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Abstract. We prove that a holomorphic line bundle on a projective manifold
is pseudo-effective if and only if its degree on any member of a covering family
of curves is non-negative. This is a consequence of a duality statement between
the cone of pseudo-effective divisors and the cone of “movable curves”, which
is obtained from a general theory of movable intersections and approximate
Zariski decomposition for closed positive (1, 1)-currents. As a corollary, a
projective manifold has a pseudo-effective canonical bundle if and only if it is
is not uniruled. We also prove that a 4-fold with a canonical bundle which is
pseudo-effective and of numerical class zero in restriction to curves of a good
covering family, has non negative Kodaira dimension.

Introduction

One of the major open problems in the classification theory of projective or com-
pact Kähler manifolds is the following geometric description of varieties of negative
Kodaira dimension.

0.1. Conjecture. A projective (or compact Kähler) manifold X has Kodaira
dimension κ(X) = −∞ if and only if X is uniruled.

One direction is trivial, namely X uniruled implies κ(X) = −∞. Also, the con-
jecture is known to be true for projective threefolds by [Mo88] and for non-algebraic
Kähler threefolds by [Pe01], with the possible exception of simple threefolds (recall
that a variety is said to be simple if there is no compact positive dimensional sub-
variety through a very general point of X). In the case of projective manifolds, the
problem can be split into more tractable parts :

A. If the canonical bundle KX is not pseudo-effective, i.e. not contained in the
closure of the cone spanned by classes of effective divisors, then X is uniruled.
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B. If KX is pseudo-effective, then κ(X) ≥ 0.

In the Kähler case, the statements should be essentially the same, except that
effective divisors have to be replaced by closed positive (1, 1)-currents.

Part B again splits into two pieces:
B1. If KX is pseudo-effective but not big, i.e. on the boundary of the pseudo-effective

cone, then there exists a covering family of curves (Ct) such that KX · Ct = 0.
B2. If KX is pseudo-effective and there exists a covering family (Ct) of curves with
KX · Ct = 0, then κ(X) ≥ 0.

In this paper we give a positive answer to (A) for projective manifolds of any
dimension, and deal with (B2), mostly in dimension 4. Part (A) follows in fact from
a much more general fact which describes the geometry of the pseudo-effective cone.

0.2. Theorem. A line bundle L on a projective manifold X is pseudo-effective if
and only if L·C ≥ 0 for all irreducible curves C which move in a family covering X.

In other words, the dual cone to the pseudo-effective cone is the closure of the
cone of “movable” curves. This should be compared with the duality between the
nef cone and the cone of effective curves.

0.3. Corollary (Solution of (A)). Let X be a projective manifold. If KX is not
pseudo-effective, then X is covered by rational curves.

In fact, if KX is not pseudo-effective, then by (0.2) there exists a covering family
(Ct) of curves with KX ·Ct < 0, so that (0.3) follows by a well-known characteristic
p argument of Miyaoka and Mori [MM86] (the so called bend-and-break lemma
essentially amounts to deform the Ct so that they break into pieces, one of which
is a rational curve).

In the Kähler case both a suitable analogue to (0.2) and the theorem of Miyaoka-
Mori are unknown. It should also be mentioned that the duality statement following
(0.2) is actually (0.2) for R-divisors. The proof is based on a use of “approximate
Zariski decompositions” and an estimate for an intersection number related to this
decomposition. A major tool is the volume of an R-divisor which distinguishes big
divisors (positive volume) from divisors on the boundary of the pseudo-effective
cone (volume 0).

Concerning (B2) we need to distinguish between covering but not connecting
families ((Ct) on one side and connecting families on the other side. This latter
term “connecting” means that any two point can be joined by a chain of curves Ct.
For technical purposes it is however better to consider strongly connecting families,
i.e., any two sufficiently general points can be joined by a chain of irreducible C′

ts.
If X has a good minimal model via contractions and flips, then X clearly admits a
covering non- connecting or a strongly connecting family (Ct) such thatKX ·Ct = 0 ;
moreover if X simply has a good minimal model, then at least after blowing up
this will be the case. Let us say that (Ct) is a good covering family, if (Ct) is a
covering, non-connecting family or a strongly connecting family. Then our remarks
justify the division of Problem (B) into the two parts (B1) and (B2), possibly by
replacing “covering families” by “good covering families”.

0.4. Theorem. Let X be a smooth projective 4-fold. Assume that KX is pseudo-
effective and there is a good covering family (Ct) of curves such that KX · Ct = 0.
Then κ(X) ≥ 0.
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One important ingredient of the proof of (0.4) is the quotient defined by the
family (Ct). The reason for the restriction to dimension 4 is that we use Cn,m and
the log minimal model program on the base of the quotient of the family (Ct). In
one circumstance however we have a general result:

0.5. Theorem. Let X be a projective manifold and (Ct) a strongly connecting
family of curves. Let L be a pseudo-effective R-divisor with L · Ct = 0. Then the
numerical dimension num(L) = 0. If L is Cartier, then L is numerically equivalent
to a line bundle L′ with κ(L′) = 0.

If L = KX , then in connection with [CP09] we obtain κ(X) = 0. In order to
obtain the answer to Problem (B1) (e.g. in dimension 4), we would still need to
prove that KX is effective if KX is positive on all good covering families of curves.
In fact, in that case, KX should be big, i.e. of maximal Kodaira dimension.

1. Positive cones in the spaces of divisors and of curves

In this section we introduce the relevant cones, both in the projective and Kähler
contexts – in the latter case, divisors and curves should simply be replaced by
positive currents of bidimension (n−1, n−1) and (1, 1), respectively. We implicitly
use that all (De Rham, resp. Dolbeault) cohomology groups under consideration
can be computed in terms of smooth forms or currents, since in both cases we get
resolutions of the same sheaf of locally constant functions (resp. of holomorphic
sections).

1.1. Definition. Let X be a compact Kähler manifold.

(i) The Kähler cone is the set K ⊂ H1,1
R

(X) of classes {ω} of Kähler forms (this
is an open convex cone).

(ii) The pseudo-effective cone is the set E ⊂ H1,1
R

(X) of classes {T } of closed

positive currents of type (1, 1) (this is a closed convex cone). Clearly E ⊃ K.

(iii)The Neron-Severi space is defined by

NSR(X) :=
(
H1,1

R
(X) ∩H2(X,Z)/tors

)
⊗Z R.

(iv)We set
KNS = K ∩ NSR(X), ENS = E ∩ NSR(X).

Algebraic geometers tend to restrict themselves to the algebraic cones generated
by ample divisors and effective divisors, respectively. Using L2 estimates for ∂, one
can show the following expected relations between the algebraic and transcendental
cones (see [Dem90], [Dem92]).

1.2. Proposition. In a projective manifold X, ENS is the closure of the convex
cone generated by effective divisors, and KNS is the closure of the cone generated
by nef R-divisors.

By extension, we will say that K is the cone of nef (1, 1)-cohomology classes
(even though they are not necessarily integral). We now turn ourselves to cones in
cohomology of bidegree (n− 1, n− 1).

1.3. Definition. Let X be a compact Kähler manifold.

(i) We define N to be the (closed) convex cone in Hn−1,n−1
R

(X) generated by classes
of positive currents T of type (n− 1, n− 1) (i.e., of bidimension (1, 1)).
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(ii) We define the cone M ⊂ Hn−1,n−1
R

(X) of movable classes to be the closure
of the convex cone generated by classes of currents of the form

µ⋆(ω̃1 ∧ . . . ∧ ω̃n−1)

where µ : X̃ → X is an arbitrary modification (one could just restrict oneself
to compositions of blow-ups with smooth centers), and the ω̃j are Kähler forms

on X̃. Clearly M ⊂ N .
(iii)Correspondingly, we introduce the intersections

NNS = N ∩N1(X), MNS = M∩N1(X),

in the space of integral bidimension (1, 1)-classes

N1(X) := (Hn−1,n−1
R

(X) ∩H2n−2(X,Z)/tors)⊗Z R.

