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Abstract

We prove the existence and uniqueness of the solutions of some
very general type of degenerate complex Monge-Ampére equations,
and investigate their regularity. This type of equations are precisely
what is needed in order to construct Kéhler-Einstein metrics over ir-
reducible singular Kéhler spaces with ample or trivial canonical sheaf
and singular Ké&hler-Einstein metrics over varieties of general type.
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1 Introduction

In a celebrated paper [Yau| published in 1978, Yau solved the Calabi conjec-
ture. As is well known, the problem of prescribing the Ricci curvature can be
formulated in terms of non-degenerate complex Monge-Ampére equations.
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Theorem 1.1 (Yau). Let X be a compact Kihler manifold of complex di-
mension n and let x be a Kdhler class. Then for any smooth density v > 0
on X such that [, v = [, X", there ezists a unique (smooth) Kdihler metric
w e X (i-e. w=wy~+100p with wy € x ) such that W™ = (wy + 100p)" = v.

Another breakthrough concerning the study of complex Monge-Ampére equa-
tions was achieved by Bedford-Taylor [Be-Ta]. They initiated a new method
for the study of very degenerate complex Monge-Ampére equations. In fact,
by combining these results, Kotodziej [Kol1] proved the existence of solutions
for equations of type

(w+i00p)" = v,

where w a Kéhler metric and v > 0 a density in L? or in some general Orlicz
spaces. However, in various geometric applications, it is necessary to consider
the case where w is merely semipositive. This more difficult situation has
been examined first by Tsuji [Ts|, and his technique has been reconsidered
in the recent works [Ca-Lal, [Ti-Zha|, [E-G-Z1] and [Paul].

In this paper we push further the techniques developed so far and we
obtain some very general and sharp results on the existence, uniqueness and
regularity of the solutions of degenerate complex Monge-Ampére equations.
In order to define the relevant concept of uniqueness of the solutions, we
introduce a suitable subset of the space of closed (1, 1)-currents, namely the
domain of definition BT of the complex Monge-Ampére operator “in the sense
of Bedford-Taylor”: a current © is in BT if the the successive exterior powers
can be computed as

O = i00(p0"),
where ¢ is a potential of © and p©O* is locally of finite mass. Then for every
pseudoeffective (1, 1)-cohomology class x, we prove a monotone convergence
result for exterior powers of currents in the subset

BT, = BTnNy.

The uniqueness of the solutions of the degenerate complex Monge-Ampeére

equations in a reasonable class of unbounded potentials has been a big issue
and the object of intensive studies, see e.g. [Ts|, [Ti-Zha|, [Blol], [E-G-Z1].
In this direction, we introduce the subset

BT\ C BT,,

of (closed positive) currents 7" € BT, which have a Monge-Ampére product
T" possessing an L'-density such that

/ log(T" /) Q < +oo,
X
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for some smooth volume form 2 > 0. For example this is the case when the
current, 7™ possesses an L'-density with complex analytic singularities (see
Theorem 6.1). We observe that the Ricci operator is well defined in the class
BT

In the last section we prove existence and fine regularity properties of the
solutions of complex Monge-Ampére equations with respect to a given degen-
erate metric w > 0, when the right hand side possesses an Llog""® L-density
or a density carrying complex analytic singularities (see Theorems 6.2 and
6.1). As a consequence of this results, we derive the following generalization
of Yau’s theorem.

Theorem 1.2 Let X be a compact Kdihler manifold of complex dimension n
and let x be a (1,1)-cohomology class admitting a smooth closed semipositive
(1,1)-form w such that [, w™ > 0.

(A) For any Llog""® L-density v > 0, € > 0 such that [, v = [, x", there
exists a unique closed positive current T' € BT\, such that T" = v. Moreover,
this current possesses bounded local potentials over X and continuous local
potentials outside a complex analytic set ¥, C X. This set depends only on
the class x and can be taken to be empty if the class x is Kdihler.

(B) In the special case of a density v > 0 possessing complex analytic sin-
gqularities the current T is also smooth outside the complex analytic subset
Y, UZ(v) C X, where Z(v) is the set of zeros and poles of v.

The type of complex Monge-Ampére equation solved in Theorem 6.1 is pre-
cisely what is needed in order to construct Kahler-Einstein metrics over irre-
ducible singular Kéhler spaces with ample or trivial canonical sheaf. Tt can
be also used to construct singular Kahler-Einstein metrics over varieties of
general type and to solve generalized equations of the form

Ric(w) = —Aw+p, A>0.

The relevant L>-estimate needed in the proof of Theorem 6.1 (in the case
related with Kéahler-Einstein metrics) is obtained combining the L>-estimate
in Statement (A) of Theorem 2.2 with an important iteration method in-
vented by Yau [Yau| (see the Lemma 2.14). The main issue here is that
one can not use directly the maximum principle since the reference metric is
degenerate.

The proof of our Laplacian estimate in Theorem 6.1, which is obtained
as a combination of the ideas of in [Yau|, [Ts|, [Blo2], provides in particular



a drastic simplification of Yau’s most general argument for complex Monge-
Ampére equations with degenerate right hand side. Moreover, it can be
applied immediately to certain singular situations considered in [Pau| and
it reduces the Laplacian estimate in [Pau| to a quite simple consequence
(however, one should point out that the argument in [Pau| contains a gap
due to the fact that the LP-norm of the exponential exp(ty . — 15.) of e-
regularized quasi-plurisubharmonic functions need not be uniformly bounded
in € under the assumption that exp(1; — ) is LP, as our Lemma 5.4 clearly
shows if we do not choose carefully the constant A there). Theorem 6.1 gives
also some metric results for the geometry of varieties of general type. In this
direction, we obtain the following results.

Theorem 1.3 Let X be a smooth complex projective variety of general type.
If the canonical bundle is nef, then there exists a unique closed positive cur-

rent w, € BTI;EQ(KX) solution of the Einstein equation

Ric(w,) = —w, . (1.1)

This current possesses bounded local potentials over X and defines a smooth
Kihler metric outside a complex analytic subset 3, which is empty if and
only if the canonical bundle is ample.

The existence part has been studied in [Ts], [Ca-La| and [Ti-Zha| by a Kéhler-
Ricci flow method. The importance of the uniqueness statement in Theorem
1.3 is the following. If a current
lo
w, € BTQECI(KX)
satisfies the Einstein equation (1.1) then it has bounded local potentials. In
the non nef case we obtain the following statement.

Theorem 1.4 Let X be a smooth variety of general type and let SB C X be
respectively the stable and augmented stable base locus of the canonical bundle
Kx. Then there ezists a closed positive current w,, € 2mwci(Kx) over X, with
locally bounded potentials over X .S B, solution of the Einstein equation (1.1)
over X ~\ SB, which restricts to a smooth (non-degenerate) Kdihler-Finstein
metric over X \X. If w, has minimal singularities, then w, is unique in the
class of currents with minimal singularities in 2me;(Kx).

Quite recently Tian and Kotodziej [Ti-Ko| proved a very particular case
of our L*>-estimate. Their method, which is completely different, is based
on an idea developed in [De-Pal. Our L*™-estimate allows us to completely
solve the following conjecture of Tian stated in [Ti-Ko].
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Conjecture 1.5 Let (X, wyx) be a polarized compact connected Kdihler man-
ifold of complex dimension n, let (Y,wy) be a compact irreducible Kdhler
space of complex dimension m < n, let 1 : X — Y be a surjective holo-
morphic map and let 0 < f € Llog"™ L(X,w%), for some ¢ > 0 such that
1= [, fwh. Set K; == {m*wy +twx}" >0 fort € (0,1). Then the solutions
of the complex Monge-Ampére equations

(m*wy + twx + i@éwt)" =K fuwy,

satisfy the uniform L*-estimate Osc(;) 1= supy ¢y — infx ¢y < C < 400
for all t € (0,1).

The present manuscript expands and completes a paper accepted for
publication in the International Journal of Mathematics, which had to be
shortened in view of the length of the manuscript and of the demands of
referees - in particular it gives more details about the relation with the exis-
ting litterature (see Appendix C).

2 General L*-estimates for the solutions

Let X be a compact connected complex manifold of complex dimension n
and let 7 be a closed real (1,1)-current with continuous local potentials or
a closed positive (1, 1)-current with bounded local potentials. Then to any
distribution ¥ on X such that v + 00V > 0 we can associate a unique
locally integrable and bounded from above function ¢ : X — [—o00,+00)
such that the corresponding distribution coincides with ¥ and such that for
any continuous or plurisubharmonic local potential h of v the function h+
is plurisubharmonic. The set of functions ¢ obtained in this way will be
denoted by P,. We set P) := {1y € P, | supx ¢ = 0}.

Definition 2.1 Let X be a compact complex manifold of complex dimen-
sion n. A closed positive (1,1)-current with bounded local potentials such
that {y}" := [ 7" > 0, will be called big.

If X is compact Kéhler, one knows by [De-Pa| that the class {7} is big if and
only if it contains a Kéhler current 7' = 7 + 1001 > ew (the inequality is in
the sense of currents), for some Kéhler metric w on X and € > 0.

Basic facts about Orlicz spaces. Let P : Rsy — Ry, P(0) = 0, be
a convex increasing function and 2 > 0 be a smooth volume form over a
manifold M and let X C M be a Borel set of (2-finite volume. According to



[Ra-Re| we introduce the vector space
LP(X) := {f:X—>RU{ioo}|EI>\>O : / P(\f|/)\)Q<+oo} ,
X
(with the usual identification of functions equal a.e.), equipped with the norm

oo = inf{A -0 /XP(\fI/)\)Q < 1} |

The space L”(X) equipped with this norm is called the Orlicz space asso-
ciated with the convex function P. Moreover this norm is order preserving,
ie
1 llroo < Nlgllerex
if | f| < |g| a.e. If P(t) = |t|P, p > 1, then L (X) is the usual Lebesgue space.
More refined examples of Orlicz spaces are given by the functions
Py :=tlog’(e +1),
and
QB = etl/ﬁ -1

with # > 1. In these cases, we set

Llog’ L(X) := LT (X),
and

Exp'/P L(X) := L9 (X).

An important class of Orlicz spaces is given by considering functions P sat-
isfying the “doubling property™ P(2t) < 2¢P(t) for some constant C' > 1.
This is the case of the functions |¢|P and Pg(t), but not the case of Q3(t). For
functions satisfying the doubling condition one has (see proposition 6 page
77 in [Ra-Re|)

LP(X) = {f:XﬁRU{ioo}l [ Pame< +oo} ,
and

| PUsIE lrh2=1

for all f € LP(X) ~ {0}. So in the particular case of the function Pj, one
obtains the inequality

ot 00 < [ 111108 (e-+ 171 1) 2 (2.1
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since ||fllice) < [[fllpiog? nx)- It is quite hard to get precise estimates of
the norm Exp'? L(X), however it is easy to see that

1
1 = '
H ”Expl/ﬁ L(X) 1Ogﬁ(1 —+ 1/VOIQ<X>>

(2.2)

The relation between the Orlicz spaces Llog” L(X) and Exp'/? L(X) is ex-
pressed by the Holder inequality (see [Tw-Mal)

' /X fgﬂ' < 205 11 10g 200 19l 2 (2.3)

which follows from the inequality zy < Cg(Ps(x) + Qs(y)) for all z,y > 0.
(Observe moreover that C; = 1.)

We define the oscillation operator Osc := sup —inf. With the notations
so far introduced we state the following result.

Theorem 2.2 Let X be a compact connected Kdihler manifold of complex
dimension n, let 2 > 0 be a smooth volume form, let v be a big closed positive
(1,1)-current with continuous local potentials. Let also ¢» € P, N L>*(X) be
a solution of the degenerate complex Monge-Ampeére equation

(v +i00)" = fQ,

with f € Llog"™® L(X) for some gy > 0. Then the following conclusions
hold.

(A) There exists a uniform constant Cy = Cy(gq,7,2) > 0 such that for all
e € (0,e0) we have an estimate

Osc(y) < (Cr/e)" * Lo(f)% + 1,

where

Lo(f) = {7} / Flog™™ (e + {7} "f) 2.

(B) Assume that the solution v is normalized by the condition supy 1) = 0
and consider also a solution p € P, N L>®(X), supy ¢ = 0 of the degenerate
complex Monge-Ampére equation

(v +1i00p)" = g,



with g € Llog"™* L(X). Assume also L,.,(f), L, (g) < K for some con-
stant K > 0. Then there exists a constant Cy = Cy(gg, 7,2, K) > 0 such
that

Ll

o= ¥l < 265" (loglo =i, )

1
(n+1+n?/eo)’

g =

provided that the inequality ||p — wHLl(X’Q) < min{1/2,e~“*} holds.

(C) Let (v)i=0 be a family of currents satisfying the same properties as -,
fix a finite covering (Uy)a of coordinate starshaped open sets, and let us write
Ve = iaéht,a with hy o plurisubharmonic over U,, normalised by supy hyo =
0 and let Cy := Ci(e0, 7, Q2), Cop = Co(g0, V1, 2, K). Assume

(C1) sup,somaxq [|heall e,y < +00 and B

(C2a) there exist a decomposition of the type v, = 0, +1i00u;, with 0; smooth,
miny u; = 0, sup,.,maxy u; < +oo and 0; < ({v:}")"w for some Kihler
metric w > 0 on X,

or

(C2b) the distributions vi' /2 are represented by L'-functions and

sup {%}”/log (e+ {7} ™™ /) 7 < +oo.
X

t>0

Then sup,~, C;; < +o0 for j =1,2.

Statement (C) will follow from the arguments of the proof of Statements (A)
and (B) of Theorem 2.2.

We start by proving a few basic facts about pluripotential theory, in a
way which is best adapted for the understanding of the proof of the theorem
2.2. The reader can also consult and compare with the related results in
[Be-Ta], [Deml1], [Dem2|, [G-Z| and [Sic].

Let X be a compact complex manifold of complex dimension n, let v be
a big closed positive (1, 1)-current with bounded local potentials. Set

P01 ={peP, | 0<p <1},

Yy = + 00y and

Cap,(E) = sup {v}7" [,
©EP,[0,1]



for all Borel sets £ C X. We remark that if (£});, £, C E;3; C X is a
family of Borel sets and £ = ; Ej then clearly, we have

Cap, (E) = jli)inoo Cap, (E;) . (2.4)
Lemma 2.3 Let X be a compact connected complex manifold of complex
dimension n, let v be a closed real (1,1)-current with continuous local poten-
tials or a closed positive (1,1)-current with bounded local potentials and let

Q > 0 be a smooth volume form. Then there exist constants o = a(y,§2) > 0,
C =0C(v,9Q) >0 such that fX - Q< C and fX e WO <C forally € 73,?.

