we dedu
e the existen
e of a unique solution of the degenerate 
omplexMonge-Ampère equation

(ω + i∂∂̄ϕj)
n = fj e

λϕjΩ , (6.13)with the properties ϕj ∈ Pω ∩ L
∞(X) ∩ C∞(X r Σ{ω}) and

‖ϕj‖L∞(X) ≤ C := C(δ, ω,Ω) Iω,δ(f)
n
δ + 1 . (6.14)(With supX ϕj = 0 in the 
ase λ = 0.) We dedu
e in parti
ular the uniformestimate

‖fj e
λϕj‖L logn+δ L(X) ≤ KeλC‖f‖L logn+δ L(X) , (6.15)for all j. (See [Ra-Re℄ page 364 or [Iw-Ma℄, Theorem 4.12.2, page 79.) On theother hand the uniform estimate (6.14) implies (see [Dem2℄, 
hapter 1) theexisten
e of a L1-
onvergent subsequen
e (ϕj)j (whi
h by abuse of notationwe denote in the same way). We 
an apply the L∞-stability estimate of57



Theorem 2.2 (B) to the 
omplex Monge-Ampère equation (6.13) thanks tothe estimates (6.14) and (6.15). Noti
e that by (6.14), the L∞-stabilityestimate of Theorem 2.2 (B) applies even if in the 
ase λ > 0, when thesolutions ϕj are not ne
essarily normalized by the supremum 
ondition. Weinfer that the sequen
e (ϕj)j is a Cau
hy sequen
e in the L∞(X)-norm, thus
onvergent to some fun
tion ϕ ∈ Pω ∩ L∞(X) ∩ C0(X r Σ{ω}). This yieldsweakly 
onvergent limits
(ω + i∂∂̄ϕ)n = lim

j→+∞
(ω + i∂∂̄ϕj)

n = lim
j→+∞

fj e
λϕjΩ = f eλϕΩ ,over X r Σ{ω}. Moreover the fa
t that the global Monge-Ampère measure

(ω + i∂∂̄ϕ)n does not 
arry any mass on 
omplex analyti
 sets of X impliesthat ϕ is the unique (in the 
lass PBTω) global solution of the degener-ate 
omplex Monge-Ampère equation (6.12) with the required regularity andwith ‖ϕ‖L∞(X) ≤ C. (We remark that the uniqueness of the solution in the
ase λ > 0 follows from the same argument in step (D) in the proof of theTheorem 6.1 .) �Proof of Theorem 1.3.A result of Kawamata [Kaw℄ 
laims that in our 
ase the 
anoni
al bun-dle is base point free, and so, for all m ≫ 0 su�
iently big and divisible,
mKX has no base points. So we 
an �x m su
h that the pluri
anoni
almap fm : X → CPN is holomorphi
. Consider also the semipositive and bigKähler form ωm := f ∗

mωFS/m ∈ 2πc1(KX), where ωFS is the Fubini-Studymetri
 of CPN . Let Ω > 0 be a smooth volume form over X su
h that
∫

X
Ω =

∫

X
ωnm and Ric(Ω) = −ωm (these 
onditions pres
ribe Ω in a uniqueway). A

ording to Theorem 6.1 we 
an �nd a unique solution ϕ ∈ P BTωmof the degenerate 
omplex Monge-Ampère equation

(ωm + i∂∂̄ϕ)n = eϕ Ω .Moreover ϕ ∈ Pωm ∩ L∞(X) ∩ C∞(X r Σ{ωm}), and so ω
E

:= ωm + i∂∂̄ϕ isthe required unique Einstein 
urrent in the 
lass BTlog
2πc1(KX). �Proof of Theorem 1.4.The uniqueness statement in the theorem 1.4 follows from the 
orollary 4.6.In order to prove the existen
e of a Kähler-Einstein 
urrent ω

E
∈ 2πc1(KX)letm be a su�
iently large integer su
h that the base lo
us ofmKX 
oin
ideswith the stable base lo
us SB and let

fm : X r SB −→ Xm := fm(X r SB) ,58



be the rational map asso
iated to the linear system H0(X,mKX). Let Γ̂mbe the desingularization of the Zariski 
losure of the graph Γm ⊂ X × Xmof fm, let πm : Γ̂m → X and pm : Γ̂m → Xm be the natural proje
tions. Byde�nition of the graph there exists a Zariski dense open set Um ⊂ Γ̂m su
hthat X r SB = πm(Um) and pm = fm ◦ πm over Um. Consider also bases
(σm,j)

Nm
j=1 ⊂ H0(X,mKX) ,and the indu
ed 
urvature 
urrents

0 ≤ γm :=
1

rm
f ∗
m ωFS,m = −Ric(Ωm) ∈ 2πc1(KX) ,where ωFS,m is the Fubini-Study metri
 of CPNm−1 and Ω−1

m is the indu
edsingular hermitian metri
 over mKX . Expli
itly
Ωm =

(
Nm∑

j=1

∣
∣
∣
σm,j
κm

∣
∣
∣

2
)1/m

in
2

κ ∧ κ̄ =

(
Nm∑

j=1

|σm,j |
2
Ω−1

)1/m

Ω ,for arbitrary κ ∈ H0(X,KX) and Ω > 0 a smooth volume form. Observenow that the smooth form
0 ≤ θm := m−1p∗m ωFS,m ,is big. Moreover the Zariski dense open set Vm := Γ̂mrΣθm satis�es XrΣ =