(iv) If X is projective, we define NE(X) to be the convex cone generated by all

effective curves. Clearly NE(X) ⊂ NNS.
(v) If X is projective, we say that C is a strongly movable curve if

C = µ⋆(Ã1 ∩ . . . ∩ Ãn−1)

for suitable very ample divisors Ãj on X̃, where µ : X̃ → X is a modifica-
tion. We let SME(X) to be the convex cone generated by all strongly movable

(effective) curves. Clearly SME(X) ⊂ MNS.

(vi)We say that C is a movable curve if C = Ct0 is a member of an analytic
family (Ct)t∈S such that

⋃
t∈S Ct = X and, as such, is a reduced irreducible 1-

cycle. We let ME(X) to be the convex cone generated by all movable (effective)
curves.

The upshot of this definition lies in the following easy observation.

1.4. Proposition. Let X be a compact Kähler manifold. Consider the Poincaré
duality pairing

H1,1
R

(X)×Hn−1,n−1
R

(X) −→ R, (α, β) 7−→
∫

X

α ∧ β.

Then the duality pairing takes nonnegative values

(i) for all pairs (α, β) ∈ K ×N ;
(ii) for all pairs (α, β) ∈ E ×M.
(iii) for all pairs (α, β) where α ∈ E and β = [Ct] ∈ ME(X) is the class of a movable

curve.

Proof. (i) is obvious. In order to prove (ii), we may assume that β = µ⋆(ω̃1 ∧ . . . ∧
ω̃n−1) for some modification µ : X̃ → X , where α = {T } is the class of a positive

(1, 1)-current on X and ω̃j are Kähler forms on X̃. Then
∫

X

α ∧ β =

∫

X

T ∧ µ⋆(ω̃1 ∧ . . . ∧ ω̃n−1) =

∫

X

µ∗T ∧ ω̃1 ∧ . . . ∧ ω̃n−1 ≥ 0.

Here, we have used the fact that a closed positive (1, 1)-current T always has a
pull-back µ⋆T , which follows from the fact that if T = i∂∂ϕ locally for some
plurisubharmonic function in X , we can set µ⋆T = i∂∂(ϕ◦µ). For (iii), we suppose
α = {T } and β = {[Ct]}. Then we take an open covering (Uj) on X such that
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T = i∂∂ϕj with suitable plurisubharmonic functions ϕj on Uj. If we select a
smooth partition of unity

∑
θj = 1 subordinate to (Uj), we then get

∫

X

α ∧ β =

∫

Ct

T|Ct
=

∑

j

∫

Ct∩Uj

θji∂∂ϕj|Ct
≥ 0.

For this to make sense, it should be noticed that T|Ct
is a well defined closed positive

(1, 1)-current (i.e. measure) on Ct for almost every t ∈ S, in the sense of Lebesgue
measure. This is true only because (Ct) covers X , thus ϕj|Ct

is not identically
−∞ for almost every t ∈ S. The equality in the last formula is then shown by
a regularization argument for T , writing T = limTk with Tk = α + i∂∂ψk and
a decreasing sequence of smooth almost plurisubharmonic potentials ψk ↓ ψ such
that the Levi forms have a uniform lower bound i∂∂ψk ≥ −Cω (such a sequence

exists by [Dem92]). Then, writing α = i∂∂vj for some smooth potential vj on Uj,

we have T = i∂∂ϕj on Uj with ϕj = vj + ψ, and this is the decreasing limit of the
smooth approximations ϕj,k = vj + ψk on Uj. Hence Tk|Ct

→ T|Ct
for the weak

topology of measures on Ct. �

If C is a convex cone in a finite dimensional vector space E, we denote by C∨ the
dual cone, i.e. the set of linear forms u ∈ E⋆ which take nonnegative values on all
elements of C. By the Hahn-Banach theorem, we always have C∨∨ = C.

Proposition 1.4 leads to the natural question whether the cones (K,N ) and
(E ,M) are dual under Poincaré duality. This question is addressed in the next
section. Before doing so, we observe that the algebraic and transcendental cones of
(n− 1, n− 1) cohomology classes are related by the following equalities (similar to
what we already noticed for (1, 1)-classes, see Prop. 1.2).

1.5. Theorem. Let X be a projective manifold. Then

(i) NE(X) = NNS.

(ii) SME(X) = ME(X) = MNS.

Proof. (i) It is a standard result of algebraic geometry (see e.g. [Ha70]), that the
cone of effective cone NE(X) is dual to the cone KNS of nef divisors, hence

NNS ⊃ NE(X) = K∨.

On the other hand, (1.4) (i) implies that NNS ⊂ K∨, so we must have equality and
(i) follows.

Similarly, (ii) requires a duality statement which will be established only in the
next sections, so we postpone the proof. �

2. Main results and conjectures

First, the already mentioned duality between nef divisors and effective curves
extends to the Kähler case and to transcendental classes. More precisely, [DPa04]
gives

2.1. Theorem (Demailly-Paun, 2001). If X is Kähler, then the cones K ⊂ H1,1
R

(X)

and N ⊂ Hn−1,n−1
R

(X) are dual by Poincaré duality, and N is the closed convex
cone generated by classes [Y ] ∧ ωp−1 where Y ⊂ X ranges over p-dimensional
analytic subsets, p = 1, 2, . . . , n, and ω ranges over Kähler forms.

Proof. Indeed, Prop. 1.4 shows that the dual cone K∨ contains N which itself
contains the cone N ′ of all classes of the form {[Y ] ∧ ωp−1}. The main result of
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[DPa04] conversely shows that the dual of (N ′)∨ is equal to K, so we must have

K∨ = N ′ = N . �

The main new result of this paper is the following characterization of pseudo-
effective classes (in which the “only if” part already follows from 1.4 (iii)).

2.2. Theorem. If X is projective, then a class α ∈ NSR(X) is pseudo-effective if
(and only if ) it is in the dual cone of the cone SME(X) of strongly movable curves.

In other words, a line bundle L is pseudo-effective if (and only if) L · C ≥ 0 for
all movable curves, i.e., L · C ≥ 0 for every very generic curve C (not contained
in a countable union of algebraic subvarieties). In fact, by definition of SME(X),
it is enough to consider only those curves C which are images of generic complete

intersection of very ample divisors on some variety X̃, under a modification µ :

X̃ → X .
By a standard blowing-up argument, it also follows that a line bundle L on a

normal Moishezon variety is pseudo-effective if and only if L · C ≥ 0 for every
movable curve C.

The Kähler analogue should be :

2.3. Conjecture. For an arbitrary compact Kähler manifold X, the cones E and
M are dual.

The relation between the various cones of movable curves and currents in (1.5)
is now a rather direct consequence of Theorem 2.2. In fact, using ideas hinted
in [DPS96], we can say a little bit more. Given an irreducible curve C ⊂ X , we
consider its normal “bundle” NC = Hom(I/I2,OC), where I is the ideal sheaf
of C. If C is a general member of a covering family (Ct), then NC is nef. Now
[DPS96] says that the dual cone of the pseudo-effective cone of X contains the
closed cone spanned by curves with nef normal bundle, which in turn contains the
cone of movable curves. In this way we get :

2.4. Theorem. Let X be a projective manifold. Then the following cones coincide.

(i) the cone MNS = M∩N1(X) ;

(ii) the closed cone SME(X) of strongly movable curves ;

(iii) the closed cone ME(X) of movable curves ;

(iv) the closed cone MEnef(X) of curves with nef normal bundle.

Proof. We have already seen that

SME(X) ⊂ ME(X) ⊂ MEnef(X) ⊂ (ENS)
∨

and

SME(X) ⊂ ME(X) ⊂ MNS ⊂ (ENS)
∨

by 1.4 (iii). Now Theorem 2.2 implies (MNS)
∨ = SME(X), and 2.4 follows. �

2.5. Corollary. Let X be a projective manifold and L a line bundle on X.

(i) L is pseudo-effective if and only if L · C ≥ 0 for all curves C with nef normal
sheaf NC .