(We notice that the first inequality follows from the second one.) The first
two integral estimates of Lemma 2.3 are quite standard in the elementary
theory of plurisubharmonic functions and the dependence of the constants «
and C on 7 is only on the L> bound of its local potentials (see e.g. [Hor| and
[Skoda]). To be more precise in sight of the uniform estimate [, e=*¥ Q < C
one can make the constant « depending only on the cohomology class of
as in [Til|, but in this case the constant C' will depend on the L> bound of
the local potentials of v and on the volume form 2. One can also make C'
depending only on the volume form 2, but in this case a will depend on the
L bound of the local potentials of v and on the volume form (2.

The following lemma is the key technical tool which allows to deduce
Statement (C) of Theorem 2.2.

Lemma 2.4 Let X be a compact connected Kdhler manifold of complex di-
mension n and let v be a big closed positive (1,1)-current with continuous
local potentials.

(A) There exists a constant C = C(v) > 0 such that Cap, ({1 < —t}) < O/t
for all ¢ € 739/ and t > 0. Moreover the constant C' stays bounded for per-
turbations of v satisfying the hypothesis (C1) and (C2a) of Statement (C) in
Theorem 2.2.

(B) If v*/QY € Llog L(X), for a smooth volume form € > 0 then the con-
clusion of Statement (A) holds with a constant C' = C(v,) > 0 which stays
bounded for perturbations of v satisfying the hypothesis (C1) and (C2b) of
Statement (C) in Theorem 2.2.

Proof. We first notice the obvious inequality

1
/73 S;/—w%’;
X

P<—t



which implies

Cap,({w < ) <7 swp {17 [~ (25)

PEP[0,1]
and we prove the following elementary claim.

Claim 2.5 Let v be a closed positive (1,1)-current with bounded local po-
tentials over a compact complexr manifold X of complex dimension n and let
@, ¥ € Py such that 0 < ¢ <1 and ¢ <0. Then

/—IMZ S/—t/w"an/v"- (2.6)
¢ ¢ ¢

Proof. The fact that the current + is positive implies . := max{¢, ¢} € P,,
¢ € R_g, so by the monotone convergence theorem it is sufficient to prove
inequality (2.6) for ¢ € P, N L>(X). So assume this and let w > 0 be a
hermitian metric over X. By the regularization result of [Dem3| there exists
a family of functions (¢.):>0, ¥: € Pyiew N C(X) such that ¢. | ¢ as
e — 0T. Consider now the integrals

I =/ —py Ay,
X

for all j =0,...,n. Then I; < I;11 + [, 7". In fact by Stokes’ formula

I; = I — hm /@/}673 /\Z@@go/\vn g1
= I — 11151 100 N\ @y Ny~ g1
X
< fj+1+/<m”1Av <I+1+/v
X X
In this way we deduce the required inequality Iy < I, + an ™. (]

The following claim will be very useful for the rest of the paper.

Claim 2.6 Let (X,w) be a polarized compact connected Kdhler manifold of
complezx dimension n and let v, T be closed positive (1,1)-currents with con-
tinuous (or more generally, bounded) local potentials. Then for alll = 0, .

C):= sup / —p TP AW

YePY
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and vy NT'=T" Ny for all b € P,,.

Proof. The proof of the convergence of the constants C; goes by induction
on [ =0,...,n. The statement is true for [ = 0 by the first integral estimate
of Lemma 2.3. So we assume it is true for [ and we prove it for [ + 1. Let
Y. = max{1y,c} € P,, ¢c € Reg. By the regularization result of [Dem3| we
find (Yee)e>0, Vee € Prgew NC(X) such that .. | 1. as € — 0F. Let us
write T = 6 + i00u, with 0 smooth, # < Kw and u bounded with infx u = 0.
By using the monotone convergence theorem and Stokes’ formula, we expand
the integral

c——00 g—0t

/_w Tl+1 /\wnflfl = lim lim _wqe Tl+1 /\wnflfl
X X

= lim lim — e OANT AW — [ 4 i00u AT A w1
c——00 g—0t ) ’
L X X

c——00 g—0t

< lim lim / —thee TN K™t — / wi0pee N T A W11
| X

b

c——00 g—0t

= /—z/JTl/\Kw"l—i— lim lim —/u(fywm +ew) AT AWt
X

X

+ /u(7+€w)/\Tl/\w"_l_1
X

< KC’l+supu/7/\Tl/\w"_l_1<+oo,
X
X

by the inductive hypothesis. In sight of the symmetry of the exterior product
we remark that the decreasing monotone convergence theorem implies

lim [ (e — )T A" =0,

X

which means the convergence of the mass ||(¢.—1)T"||.(X) — 0 as ¢ — —oo0,
in particular . T' — YT weakly as ¢ — —o0. So by the weak continuity of
the 100 operator we deduce

Yo NTH— vy AT, (2.7)
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weakly as ¢ — —oo. Moreover the weak continuity of the i90 operator implies
by induction on [
T' N yg — T' Ay,

weakly as ¢ — —oo. This combined with (2.7) implies vy AT =T Ay, .0

In the particular case T" = ~ big, the constant

0<C(y):=n+sup {7} " [ —vy" <+o0

peP %

satisfies the capacity estimate of Statement (A) in Lemma 2.4, by inequality
(2.5) and Claim 2.5. Thus if (7);>0 is a family satisfying the hypothesis
(C1) and (C2a) of Statement (C) in Theorem 2.2 and K, = ({~,}")/", then
the constant C(v) satisfies the stability properties of Statement (A) of the
Lemma 2.4, and we can use the induction in the proof of Claim 2.6 with
T=2,0=0,u=u and K = K, to get

C’lSKt/—ww"Jrsuput/%/\wn_ngt/—@/)w"+RKt /w",
X * X X X

where R > supy u; and in general

Ciii < KC+R / A AW < K,C 4 RK? / W™
X X
We deduce
c, gKt"/ —1/1w”+nRKt"/ w™.
X X

We now prove Statement (B) of Lemma 2.4. In fact let f := {~}"+"/Q > 0.
Then the uniform estimate for the integral

[ o= [-avra

follows from the elementary inequality —avyf < e — 1 + flog(1l + f)
combined with the uniform estimate fX e~ () < C of Lemma 2.3. In this
case the required stability properties of the constant C(v,Q) > 0 in the
capacity estimate are obvious. U
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Lemma 2.7 (Comparison Principle). Let X be a compact complex man-
ifold of complex dimension n and let vy be a closed real (1,1)-current with
bounded local potentials and consider ¢, ¢ € P, N L>*(X). Then

/ Yy < / Ve -
o<t o<t
Proof. Let © := (7 + 100 max{p, @/}})n By the inequality of measures
() Ei H¢zw’73 + Hw<w175’
proved in [Deml1|, we infer

forfs [or[x

p<tp <t > P>

This combined with Stokes’ formula implies

/’YZS/@—/@S/”YZ—/’YZ:/’YZ-
X X

<y P> P> <y

O

We recall now the following lemma due to Kotodziej [Kol1], (see also [Ti-Zhul],
[Ti-Zhu2]).

Lemma 2.8 Let a : (—00,0] — [0,1], be a monotone non-decreasing func-
tion such that for some B > 0, § > 0 the inequality

ta(s) < Ba(s+t)'*°

holds for all s <0, t € [0,1], s+t < 0. Then for all S < 0 such that a(S) > 0
and all D € [0,1], S+ D < 0 we have the estimate

D <e(3+2/0)Ba(S+ D).

The following lemma is a simple application of the main result in Bedford-
Taylor [Be-Ta| and of the monotone increasing convergence theorem in pluripo-
tential theory.

Lemma 2.9 Let X be a compact connected complex manifold of complex
dimension n, let vy be a big closed positive (1,1)-current with continuous local

13



potentials and let €2 > 0 be a smooth volume form. Then there exist constants
a=a(v,Q2) >0, C=C(y,Q) > 0 such that for all Borel sets E C X we
have

/ 0 < e*Ce/ Cary () (2.8)
B
In particular Cap,(E) = 0 implies [, Q= 0.

Proof. 1t is sufficient to prove this estimate for an arbitrary compact set. In

fact assume (2.8) for compact sets and let (K;);, K; C K;41 C E be a family

of compact sets such that [, Q@ — [, Q as j — 4o00. Set U := U;K; C E
J

and take the limit in (2.8) with E replaced by K;. By (2.4) we deduce

/Q < 6ozcve—oz/CapA/(U)l/” < eace—a/Capw(E)l/” )

E

We prove now (2.8) for compact sets K C X. For this purpose, consider the
function introduced in [Sic|, [G-Z]

Uk (z) :==sup{p(x) | ¢ € Py, @), <0}.

We remark that Wx > 0 over X and (Vg), = 0 since 0 € P, by the
positivity assumption on . Assume

/ng%o,

otherwise there is nothing to prove. In this case there exists a constant
Ck > 0 such that supy ¢ < Ck for all ¢ € P, , ¢, <0. In fact let

SK::{SOEP’Y | (p\KSO}

and set ¢ := ¢ —supy ¢. By contradiction we would get a sequence ¢; € Sk
such that supy ¢; — +oo. This implies

sup ¢; — —00
K

/—@-QZ—(/ Q)supgéjﬁ—i-oo,
K K K

which contradicts the first integral estimate of Lemma 2.3.
Then it follows from quite standard local arguments that the upper regular-
ization ¥}, € P,. (Here we use the assumption that the local potentials of

and so
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~ are continuous.) Moreover U3 € L>®°(X), U > 0 and ¥}, = 0 over the
interior K° of K.

We recall now the following well known consequence of a result of Bedford
and Taylor [Be-Ta.

Theorem 2.10 Let ¢ € P, N L®(X) and let B be an open coordinate ball.
Then there erxists p € P, NL®(X), p > ¢ such that v =0 on B and ¢ = ¢
on X N\ B. Moreover if o1 < o, then 91 < (s.

This implies the following quite standard fact in pluripotential theory [Sic],
[Dem1], [G-Z].

Corollary 2.11 Let K C X be a compact set such that [, Q # 0. Then the
extremal function Ui, € P, N L*(X) satisfies V5 > 0 over X, ¥y =0 over
the interior K° of K and Yy = 0 over XN K.

Proof. By the classical Choquet lemma there exists a sequence (y;); C Sk,
¢; > 0 such that V3 = (supj ©;)*. We can assume that this sequence is
increasing. Otherwise, set ¢; := ¢ and

@; = max{y;, pj_1} € Sk .

Let B be an open coordinate ball in X \ K and let ¢; € Sk be a solution of
the Dirichlet problem vgj = 0 over B as in Theorem 2.10. Thus the sequence
(¢); C Sk is still increasing and Wi = (sup; ¢;)*. Remember also that the
plurisubharmonicity implies that W3- = lim; ¢; almost everywhere. By the
monotone increasing theorem from classical pluripotential theory, we infer

Yy = 0 on B, and the conclusion follows from the fact that B is arbitrary.
O

By using a basic fact about Lebesgue measure theory and the second in-
tegral estimate of Lemma 2.3 we get

/Q:/Q:/e—w’m < /e—wm < Cem@supx Vi |
K KO KO X

Set Ag = supy V. If Ax > 1set ¢ := A;(l\II*K. Then 0 < ygx. < Ag7,
and so ¢ € P,[0,1]. By corollary 2.11 we deduce

(AR = A / W, < / 2n < {7} Cap, (K ).

K K
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thus —aAx < —a/Cap, (K )" by the bigness assumption on the current
v. If Ag <1 then ¥} € P,[0,1] and so

L= {3} [, < Cap,(K) < Cap,(X) = 1.
K

In both cases we reach the required conclusion. O

Proof of Theorem 2.2, part A.
We can assume supy ¢ = 0. Let U := {¢ < s}, s <0,t € [0,1], s+t <0,
¢ € P,[—1,0] and set

Vi={Y—s—t<tp}.
Then we have inclusions U; C V' C U,y;. By using the Comparison Principle
(2.7) we infer

t"/vZS/%E/%ﬁ/vZS/v&
Us Us \% \%4 Ustt

thus combining this with Holder inequality in Orlicz spaces (2.3), formula
(2.2) and Lemma 2.9 we obtain

rCap, () < Py [ ap =) [ fo

Us+t Us+t

< {VTColl fll L1ognte nix) - ||1||Exp,++g L(Usse)

Ol f 1l rognt Lix)
1Ogn+8 (1 + 1/VOlQ(U5+t))

" Co 1 f Il rogn Lex)
lognJrE <1 + efacflea/Capy(Uert)l/n)

IN

< Caalb/a)™ {0}l gaogese ) Capy (Usd) ™+

(Here the constant C' > 0 depends on the same quantities as the constant C4
in Statement A and k£ > 0 is a constant such that

kla/z < log(l4 e C~te/®),
for all z € (0,1]). So if we set 0 := ¢/n and
B := O (k/a) "L ()"
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we deduce that the function a(s) := Cap,(U,)"/", s < 0, satisfies the hypoth-
esis of Lemma 2.8. (We use here the inequality (2.1).) Consider now the
function k(t) := K;Bt°, with constant K; := e(3+2/0). Remember also the
uniform capacity estimate

a(s) < O (=s)7V",
of Lemma 2.4. Let now n > 1 be arbitrary. We claim that a(S,) = 0 for
~S, =C"(KsBn)"’ +1.