πm(Vm). By Theorem 6.1 we infer the existen
e of a solution
Φm ∈ (Pθm ∩ L∞)(Γ̂m) ∩ C∞(Vm) ,of the degenerate 
omplex Monge-Ampère equation
(θm + i∂∂̄Φm)n = eΦm π∗

mΩm , (6.16)over Γ̂m. The fa
t that θm = π∗
mγm over Um and the �bers of πm are 
onne
tedallows to πm-push forward the equation (6.16). We infer a solution ϕm ∈

L∞(X) ∩ C∞(X r Σ) of the degenerate 
omplex Monge-Ampère equation
(γm + i∂∂̄ϕm)n = eϕmΩm , (6.17)over X r SB. We observe that (6.17) 
an be rewritten in an equivalent wayas

(
−Ric(Ω) + i∂∂̄ψm

)n
= eψmΩ ,59



over X r SB, with
ψm := ϕm +m−1 log

Nm∑

j=1

|σm,j |
2
Ω−1 .Thus ω

E
:= −Ric(Ω) + i∂∂̄ψm is the required Kähler-Einstein 
urrent. �Proof of the 
onje
ture of Tian 1.5The hypothesis (C1) of Statement (C) in Theorem 2.2 is obviously satis�ed.The hypothesis (C2b) is also satis�ed sin
e

lim
t→0

(π∗ωY + tωX)n

Kt ωnX
=






∫

y∈Y

ωmY (y) ·

∫

z∈π−1(y)

ωn−mX






−1

π∗ωmY ∧ ωn−mX

ωnX
< +∞.We dedu
e Osc(ψt) ≤ C < +∞ for all t ∈ (0, 1) by Statements (C) and (A)of Theorem 2.2. This solves in full generality the 
onje
ture of Tian 1.5. �7 AppendixAppendix A. Computation of a 
omplex Hessian. Let σ ∈ H0(X,E)be a holomorphi
 se
tion of a holomorphi
 hermitian ve
tor bundle (E, h)and set Sε := log(|σ|2 + ε), for some ε > 0. We denote by {·, ·} the exteriorprodu
t of E-valued forms respe
t to the hermitian metri
 h. We have

i∂Sε =
i{∂hσ, σ}

|σ|2 + ε
,sin
e σ is a holomorphi
 se
tion. We 
ompute now the 
omplex hessian

i∂∂̄Sε = −∂̄
i{∂hσ, σ}

|σ|2 + ε

=
−i{∂̄∂hσ, σ} + i{∂hσ, ∂hσ}

|σ|2 + ε
+ i{∂hσ, σ} ∧ ∂̄

(
1

|σ|2 + ε

)

=
i{∂hσ, ∂hσ} − {iCE,hσ, σ}

|σ|2 + ε
−
i{∂hσ, σ} ∧ {σ, ∂hσ}

(|σ|2 + ε)2

=
(|σ|2 + ε)i{∂hσ, ∂hσ} − i{∂hσ, σ} ∧ {σ, ∂hσ}

(|σ|2 + ε)2

︸ ︷︷ ︸

iT (Sε)

−
{iCE,hσ, σ}

|σ|2 + ε60



where CE,h ∈ C∞(X,Λ1,1T ∗
X ⊗ End(E,E)) is the 
urvature tensor of (E, h).We show that the (1, 1)-form iT (Sε) is nonnegative. In fa
t by using twi
ethe Lagrange inequality

i{∂hσ, σ} ∧ {σ, ∂hσ} ≤ |σ|2 i{∂hσ, ∂hσ}(whi
h is an equality in the 
ase of line bundles), we get
iT (Sε) ≥

εi{∂hσ, ∂hσ}

(|σ|2 + ε)2
≥
εi{∂hσ, σ} ∧ {σ, ∂hσ}

|σ|2(|σ|2 + ε)2
=

ε

|σ|2
i∂Sε ∧ ∂̄Sε ≥ 0 .Observe that the last form is smooth. Consequently, we �nd the inequalities

i∂∂̄Sε ≥
ε

|σ|2
i∂Sε ∧ ∂̄Sε −

{iCE,hσ, σ}

|σ|2 + ε

≥
ε

|σ|2
i∂Sε ∧ ∂̄Sε − ‖CE,h‖h,ω

|σ|2

|σ|2 + ε
ωwhere ω is a positive (1, 1)-form.Appendix B. Proof of the estimate (2.21) in Lemma 2.14. We willapply the 
omputations of step (B) in the proof of Theorem 6.1 to the non-degenerate 
omplex Monge-Ampère equation