(ii) If L is big, then L · C > 0 for all curves C with nef normal sheaf NC.
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2.5 (i) strenghtens results from [PSS99]. It is however not yet clear whether
MNS = M∩N1(X) is equal to the closed cone of curves with ample normal bundle
(although we certainly expect this to be true).

The most important special case of Theorem 2.2 is

2.6. Theorem. If X is a projective manifold and is not uniruled, then KX is
pseudo-effective, i.e. KX ∈ ENS.

Proof. This is merely a restatement of Corollary 0.3, which was proved in the
introduction (as a consequence of the results of [MM86]).

Theorem 2.6 can be generalized as follows.

2.7. Theorem. Let X be a projective manifold (or a normal projective variety ).
Let F ⊂ TX be a coherent subsheaf. If detF∗ is not pseudo-effective, then X is
uniruled. In other words, if X is not uniruled and Ω1

X → G is generically surjective,
then detG is pseudo-effective.

Proof. In fact, since detF∗ is not pseudo-effective, there exists by (2.2) a covering
family (Ct) such that c1(F) · Ct > 0. Hence X is uniruled by [Mi87], [SB92]. �

2.8. Remark.

(1) In [CP09] Theorem 2.7 is generalized to subsheaves F ⊂ T⊗m
X .

(2) Suppose in 2.7 that only κ(detF∗) = −∞. Is X still uniruled ? What can be
said if c1(F∗) is on the boundary of the pseudo-effective cone?

Turning to varieties with pseudo-effective canonical bundles, we have the

2.9. Conjecture (part of the “abundance conjecture”). If KX is pseudo-effective,
then κ(X) ≥ 0.

This problem splits into two parts:
(1) If KX is pseudo-effective but not big, i.e. on the boundary of the pseudo-effective

cone, then there exists a (good) covering family of curve (Ct) such that KX ·Ct =
0.

(2) If KX is pseudo-effective and there exists a good covering family (Ct) of curves
with KX · Ct = 0, then κ(X) ≥ 0.

In the last section we will prove (2) in dimension 4, and parts even in any
dimension.

3. Zariski decomposition and movable intersections

LetX be compact Kähler and let α ∈ E◦ be in the interior of the pseudo–effective
cone. In analogy with the algebraic context such a class α is called “big”, and it
can then be represented by a Kähler current T , i.e. a closed positive (1, 1)-current
T such that T ≥ δω for some smooth hermitian metric ω and a constant δ ≪ 1.

3.1. Theorem (Demailly [Dem92], [Bou02b, 3.1.24]. If T is a Kähler current,
then one can write T = limTm for a sequence of Kähler currents Tm which have
logarithmic poles with coefficients in 1

mZ, i.e. there are modifications µm : Xm → X
such that

µ⋆
mTm = [Em] + βm

where Em is an effective Q-divisor on Xm with coefficients in 1
mZ (the “fixed part”)

and βm is a closed semi-positive form (the “movable part”).
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Proof. Since this result has already been studied extensively, we just recall the main
idea. Locally we can write T = i∂∂ϕ for some strictly plurisubharmonic potential
ϕ. By a Bergman kernel trick and the Ohsawa-Takegoshi L2 extension theorem,
we get local approximations

ϕ = limϕm, ϕm(z) =
1

2m
log

∑

ℓ

|gℓ,m(z)|2

where (gℓ,m) is a Hilbert basis of the space of holomorphic functions which are
L2 with respect to the weight e−2mϕ. This Hilbert basis is also a family of local
generators of the globally defined multiplier ideal sheaf I(mT ) = I(mϕ). Then
µm : Xm → X is obtained by blowing-up this ideal sheaf, so that

µ⋆
mI(mT ) = O(−mEm).

We should notice that by approximating T − 1
mω instead of T , we can replace βm

by βm+ 1
mµ

⋆ω which is a big class on Xm ; by playing with the multiplicities of the
components of the exceptional divisor, we could even achieve that βm is a Kähler
class on Xm, but this will not be needed here. �

The more familiar algebraic analogue would be to take α = c1(L) with a big
line bundle L and to blow-up the base locus of |mL|, m ≫ 1, to get a Q-divisor
decomposition

µ⋆
mL ∼ Em +Dm, Em effective, Dm free.

Such a blow-up is usually referred to as a “log resolution” of the linear system |mL|,
and we say that Em +Dm is an approximate Zariski decomposition of L. We will
also use this terminology for Kähler currents with logarithmic poles.

3.2. Definition. We define the volume, or movable self-intersection of a big
class α ∈ E◦ to be

Vol(α) = sup
T∈α

∫

X̃

βn > 0

where the supremum is taken over all Kähler currents T ∈ α with logarithmic poles,

and µ⋆T = [E] + β with respect to some modification µ : X̃ → X.

By Fujita [Fuj94] and Demailly-Ein-Lazarsfeld [DEL00], if L is a big line bundle,
we have

Vol(c1(L)) = lim
m→+∞

Dn
m = lim

m→+∞

n!

mn
h0(X,mL),

and in these terms, we get the following statement.

3.3. Proposition. Let L be a big line bundle on the projective manifold X.
Let ǫ > 0. Then there exists a modification µ : Xǫ → X and a decomposition
µ∗(L) = E + β with E an effective Q-divisor and β a big and nef Q-divisor such
that

Vol(L)− ε ≤ Vol(β) ≤ Vol(L).

It is very useful to observe that the supremum in Definition 3.2 can actually be
computed by a collection of currents whose singularities satisfy a filtering property.
Namely, if T1 = α + i∂∂ϕ1 and T2 = α + i∂∂ϕ2 are two Kähler currents with
logarithmic poles in the class of α, then

(3.4) T = α+ i∂∂ϕ, ϕ = max(ϕ1, ϕ2)
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is again a Kähler current with weaker singularities than T1 and T2. One could
define as well

(3.4′) T = α+ i∂∂ϕ, ϕ =
1

2m
log(e2mϕ1 + e2mϕ2),

where m = lcm(m1,m2) is the lowest common multiple of the denominators occur-
ing in T1, T2. Now, take a simultaneous log-resolution µm : Xm → X for which the
singularities of T1 and T2 are resolved as Q-divisors E1 and E2. Then clearly the as-
sociated divisor in the decomposition µ⋆

mT = [E] + β is given by E = min(E1, E2).
By doing so, the volume

∫
Xm

βn gets increased, as we shall see in the proof of

Theorem 3.5 below.

3.5. Theorem (Boucksom [Bou02b]). Let X be a compact Kähler manifold. We

denote here by Hk,k
≥0 (X) the cone of cohomology classes of type (k, k) which have

non-negative intersection with all closed semi-positive smooth forms of bidegree
(n− k, n− k).

(i) For each integer k = 1, 2, . . . , n, there exists a canonical “movable intersection
product”

E × · · · × E → Hk,k
≥0 (X), (α1, . . . , αk) 7→ 〈α1 · α2 · · ·αk−1 · αk〉

such that Vol(α) = 〈αn〉 whenever α is a big class.

(ii) The product is increasing, homogeneous of degree 1 and superadditive in each
argument, i.e.

〈α1 · · · (α′
j + α′′

j ) · · ·αk〉 ≥ 〈α1 · · ·α′
j · · ·αk〉+ 〈α1 · · ·α′′

j · · ·αk〉.

It coincides with the ordinary intersection product when the αj ∈ K are nef
classes.

(iii)The movable intersection product satisfies the Teissier-Hovanskii inequalities

〈α1 · α2 · · ·αn〉 ≥ (〈αn
1 〉)1/n . . . (〈αn

n〉)1/n (with 〈αn
j 〉 = Vol(αj) ).

(iv) For k = 1, the above “product” reduces to a (non linear) projection operator

E → E1, α→ 〈α〉
onto a certain convex subcone E1 of E such that K ⊂ E1 ⊂ E. Moreover, there
is a “divisorial Zariski decomposition”

α = {N(α)}+ 〈α〉
where N(α) is a uniquely defined effective divisor which is called the “negative
divisorial part” of α. The map α 7→ N(α) is homogeneous and subadditive, and
N(α) = 0 if and only if α ∈ E1.