The fact that the function a is left continuous (by formula (2.4)) will imply
that a(S;) = 0 also. Remark that S, is a solution of the equation

C(=S, =) =w"n1),

where £~ ! is the inverse of the function x. So if we assume by contradiction

that a(S,) > 0 we deduce by Lemmas 2.8 and 2.4
1 < k(a(S, +1)) <w(C(=S,—1) V") =nt<1,

which is a contradiction. Thus if we set —/ := max{s < 0 | a(s) = 0} we
obtain
1< -8, <CYKs;B)"° +1,

which by arranging the coefficients yields the right hand side of the estimate
in Statement A of Theorem 2.2. Moreover by definition Cap. (U_;) = 0, thus
Volg(U-;) = 0 by Lemma 2.9. The fact that the current v has continuous
local potentials implies that the function ¢ is upper semicontinuous, so the
set U_; is open, thus empty. This implies the required conclusion. O

Proof of part B.
Set a := max{||¢||L=(x), [[1||z=(x)}, consider § € P,[0,1], s > 0, t € [0,1]

and set . .
= — 1—-— — 5 — .
B N )

Then the obvious inequality 0 < —p%az/} < ﬁ—ta implies the inclusions
{p—9 < —s—t} CV C{p—1 < —s}. Thus by applying the Comparison

Principle (2.7) as in [Kol2] we obtain

tn t t "
- noL 1—
(1+a)" / o= /{1+a%+< 1+a)%ﬂ]
p—p<—s—t \%4
/VZ < / Ve -

\%4 p—Pp<—s

VAN

17



By inverting the roles of ¢ and v in the previous inequality and by summing

up we get
tn
m / vy < / (f+9)Q.

lo—y|>s+t lo—v|>s

By taking the supremum over 6 we obtain the capacity estimate

1" Cap, (jp — 6] > s + 1) < (1 +a)"{7} ™" / FroQ. (29

lo—p[>s

for all s >0, t € [0,1]. Set Ug := {|p — ¢| > s} C X. By combining Lemma
2.9 with a computation similar to the one in the proof of part A we obtain

t Cap’Y<US+t) < (1 + CL)n{fy}inCéo Hf + gHLlognvLEo L(X) CapW(Us)(””O)/"

< B" C&pV<US)(n+€O)/n ’

where the constant B > 0 depends on the same quantities as the constant
(5 in Statement (B) of Theorem 2.2. We deduce that the function a(s) :=
Cap, (U_,)'/", s <0, satisfies the hypothesis of Lemma 2.8 with § = €/n. On
the other hand, the capacity estimate (2.9) combined with Holder’s inequality
in Orlicz spaces implies for all ¢ € [0, 1] the inequalities

e Caplo-vl>2) < (o [ (90

lo—1|>t

L [l — vl + 99

2(1+a)*{y} "
t

IN

IN

o — Vllexp e 1 f + 9l 210 L)

AK(1+ a)”

< ; ¢ — Y| Exp L(x) - (2.10)

Claim 2.12 If [[¢ — 9| p1(x) < 1/2, then there exists a constant C, > 0 such
that

I = Pllexp ix) < Ca/ log e — wHle(x) :

Proof. We assume ||¢ —)|[11(x) > 0, otherwise there is nothing to prove. Set
Chra = k(2% —1)/(2a),
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k > 0. Then for all £ > 0 and all z € [0, 2a/k] the inequality e — 1 < Cy . x
holds. Thus the inequality | — v|/k < 2a/k implies

/(elw—w/k _1)a< Ck,a/ |¢;w| Q.
X

X

We get from there the implication

lo = Vlpx)y =k/Cha = |l —Ylleprx) <k, (2.11)

since by definition
o = V|lexp ix) :==inf ¢ & >0 | / (eeVF—1)Q <1
b's

So if we set p(k) := k/Cy > 0 we deduce by the implication (2.11)

o = Yllepree) < 1t (le = ¥l (2.12)

where ;=1 : Ry — Ry is the inverse function of . Explicitly

pt(y) = 2a/log(1 + 2a/y) ,

for all y > 0. Now there exists a constant C, > 0 such that

pH(y) < Caflog(1/y),
for all y € (0,1/2]. This combined with (2.12) implies the conclusion. O

Combining Claim 2.12 with the estimate (2.10) we infer the capacity es-
timate
C _ —1/n
a(=t) < s (log e = vlizh) (2.13)

where the constant C' > 0 depends on the same quantities as the constant
Cy in Statement B. Set now Cy := C"(2K;B)"/° > 0 (with K; > 0 as in the
proof of Statement (A)) and define

t = Cgo0 (log I — ¢|!Z3(X))

The hypothesis t € (0, 1] combined with the hypothesis of Claim 2.12 forces
the condition ||¢ — ¥ z1(x) < min{1/2,e~“2}. Moreover ¢ is solution of the

equation
C LN [
e (el = vlidg) =7 (5)
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where k7! is the inverse of the function & introduced in the proof of part A.
We claim that a(—2t) = 0. Otherwise, by Lemma 2.8 and inequality (2.13),
we infer

0<t<kla(—t)) <r(k(t/2)=1t/2,

which is absurd. We deduce
Vola(lo — 9] > 2t) =0
by Lemma 2.9. We prove now that the set
Un ={lp—9| > 2t} C X,

is empty, which will imply the desired L*>°-stability estimate. The fact that
| — 1| <2t a.e. over X, implies

f o e-var ’ <o,
B(z,r)

for all coordinate open balls B(x,r) C X. (The symbol fB represents the
mean value operator.) By elementary properties of plurisubharmonic func-
tions follows

p(z) = ¢(z) = lim (o =) dA,
r—0+t B(z,r)
for all z € X. We infer |¢ — | < 2t over X. O

Corollary 2.13 Let (X,w) be a polarized compact connected n-dimensional
Kdhler manifold, €2 > 0 a smooth volume form and v > 0 a big closed smooth
(1,1)-form. Take also f € Llog"™ L(X), 6 > 0, such that Jx 7" =[x FQ
and let (f.)eso C C%(X) be a family converging to f in the Llog"™ L(X)-
norm as € — 07, satisfying the integral condition

/(7+5w)":/f5(2. (2.14)

Then, for any real number X > 0, the unique solution of the non-degenerate
complexr Monge-Ampére equation

(v + ew + 00y )" = f.erVQ), (2.15)

given by the Aubin-Yau solution of the Calabi conjecture (which in the case
A = 0 is normalized by maxx 1. = 0) satisfies the uniform L*-estimate
[Vell ey < C(6,7, Q) Lys(f)s + 1.
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Proof. The existence of a regularizing family f. of f in Llog™™ L(X) follows
from [Ra-Re| page 364 or [Iw-Ma|, Theorem 4.12.2, page 79. We can always
assume the integral condition (2.14) otherwise we multiply f. by a constant
¢ > 0 which converges to 1 by the normalizing condition [, 7" = [, f .
We distinguish two cases.

Case A = 0. The hypothesis (C1) and (C2a) of Statement (C) of Theo-
rem 2.2 are obviously satisfied for the family (v + ew).. We deduce that the
constant C7; = C1(0, v+ ew, ) > 0 in the Statement of Theorem 2.2, A
does not blow up as € — 0*. Moreover the uniform estimate

||fa||Llogn+5L(X) < C,||f||Llog”+5L(X) =K (2.16)

holds for all € € (0,1). Thus by Theorem 2.2, A we obtain the required
uniform estimate [|¢c||zx) < C:= C(6,7,Q) L, 5(f)5 + 1.

Case A > 0. We start by proving the following lemma, which is a parti-
cular case of a more general result due to Yau (see [Yau|, sect. 6, page 376).

Lemma 2.14 Let (X, w) be a polarized compact Kihler manifold of complex
dimension n, let h be a smooth function such that fX w" = fX elw™ and let
p € P, be the unique solution of the complex Monge-Ampére equation

(w 4 100p)™ = el (2.17)

A > 0. Consider also two solutions ¢', ¢" € P, of the complex Monge-
Ampere equation (w + i00)" = e"w™ such that miny ¢’ = 0 = maxx ¢”.
Then ¢" < o < ¢'.

Proof. The argument is a simplification, in our particular case, of Yau’s
original argument for the proof of Theorem 4, sect. 6 in [Yau|. Set ¢j :=
¢, ¢p = " and consider the solutions ¢, ¢/ of the complex Monge-Ampére
equations given by the iteration

(w+ 004" = MO =051 | (2.18)

(w+ 100" = ML (2.19)
Notice that we can solve these equations even if the terms e’ ¥i-1, ' ¥i-1
are not normalized, see Lemma 2 page 378 in [Yau|. Set L := A + 1 and
consider

(w + 100, )" = TPy > L =e0) ghyn — L1 =90) () 4 i9 Pl )" .
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At a maximum point of ¢ — ¢} we have the inequality
(w +i00¢p)" > (w + 100" .

By plugging this into the previous one, we deduce ¢} < ¢f. We now prove by
induction the inequality ¢ < ¢’ _,. In fact by dividing (2.18); with (2.18);_,
we get

(w + 100"

_ — L= 0i_ )= ()1 =¥)2) > pL@j=¥j_1)
(w + 900, ;)" =

At a maximum point of ¢} — ¢’ | we find again the inequality
(w4 1004))" < (w +i00¢;_1)" .

Combining this with the previous one we deduce ¢ < ¢’ ;. By applying a
quite similar argument to (2.19) we obtain also ¢} ; < ¢f. We also prove
by induction the inequality ¢} < ¢, which is true by definition in the case
j = 0. By dividing (2.18); with (2.19); we get

‘a9, I \n
(000" _ 1oy —e0) < )
(w + i00g")" = |

by the induction hypothesis ¢} ; < ¢’ ;. At a minimum point of ¢} — ¢’
we get - -
(w +i00¢)" > (w +i00¢})",

hence ¢ < ¢}. As a conclusion, we have proved the sequence of inequalities

0o < i < <@ < < g (2.20)

We now prove a uniform estimate for the Laplacian of the potentials 4,03. The
inequalities 2.20 imply 0 < 2n + A,¢) < C Bj, where B; > 0 satisfies the
uniform estimate

0>C B~ — <2n + m)?wap;il) B =Gy, (2.21)

Cy, C7 > 0, which is obtained by applying the maximum principle in a
similar way as in Yau’s proof of the second order estimate for the solution of
the Calabi conjecture [Yau|. (It can also be obtained by setting d =1 =h =0
and w. = w in step (B) in the proof of Theorem 6.1, (see Appendix B). In the
case n = 1 the uniform estimate 0 < 2n + A, ¢} < €' follows immediately
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from the inequalities (2.20).) Fix now a constant Cy > 0 such that the
inequality
1
Cl .ﬁL’H_m Z (C(] -+ 20)37 - 02 y

holds for all z > 0. This implies by (2.21) the estimate
2(2n + ALyp)) <20 B; < <2n + max Awg0;_1> + Cy,

thus
2n + max Ay <277 <2n + max Awg0’0> + Cy,

by iteration. By taking the derivative in the Green Formula (see [Aub], Th.
4.13 page 108) we get the identity

dxw; - —/dew(l’, ) Aw(p; wn’
X

which implies the estimate

/ /
Vool < G, max A < K.

By applying the complex version of the Evans-Krylov theory [Ti2| we de-
duce the uniform estimate ||¢[|c2a(x) < K’. This combined with (2.18)
implies that the monotone sequence (gog)j converges in the C*%-topology to
the unique solution ¢ of the complex Monge-Ampeére equation (2.17). Then
the conclusion follows from the inequalities (2.20). O
Consider now the solutions ¥, ¥”, miny ). = 0 = maxy ¢? of the com-
plex Monge-Ampére equation (2.15) for A = 0. By applying Lemma 2.14 we
deduce ¢! <. < ¢! for all € > 0. By the argument in the case A = 0, we
infer [[¢.]| zoo (), 192 ||z (x) < C, thus ||| po(x) < C. -

3 Currents with Bedford-Taylor type singular-
ities
In the situation we have to consider, the relevant class of currents which can

be used as the input of Monge-Ampére operators is defined as follows.

Definition 3.1 On a complex manifold, we consider the class BT of closed
positive (1,1)-currents © whose exterior products OF, 0 < k < n, can be
defined inductively in the sense of Bedford-Taylor, namely, if © = 00y
on any open set, then OF is locally of finite mass and OFF! = 00 (pOF)
for k < n.
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Notice that the local finiteness of the mass of ¥©F is independent of
the choice of the psh potential ¢, and that this assumption allows indeed
to compute inductively i99(x©%) in the sense of currents. Now, if y is a
(1, 1)-cohomology class, we set

BT, = BTN y. (3.1)

Let v > 0 be a closed positive (1, 1)-current with continuous local potentials.
We define corresponding classes of potentials

PBT, = {p€P,|y+id0pc BTy},
PBT := {p€PBT, | 51)1(p<p:0}.

Let ¢ € P BT, with zero Lelong numbers. It is well known from the work of
the first author [Dem4]| (which becomes drastically simple in this particular
case), that there exists a family (¢:)es0, @ € Pyiew N C®(X), such that
0. | pase | 0", In the case the Lelong numbers of ¢ are not zero we can
chose R > 0 sufficiently big such that 0 < v + Rw + i0d¢p, for all € € (0, 1)
and . | ¢ as ¢ — 0. We have the following crucial result.

Theorem 3.2 (Degenerate monotone convergence result).

Let (X,w) be a polarized compact Kdihler manifold of complex dimension n
and let v, T be closed positive (1,1)-currents with bounded local potentials.
Then the following statements hold true.

(A) Forallp e PBT,, o <0and k,1 >0, k+1<n, k<n-—1

/—govg/\Tl/\w"_k_l<+oo, and AETAT =T AR

X

(B) Let ¢ € PBT,, ¢ < 0 with zero Lelong numbers and ¢. € Pyiey N
C>®(X), such that . | ¢ as e — 07. Then for all k,1 > 0, k+1 < n,
k<n-—1

Pe (V. + Ew)k AT — 807:3 AT ) (3.2)

(Voo + W) AT — ’yf,“ AT, (3.3)

weakly as e — 0T,
(C) Let ¢ € PBT,, ¢ <0 and p. € Pyip, N CP(X) such that . | ¢ as
e — 0. Then for allk,1 >0, k+1<n, k<n-—1

0= (Vo + RO)F AT — ¢ (v, + Ro)F AT, (3.4)

(Yoo + R0 AT — (v, + Rw)FP AT, (3.5)
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weakly as e — 0T,

As follows immediately from the proof, the statement of this theorem still
holds if we replace 7" with a product 73 A .... AT}, where the currents T; have
the same properties as 7. As a matter of fact, we wrote the statement in
the previous special case only for the sake of notation simplicity. However,
in the course of the proof, it is useful to notice that statements concerning
terms involving 7" are still valid if we replace 7" with 4" A 7",

Proof. Statement (3.3) follows from (3.2) by using the weak continuity of
the i00 operator. The argument for Statement (B) is the same as for (C).