(ω + i∂∂̄ϕ′
j)
n = eh+Lϕ′

j−ϕ
′
j−1 ωn .In this setting, the notation of setup (A) in the proof of the Theorem 6.1redu
es to δ = l = h = 0, ω̃ε = ω and i∂∂̄h ≥ −K0 ω. By repla
ing the term

f with h−ϕ′
j−1 in the expansion of the term∑

p Ãp,p̄/up,p̄ in step (B) in theproof of Theorem 6.1, we infer
0 ≥ e

−Lϕ′j−h+ϕ
′
j−1

n−1 u
1

n−1
n,n̄ −

(ϕ′
j−1)n,n̄

un,n̄
− C ′

0 ,Thus
0 ≥ C ′

1 u
1

n−1
n,n̄ −

2n+ maxX ∆ωϕ
′
j−1

4un,n̄
− C ′

0 , (7.1)by the estimates
ϕ′′

0 ≤ ϕ′′
j−1 ≤ ϕ′′

j ≤ ϕ′
j ≤ ϕ′

j−1 ≤ ϕ′
0 . (7.2)This estimate implies also that at the maximum point xj we have

un,n̄(xj) = Λω
ϕ′
j
= ekϕ

′
j(xj)Bj(xj) ≥ C ′

2Bj ,61



with Bj := maxX Bj > 0. Then estimate (2.21) in Lemma 2.14 follows from(7.1) and the fa
t that
0 < 2n+ ∆ωϕ

′
j ≤ 2nekmaxX ϕ′

j Bj ≤ C Bj ,whi
h is itself a 
onsequen
e of (7.2). �Appendix C. Relation with other works. As explained in the introdu
-tion the present work has its foundations in the papers [Yau℄, [Be-Ta℄ andespe
ially in [Kol1℄, [Kol2℄. A few months after that the �rst version of thepresent paper appeared on the arXiv server, P. Eyssidieux, V. Guedj, A. Ze-riahi posted on the same server a related preprint [E-G-Z2℄. In this preprintthe authors obtain a weaker version of Statement (C) given in our Theorem2.2, whi
h is su�
ient to imply Tian's 
onje
ture as stated in [Ti-Ko℄. Thestatement in [E-G-Z2℄ is weaker sin
e it requires the (somehow stronger) as-sumption Ω/ωn ∈ Lε(X), where ω ≥ 0 is smooth, big and degenerate. Forthe same reason a weaker version of Lemma 2.9 is stated in [E-G-Z1℄.At this point one should observe that the essen
e of the 
apa
ity methodintrodu
ed in [Kol1℄ does not allow to produ
e the required L∞-estimatein the 
ase of a big and non nef 
lass. It is possible to see that in this
ase the 
onstants blow-up. This blow-up phenomenon has been one of themotivations of our work, whi
h has led us to the proof of Tian's 
onje
-ture [Ti-Ko℄. Moreover �xed point methods do not produ
e a priori the
L∞-estimate needed to 
onstru
t singular Kähler-Einstein metri
s and toinvestigate their regularity.We wish to point out that in a quite re
ent preprint [Di-Zh℄ the authors
laim (in Theorem 1.1) boundedness and 
ontinuity of the solutions of someparti
ular type of degenerate 
omplex Monge-Ampère equations. No proofof this 
laim seems to be provided. The authors also 
laim a stability resultwhi
h is not su�
ient to imply the 
ontinuity of solutions in the degenerate
ase. In fa
t a sequen
e of dis
ontinuous fun
tions 
onverging in L∞-normdoes not have ne
essarily a 
ontinuous limit ! Moreover the same 
laim (The-orem 1.1) has been stated in [Zh1℄, [Zh2℄, but again no proof of 
ontinuityseems to be given (see page 12 in [Zh1℄ and page 146 in [Zh2℄). The argu-ments for the boundedness of the solutions in [Zh1℄, [Zh2℄ are quite informalin the degenerate 
ase and seem impossible to follow.Con
erning the stability of the solutions, the 
ontinuity assumption isquite natural and often available in the appli
ations. In fa
t in the appli
a-tions one works with smooth solutions provided by the Aubin-Yau solution ofthe Calabi 
onje
ture with respe
t to variable Kähler forms of type ω+εα, asin the proof of theorem 6.1. This perturbation pro
ess is one of the reasons62



of trouble for the 
ontinuity of the solutions. Moreover the stability with re-spe
t to the data f 
onsidered in [Di-Zh℄ is not essential in this 
ontext sin
eone has L1-
ompa
tness of quasi-plurisubharmoni
 fun
tions normalized bythe supremum 
ondition. In fa
t a parti
ular 
ase of the stability result,namely Theorem 2.2 B, implies the 
ontinuity of the solution of the 
omplexMonge-Ampère equation (ω + i∂∂̄ϕ)n = eλϕf Ω, whenever ω > 0 is a Kählermetri
 and f ∈ L logn+ε L. This fa
t has been observed also in [Kol2℄.Finally we mention that a ni
e and simple proof of the regularization ofquasi-plurisubharmoni
 fun
tions in the 
ase of zero Lelong numbers 
an befound in [Bl-Ko℄.A
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