(v) The components of N(α) always consist of divisors whose cohomology classes
are linearly independent, especially N(α) has at most ρ = rankZ NS(X) com-
ponents.

Proof. We essentially repeat the arguments developped in [Bou02b], with some
simplifications arising from the fact that X is supposed to be Kähler from the
start.
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(i) First assume that all classes αj are big, i.e. αj ∈ E◦. Fix a smooth closed
(n− k, n− k) semi-positive form u on X . We select Kähler currents Tj ∈ αj with

logarithmic poles, and a simultaneous log-resolution µ : X̃ → X such that

µ⋆Tj = [Ej ] + βj .

We consider the direct image current µ⋆(β1 ∧ . . . ∧ βk) (which is a closed positive
current of bidegree (k, k) on X) and the corresponding integrals

∫

X̃

β1 ∧ . . . ∧ βk ∧ µ⋆u ≥ 0.

If we change the representative Tj with another current T ′
j , we may always take a

simultaneous log-resolution such that µ⋆T ′
j = [E′

j ] + β′
j , and by using (3.4′) we can

always assume that E′
j ≤ Ej . Then Dj = Ej − E′

j is an effective divisor and we

find [Ej ] + βj ≡ [E′
j ] + β′

j , hence β
′
j ≡ βj + [Dj]. A substitution in the integral

implies
∫

X̃

β′
1 ∧ β2 ∧ . . . ∧ βk ∧ µ⋆u

=

∫

X̃

β1 ∧ β2 ∧ . . . ∧ βk ∧ µ⋆u+

∫

X̃

[D1] ∧ β2 ∧ . . . ∧ βk ∧ µ⋆u

≥
∫

X̃

β1 ∧ β2 ∧ . . . ∧ βk ∧ µ⋆u.

Similarly, we can replace successively all forms βj by the β′
j , and by doing so, we

find ∫

X̃

β′
1 ∧ β′

2 ∧ . . . ∧ β′
k ∧ µ⋆u ≥

∫

X̃

β1 ∧ β2 ∧ . . . ∧ βk ∧ µ⋆u.

We claim that the closed positive currents µ⋆(β1 ∧ . . .∧ βk) are uniformly bounded
in mass. In fact, if ω is a Kähler metric in X , there exists a constant Cj ≥ 0 such
that Cj{ω} − αj is a Kähler class. Hence Cjω − Tj ≡ γj for some Kähler form γj
on X . By pulling back with µ, we find Cjµ

⋆ω − ([Ej ] + βj) ≡ µ⋆γj , hence

βj ≡ Cjµ
⋆ω − ([Ej ] + µ⋆γj).

By performing again a substitution in the integrals, we find
∫

X̃

β1 ∧ . . . ∧ βk ∧ µ⋆u ≤ C1 . . . Ck

∫

X̃

µ⋆ωk ∧ µ⋆u = C1 . . . Ck

∫

X

ωk ∧ u

and this is true especially for u = ωn−k. We can now arrange that for each of
the integrals associated with a countable dense family of forms u, the supremum
is achieved by a sequence of currents (µm)⋆(β1,m ∧ . . . ∧ βk,m) obtained as direct
images by a suitable sequence of modifications µm : X̃m → X . By extracting a
subsequence, we can achieve that this sequence is weakly convergent and we set

〈α1 · α2 · · ·αk〉 = lim ↑
m→+∞

{(µm)⋆(β1,m ∧ β2,m ∧ . . . ∧ βk,m)}

(the monotonicity is not in terms of the currents themselves, but in terms of the
integrals obtained when we evaluate against a smooth closed semi-positive form u).
By evaluating against a basis of positive classes {u} ∈ Hn−k,n−k(X), we infer by
Poincaré duality that the class of 〈α1 · α2 · · ·αk〉 is uniquely defined (although, in
general, the representing current is not unique).
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(ii) It is indeed clear from the definition that the movable intersection product is
homogeneous, increasing and superadditive in each argument, at least when the
αj ’s are in E◦. However, we can extend the product to the closed cone E by
monotonicity, by setting

〈α1 · α2 · · ·αk〉 = lim ↓
δ↓0

〈(α1 + δω) · (α2 + δω) · · · (αk + δω)〉

for arbitrary classes αj ∈ E (again, monotonicity occurs only where we evaluate
against closed semi-positive forms u). By weak compactness, the movable inter-
section product can always be represented by a closed positive current of bidegree
(k, k).

(iii) The Teissier-Hovanskii inequalities are a direct consequence of the fact that
they hold true for nef classes, so we just have to apply them to the classes βj,m on
X̃m and pass to the limit.

(iv) When k = 1 and α ∈ E0, we have

α = lim
m→+∞

{(µm)⋆Tm} = lim
m→+∞

(µm)⋆[Em] + {(µm)⋆βm}

and 〈α〉 = limm→+∞{(µm)⋆βm} by definition. However, the images Fm = (µm)⋆Em

are effective Q-divisors in X , and the filtering property implies that Fm is a
decreasing sequence. It must therefore converge to a (uniquely defined) limit
F = limFm := N(α) which is an effective R-divisor, and we get the asserted
decomposition in the limit.

Since N(α) = α−〈α〉 we easily see that N(α) is subadditive and that N(α) = 0
if α is the class of a smooth semi-positive form. When α is no longer a big class,
we define

〈α〉 = lim
δ↓0

↓ 〈α+ δω〉, N(α) = lim
δ↓0

↑ N(α+ δω)

(the subadditivity of N implies N(α+(δ+ε)ω) ≤ N(α+δω)). The divisorial Zariski
decomposition follows except maybe for the fact that N(α) might be a convergent
countable sum of divisors. However, this will be ruled out when (v) is proved. As
N(•) is subadditive and homogeneous, the set E1 = {α ∈ E ; N(α) = 0} is a closed
convex cone, and we find that α 7→ 〈α〉 is a projection of E onto E1 (according to
[Bou02b], E1 consists of those pseudo-effective classes which are “nef in codimension
1”).

(v) Let α ∈ E◦, and assume that N(α) contains linearly dependent components Fj .
Then already all currents T ∈ α should be such that µ⋆T = [E]+β where F = µ⋆E
contains those linearly dependent components. Write F =

∑
λjFj , λj > 0 and

assume that ∑

j∈J

cjFj ≡ 0

for a certain non trivial linear combination. Then some of the coefficients cj must
be negative (and some other positive). Then E is numerically equivalent to

E′ ≡ E + tµ⋆
(∑

λjFj

)
,

and by choosing t > 0 appropriate, we obtain an effective divisor E′ which has a
zero coefficient on one of the components µ⋆Fj0 . By replacing E with min(E,E′)
via (3.4′), we eliminate the component µ⋆Fj0 . This is a contradiction since N(α)
was supposed to contain Fj0 . �
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3.6. Definition. For a class α ∈ H1,1
R

(X), we define the numerical dimension

num(α) to be num(α) = −∞ if α is not pseudo-effective, and

num(α) = max{p ∈ N ; 〈αp〉 6= 0}, num(α) ∈ {0, 1, . . . , n}
if α is pseudo-effective.

By the results of [DP03], a class is big (α ∈ E◦) if and only if num(α) = n.
Classes of numerical dimension 0 can be described much more precisely, again
following Boucksom [Bou02b].

3.7. Theorem. Let X be a compact Kähler manifold. Then the subset D0 of
irreducible divisors D in X such that num(D) = 0 is countable, and these divi-
sors are rigid as well as their multiples. If α ∈ E is a pseudo-effective class of
numerical dimension 0, then α is numerically equivalent to an effective R-divisor
D =

∑
j∈J λjDj, for some finite subset (Dj)j∈J ⊂ D0 such that the cohomology

classes {Dj} are linearly independent and some λj > 0. If such a linear combina-
tion is of numerical dimension 0, then so is any other linear combination of the
same divisors.