Proof of (A). We denote by Ay, the special case of Statement (A) in the the-
orem for the relative indices (k,[). We prove Statements Ay, [ =0,...,n—k
by using an induction on k£ = 0,...,n — 1. We remark that Claim 2.6 asserts
Statement (A) in full generality for £ = 0. So we assume Statement Aj_; .,
and we prove Ay, | = 0,...,n—k by using an induction on [. We remark that
Ay holds by the hypothesis ¢ € PBT,. So we assume A;; and we prove
Ap 1. In fact let . := max{p,c} € P,, ¢ € Rg. By the regularization
result in [Demd| let (¢cc)es0, Pee € Poyiew N CP(X) such that p.. | ¢, as
e — 0" and write T = 6 + i00u, with 6 smooth, § < Kw and u bounded
with inf y « = 0. By using the monotone convergence theorem, the symmetry
of the wedge product provided by the inductive hypothesis in k and Stokes’
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formula, we expand the integral

/_(p73 A THL A k11
X

- lim lim /_Qpc,a /yZ; A Tl+1 A wn—k—l—l

c——00 g—07t

X
T . I+1 k n—k—l—1
= CEEHOO llm+ —Pee T A Vo N W
e—0
X
. . 1 k n—k—l—1
= CEEHOO hm+ — e O NT" N Vo AW
e—0
X

—  lim lim oe 100U NT' N 7{2 Awn Rt
c——00 ¢—0+ ’
X

IN

lim lim [ —p.. fyi AT A Ko r!
c——00 g—0+t
X

— lim lim [ wi@dpe. Ay AT AW
c——00 g—07t
X

= K/—go*yfz/\Tl/\w"kl
X

o li li k Tl n—k—Il—1
Jim - lim [ (Voer TEW) AYg AT ANw
X

+ lim lim [ u(y+ew)A %]; AT AWt
c——00 g—07t
X

< K/—goyf_)/\Tl/\w"_k_l+supu/vszATlAw"_l_l<+oo,
X
X X

by the inductive hypothesis in [. We now prove the symmetry relation

VAT =T AT (3.6)

The decreasing monotone convergence theorem implies

lim [ (p.— @) ’yfz AT' AW =0,
X
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which means the convergence of the mass [|(¢. — @) 75 A T (X) — 0 as
¢ — —oo. In particular

Vs NT — e AT,
weakly as ¢ — —oo. So by the weak continuity of the i90 operator we deduce
Yoo NVENTH — AT (3.7)

weakly as ¢ — —oo. The symmetry of the wedge product provided by the
inductive hypothesis in k implies

fy%/\fyf,/\Tl = fy%/\Tl/\fyf, = Tl/\fy%/\fyf,

By the other hand (3.7), , combined with the weak continuity of the 90
operator implies, by an induction on [

Tl/\%ac/\vg—>Tl/\7:Z+1,

weakly as ¢ — —oo. This combined with (3.7) implies the required symmetry
(3.6).

Proof of (B). For all £k = 0,....,n — 1 and [ = 0,...,n — k we consider
the following statement By ;: for allp =0,..., k

PeVoN (Yoo + W) PAT — @i AT, (3.8)
000 ANYEN (Y. +ew)* P AT — i00p AYEAT', (3.9)
VN (Y. +ew) PHAT — A5 AT (3.10)
OV N (Voo + cw)FPAT — 90%’2 AT, (3.11)

weakly as ¢ — 07. We remark that (3.9) follows from (3.8) by the weak
continuity of the i00 operator. By combining (3.9) with the weak continuity
of the i00 operator we obtain

(Yoo W) AN (Y, +ew) P AT — A AT

weakly as ¢ — 07. On the other hand the symmetry of the wedge product
proved in part (A) of the theorem implies

(Yoo + W) AVENA (Y, + ew)  PAT = (7, +ew)* P AT AR

= YA (Y +ew) AT
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In this way we deduce (3.10). The statements By, are true by the proof of
Claim 2.6. We now prove by induction on £ = 0,...,n — 1 that Statements
By, 1 =0,...,n — k hold true. In fact we prove the following claim.

Claim 3.3 If B;, holds true for all j =0, ...,k —1, then By; holds also true
foralll=0,....,n— k.

As pointed out before in order to prove By it is sufficient to show (3.8) and
(3.11). The proof of (3.11) is quite similar to the proof of (3.8) that we now
explain. We first prove by induction on s =0, ..., kK — p the inequality

—p7H N (Ve + cw)F P AT A Wk

_(p 75"'5 /\ (,ysog + gw)k—p—s /\ Tl /\ wn—k—l

Mo M —

»
|
—

+
N\

(e = @)V A (Y +ew) PTTEAY AT AW

,2
Il

»
I
—_

|
—

eV A (. + ew)FTPTTTL AT A TR (3.12)

=]

r=

~ =

Inequality (3.12) is obviously true for s = 0. (Here we adopt the usual
convention of neglecting a sum when it runs over an empty set of indices.)
Before proceding to the proof of the inequality (3.12), we need to point out
two useful facts.

1) Let o be a smooth closed real (¢, q)-form, R be a closed positive (r,r)-
current, v > 0 be a measurable function such that fX_vR/\w”_r < +o00. This
implies that the currents i00vAR = i00(v R) and i00vAaAR := i00(vaAR)
are well defined. Then the Leibniz formula implies

aNiOOv AR =1i00vAaAR. (3.13)
2) Thanks to part (A) of the theorem we have
/—¢7£+T /\,yh /\Tl /\wnfpfrfhfl < 400
X

forall h =0,..,k —p—r — 1. By (3.13) this implies

/—W VA (Y, +ew)* PTTTEAT AWM < 400

X

28



so the current
S = cpvﬁ” A (Y. + cw)F PN T

is well defined and we can define the current
000 NETT A (Y. +ew) PTTTEAT! = 0008

Then the integration by parts formula

/i@é(pg ASAw R = /(p6 i00S N w" k!
X X
can be written explicitly as

/i@@goe AOVET A (Yp, +ew)*PTTTEAT AW
X

— /cp8 i00¢p N\ YN (Yoo + cw)FPTTTUATE A W TR (3.14)

X

We suppose now the inequality (3.12) true for s and we prove it for s + 1.
We start by expanding, thanks to formula (3.13), the integral

I = [ =B A (. +ew) PEAT AW

—0 BTN (7 + ew) A (Y. + B L e N A
—0yE A i00@. N (g, + ew)F P57 AT PR
—ep WA (Yoo + cw)EPms T AT Rt

OV N (Y. + ew)FPTI LAY ATEA W

i00p. N cpvﬁ“ A (Voo + »scu)k_f”_s_1 AT A WV R

Mo RS M M M M~
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By applying the integration by parts formula (3.14) to the last integral we

deduce

|
M M M M

By combining the symmetry of the
formula (3.13) we get

YAV A (o +2w) FTTIATY

— e ,yg-l—s—kl A (,y%78 + 5w)k_p_8_1 A Tl A wn—k—l
Yy A 75“ A (V. + ew)k’p’s’l ATEA R
OV N (Y. + eW)FPTIE LAY AT A R

) ,y£+s A (f}/tpg 4 €w>kfpfsfl A Tl A wnfk:flJrl )

wedge product proved in part (A) with

= YA (Vg + ) TPTTIAT AAEE

= (Ypo +ew)fFPLAYATA bt

= ’yffrs A (Y. + cw)FPTI LAy AT

By plugging this into the previous expression of I we obtain

I =

+
M M X

— e ,yg-l—s—kl A (,y%78 + 5w)k_p_8_1 A Tl A wn—k—l
(0e — @) 72 A (Y. +ew) P Ay AT AW F

) ,y£+s A (f}/tpg 4 €w>kfpfsfl A Tl A wnfk:flJrl’
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which implies inequality (3.12) for s + 1. For s = k — p the inequality (3.12)
rewrites as

— e Vo N (Y, + )PP AT AW R < / — 'VZZ AT A Wt hl
X

T~

—

(0e = @)V A (Yo + W) TTEAYAT A"

i
S

_I_
x>
L
H—

|
m—

eV N (Yoo + ew)F AT A R

r=p
By using the inductive convergence hypothesis (3.8),,, (3.11);, in B;. for
j <k —1 we deduce
lim sup / —@e Vo A (Voo + W) P AT A W
e—07F 4
< /—go fyf, AT AW < 4o, (3.15)

X

by Statement A. (We can always arrange ¢, < 0 for all ¢ € (0, 1) by changing
¢ into ¢ —C'.) Thus by weak compactness of the mass there exists a sequence
(¢j)j> €; 1 07 and a current of order zero © € D, _, ;. ,(X) such that

Pe; Vip (%st +éj w)k_p AT — O,

weakly as 7 — +o00. So for any smooth and strongly positive form o of
bidegree (n — k —I,n — k — 1), we have

Pe; Vip ('YSOej +5jw)k_p/\Tl/\a — O Aa,
weakly as j — +oo. The fact that ¢, | ¢ and
WA (e, +ew)  PAT Ao — AL AT A,
weakly as j — 400, by the convergence inductive hypothesis (3.10), ,,,

implies
@/\aggovf,/\Tl/\oz,
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thanks to Lemma (3.9), page 189 in [Dem2|. Thus © < ¢7EAT" . Combining
this with the inequality (3.15) we obtain

X X

< limoir+1f / e Vo N (Yoo + ew)F P AT A W
E—>
X

. k— l —k—1
< lm o foe e A (e, e 0)TPAT AT
X

= /@ Awnr R

X

We deduce Tr,(pvi ATH — ©) = 0, which implies 75 A T" = © since
0< <P’YZZ AT! — ©. This proves Statement By. O

We introduce also the subsets

~

PBT, = {@EPBT?, | /X—cp72<+oo}+RCPBT7,
75BT2 = {p e PBT, | supp =0}.
X

Without changes in the proof of Theorem 3.2 we get the following corollary.

Corollary 3.4 For all ¢ € PBT,, ¢ <0, the assertions A), B) and C) of
Theorem 3.2 hold for all k =0, ...,n.

Let now O be a closed positive (n—1,n—1)-current and consider the L?-space

L*(X,0): = ac(X,AYT%) | /m/\oz/\ O < 400 :
X

/6—(1.6

equipped with the hermitian product (o, 8)g = [, ia A B A ©, which is well
defined by the polarization identity. The ©-almost everywhere equivalence
relation is defined by: o ~ 3 iff

/i(a—ﬁ)/\(a—ﬁ)/\@zo.

X
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The subscript "©-a.e.” in the definition of L*(X,©) above is "©-almost
everywhere. Let ag, a € L*(X,0). We say that the sequence ay, converges
L*(X, 0)-weakly to «a if

/ iaNBAO = lim [ iaxg ABAO,

X k=too Jx

for all 3 € L*(X,0). Let ¢ € P such that [, —p© A w < 4o00. Then
one can define dp A © = J(pO). We write dp € L*(X,0) if there exists
a € L?(X,0) such that 9(pO) = a A © in the sense of currents. In this case
we write

/iago/\&p/\@ ::/m/\a/\@.
X X
With these notations we have the following corollary.

Corollary 3.5 Let (X,w) be a polarized compact Kdihler manifold of complex
dimension n and let v, T be closed positive (1, 1)-currents with bounded local

potentials, let © be a closed positive (n —1,n — 1)-current and consider ¢ €
PBT,, ¢ <0,¢v € P,NL>®(X), v <0. Then for allk,l >0, k+1<n-—1,

/i&gp ANOp Ay AT AW < 400, (3.16)
X
/i@z/}/\éw/\@ < +00. (3.17)
X

Moreover let (905)6>0: (1/15)5>0 C COO(X), e € 'P%LRM,, 1/}5 c ,P%st such that
¢ | @, ¥ | ase — 0F. Then

1iI(I]1+ i0(pe — ) NO(pe — @) AYEAT AW F171 =0, (3.18)
X

11%1+ i0(h. — ) NO(Ye — ) NO = 0. (3.19)
X

Proof. By integrating by parts we obtain

/i&goe AOpe Ny NTH AW+t

X

= - / 0= 1000 Nyl NTH A w1t
X
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e (7 + Rw) A 732 ANTEA Rt

Ve (V% + Rw) A 7:2 AT A QPR

Mo H—

By the proof of Theorem 3.2, B we can take the limit, so

0 < lim [ i0p. A Op. A 'yf, ATEA k==l
e—0t
X

= /@ (Y= Y) Ae AT A w71 < o0 (3.20)
b's
On the other hand the weak convergence of the sequence
Ve 7{2 AT AR cpvfz ATEA @R
combined with the weak continuity of the 0 operator implies

8805 /\,Y!; /\Tl /\wn,k,l,I N ago /\f%; /\Tl /\wnfkflflj

weakly as e — 0. Then the L*(X, fyf, ATY A wn= k2N weak compactness
provided by (3.20) implies (3.16) and the L?(X, 75 A T' A w"#~1"1)-weak
convergence dp. — Op as € — 0T. This implies

/’i&p A Op A 'yf, AN

X

= lim [ i0p. AJp A 732 N AN L

e—0t
X
T a3 koAl o m—k—l—1
= alir(l)l+ e 100 Ny g NT" ANw
X
= 8lir(l)l+ —0: (V= Yp) A 7:2 ATEA k=it
X
= / —o (7= Yp) AYE AT AW
X

= lim [ i0p. ADp. Ay AT Aw™ 171
e—0t
X
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by identity (3.20). This implies (3.18) by elementary facts about Hilbert
spaces. The proof of (3.17) and (3.19) is quite similar. O

The conclusion of the corollary 3.5 still holds true if we replace the current
’yg ATE A w k=1 with a sum of currents

—- . k [ n—k—[—1
S E Ck,17¢AT N w ,
k+I1<n—1

where C}; € R such that = > 0. We infer the linearity formula

/iago/\ago/\E: Z C’k,l/’i@cp/\&p/\yf,/\Tl/\w"_k_l_l.

X k+l<n—1 X

4 Uniqueness of the solutions

We start with a renormalization result for the density volume form of a big
and nef (1, 1)-cohomology class. This uses [De-Pa| in a crucial way.

Lemma 4.1 Let X be a compact Kdihler manifold of complex dimension n,
let T' be a big closed positive (1,1)-current with continuous local potentials.
Then there exist a big closed positive (1,1)-current v with continuous local
potentials, cohomologous to T and a complexr analytic subset Z C X such
that v is a smooth Kdihler metric over X \ Z.

Proof. Let a be a smooth closed (1, 1)-form representing the cohomology class
of T. The assumption on 7' means that we can write T’ = a+i90¢ > 0 where
1 is a continuous quasi-plurisubharmonic function. By the approximation
theorem of [Demd4|, there exists a decreasing sequence 1; of smooth quasi-
plurisubharmonic functions converging to  such that

= 1
a+i00¢; > —=w,
J

in particular the class {T'} = {a} is nef (i.e. numerically effective in the sense
of [Dem4]) and big. By Theorem 0.5 of [De-Pal, there also exists a Kéhler
current © = «a +i0dp € {a}, with © > ew (in the sense of currents) and
e > 0, such that ¢ has logarithmic poles on some analytic subset Z C X
and ¢ is smooth on X \ Z. If we consider ¢; := max(y,9 — j), then
¢; is a continuous quasi-subharmonic function which coincides with ¢ on a
neighborhood of the compact set

Kj={z€ X~ Z; b(2) — p(=) < j — 1}
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Clearly we have a +i99¢; > 0 on X and
a+1i00p; = a +i0dp = © > cw on a neighborhood of K.

Therefore if we put & = Zj>1 277, then ® is a continuous quasi-plurisub-
harmonic potential on X (notice that there is uniform convergence since
—j —C1 < ¢; <Cyon X), and there exists a continuous function A > 0 on
X such that a +i09® > X and A(z) > 0 on |JK; = X \ Z. By Richberg’s
approximation theorem applied on X \ Z (invoking e.g. [Dem2|, Theorem
(I.5.21) with the error function $A(z) > 0 on X \ Z), we can find a function

VeP,NCPXNZ),

such that & < ¥ < & + %)\ and a + 100V > %)\ > 0 on X ~\ Z; this implies
that ¥ has a continuous extension to X such that ¥ = & on Z, and also
that the extension satisfies v := o + 00V > %)\ > 0 everywhere on X by
standard arguments of potential theory. (]

Theorem 4.2 Let X be a compact connected Kdihler manifold of complex
dimension n and let vy be a big closed positive (1,1)-current with continuous
local potentials.

(A) Let v € PN L®(X) and ¢ € PBTY such that
(v + i00Y)™ = (7 + i0dp)™ .

Then ¢ = .
(B) Let ¢, € P, N L>®(X) such that

e M (v +i00Y)" = e (v +i00p)" .
with X > 0. Then ¢ = .

Proof of A. By the 00-lemma and by the previous statement 4.1 we can
assume that the current 7 is a smooth Kéhler metric in the complement X\ 7
of an analytic set. The identity v = ~; implies ¢ € P BTS by Claim 2.6. Let
©e, e be as in the statement of corollary 3.5 and set u := ¥ —p, u. := VY. — ..
Let us also recall the formula

k—1
b — gk = (a—ﬁ)/\Zal/\ﬁk’l’l.
1=0

36



From this we deduce

0 = /—U(%’Z—VZ) = lim [ —u(y; —72)

e—0t
X X
n—1
_ 3 - AP l n—{—1
— eli%l+ Z / e i00u Nl Al
=0 %
n—1
_ : . A l n—Ii—1
— Eli%qu Z /z@ug/\ﬁu/\vw/\%,
=0 %
n—1
= /i@u/\@u/\%fb /\vg_l_l =1, (4.1)
=0 %

since Ju. — Ou in L*(X, ), Ay2~"") by corollary 3.5. Inspired by an idea

of S. Blocki [Blol], we will prove by induction on & =0,...,n — 1 that
/i@u/\@u/\fy;/\’yj,/\’ykzo (4.2)
X

forall r,s > 0,r+s=n—k—1. For k = 0 this follows from (4.1). So we
assume (4.2) for £ — 1 and we prove it for k. In fact consider the identity

k—1 -
Ak = fyfz — 100y N\ Z%lp AYFEL and set == Vi AV A Z%lﬂ AyRL
=0 1=0

By applying several times corollary 3.5 and by integrating by parts we derive

. A r s I . ) r s k
/zau/\aquA%/w —alir(l)l+ iOue N Ou Ny ANvg ANy
X X

= lir(l)q+ /z’@ua A 5(u%z+k AYG) — /i@ug A O(uiddyp A Z)
X X
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= lim /i@ua ANOu AN + /ug i00u A 100 N2
e—0t
X X

[1]

= /i@u A Ou A %Tk Avy — lim [ u. 100 A (Yp — V) A
e—0t
X X

I+ lim /i8u6A8[¢(7¢—7¢)A

e—0t
X

[1]

IN

]

= lim /i@ua/\ﬁw/\%,/\E—/i@ug/\&/}/\w/\E

e—0t
X X
= /i@u/\@@b/\%/\E—/z’@u/\@@b/\w/\E. (4.3)
X X

Set x = ¢ or x = 1. Then the Cauchy-Schwarz inequality implies

/i@u/\gw/\’yx/\E
X
1/2 1/2
< /i@u/\&u/\fyx/\E /i@lp/\ﬁw/\fyx/\E =0,
X X

by the inductive hypothesis. This combined with (4.3) implies (4.2) for k.
So at the end of the induction we get 0 = [, idu A Qu A "', This implies
@ = 1 by elementary properties of plurisubharmonic functions.

Proof of B. By applying the comparison principle (2.7) as in [E-G-Z1] we

get
/f)/g < /f}/z = /eA(‘Pd’)%VZ’

< <t <t
which implies f¢<¢ 75 = 0 since eX¥~%) < 1. This implies that the inequality
¢ > ¢ holds ~;-almost everywhere, thus the inequality

g =yl >,

holds v;-almost everywhere. By symmetry we also deduce that ~v; > ~3
holds ~-almost everywhere. The fact that the potentials ¢ and ¢ satisfies

"}/Z e eA(‘pfw)fYZ (44)
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implies that a property holds vj-almost everywhere if and only if it holds
v5-almost everywhere. We infer )} = 77, hence 1) — ¢ = Const by part (A),
and equality (4.4) now implies ¢ = ¢. O

We now show a uniqueness result in the non-nef case. We denote by UB, C X
the unbounded locus of a quasi-plurisubharmonic function ¢. Let us first re-
call the following well known lemma [Deml], [Be-Bo.

Lemma 4.3 Let (X,w) be a compact Kdhler manifold of complex dimen-
sionn, T a closed positive (q, q)-current on X, 6 a smooth closed real (1,1)-
form and ¢ a quasi-plurisubharmonic function such that 0+i00p > 0 over X .
Then the following holds

(A) Forallk=1,...n—q

(0 +i00p)* NT A" < 400

X~UB,

(B) If in addition ¢ has zero Lelong numbers, then

/ (0 +i00p)" AT Aw"F 1 < /0kATAw"_k_q,
X~UB, X
forallk=1,...n—q.

Proof. Set © := 0 +i0d¢ > 0. Let (p.).s0 C C*°(X,R) such that . | ¢
as ¢ — 0 and let C' > 0 be a sufficiently big constant such that ©, :=
0 +i00p. > —Cw for all € € (0,1). By the monotone decreasing theorem in
pluripotential theory we infer that

(0. 4+ CW)"ANT — (04 Cw)" AT,
weakly over the open set U := X \ UB, as ¢ — 0. We infer

/@k AT AW R < /(@ + Cw)" AT AW ke
U

U

e—0

< liminf /(@€ + Cw)F AT AW F1
U

< /(0+Cw)k/\T/\w"_k_q < 400,

X
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which concludes the proof of statement (A). Statement (B) follows from the
fact that, thanks to the work in [Dem4|, we can replace the loss of positivity
constant C' with constants C. > 0 such that C. | 0 as ¢ — 0. O

The following lemma can be found in [Be-Bo| and is based on a simple but
efficient increasing singularity approach introduced by the first named au-
thor.

Lemma 4.4 Let X be a compact Kdihler manifold of complex dimension n,
let T be a closed positive (n—q,n—q)-current, ¢ > 1, let 6 be a smooth closed
real (1,1)-form and consider ¢, 1 € Py such that ¢ > 1 over X. Then

/(0+z’65<p)q/\Tz /(9+i851/1)‘1/\T.

X\UBw X\UBU}

Proof. Consider the closed positive current © := (6 +i99¢y)9~* AT over
X ~\ UBy. In order to conclude, it is sufficient to prove the inequality

/ (0 4+i00p) N O > / (04 i00¢) A O, (4.5)

X\UB, X~UB,

thanks to the symmetry of the wedge product and to an obvious induction.
(Notice that the integral on the left hand side of the inequality (4.5) is also
finite by the same type of argument as in the proof of Lemma 4.3.) Let
C > 0 be a sufficiently big constant such that i99y > —Cw and set 1. =
(14 ¢€)y € Py, with 0. := 0 + eCw. Then the inequality (4.5) will follow by
letting € — 0 in the inequality

/ (0. +i00p) NO > / (0- +i00Y.) A O, (4.6)
X\UB,, X\UB,,
that we prove now. Let £ > 0 be an arbitrary constant. The fact that
@ — k > 1. over the open set {¢) < —k/ec} implies

/ (0. +i00p) N O = / (0. +i00 max{p — k0. }) NO =: I,

by Stokes’” formula. Let L C X \ UBy be an arbitrary compact set and let
U cC U c X~ UBy be an open set such that L C U C {¢. > —R} for a
sufficiently big constant R > 0. We infer

I > /(9€+i85max{<p—k,we})/\@ > /(95+i851/1€)/\@,

U L
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for k such that ¢ — k < —R over X. Then the inequality (4.6) follows by
taking the supremum over L. O

We now define the potential with minimal singularities

wo(x) == sup {¢(z) | v € Py},

and we observe that pg € Pp. Let 8/ € {0} be another element in the
cohomology class of . We write § = #' + i90u. By definition, we infer
wg +u—C < g and g —u — C" < g for some constants C',C’ > 0. By
Lemmas 4.3 and 4.4 we infer the equality

heEPy
X\UBQ X\UBU}

/(9+i85<p9)q/\T:maX / (0 +i00) AT < +o0.

Notice that the closed set UBy depends only on the cohomology class {0}.
In the case UBy is contained in a complete pluripolar set £ C X, the trivial
extension of the current

HX\E' (‘9 —+ Zagwg)q s

over X is closed and positive by the Skoda-El Mir extension theorem, which
applies thanks to Lemma 4.3. Moreover this extension is independent of F
by the definition of UBy. In fact the current (6 + i90py)?, does not carry
any mass on pluripolar sets contained in the open set X ~ UBy, since ¢y is
locally bounded over this set. In this case we will still denote by (6 +i0dg)?
the extension over X. In this setting we can define the cohomology invariant

{0y . {1} .= /(9 +i000g) ' NT = 1&% / (0 +i00Y)I AT < +c0.
X X~\UBy,

In general the number al? - {w}"~ associated to a pseudoeffective class o €
HY“'(X,R) over a compact Kéhler manifold (X,w) of complex dimension n
is not a cohomology invariant, so we will denote it by al? - w"~%. However
the numerical dimension of o, namely the number

v(a) :=max{q € {0,...,n} | /. w"1>0}.

is well defined. In fact it is independent of the choice of the Kéhler met-
ric w since the trace operator controls the mass of a positive (g, ¢)-current.
We prove now the following degenerate version of the Comparison Principle
which is also based on the increasing singularity approach previously used.
(Compare with the statement and the proof of corollary 1.4 in [Be-Bo]).
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Lemma 4.5 (Degenerate Comparison Principle). Let X be a compact
Kihler manifold of complex dimension n, let 0 be a smooth closed real (1,1)-
form and consider ¢, b € Py such that ¢ > 1 — K for some constant K > 0.
Then

(0 +i00p)" < / (0 + i00p)™ .
{e<}\UBy, {e<}\UBy,

Proof. For any set £ C X we put E, := E \ UB, and define the closed
positive current © := (0 + 100 max{go,@/)})n over X,. We start by proving
the inequality

/(9+z’85<p)” > /@. (4.7)

Let R > 0 be a sufficiently big constant such that i00y) > —Rw and set
e == (1+¢e)y € Py, with 0. := 0 + eRw. The fact that ¢ > 1. on the open
set {¢ < —K/e} implies

/(06 + 18590)” = / (06 +i00 max{gp,wa})n )
X@/’ qu
by Stokes’ formula. We infer
/(9 +i00p)" = lim iglf/ (6 + i00 max{p,v.})" > /@.
Xy Xy Xy
by the weak convergence
0. := (0. +i00 max{p,¥.})" — O, (4.8)

as ¢ — 0 over the open set X,. In order to prove the convergence (4.8) we
restrict our considerations to an arbitrary open set U C U C X. Let C >0
be a constant such that ¢» > —C' over U. Then the function

O, := max{p + cC, . +eC} € Py_,

decreases to max{p, 9} over U as ¢ — 0 and satisfies ©, = (95 + Z@g@e)n.
Then the convergence (4.8) over U follows from the monotone decreasing the-
orem in pluripotential theory. On the other hand the inequality of measures

©>1_,0 +1

>y TP p<y

n
ew,
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over the open set X, (see [Deml]|), implies

/ 0 > / 0y / 0 > / 0, .
{e<t}y {e<v}y {e>v¢}y {e>v}y
This combined with the inequality (4.7) implies

/QZS/@—/@S/QZ—/QZ:/QZ.
{p<t}y Xy {o>9}y Xy {o>9}y {p<t}y

OJ

Corollary 4.6 Let X be a compact Kiahler manifold of complex dimension
n, Q > 0 a smooth volume form and 0 a smooth closed real (1,1)-form.
Assume that p; € Py, j = 1,2 is such that UB,,; is a zero measure set and

(0 +i00p;)" = e#iQ

over X ~\ UBg,. If o1 > @9 — K over X, for some constant K > 0 then
p1 > we over X. In particular if there exists a Kdhler-Einstein current
w, € 2mc(Kx), then this current is unique in the class of currents with
minimal singularities in 2wey (Kx).

Proof. We set E := {1 < @2} \ UB,, and we apply the degenerate
comparison principle 4.5 as before. We obtain

Joriooe < [6+iovp) = [ oo+ ivvg.

E E E

We infer 0 = [ €78, and so ¢ > @, almost everywhere over X, thus
everywhere by elementary properties of quasi-plurisubharmonic functions.[]

5 Generalized Kodaira lemma

We first recall a few standard definitions of algebraic and analytic geometry
which will be useful in our situation.

Definition 5.1 Let (X,w) be a compact Kihler manifold.

(A) A modification of X is a bimeromorphic morphism p : X — X of
compact complexr manifolds with connected fibers. Then there is a smallest
analytic set Z C X such that the restriction p: X ~ p=(Z) — X ~ Z is a
biholomorphism; we say that Exc(u) = p=1(Z) is the exceptional locus of p.
(B) A class x € HY'(X,R) is called big if there exist a current T € x such
that T > cw, for some € > 0.

43



By a result of [De-Pa|, a nef class x on a compact Kiahler manifold is big if
and only if [, x™ > 0. By the proof of Theorem 3.4 in [De-Pa| we obtain the
following generalization of Kodaira’s lemma.

Lemma 5.2 Let X be a compact Kihler manifold and x € H“'(X,R) be
a big class. Then there exist a modification p : X — X of X, an effective
integral divisor D on X with support |D| D Exc(p) and a number 6 € Qs,
such that the class u*x — 0{D} is Kdihler.

We associate to x the set I, of triples (p, D, §) satisfying the generalized Ko-
daira lemma 5.2, and a complex analytic set X, which we call the augmented
singular locus of x, defined as

Sc= () w(D). (5.1)

(w,D,d)ely

A trivial approximation argument shows that the set >, depends only on the
half line R.ox. In the case the class y is Kéhler, (idx,0,1) € I, thus 3, = 0.
Conversely, if ¥, = 0, it is clear that the class xy must be Kihler: in fact,
if @, ps is a Kéhler metric in p*y — 6{D}, then © = p (@, ps + d[D]) is a
Kéhler current contained in the class y, which is smooth on X ~\ (] D]) and
possesses logarithmic poles on (| D]); by taking the regularized upper enve-
lope of a finite family of potentials of such currents ©; with (\u(|D;|) = 0,
we obtain a (smooth) Kéhler metric on X. In the case the class y is integral
or rational, the set X, can be characterized as follows.