Proof. It is immediate from the definition that a pseudo-effective class is of nu-
merical dimension 0 if and only if 〈α〉 = 0, in other words if α = N(α). Thus
α ≡ ∑

λjDj as described in 3.7, and since λj〈Dj〉 ≤ 〈α〉, the divisors Dj must
themselves have numerical dimension 0. There is at most one such divisor D in
any given cohomology class in NS(X)∩E ⊂ H2(X,Z), otherwise two such divisors

D ≡ D′ would yield a blow-up µ : X̃ → X resolving the intersection, and by taking
min(µ⋆D,µ⋆D′) via (3.4′), we would find µ⋆D ≡ E + β, β 6= 0, so that {D} would
not be of numerical dimension 0. This implies that there are at most countably
many divisors of numerical dimension 0, and that these divisors are rigid as well as
their multiples. �

The above general concept of numerical dimension leads to a very natural for-
mulation of the abundance conjecture for non-minimal (Kähler) varieties.

3.8. Generalized abundance conjecture. For an arbitrary compact Kähler man-
ifold X, the Kodaira dimension should be equal to the numerical dimension :

κ(X) = num(X) := num(c1(KX)).

This appears to be a fairly strong statement. In fact, it is not difficult to show
that the generalized abundance conjecture would contain the Cn,m conjectures.

3.9. Remark. Using the Iitaka fibration, it is immediate to see that κ(X) ≤
num(X).

3.10. Remark. It is known that abundance holds in case num(X) = −∞ (if KX is
not pseudo-effective, no multiple of KX can have sections), or in case num(X) = n.
The latter follows from the solution of the Grauert-Riemenschneider conjecture in
the form proven in [Dem85] (see also [DPa04]).

In the remaining cases, the most tractable situation is the case when num(X) = 0.
In fact Theorem 3.7 then givesKX ≡ ∑

λjDj for some effective divisor with numer-
ically independent components, num(Dj) = 0. It follows that the λj are rational
and therefore

(∗) KX ≡
∑

λjDj + F where λj ∈ Q+, num(Dj) = 0 and F ∈ Pic0(X).
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By [CP09] it now follows that κ(X) ≥ 0. Thus we obtain:

3.11. Proposition. Let X be a smooth projective manifold withKX pseudo-effective.
If num(X) = 0, then κ(X) = 0.

We will come back to abundance on 4-folds in sect. 9.
The arguments given in (3.10) are actually not restricted to the canonical bundle

and show

3.12. Proposition. Let X be a projective manifold and L a pseudo-effective R-di-
visor on X.

(i) If ν(L) = 0, then L ≡ ∑
λjDj with λj positive real numbers and Dj irreducible

divisors. If L is Cartier, the λj are rational.

(ii) If L is moreover nef in codimension 1 and if ν(L) = 0, then L ≡ 0.

4. The orthogonality estimate

The goal of this section is to show that, in an appropriate sense, approximate
Zariski decompositions are almost orthogonal.

4.1. Theorem. Let X be a projective manifold, and let α = {T } ∈ E◦
NS be a big class

represented by a Kähler current T . Consider an approximate Zariski decomposition

µ⋆
mTm = [Em] + [Dm]

Then

(Dn−1
m · Em)2 ≤ 20 (Cω)n

(
Vol(α)−Dn

m

)

where ω = c1(H) is a Kähler form and C ≥ 0 is a constant such that ±α is
dominated by Cω (i.e., Cω ± α is nef ).

Proof. For every t ∈ [0, 1], we have

Vol(α) = Vol(Em +Dm) ≥ Vol(tEm +Dm).

Now, by our choice of C, we can write Em as a difference of two nef divisors

Em = µ⋆α−Dm = µ⋆
m(α + Cω)− (Dm + Cµ⋆

mω).

4.2. Lemma. For all nef R-divisors A, B we have

Vol(A−B) ≥ An − nAn−1 ·B
as soon as the right hand side is positive.

Proof. In case A and B are integral (Cartier) divisors, this is a consequence of
the holomorphic Morse inequalities, [De01, 8.5]. If A and B are Q-Cartier, we
conclude by the homogeneity of the volume. The general case of R-divisors follows
by approximation using the upper semi-continuity of the volume [Bou02b, 3.1.26].

�

4.3. Remark. We hope that Lemma 4.2 also holds true on an arbitrary Kähler
manifold for arbitrary nef (non necessarily integral) classes. This would follow from
a generalization of holomorphic Morse inequalities to non integral classes. However
the proof of such a result seems technically much more involved than in the case of
integral classes.
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4.4. Lemma. Let β1, . . . , βn and β′
1, . . . , β

′
n be nef classes on a compact Kähler

manifold X̃ such that each difference β′
j − βj is pseudo-effective. Then the n-th

intersection products satisfy

β1 · · ·βn ≤ β′
1 · · ·β′

n.

Proof. We can proceed step by step and replace just one βj by β′
j ≡ βj + Tj where

Tj is a closed positive (1, 1)-current and the other classes β′
k = βk, k 6= j are limits

of Kähler forms. The inequality is then obvious. �

End of proof of Theorem 4.1. In order to exploit the lower bound of the volume,
we write

tEm +Dm = A−B, A = Dm + tµ⋆
m(α+ Cω), B = t(Dm + Cµ⋆

mω).

By our choice of the constant C, both A and B are nef. Lemma 4.2 and the binomial
formula imply

Vol(tEm +Dm)

≥ An − nAn−1 ·B

= Dn
m + ntDn−1

m · µ⋆
m(α + Cω) +

n∑

k=2

tk
(
n

k

)
Dn−k

m · µ⋆
m(α+ Cω)k

− ntDn−1
m · (Dm + Cµ⋆

mω)

− nt2
n−1∑

k=1

tk−1

(
n− 1

k

)
Dn−1−k

m · µ⋆
m(α+ Cω)k · (Dm + Cµ⋆

mω).

Now, we use the obvious inequalities

Dm ≤ µ⋆
m(Cω), µ⋆

m(α+ Cω) ≤ 2µ⋆
m(Cω), Dm + Cµ⋆

mω ≤ 2µ⋆
m(Cω)

in which all members are nef (and where the inequality ≤ means that the difference
of classes is pseudo-effective). We use Lemma 4.4 to bound the last summation in
the estimate of the volume, and in this way we get

Vol(tEm +Dm) ≥ Dn
m + ntDn−1

m ·Em − nt2
n−1∑

k=1

2k+1tk−1

(
n− 1

k

)
(Cω)n.

We will always take t smaller than 1/10n so that the last summation is bounded
by 4(n− 1)(1 + 1/5n)n−2 < 4ne1/5 < 5n. This implies

Vol(tEm +Dm) ≥ Dn
m + ntDn−1

m ·Em − 5n2t2(Cω)n.

Now, the choice t = 1
10n (D

n−1
m · Em)((Cω)n)−1 gives by substituting

1

20

(Dn−1
m ·Em)2

(Cω)n
≤ Vol(Em +Dm)−Dn

m ≤ Vol(α)−Dn
m

(and we have indeed t ≤ 1
10n by Lemma 4.4), whence Theorem 4.1. Of course, the

constant 20 is certainly not optimal. �

4.5. Corollary. If α ∈ ENS, then the divisorial Zariski decomposition α = N(α) + 〈α〉
is such that

〈αn−1〉 ·N(α) = 0.
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Proof. By replacing α by α + δc1(H), one sees that it is sufficient to consider the
case where α is big. Then the orthogonality estimate implies

(µm)⋆(D
n−1
m )·(µm)⋆Em = Dn−1

m ·(µm)⋆(µm)⋆Em ≤ Dn−1
m ·Em ≤ C(Vol(α)−Dn

m)1/2.

Since 〈αn−1〉 = lim(µm)⋆(D
n−1
m ), N(α) = lim(µm)⋆Em and limDn

m = Vol(α), we
get the desired conclusion in the limit. �

5. Proof of the duality theorem

We want to prove that ENS and SME(X) are dual (Theorem 2.2). By 1.4 (iii)
we have in any case

ENS ⊂ (SME(X))∨.

If the inclusion is strict, there is an element α ∈ ∂ENS on the boundary of ENS

which is in the interior of SME(X)∨.
Let ω = c1(H) be an ample class. Since α ∈ ∂ENS, the class α + δω is big for

every δ > 0, and since α ∈ ((SME(X))∨)◦ we still have α − εω ∈ (SME(X))∨ for
ε > 0 small. Therefore

(5.1) α · Γ ≥ εω · Γ
for every movable curve Γ. We are going to contradict (5.1). Since α + δω is big,
we have an approximate Zariski decomposition

µ⋆
δ(α+ δω) = Eδ +Dδ.

We pick Γ = (µδ)⋆(D
n−1
δ ). By the Hovanskii-Teissier concavity inequality

ω · Γ ≥ (ωn)1/n(Dn
δ )

(n−1)/n.

On the other hand

α · Γ = α · (µδ)⋆(D
n−1
δ )

= µ⋆
δα ·Dn−1

δ ≤ µ⋆
δ(α + δω) ·Dn−1

δ

= (Eδ +Dδ) ·Dn−1
δ = Dn

δ +Dn−1
δ ·Eδ.

By the orthogonality estimate, we find

α · Γ
ω · Γ ≤ Dn

δ +
(
20(Cω)n(Vol(α+ δω)−Dn

δ )
)1/2

(ωn)1/n(Dn
δ )

(n−1)/n

≤ C′(Dn
δ )

1/n + C′′ (Vol(α+ δω)−Dn
δ )

1/2

(Dn
δ )

(n−1)/n
.

However, since α ∈ ∂ENS, the class α cannot be big so

lim
δ→0

Dn
δ = Vol(α) = 0.

We can also take Dδ to approximate Vol(α + δω) in such a way that
(Vol(α+ δω)−Dn

δ )
1/2 tends to 0 much faster than Dn

δ . Notice that Dn
δ ≥ δnωn,

so in fact it is enough to take

Vol(α+ δω)−Dn
δ ≤ δ2n.

This is the desired contradiction by (5.1). �

5.2. Remark. If holomorphic Morse inequalities were known also in the Kähler
case, we would infer by the same proof that “α not pseudo-effective” implies the



16 S. BOUCKSOM, J.-P. DEMAILLY, M. PĂUN, AND T. PETERNELL

existence of a blow-up µ : X̃ → X and a Kähler metric ω̃ on X̃ such that
α · µ⋆(ω̃)

n−1 < 0. In the special case when α = KX is not pseudo-effective, we
would expect the Kähler manifold X to be covered by rational curves. The main
trouble is that characteristic p techniques are no longer available. On the other hand
it is tempting to approach the question via techniques of symplectic geometry :

5.3. Question. Let (M,ω) be a compact real symplectic manifold. Fix an almost
complex structure J compatible with ω, and for this structure, assume that
c1(M) · ωn−1 > 0. Does it follow thatM is covered by rational J-pseudoholomorphic
curves ?

6. Non nef loci

Following [Bou02b], we introduce the concept of non-nef locus of an arbitrary
pseudo-effective class. The details differ a little bit here (and are substantially
simpler) because the scope is limited to compact Kähler manifolds.

6.1. Definition. Let X be a compact Kähler manifold, ω a Kähler metric, and
α ∈ E a pseudo-effective class. We define the non-nef locus of α to be

Lnonnef(α) =
⋃

δ>0

⋂

T

µ(|E|)

for all log resolutions µ⋆T = [E] + β of positive currents T ∈ {α + δω} with
logarithmic singularities, µ : X̃ → X, and µ(|E|) is the set-theoretic image of the
support of E.

It should be noticed that the union in the above definition can be restricted to
any sequence δk converging to 0, hence Lnonnef(α) is either an analytic set or a
countable union of analytic sets. The results of [Dem92] and [Bou02b] show that

(6.1′) Lnonnef(α) =
⋃

δ>0

⋂

T

E+(T )

where T runs over the set α[−δω] of all d-closed real (1, 1)-currents T ∈ α such that
T ≥ −δω, and E+(T ) denotes the locus where the Lelong numbers of T are strictly
positive. The latter definition (6.1′) works even in the non Kähler case, taking ω
an arbitrary positive hermitian form on X . By [Bou02b], there is always a current
Tmin which achieves minimum singularities and minimum Lelong numbers among
all members of α[−δω], hence ⋂

T E+(T ) = E+(Tmin).

6.2. Theorem. Let α ∈ E be a pseudo-effective class. Then Lnonnef(α) contains
the union of all irreducible algebraic curves C such that α · C < 0.

Proof. If C is an irreducible curve not contained in Lnonnef(α), the definition
implies that for every δ > 0 we can choose a positive current T ∈ {α+ δω} and a

log-resolution µ⋆T = [E] + β such that C 6⊂ µ(|E|). Let C̃ be the strict transform

of C in X̃, so that C = µ⋆C̃. We then find

(α + δω) · C = ([E] + β) · C̃ ≥ 0

since β ≥ 0 and C̃ 6⊂ |E|. This is true for all δ > 0 and the claim follows.

6.3. Remark. One may wonder, at least when X is projective and α ∈ ENS,
whether Lnonnef(α) is actually equal to the union of curves C such that L · C < 0
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(or the “countable Zariski closure” of such a union). Unfortunately, this is not true,
even on surfaces. The following simple example was shown to us by E. Viehweg. Let
Y be a complex algebraic surface possessing a big line bundle F with a curve C such
that F ·C < 0 as its base locus (e.g. F = π⋆O(1)+E for the blow-up π : Y → P2 of
P2 in one point, and C = E = exceptional divisor). Then take finitely many points
pj ∈ C, 1 ≤ j ≤ N , and blow-up these points to get a modification µ : X → Y . We
select

L = µ⋆F + Ĉ + 2
∑

Ej = µ⋆(F + C) +
∑

Ej

where Ĉ is the strict transform of C and Ej = µ−1(pj). It is clear that the non nef
locus of α = c1(L) must be equal to Ĉ ∪⋃

Ej , although

L · Ĉ = (F + C) · C +N > 0

for N large. This example shows that the set of α-negative curves is not the
appropriate tool to understand the non nef locus.

7. Pseudo-effective vector bundles

In this section we consider pseudo-effective and almost nef vector bundles as
introduced in [DPS00]. As an application, we obtain interesting informations con-
cerning the tangent bundle of Calabi-Yau manifolds. First we recall the relevant
definitions.

7.1. Definition. Let X be a compact Kähler manifold and E a holomorphic vector
bundle on X. Then E is said to be pseudo-effective if the line bundle OP(E)(1) is
pseudo-effective on the projectivized bundle P(E) of hyperplanes of E, and if the
projection π(Lnonnef(OP(E)(1))) of the non-nef locus of OP(E)(1) onto X does not
cover all of X.

This definition would even make sense on a general compact complex manifold,
using the general definition of the non-nef locus in [Bou02b]. On the other hand, the
following proposition gives an algebraic characterization of pseudo-effective vector
bundles in the projective case.

7.2. Proposition. Let X be a projective manifold. A holomorphic vector bundle
E on X is pseudo-effective if and only if for any given ample line bundle A on X
and any positive integers m0, p0, the vector bundle

Sp((SmE)⊗A)

is generically generated (i.e. generated by its global sections on the complement
X r Zm,p of some algebraic set Zm,p 6= X) for some [resp. every] m ≥ m0 and
p ≥ p0.

Proof. If global sections as in the statement of 7.2 exist, they can be used to
define a singular hermitian metric hm,p on OP(E)(1) which has poles contained

in π−1(Zm,p) and whose curvature form satisfies Θhm,p
(OP(E)(1)) ≥ − 1

mπ
∗Θ(A).

Hence, by selecting suitable integers m = M(m0, p0) and p = P (m0, p0), we find
that OP(E)(1) is pseudo-effective (its first Chern class is a limit of pseudo-effective
classes), and that

π(Lnonnef(OP(E)(1))) ⊂
⋃

m0

⋂

p0

Zm,p ( X.
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Conversely, assume that OP(E)(1) is pseudo-effective and admits singular hermitian
metrics hδ such that Θhδ

(OP(E)(1)) ≥ −δω̃ and π(Sing(hδ)) ⊂ Zδ ( X (for some
Kähler metric ω̃ on P(E) and arbitrary small δ > 0). We can actually take ω = Θ(A)
and ω̃ = ε0Θh0

(OP(E)(1))+π
∗ω with a given smooth hermitian metric h0 on E and

ε0 ≪ 1. An easy calculation shows that the linear combination h′δ = h
1/(1+δε0)
δ hδε00

yields a metric on OP(E)(1) such that

Θh′

δ
(OP(E)(1)) ≥ −δπ∗Θ(A).