Lemma 5.3 Let L be a big line bundle over a compact Kdihler manifold.
Then the class x := c1(L) satisfies

SB(L) C &, = N \E|, (5.2)

BeDivt (X), 66050,
x—0{E} ample

where SB(L) is the stable base locus of L, i.e. the intersection of the base loci
of all line bundles kL, and E runs over all effective integral divisors of X.

Proof. First notice that the existence of a big line bundle implies that X is
Moishezon. This combined with the assumption that X is Kadhler shows that
X must in fact be projective (see [Moi|, and also [Petl], [Pet2| for a simple
proof). The inclusion SB(L) C X, in (5.2) is quite easy: Let (i, D, p) € I,.
Then Kodaira’s theorem implies that {a} := pu*x — p{D} is a Q-ample class
on X and so the integer multiples ko are base point free for k large enough.
Therefore the base locus of ku*L is contained in |D|. This shows that SB(L)
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is contained in the intersection of the sets u(|D|), which is precisely equal to
Y, by definition. Now, if H is an ample divisor on X, we have

p(x —e{H}) = p{D} +{a} —e{p"H}

and, again, a — eu*H is ample for ¢ € Q.o small. We infer that the base
locus of k(L —cH) is contained in X, for k large and sufficiently divisible. If
we pick any divisor £ in the linear system of k(L —eH), then L — +E = eH
is an ample class, and the intersection of all these divisors E is contained

in ¥,. Therefore
N |E| C %,

EeDivt(X), §€Qx,
x—06{E} ample

The opposite inclusion is obvious. O

The following lemma gives us an important class of densities which will
be allowable as the right hand side of degenerate complex Monge-Ampére
equations.

Lemma 5.4 Let X be a compact complex manifold, let 2 > 0 be a smooth
volume form and let o; € HY(X,E;), 7. € H'(X,F,), j = 1,..,N, r =
1,..., M be, non identically zero, holomorphic sections of some holomorphic
vector bundles over X such that the integral condition

N M
/ [T1os1% - Tl @ < +o0
% =1 r=1

holds for some real numbers l; > 0, h, > 0. Then the integrand function
belongs to some LP space, p > 1, and for A > Ay > 0 large enough, the
family of functions

M

N
H s+ M- T4m P +0) . eefo,1)

r=1

converges in LP-norm to the function Gy when € — 0. In fact, for N # 0
and l; > 0, one can take Ag := (D>, h,)/(min; ;).

Proof. By blowing-up the coherent ideals generated by the components of
any of the sections o, 7., we obtain a modification s : X — X such that
the pull-back of these ideals by p is a divisorial ideal. Using Hironaka’s
desingularization theorem, we can even assume that all divisors obtained in
this way form a family of normal crossing divisors in X. Then each square
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loj o u|? (resp. |7, o p|?) can be written as the square |2%|? (resp. |2”|?) of
a monomial in suitable local coordinates U on a neighborhood of any point
of X, up to invertible factors. The Jacobian of i can also be assumed to be
equal to a monomial 27, up to an invertible factor. In restriction to such a

neighborhood U, the convergence of the integral is equivalent to that of
N M
J1E TP T 1 a
7 j=1 r=1

Notice also that X can be covered by finitely many such neighborhoods, by
compactness. Now it is clear that if the integral is convergent, then the
integrand must be in some LP, p > 1, because the integrability condition
is precisely that each coordinate z; appears with an exponent > —1 in the

n-tuple
/7_'_ leaj - Zhrﬁrv

(so that we can still replace [}, h, with pl;, ph, with p close to 1). In order
to prove the convergence of the functions G. in the L” norm we distinguish
two cases. In the case where [; = 0 for all j, the claim follows immediately
from the monotone convergence theorem. The other possible case is [; > 0
for all 5. In this case the convergence statement will follow if we can prove
that for A large enough the functions

N M
Bl | (e Bl | (R
j=1 r=1

converge in LP-norm as € — (. This is trivial my monotonicity when N = 0.
When N > 0 and [; > 0, we have

N N M
|Za]‘2 +€ ] < C(H(|Zaj‘2lj _i_gAminlJ)7 H(‘ZﬂTP _i_g)fhr < &.thr7
j=1

_]:1 r=1

so it is sufficient to take A > (> h,)/(minl;) to obtain the desired uniform
LP-integrability in ¢. U

6 Existence and higher order regularity of so-
lutions

We are ready to prove the following fundamental existence theorem.
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Theorem 6.1 Let X be a compact connected Kdihler manifold of complex
dimension n > 2, let w > 0 be a big closed smooth (1,1)-form and let > 0
be a smooth volume form. Consider also o; € H*(X, E;), 7, € HY(X, F}),
j=1..,N,r =1,...,M be non identically zero holomorphic sections of
some holomorphic vector bundles over X, such that the integral condition

M

N
[Tt Tl o= [ (6.1
v =l r=1

X

holds for certain real numbers l; > 0, h, > 0. Then there exists a unique
solution ¢ € PBT,, of the degenerate complex Monge-Ampére equation

N M
(w+i0dp)" = [los/ - T[ I Q, A>0, (6.2)
j=1 r=1

which in the case X = 0 is normalized by supy ¢ = 0. Moreover let Xy, be
the augmented singular locus of the (1,1)-cohomology class {w} as defined
in (5.1), which is empty if the class {w} is Kdhler, and consider the complex
analytic sets

S =Y U (U{Tr = 0}) ., S=5U (U{Uj = 0}) :

Then ¢ € P, NL>®(X)NCYUX N Ey) NCHHX N S)NC=(X N S).

Proof. We first assume the existence of an effective divisor D in X and of a
small number 6 > 0 such that {w} — §{D} is a Kéhler class on X. (We will
later be able to remove this assumption thanks to Lemma 5.2). By using the
Lelong-Poincaré formula we infer the existence of a smooth hermitian metric

on O(D) such that
0 < ws :=w — 276[D] + §i00 log |s|?,

with div(s) = D. By convention we will put 6 = 0 if w is a Kéhler metric (so
that ws = w in that case), and in general we will denote by |D| the support
of the divisor D.

(A) Setup.

For the sake of simplicity of notation we assume N = M = 1. The general
case would be entirely similar and we leave it to the reader. Let o > 0 be
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a Kéhler metric, let ¢ € (0,1) and let ¢. be a normalizing constant for the
integral condition

0.2 AN
e /% Q:/(w+eoz)", (6.3)

with A := h/l. Condition (6.1) combined with Lemma 5.4 implies ¢. — 0,
when € — 0%. Observe that here w + ca is a Kéahler metric for every € > 0.
Consider the standard solutions ¢, € C*°(X) of the complex Monge-Ampére
equations

.. (of* +&)

Aee () 4
rrar ¢ % (6.4)

(w+ea +1i00p.)" = e

given by the Aubin-Yau solution of the Calabi conjecture. As usual, in the
case A = 0, we normalize the solution . with the condition maxx ¢. = 0.
Notice that the integral condition (6.3) implies that a non identically zero
solution . changes signs in the case A\ > 0. By combining Lemma 5.4 with
the estimate of corollary 2.13 we obtain a uniform bound for the oscillations,
Osc(g:) < C. Set now
We 1= w5 + e,

and

Ve 1= . — 0 log |S|2 :
As the notation indicates, we will keep 0 fixed (until step (E)). Then we get
a Kéhler metric defined over X

Qe = w +ea + 100, = Q. + 100, + 2md[ D), (6.5)

thus @, = @, +i90¢. over X . |D|. In this setting, equation (6.4) can be
rewritten as

(@o + 1000, )" = " Ao log s+ o (6.6)
on X N |D|, with F*:= f¢+1-a° — h -, and with
fei=c. +log(Q/a"), af :=log(|o]? +e?), b :=log(|7|* +¢).

(Here the superscripts in € are indices and not powers.) Let Cz. be the Chern
curvature form of the Kahler metric @, > 0 and let

-2
we "

9
o 1M

= i i C(:I )
Yei=min min (E®@n )|
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(We remark that the minimum is always achieved by an easy compactness
argument, see e.g. [Kat], Chap II, Sect. 5.1, Theorem 5.1, page 107.) We
observe that the family of metrics (©.). has bounded geometry for § fixed
and ¢ € [0, 1] arbitrary. In particular, for all € € [0, 1]

762F7 |f€|§K07 )\(Cdg—W)—i-'laéer—KOa]e
Moreover we can assume i0da , i00b° > —K,@. , (see Appendix A.)

(B) The Laplacian estimate.

This estimate is obtained as a combination of ideas of Yau, Blocki and Tsuji,
[Yau|, [Blo2], [Ts|. Consider the continuous function A, : X — (0, +00) given
by the maximal eigenvalue of &. = @. + i00v. with respect to the Kéhler
metric @,,

Ac(z) == max (@, + 100v.)(&, JE)|¢

feTX,x N0y

—2
we I

i.e. we extend A, over |D| by continuity, as is permitted by (6.5). Consider
also the continuous function over X ~ |D|,

A =logA. — k- +h-b°,
Ky :=min{—[A+ (1 +1)Ko/(2n)], '} < —A.

The reason for this crucial choice will be clear in a moment. The singularity
of the function 1. implies the existence of a maximum of the function A, at
a certain point z. € X \ |D|. Let g. be a smooth real valued function in a
neighborhood of z. in X ~\ |D| such that &, = %8598, and let u, := g. + 21..
Then

D + 108, = %85u5.

For the simplicity of notation, we just put g = ¢g. and v = u. from now on,
and we also set w5 = 8221;”. Let (z1,...,2,) be &.-geodesic holomorphic
coordinates centered at the point x., such that the metric w. = @, + 1900,
can be written in diagonal form in x.. Explicitly, we have the local expression

&, =1 > tm Gim A2 A\ dZn,, with

Gim = Orm — Y Clnzize + 012, gjm(xe) = —=Ci,,
7.k
Colz) = > CJkdzj @ dz @ dzy @ dz, .

J.k,Lm

49



and %85u = %Zz w pdz N dz, with 0 <upy < .o < Upg ab the point z.. For
every ¢ € C" we set ge¢:= > gim G G- Then
dou (&M, €1

Ur >
N 90u(e, &) U
s(ff) §e%i}iox 669(5170’50,1) %i}l{ gec )

and so A.(z.) = upn(xe), with x—: < A.. We also set

A = log 2% _ oy 4 h-bE.
Then A, < A., with fle(:pe) = A.(x.). This implies that the function A. also
reaches a maximum at the point x., thus A, A.(z.) < 0. All the subsequent

computations in this part of the proof will be made at the point z.. By the
local expressions for the Ricci tensor we obtain

2 st 0
O logdet(u;z) = E <Un,ﬁ,l,ﬁ—§ Un,5 U Uﬁ,t,ﬁ>up

l,p s,t
2
_ 2 :un,ﬁ,p,ﬁ _2 : |Unpal
_ )
Up.5 Up.p Ug 7
P PP P p,p 74,9

and in a similar way 0, ; logdet(g;z) = >, gnnpp Then by differentiating
with respect to the operator 67217,3 the identity (6.6), which can be rewritten
as

log det(u, ;) = F° + Alog [s|* + A(u — g)/2 + log det(g; ) ,

we obtain

un7ﬁ7p7f) _ ‘un7p7(7|2 _ 15 _
Z Z - n,n + )‘[(w5)n,n wn,n]/2

Uy 5 Up.p Ug. g
p p,p P.q PP a9

+oleah, —h-b,

s

+ AMuna —1)/2+ Z In,n,p,p -
p
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Combining this with the inequality Ay A.(z.) <0, we get

0 > @
o Upp
n,n,p,p n,n 2 k2+hb€*_ n,n,p,p
_ Z(u,,p,p_|u,,z2)| + / D g”p’p)—nk/Z
5 \UppUna  UppUnpn Up,p
_ Z |un,pq‘ Z ‘unn,p‘
pg Upp Ua,q Un,n Upp U nn
fom + A(Ws)nn — Wnp —1]/2 41 - e R
un,ﬁ
n,n,p,p k/2+h-b;— n,n,p,p
(B )y
» un,ﬁ up,ﬁ

We observe at this point that the sum of the two first terms following the
second equality is nonnegative and the trivial inequality

_h-bfm h-bj, —h- K0/2
Un,n +Z Up,p Z Up,p

p

By plugging these inequalities in the previous computations and by using the
definition of the constants k£ and Ky, we get

K —CYr K +0rr 1
0 > Z( lu vy Tty )—(nk—k)/Q

> n,i Up,p Up,p
(C’"’ﬁ — K1) (Upn — tpp) 1
p,p n,n p,p
> E + E — — (o,
Uy 5 Uy 7 Uy 5
P p,p 'n,n P p,p

where C)y > 0 and all the following constants are independents of . Let
denote by (z1,...,z,) the real part of the complex coordinates (21, ..., z,).
Then the inequality C}; = C; (— ® 8—%, % ® 5= )(xe) > 7. > I' implies

1

1 u -1
0>y —-Co > |- —Co
o U Hp Up,p
— e —Ad log |s|2—F¢ %1
= e n=1 u,sm — Co.
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Consider now the function B, := e = A.e #¥t"¥  Then x, is also a
maximum point for B, over X ~\ |D| and the previous inequality can be

written as
(E=X) e —Adlog |s|2 —h-bE —F¢ 1
0 > e et @) B (x.) 71 = Cy
(k=) e —bklog |s|2—1-a° — € 1
= ¢ not (e) Ba(l‘a)"f1 —Co.

Then by the inequalities k — A > 0, |s|> < C, a® < C and |f¢| < Ky, we get

the estimate
(k=X

) 1
0> Chent ™nxee B (p)iT — (.

In conclusion we have found over X ~\ |D| the estimates
0 < 2n+ As 0. — 00z log s> = Trg (@, +i00%.)
< 2nA. < 2neMVeM B (1)

02 ek-ipgf(k:f)\) minx ¢ 02 ek Osc(pe)

PR ey TP

(Here Tr_ is the trace operator with respect to the Kéhler metric @..) The
last inequality follows from the fact that Aminy . < 0, since a non iden-
tically zero solution ¢. changes signs in the case A > 0. Then using the
inequality

‘5A@6 log |s|2‘ = | Trg, (w —ws)| < C

over X N\ |D|, we deduce the singular Laplacian estimate

C k Osc(pe)
Oy < 24 Agp. < 26

= [s|20k |r|2h +Cs.

(C) Higher order estimates. )
By the previous estimates we infer 0 < 2u;; < Try_(w + a4 i00¢.) < 271,
foralll =1,...,n, with

C2 ek Osc(pe)

|5 (|7[* + )"

T, =

The equation (6.4) can be rewritten as

(W ea +i00p, )" = eI g
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We infer
£ —_
6F +Ape Hul,i S T? 1um7m’
l

for all m = 1,...,n. The fact that a non identically zero solution ¢. changes
signs in the case A > 0 implies Aminy ¢. > —A Osc(¢p.). Thus

el AOselee) plon gy < 4y e + i00p. .

Then an elementary computation yields the singular estimate
szl |S|25k(n71) ‘O_|2l |T‘2h(n72) efk:nOsc(apE) (De

o 04 ek Osc(pe) ~
< wHea+iddp. < W%'

(6.7)

Moreover the fact that ¢. € P, implies
200¢: 0. < Ag.pe +2Tig, (w+ca) .
At this step of the proof we consider
S = |D|U (U{Tr - 0}) . S=S'U (U{aj — 0}).
r J
By the Interpolation Inequalities |Gi-Tru| we find that for any coordinate
compact set K C X ~ S’ there are uniform constants C'x > 0 such that

max [Venel < Ck <m}z}XACng0€ + max |905‘> :

Therefore, we can apply the complex version of Evans-Krylov theory [Ti2]
on every compact set K C X \ S to get uniform constants Cy i > 0 such
that ||@e||c2ni) < Oy x for some n € (0,1). Now, let U € X \.S be an open
set and let £ € O(Tx)(U). We rewrite the complex Monge-Ampére equation
(6.4) under the form

(w4 ea +i00p, )" = efl=Tréqm

with
H. :=c.+1log(Q/a™)+1-a°—h-1°.

By taking the derivative with respect to the complex vector field £, we obtain
(see the proof of formula 11 in [Pal|)

Ap (§.p:) =206 . = — Ty, Le(w +ea) + Try Lea + 26 . H, (6.8)
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By the uniform estimates (6.7) and ||¢.||c2nx) < Cox it follows that the
operator A;_ is uniformly elliptic with coefficients uniformly bounded in
C"-norm at least, over any compact set K C U. The right hand side of
equation (6.8) is also uniformly bounded in C"-norm at least, over K. By
the standard regularity theory for linear elliptic equations [Gi-Tru| we de-
duce [|£.pc|lc2nk)y < Ck for all e > 0. We infer the uniform estimate
[pellosm) < Cs i

In its turn, this estimate implies that the coefficients of the Laplacian Ag_
and the right hand side of equation (6.8) are uniformly bounded in C'-norm
at least. By iteration we get the uniform estimates |¢.|/crnix)y < Cpx for
all e > 0 and » € N. We infer that the family (p.)cs0 € C°(X N\ S) is
precompact in the smooth topology.

(CI) The smooth regularity.
By elementary properties of plurisubharmonic functions (see [Dem2|, chap-
ter 1), the uniform estimate ||¢.|/1~(x) < C implies the existence of a L'-
convergent sequence (©;)j, ©; = ¥e,, €; | 0 with limit ¢ € P, N L*(X).
We can assume that a.e.-convergence holds also. The precompactness of the
family (pg)es0 C C°(X \S) in the smooth topology implies the convergence
of the limits

(w+i00p)" = lim (w+1i9dp;)" = lim G;e*? 90 = Goe*?Q  (6.9)

l—+oo j—+oo

over X \ S, with ¢; := ¢, G; := G, and
Ge=(lo* +e) (17 +¢)7".

The fact that ¢ is a bounded potential implies that the global complex
Monge-Ampére measure (w-+iddp)™ does not carry any mass on complex ana-
lytic sets. We infer that ¢ is a global bounded solution of the complex Monge-
Ampére equation (6.2) which belongs to the class P, N L>®(X)NC®(X \S).

(CII) The C'!-regularity.

Let U CC X ~\ 5’ be a coordinate open set. By a classical result in [Gi-Tru]
(see Theorem 8.32, page 210) for all open sets U’ CC U there exists a con-
stant C'= C(U’,U) > 0 such that for all n € (0,1) the uniform estimate

leellcrawny < C (l@ellzew) + 11D @ellLoow)) (6.10)

holds. By applying the Ascoli-Arzela theorem to the sequence (p;);, we infer
the uniform estimate ||¢||c1a@n < C' for alln € (0,1), thus ¢ € CHH(X\S").
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(D) Uniqueness of the solution.

We now prove the uniqueness of the solution ¢ in the class P BT,. In the
case A = 0 this follows immediately from Theorem 4.2. In the case A > 0 let
1 € PBT, be an other solution. The fact that ¢) € P, implies that we can
solve the degenerate complex Monge-Ampére equation

(w +i00u)" = Go e 2, (6.11)

with the methods so far explained, so as to obtain a solution u € PINL>(X).
In fact we consider the solutions u. of the non-degenerate complex Monge-
Ampére equations

(w+ ea + i00u,)" = G, M=+ Q|

with 9. | 1, . € C®(X), 1. < C, i00. > —Ky@. and ¢, being a normal-
izing constant converging to 0 as ¢ — 0. By combining Lemma 5.4 with the
dominated convergence theorem we infer that the family G, e’ converges
in LP-norm to G e*”. These conditions are sufficient to provide the singular
Laplacian estimate of step (B). Thus by the C''-compactness argument of
step (CII) we infer the existence of the solution u of the degenerate complex
Monge-Ampére equation (6.11).

By the uniqueness result in the case A = 0 we infer u = ¥ — supy ¢, thus
Y € L*(X). Then the required uniqueness follows immediately from Theo-
rem 4.2 (B).

(E) Eliminating the assumption on the existence of divisors D in X.
By section 5, the divisors D which we have assumed to exist in X up to now,
can only be constructed (at least, in the non-projective case) by applying
a blow-up process to X, i.e. we can find a modification p : X — X of X,
a divisor D in X with |D| D Exc(p) and a number 6 > 0 such that the

class {y*w} — §{D} is Kdhler on X. For this reason, we use pull-back the
Monge-Ampeére equation by p so as to transform equation (6.2) into

N M
(1w +i000)" =[] loy o ul - [[ 170 ul ™ T w2, A= 0.
j=1 r=1

Here ;*(2 is no longer a positive volume form on X but we have p*Q = |.Ju|?Q
where  is such a volume form, and |Jj|? is the square of the Jacobian of y
expressed with respect to the pair (€2, Q) Observe that Ju is just a section
of the relative canonical divisor K5,y and that [.Juu|? is its norm with respect
to the metric induced by (€2,2). Thus our equation again takes the form

N M
(o +i000)" = | Ju T] |y 0 ™ - T] Irv 0.l 0,
r=1

J=1 =
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and it is clear that the analogue of condition (6.1)

0< /u*w" = / | T ﬁ o 0 | - 1]\_/[[ |7 0 pu| 72 Q2
% 2 j=1 r=1
holds. By steps (A)—(D), we obtain a unique solution

D€ Py NLO(X)NCY (X NS, 5 s) NC(X N Sups),
with

Sos = 1DIU(Utnon=0}),

Sups = §L7D75 U <U{aj o= 0}) U Exc(pu).
J

Actually, taking the union with Exc(u) will not be needed since | D| D Exc(u).
Moreover jrp*w = 0, where j, : p'(q) — X, ¢ € u(Exc(p)) is the inclusion
map. Thus

® o j; € Psh(u™'(q))

since ® € P+, N L>®(X). By hypothesis p~'(q) is compact and connected,
which implies that ® is constant along the fibers ;1 ~!(q). Therefore we can
define ¢ := 7, ® € P, N L>®(X). The fact that ¢ is bounded implies that the
current (w +i00¢)" does not carry any mass on complex analytic sets. This,
combined with the fact that

1 X N Exce(p) — X~ pu(Exc(p))

is a biholomorphism, implies (see Theorem 4.2) that ¢ is the unique solution
in P, N L>®(X) of the complex Monge-Ampére equation (6.2) with the re-
quired C™', C*-regularity over the adequate subsets of X ~ u(|D]). We set
finally

Swy = () w(DD),

(1, D,0)EI 1y

S = E{W}U<U{7}:0}>, SzS'U(U{Oj:0}>.

Then the conclusion about the P,NL>®(X)NCH (X S)NC>(X N\ S) reg-
ularity of the solution ¢ follows by letting (u, D,0) € I,y vary. The proof of
the uniqueness of the solution ¢ in the class P BT, is the same as in step D,
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modulo the use of modifications.

(F) C° regularity on X \ X;.
The proof will be complete if we show that ¢ € C*(X \ Xy.). This follows
from the following statement. OJ

Theorem 6.2 . Let X be a compact connected Kdihler manifold of complex
dimension n > 2, let w > 0 be a big closed smooth (1,1)-form and let > 0
be a smooth volume form. Let also f € Llog"™ L(X), 6 > 0 such that
fx W = foQ and N > 0 be a real number. Then there exrists a unique
solution ¢ € PBT,, of the degenerate complex Monge-Ampére equation

(w4 i00p)" = fer¥Q), (6.12)

which in the case A\ = 0 is normalized by supy ¢ = 0. The solution ¢ is in
the class P, N L=(X) N CY(X \ Xg.y) and satisfies the L>-estimate

ol ey < C(6,w,9Q) Los(f)s +1.

Moreover the constant C(0,w, ) > 0 stays bounded for perturbations of w >
0 as in Statement (C) of Theorem 2.2.

Proof. We consider a regularizing family (f;); € C*>°(X), f; > 0 of f in
Llog™™ L(X). (The existence of such family follows from [Ra-Re| page 364
or [Iw-Ma|, Theorem 4.12.2, page 79.) We can assume as usually [, w" =
fx f;€2. By the proof of Theorem 6.1 and the L°°-estimate in corollary
2.13 we deduce the existence of a unique solution of the degenerate complex
Monge-Ampeére equation

(w +100p;)" = f; eI, (6.13)
with the properties ¢; € P, N L>(X) N C>(X \ Xy,}) and
I3l < C o= C0.0,2) Ls(D)F + 1. (6.14)

(With supy ¢; = 0 in the case A = 0.) We deduce in particular the uniform
estimate

”fj e/\%”uog"% L(X) < Ke/\CHfHLlog”HL(X) ) (6-15)

for all j. (See [Ra-Re] page 364 or [Iw-Mal, Theorem 4.12.2, page 79.) On the
other hand the uniform estimate (6.14) implies (see [Dem?2|, chapter 1) the
existence of a L'-convergent subsequence (p;); (which by abuse of notation
we denote in the same way). We can apply the L*-stability estimate of
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Theorem 2.2 (B) to the complex Monge-Ampére equation (6.13) thanks to
the estimates (6.14) and (6.15). Notice that by (6.14), the L>-stability
estimate of Theorem 2.2 (B) applies even if in the case A > 0, when the
solutions ¢; are not necessarily normalized by the supremum condition. We
infer that the sequence (y;); is a Cauchy sequence in the L>°(X)-norm, thus
convergent to some function ¢ € P, N L®(X) N C%(X \ Xy,y). This yields
weakly convergent limits
(w+i00p)" = jEELnOO(w +i00p;)" = jEi“oo [t = f v,

over X N\ Xr,. Moreover the fact that the global Monge-Ampére measure
(w +100p)™ does not carry any mass on complex analytic sets of X implies
that ¢ is the unique (in the class PBT,) global solution of the degener-
ate complex Monge-Ampére equation (6.12) with the required regularity and
with [[¢[[z=x) < C. (We remark that the uniqueness of the solution in the

case A > 0 follows from the same argument in step (D) in the proof of the
Theorem 6.1 .) O

Proof of Theorem 1.3.

A result of Kawamata [Kaw| claims that in our case the canonical bun-
dle is base point free, and so, for all m > 0 sufficiently big and divisible,
mKx has no base points. So we can fix m such that the pluricanonical
map f, : X — CP" is holomorphic. Consider also the semipositive and big
Kéhler form w,, := ffwrs/m € 2mc;(Kx), where wrg is the Fubini-Study
metric of CPY. Let Q > 0 be a smooth volume form over X such that
Jx Q= [, wi and Ric(Q2) = —w,, (these conditions prescribe Q in a unique
way). According to Theorem 6.1 we can find a unique solution ¢ € PBT,,
of the degenerate complex Monge-Ampére equation

(Wi +1000)" = €% Q.

Moreover ¢ € P,, N L®(X)NC®(X \ Sy,,.1), and 50 w, = wy, + 00y is

. . . . . log
the required unique Einstein current in the class BT” (Kx)- O

Proof of Theorem 1.4.