By taking δ = 1/2m and multiplying by m, we find

Θ(OP(E)(m)⊗ π∗A) ≥ 1

2
π∗Θ(A)

for some metric on OP(E)(m)⊗ π∗A which is smooth over π−1(X rZδ). The stan-

dard theory of L2 estimates for bundle-valued ∂-operators can be used to produce
the required sections, after we multiply Θ(A) by a sufficiently large integer p to
compensate the curvature of −KX . The sections possibly still have to vanish along
the poles of the metric, but they are unrestricted on fibers of P(SmE) → X which
do not meet the singularities. �

Note that if E is pseudo-effective, then OP(E)(1) is pseudo-effective and E is
almost nef in the following sense which is just the straightforward generalization
from the line bundle case.

7.3. Definition. Let X be a projective manifold and E a vector bundle on X. Then
E is said to be almost nef, if there is a countable family Ai of proper subvarieties
of X such that E|C is nef for all C 6⊂ ⋃

iAi. Alternatively, E is almost nef if there
is no covering family of curves such that E is non-nef on the general member of
the family.

Observe that E is almost nef if and only if OP(E)(1) is almost nef and OP(E)(1)
is nef on the general member of any family of curves in P(E) whose images cover
X . Hence Theorem 2.2 yields

7.4. Corollary. Let X be a projective manifold and E a holomorphic vector bundle
on X. If E is almost nef, then OP(E)(1) is pseudo-effective. Thus for some [or any]
ample line bundle A, there are positive numbers m0 and p0 such that

H0(X,Sp((SmE)⊗A)) 6= 0

for all m ≥ m0 and p ≥ p0.

One should notice that it makes a big difference to assert just the existence
of a non zero section, and to assert the existence of sufficiently many sections
guaranteeing that the fibers are generically generated. It is therefore natural to
raise the following question.

7.5. Question. Let X be a projective manifold and E a vector bundle on X.
Suppose that E is almost nef. Is E always pseudo-effective in the sense of Defini-
tion 7.1 ?

This was stated as a theorem in [DPS01, 6.3], but the proof given there was
incomplete. The result now appears quite doubtful to us. However, we give below
a positive answer to Question 7.5 in case of a rank 2-bundle E with c1(E) = 0



THE PSEUDO-EFFECTIVE CONE OF A COMPACT KÄHLER MANIFOLD 19

(conjectured in [DPS01]), and then apply it to the study of tangent bundles of
K3-surfaces.

7.6. Theorem. Let E be an almost nef vector bundle of rank at most 3 on a
projective manifold X. Suppose that detE ≡ 0. Then E is numerically flat.

Proof. Recall (cf. [DPS94]) that a vector bundle E is said to be numerically flat
if it is nef as well as its dual (or, equivalently, if E is nef and detE numerically
trivial); also, E is numerically flat if and only if E admits a filtration by subbundles
such that the graded pieces are unitary flat vector bundles. By [Ko87, p.115], E is
unitary flat as soon as E is stable for some polarization and c1(E) = c2(E) = 0.

Under our assumptions, E is necessarily semi-stable since semi-stability with
respect to a polarization H can be tested against a generic complete intersection
curve, and we know that E is nef, hence numerically flat, on such a curve. Therefore
(see also [DPS01, 6.8]) we can assume without loss of generality that dimX = 2
and that E is stable with respect to all polarizations, and it is enough to show in
that case that c2(E) = 0. Since E is almost nef, E is nef, hence numerically flat,
on all curves except for at most a countable number of curves, say (Γj)j∈N.
First suppose that E has rank 2. Then the line bundle O(1) on P(E) is immediately
seen to be nef on all but a countable number of curves. In fact, the only curves
on which O(1) is negative are the sections over the curves Γj with negative self-
intersection in P(E|Γj). Now take a general hyperplane section H on P(E). Then
H does not contain any of these bad curves and therefore O(1) is nef on H . Hence

c1(O(1))2 ·H ≥ 0.

Now - up to a multiple - H is of the form H = O(1)⊗ π∗(G) so that

c1(O(1))3 + c1(O(1))2 · π∗(G) ≥ 0.

Since c1(O(1))3 = c1(E)2− c2(E) = −c2(E) and c1(O(1))2 ·π∗(G) = c1(E) ·G = 0,
we conclude c2(E) = 0.
If E has rank 3, we need to argue more carefully, because now O(1) is non-nef on
the surfaces Sj = P(E|Cj) so that O(1) might be non-nef on a general hyperplane
section H . We will however show that this can be avoided by choosing carefully
the linear system |H |. To be more precise we fix G ample on X and look for

H ∈ |O(1) + π∗(mG)|
with m≫ 0, so that O(1) is nef on H ∩Sj for all j. Given that O(1)|H and we can
argue as in the previous case to obtain c2(E) = 0. Of course for a general choice
of H , all curves H ∩Sj will be irreducible (but possibly singular since Cj might be

singular). Now fix j and set C̃ = H∩Sj , a section over C = Cj . Let V ⊂ EC be the
maximal ample subsheaf (see [PS02]). Then we obtain a vector bundle sequence

0 → V → EC → F → 0

and we may assume that F has rank 2, because otherwise O(1) is not nef only on

one curve over C. Now C̃ induces an exact sequence

0 → OC(−mG) → F → F ′ → 0

and therefore O(1)|C̃ is nef iff c1(F
′) ≥ 0. This translates into c1(F )+m(G·C) ≥ 0.

Now let t0 be the nef value of E with respect to G, i.e. E(t0G) is nef but not ample.
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Then F (t0G) is nef, too, so that c1(F ) ≥ −2t0(G · C). In total

c1(F
′) ≥ (m− 2t0)(G · C),

hence we choose m ≥ 2t0 and for this choice O(1)|H is nef. �

As a corollary we obtain

7.7. Theorem. Let X be a projective K3-surface or a Calabi-Yau 3-fold. Then
the tangent bundle TX is not almost nef, and there exists a covering family (Ct) of
(generically irreducible) curves such that TX |Ct is not nef for general t.

In other words, if c1(X) = 0 and TX is almost nef, then a finite étale cover of X
is abelian. One should compare this with Miyaoka’s theorem that TX |C is nef for
a smooth curve C cut out by hyperplane sections of sufficiently large degree. Note
also that TX |C being not nef is equivalent to say that TX |C is not semi-stable. We
expect that (7.7) holds in general for Calabi-Yau manifolds of any dimension.

Proof. Assume that TX is almost nef. Then by 7.6, TX is numerically flat. In
particular c2(X) = 0 and hence X is an étale quotient of a torus. �

We will now improve (7.7) for K3-surfaces; namely ifX is a projective K3-surface,
then already OP(TX)(1) should be non-pseudo-effective. In other words, let A be a
fixed ample divisor on X . Then for all positive integers m there exists a positive
integer p such that

H0(X,Sp((SmTX)⊗A)) = 0.

This has been verified in [DPS00] for the general quartic in P3 and below for any
K3-surface. The next theorem is also proved in [Na04].

7.8. Theorem. Let X be a projective K3-surface and L = OP(TX)(1). Then L is
not pseudo-effective.

Proof. Suppose that L is pseudo-effective and consider the divisorial Zariski de-
composition ([Bou02b], cf. also 3.5 (iv))

L = N + Z

with N an effective R-divisor and Z nef in codimension 1. Write N = aL+ π∗(N ′)
and Z = bL+ π∗(Z ′). Let H be very ample on S. By restricting to a general curve
C in |HH | and observing that TX |C is numerically flat, we see that L|π−1(C) is nef
(but not ample), hence

N ′ · C = 0.