The uniqueness statement in the theorem 1.4 follows from the corollary 4.6.
In order to prove the existence of a Kéhler-Einstein current w,, € 2me; (Kx)
let m be a sufficiently large integer such that the base locus of m K x coincides
with the stable base locus SB and let

fm: X NSB — X, := f(X N\ SB),
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be the rational map associated to the linear system H®(X,mKx). Let T\,
be the desingularization of the Zariski closure of the graph I';, C X x X,
of fi., let m, : [, — X and py, : ['y — Xon be the natural projections. By
definition of the graph there exists a Zariski dense open set U,, C I, such
that X \ SB = 7,,,(U,,,) and p,,, = fp, © ™y, over U,,. Consider also bases

(am,j)fg C H'(X,mKx),

and the induced curvature currents

1
0 < Y i= — frwpsm = —Ric(Qy) € 2me1(Kx),

m

where wrs,, is the Fubini-Study metric of CP¥=~! and Q! is the induced
singular hermitian metric over mK x. Explicitly

1/m Non 1/m
(Z ‘O’m] ) in2/€/\/% = (Z |O-m,j|?21> Q,

j=1
for arbitrary k € H°(X, Kx) and Q > 0 a smooth volume form. Observe
now that the smooth form

0< em = m_lp:n WFESm »

is big. Moreover the Zariski dense open set V,, := fm N Yy, satisfies X\ X =
Tm(Vim). By Theorem 6.1 we infer the existence of a solution

®,, € (Py, N L®)([,n) NC=(V,),
of the degenerate complex Monge-Ampére equation
(0, +100D,,)" = ®™ 7 Q. (6.16)

over fm. The fact that 6,, = 7,7y, over U, and the fibers of 7, are connected
allows to m,,-push forward the equation (6.16). We infer a solution ¢, €
L>®(X)NC®(X \ %) of the degenerate complex Monge-Ampére equation

(Ym + i@égpm)" = e, , (6.17)

over X \. SB. We observe that (6.17) can be rewritten in an equivalent way
as

(= Ric(Q) + i00¢,,)" = e¥m Q2
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over X \. SB, with

N
Y 1= O +m ! logz |om7j|é_1 .

j=1

Thus w,, := — Ric(Q) + 19y, is the required Kihler-Einstein current. — [J

Proof of the conjecture of Tian 1.5
The hypothesis (C1) of Statement (C) in Theorem 2.2 is obviously satisfied.
The hypothesis (C2b) is also satisfied since

-1

n—m

. (Trwy +twx)” 7 TP A W
lim = wir . wy ™ — 2 < 4o

yey zer~1(y)

We deduce Osc(¢y;) < C < +oo for all t € (0,1) by Statements (C) and (A)
of Theorem 2.2. This solves in full generality the conjecture of Tian 1.5. [J

7 Appendix

Appendix A. Computation of a complex Hessian. Let 0 € H(X, F)
be a holomorphic section of a holomorphic hermitian vector bundle (£, h)
and set S. := log(|o|? + ¢), for some € > 0. We denote by {-,-} the exterior
product of F-valued forms respect to the hermitian metric h. We have

B i{Ono,0}
o2 +e

105,

9

since ¢ is a holomorphic section. We compute now the complex hessian

1095, — —§iohoo}
o2 +¢
 —i{00y0,0} + {00, Oh0} = 1
= R + i{0ho, 0} N O o1z
_ {0ho,0h0} — {iCppo,0}  i{Oho,0} N {0, 0o}
N o]* +¢ (lof* +¢)?
(ol +¢e)i{ono,0n0} — i{Oho, 0} N0, Oho} _{iCppo, 0}
N (|o|> + )2 o +e
i7(s:)
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where Cpj, € C*(X,AMT% ® End(F, E)) is the curvature tensor of (E, h).
We show that the (1,1)-form ¢7°(S.) is nonnegative. In fact by using twice
the Lagrange inequality

i{ono, 0} Ao, 0ho} < |o|?i{Ono, Opo}
(which is an equality in the case of line bundles), we get

ei{Oho, o} - ei{Oho, 0} N{o,0h0} ¢

T'(S:) > >
iT(Se) 2 Jloprep oP(oP e~ JoP

Observe that the last form is smooth. Consequently, we find the inequalities

095, > = i0s. pas. — HCEAT.O}
o |? lo|> + ¢
> - i9S. AS. — ||Cunll _lol®
il |O"2 3 3 E,h h,w |O"2—|—E

where w is a positive (1, 1)-form.

Appendix B. Proof of the estimate (2.21) in Lemma 2.14. We will
apply the computations of step (B) in the proof of Theorem 6.1 to the non-
degenerate complex Monge-Ampére equation

A= r
(w +i00p})" = et e =%5-1 "

In this setting, the notation of setup (A) in the proof of the Theorem 6.1
reduces to § =1 = h =0, &. = w and i00h > —Kyw. By replacing the term
f with b — ¢’ in the expansion of the term A, 5/uy 5 in step (B) in the
proof of Theorem 6.1, we infer

— Lo —h+o! 1 / _
026 wjn—le lug’%}_w_c’é’
un,ﬁ
Thus
1 2n+maxx Ay
0>Chull — i _ o, (7.1)
' duy,
by the estimates
o <Pl S < <9 < g (7.2)

This estimate implies also that at the maximum point x; we have

Upn(75) = A:;; — ekw;-(zj)lgj(xj) > 4By,
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with B; := maxyx B; > 0. Then estimate (2.21) in Lemma 2.14 follows from
(7.1) and the fact that

0<2n+ Awgog < Ipekmaxx @ B; < C Bj,
which is itself a consequence of (7.2). O

Appendix C. Relation with other works. As explained in the introduc-
tion the present work has its foundations in the papers [Yau|, [Be-Ta| and
especially in [Koll], [Kol2]. A few months after that the first version of the
present paper appeared on the arXiv server, P. Eyssidieux, V. Guedj, A. Ze-
riahi posted on the same server a related preprint [E-G-Z2|. In this preprint
the authors obtain a weaker version of Statement (C) given in our Theorem
2.2, which is sufficient to imply Tian’s conjecture as stated in [Ti-Ko|. The
statement in [E-G-Z2| is weaker since it requires the (somehow stronger) as-
sumption 2/w™ € Lf(X), where w > 0 is smooth, big and degenerate. For
the same reason a weaker version of Lemma 2.9 is stated in [E-G-Z1].

At this point one should observe that the essence of the capacity method
introduced in [Koll| does not allow to produce the required L*-estimate
in the case of a big and non nef class. It is possible to see that in this
case the constants blow-up. This blow-up phenomenon has been one of the
motivations of our work, which has led us to the proof of Tian’s conjec-
ture [Ti-Ko|]. Moreover fixed point methods do not produce a priori the
L*>-estimate needed to construct singular Kéahler-Einstein metrics and to
investigate their regularity.

We wish to point out that in a quite recent preprint [Di-Zh| the authors
claim (in Theorem 1.1) boundedness and continuity of the solutions of some
particular type of degenerate complex Monge-Ampére equations. No proof
of this claim seems to be provided. The authors also claim a stability result
which is not sufficient to imply the continuity of solutions in the degenerate
case. In fact a sequence of discontinuous functions converging in L°°-norm
does not have necessarily a continuous limit ! Moreover the same claim (The-
orem 1.1) has been stated in [Zh1], [Zh2], but again no proof of continuity
seems to be given (see page 12 in [Zh1] and page 146 in [Zh2]|). The argu-
ments for the boundedness of the solutions in [Zh1], [Zh2| are quite informal
in the degenerate case and seem impossible to follow.

Concerning the stability of the solutions, the continuity assumption is
quite natural and often available in the applications. In fact in the applica-
tions one works with smooth solutions provided by the Aubin-Yau solution of
the Calabi conjecture with respect to variable Kéhler forms of type w+ca, as
in the proof of theorem 6.1. This perturbation process is one of the reasons
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of trouble for the continuity of the solutions. Moreover the stability with re-
spect to the data f considered in [Di-Zh] is not essential in this context since
one has L'-compactness of quasi-plurisubharmonic functions normalized by
the supremum condition. In fact a particular case of the stability result,
namely Theorem 2.2 B, implies the continuity of the solution of the complex
Monge-Ampére equation (w + i00¢)" = e*? f Q, whenever w > 0 is a Kihler
metric and f € Llog"*® L. This fact has been observed also in [Kol2].

Finally we mention that a nice and simple proof of the regularization of
quasi-plurisubharmonic functions in the case of zero Lelong numbers can be
found in [Bl-Ko].

Acknowledgments. The second named author is grateful to Professor Gang
Tian for bringing this type of problems to his attention. He also expresses
his gratitude to the members of Institut Fourier for providing an excellent
research environment. He thanks Adrien Dubouloz, Hervé Pajot, Olivier
Lablée, Eric Dumas and Gabriele La Nave for useful conversations. The au-
thors warmly thank the referee for detailed and constructive criticism of the
exposition of the manuscript.

References

[Aub]  AuBIN, T., Nonlinear Analysis on Manifolds. Monge-Ampére equa-
tions, Springer-Verlag, Berlin-New York, 1982.

[Be-Bo| BERMAN, R., BoucksoM, S., Growth of balls of holomorphic sec-
tions and energy at equilibrium, arXiv/0803.1950.

[Be-Ta] BEDFORD, E., TAYLOR, B.A., The Dirichlet problem for a complex
Monge-Ampére equation, Invent. Math. 37 (1976), no. 1, 1-44.

[Blol| Brocki, Z., Uniqueness and stability for the complex Monge-
Ampere equation on compact Kdhler manifolds, Indiana Univ.
Math. J. 52 (2003), no. 6, 1697-1701.

[Blo2|  BROCKI, Z., Regularity of the degenerate Monge-Ampére equation
on compact Kihler manifolds, Math. Z. 244 (2003), 153-161.

[Bl-Ko| Brocki, Z., KOLODZIEJ, S., On regularization of plurisubhar-
monic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007),
no. 7, 2089-2093.

[Ca-La| Cascini, P., LA NAVE, G., Kdhler-Ricci flow and the minimal
model program for projective varieties, arXivimath.AG/0603064.

63



[Dem1]

[Dem2]

[Dem3|

[Dem4]

[De-Pal

[Di-Zh]

DEMAILLY, J.-P., Potential Theory in Several Complex Variables,
available at: http://www-fourier.ujf-grenoble.fr /~demailly.

DEMAILLY, J.-P., Complex analytic and differential geometry,
available at: http://www-fourier.ujf-grenoble.fr /~demailly.

DEMAILLY, J.-P., Estimations L? pour 'opérateur d-bar d’un fi-
bré vectoriel holomorphe semi-positif au-dessus d’une variété kdh-
lérienne compléte, Ann. Sci. Ecole Norm. Sup. 4e Sér. 15 (1982)
457-511.

DEMAILLY, J.-P., Regularization of closed positive currents and
Intersection Theory, J.Alg. Geom. 1 (1992), 361-4009.

DEMAILLY, J.-P., PAUN, M., Numerical characterization of the
Kidhler cone of a compact Kihler manifold, math.AG /0105176, An-
nals of Math. 159 (2004) 1247-1274.

DINIEW, S., ZHANG, Z., Stability of bounded solutions for degerate
complexr Monge-Ampére equations, arXiv:0711.3643v1.

|[E-G-Z1] EvssIDIEUX, P., GUEDJ, V., ZERIAHI, A., Singular Kdihler-

FEinstein metrics, arXiv:math/0603431.

|E-G-Z2] EYsSIDIEUX, P., GUEDJ, V., ZERIAHI, A., A priori L -estimates

G-Z]

|Gi-Tru]

[Hir|

[Hor|

[Iw-Mal

for degenerate complex Monge-Ampére equations, arXiv:0712.3743.

GUEDJ, V., ZERIAHI, A., Intrinsec capacities on compact Kdhler
manifolds, J. Geom. Anal. (15) (2005), no 4, 607-639.

GILBARG, D., TRUDINGER, N., Elliptic partial differential equa-
tions of second order, Berlin Heidelberg New York: Springer, 2001.

HIRONAKA, H., Resolution of singularities of an algebraic variety
over a field of characteristic zero, Ann. of Math., 79 (1964), 109
326.

HORMANDER, L., An introduction to Complexr Analysis in several
variables, (1st edition 1966) 3rd edition, North-Holland Math. Libr.,
vol. 7, Amsterdam, London(1990).

IwaNieEC, T., MARTIN, G., Geometric Function Theory and Non-
linear Analysis, Oxford University Press, 2001.

64



[Kat]

[Kaw|

[Koll|

[Kol2|

[Moi]

[Pal]

[Paul]

[Petl]

[Pet2]

[Ra-Re]

[Sic|

[Skodal

|Ti1]

Kato, T., Perturbation theory for Linear Operators, Springer-
Verlag, 1976.

KAWAMATA, Y., Pluricanonical systems on minimal algebraic va-
rieties, Invent. Math., 79 (3) (1985), 567-588.

KoroDzZIEJ, S., The complex Monge-Ampére equation, Acta Math.
180 (1998), no. 1, 69-117.

KOLODZIEJ, S., Stability of solutions to the complex Monge-Ampére
on compact Kahler manifolds, Indiana U. Math. J. 52, (2003), 667—
686.

MOISHEZON, B.G., On n-dimensional compact varieties with n
algebraically independent meromorphic functions, Am. Math. Soc.
Transl. 63 (1967), 51-174.

Pavri, N., Characterization of FEinstein-Fano manifolds via the
Kihler-Ricci flow, , arXiv:math/0607581. To appear in Indiana
Univ. Math. J. (2008).

PAUN, M., Regularity  properties  of the  degenerate
Monge-Ampeére  equations on  compact  Kdahler  manifolds,
arXiv:math.DG/0609326.v1.

PETERNELL, TH., Algebraicity criteria for compact complex man-
ifolds, Math. Annalen 275 (1986), 653-672.

PETERNELL, TH., Moishezon manifolds and rigidity theorems,
Bayreuth. Math. Schr. No. 54 (1998), 1-108.

RAO, M.M., REN, Z.D., Theory of Orlicz spaces, Pure and Applied
Math. 146, New-York, 1991.

SICIAK, J., Ezxtremal plurisubharmonic functions and capacities
in C", Sophia Kokyuroku in Mathematics, 1982.

SKODA, H., Sous-ensembles analytiques d’ordre fini ou infini
dans C", Bull. Soc. Math. France 100 (1972) 353-408.

T1aN, G., On Kdihler-FEinstein metrics on certain Kdhler manifolds
with ¢1(M) > 0, Invent. Math. 89 (1987), no. 2, 225-246.

65



Ti2]

| Ti-Ko

[Ti-Zha]

TIAN, G., On the existence of solutions of a class of Monge-Ampére
equations, (A Chinese summary appears in Acta Math. Sinica 32
(1989), no. 4, 576) Acta Math. Sinica (N.S.) 4 (1988), no. 3, 250
265.

TiAN, G., KOLoDZIEJ, S., A uniform L estimate for complex
Monge-Ampére equations, arXiv:0710.1144v1.

T1AN, G., ZHANG, Z., A note on the Kdihler-Ricci flow on projec-
tive manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006),
no. 2, 179-192.

[Ti-Zhul| TiAN, G., ZHU, X., Uniqueness of Kdahler-Ricci solitons, Acta

Math. 184 (2000), no. 2, 271-305.

[Ti-Zhu2| TiAN, G., ZHU, X., Convergence of the Kdihler-Ricci Flow, J.

[Ts]

[Yau]

Zh1]

|Zh2)]

Amer. Math. Soc. 20 (2007), no. 3, 675-699.

Tsuai, H., Ezistence and degeneration of Kdhler-einstein metrics
on minimal algebraic varieties of general type, Math. Ann. 281
(1988), no. 1, 123-133.

YAu, S.-T., On the Ricci curvature of a compact Kihler manifold

and the compler Monge-Ampére equation, I, Comm. Pure Appl.
Math. 31, 1978, 339-411.

ZHANG, Z., On degenerate Monge-Ampére equations over closed
Kidhler manifolds, Int. Math. Res. Not. 2006, Art. ID 63640, 18 pp
and arXiv:math/0603465v2.

ZHANG, 7., Degenerate Monge-Ampére equations over pro-
jective manifolds, PHD Thesis at MIT, 2006, available at:
http://dspace.mit.edu/handle/1721.1/34685.

Jean-Pierre Demailly

Université de Grenoble I, Département de Mathématiques
Institut Fourier, 38402 Saint-Martin d’Héres, France
E-mail: demailly@fourier.ujf-grenoble. fr

Nefton Pali

Université Paris Sud, Département de Mathématiques
Batiment 425 F91405 Orsay, France

E-mail: nefton.pali@math.u-psud. fr

66