Thus N ′ = 0 since H is arbitrary. If a > 0, then some mL would be effective, i.e.
SmTX would have a section, which is known not to be the case. Hence a = 0 and
L is nef in codimension 1 so that L can be negative only on finitely many curves.
This contradicts 7.7. �

8. Nef reduction relative to a covering family of curves

In this section we construct reduction maps for pseudo-effective line bundle which
have vanishing intersection numbers on large families of curves. This will be applied
in the next section in connection with the abundance problem.

8.1. Notation. Let (Ct)t∈T be a covering family of (generically irreducible) curves
(in particular T is irreducible and compact). Then (Ct) is said to be a connecting
family if and only if two general points x, y can be joined by a chain of Ct’s. We
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also say that X is (Ct)-connected.
By T ∗ we denote the Zariski-open (non-empty) set of those t for which Ct is irre-
ducible.

Using Campana’s reduction theory [Ca81,94,04], we obtain immediately

8.2. Theorem. Let X be a projective manifold and L a pseudo-effective line
bundle on X. Let (Ct) be a covering family with L · Ct = 0. Then there exists an
almost holomorphic surjective meromorphic map f : X > Y with dim Y < dimX
such that the general (compact) fiber of f is (Ct)-connected. f is called the nef
reduction of L relative to (Ct).

Recall that a meromorphic map is almost holomorphic, if there is an open non-
empty set on which the map is holomorphic and proper. Of course, there might be
other families (C′

s) with L · C′
s = 0 leading to different quotients.

8.3. Definition. Let L be a pseudo-effective line bundle on X. The minimal
number which can be realised as dimY with a nef reduction f : X > Y relative to
L is denoted p(L). If there is no covering family (Ct) with L · Ct = 0, then we set
p(L) = dimX.

8.4. Remark. The equality p(L) = 0 holds if and only if there exists a connecting
family (Ct) such that L · Ct = 0. If moreover L is nef, then p(L) = 0 if and only if
L ≡ 0 [Work].

For computing Kodaira dimensions sometimes the notion of a connecting family
has to be strenghtened:

8.5. Definition. A covering family (Ct)t∈T is strongly connecting if any two
sufficiently general points x and y can be joined by a chain of irreducible Ct, i.e.
t ∈ T ∗, avoiding any given analytic set A of codimension at least 2.

8.6. Theorem. Let X be a projective manifold, L a pseudo-effective R−divisor.
Let (Ct) be a strongly connected family of curves. If L ·Ct = 0, then ν(L) = 0. If L
is Cartier, then L is numerically equivalent to a Cartier divisor L′ with κ(L′) = 0.

Equivalently:

8.7. Theorem. Let X be a projective manifold of any dimension n, (Ct) a strongly
connecting family and L a R-divisor with is nef in codimension 1. If L · Ct = 0,
then L ≡ 0.

Proof. (of Theorem 8.6 from Theorem 8.7). Consider the divisorial Zariski decom-
position L = N + Z with N an R−effective divisor and Z nef in codimension 1.
Then N · Ct ≥ 0 and Z · Ct ≥ 0, so that L · Ct = 0 forces Z · Ct = 0. Hence Z ≡ 0
by Theorem 8.7 so that ν(L) = 0. For the second statement we refer to (3.12). �

Proof. (of Theorem 8.7). (I) Let T be the parameter space of the family (Ct); we
may assume dimT = n−1. In a first step we reduce to the case that through every
point x ∈ X there are only finitely many Ct. In fact, in the general situation take
a birational map σ : X̃ → X from a projective manifold X̃, such that the induced
family C̃t has the finiteness property (this can be achieved e.g. by flattening the

projection map from the graph of the family to X). Then let L̃ be the mobile
part of σ∗(L), i.e. the part in the divisorial Zariski decomposition which is nef
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in codimension 1. Since we know that the general Ct avoids codimension 2 sets,
we obtain L̃ · C̃t = 0. By our assumption that Theorem 8.7 already holds if the
finiteness condition is verified, we conclude that L̃ ≡ 0. Hence L ≡ 0.

(II) From now on we may assume that only finitely many Ct pass through a fixed
point of X . Therefore the following holds. If C → T is the parameter space of the
family (Ct) and if Y ⊂ X is any analytic set of codimension at least 2, then the set
of points t ∈ T such that dim(Ct ∩ Y ) = 1 has codimension at least 2 in T .
Let B ⊂ X be a general curve. We follow the arguments in [workshop] and fix a
general point x. We choose a family (Bs)s∈S joining x with the curve B by chains
of irreducible curves Ct. Let p : S → X be the graph of the family with parameter
space q : C → T . Let Sj be the irreducible components of C. The codimension
argument above says that we may assume that dimBs ∩ A ≤ 0, where A is the
non-nef locus of L. Thus p∗(L)|Sj is nef in codimension 1 for all j, hence nef.
But now the arguments of [workshop] work, and consequently L · B = 0. Taking
e.g. B be complete intersection curves cut out by arbitrary hyperplane sections, we
conclude that L ≡ 0. �

Of course the question arises whether 8.6 holds for all connecting families. Un-
fortunately this is not true, as demonstrated by the following example.

8.8. Example. We produce a smooth projective threefold X , a line bundle L on
X which is nef in codimension 1, in particular pseudo-effective, and a connecting
family (Ct) such that h0(L) = 2 and κ(L) = 1, but

L · Ct = 0.

We start with the P2−bundle

p : X1 := P(O ⊕O ⊕O(−1)) → P1.

Consider the section

B1 = P(O(−1)) ⊂ X1

with normal bundle NB1/X1
= O(−1) ⊕ O(−1). Now we flop the curve B1 : we

first consider the blow-up τ : X2 → X1 of X1 along B1. The exceptional divisor
E ≃ P1 × P1 has normal bundle O(−1,−1) and therefore X2 can be blown-down
along the other projection to obtain σ : X2 → X . Let B = σ(E) and

L = (σ∗τ
∗p∗(O(1)))∗∗.

Then clearly h0(L) = 2 and κ(L) = 1. Let Fs be the strict transform of p−1(s), s ∈
P1 in X so that L = OX(Fs). Observe that Fs is P2 blown up in one point, that B is
the base locus of H0(L), and that B ⊂ Fs is the (−1)−curve. In order to establish

the connecting family (Ct) with L · Ct = 0, consider a section D′ = P(O), disjoint
from B1 and let D its strict transform in X . In every fiber Fs we can consider
the family of “lines” meeting D′, i.e., containing the point ps = D ∩ Fs. A “line”
is of course a curve whose images in P2 is a line in the usual sense. The family
of “lines” inside Fs has exactly one splitting element containing the (−1)−curve
B. The other component is the strict transform of the line in P2 joining ps and
the point to be blown up. Varying s, so we obtain a family (Ct), which is clearly
connecting because of the curve B. Moreover it is clear that L · Ct = 0.

It is still possibly to say something for general connecting families. First observe
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8.9. Lemma. Suppose κ(L) ≥ 0 and let D ∈ |mL| for some positive integer m. If
(Ct) is a covering family such that L · Ct = 0, then

supp(D) ∩ Ct = ∅
for general t.

Proof. . Just choose t general so that Ct 6⊂ supp(D). Then D · Ct implies the
claim. �

8.10. Proposition. Let X be a projective manifold of dimension n and L a line
bundle on X such that L ·Ct = 0 for a connecting family (Ct). Then κ(L) ≤ n− 2.

Proof. . Suppose the contrary and choose m such that H0(mL) defines map f :
X > Y to a variety of dimension at least n− 1. By Lemma 8.9, f is holomorphic
near the general Ct. This already reduces to dimY = n− 1. Since we may assume
that f has connected fibers, the Ct are just the fibers of f (at least for general t),
so that f is almost holomorphic, and it is immediate that the family (Ct) cannot
be connecting. �

Although (8.6) fails in general for connecting families and arbitrary line bundles
L, one might hope more in case L = KX .

8.11. Proposition. Let X be a smooth projective threefold and (Ct) be a connect-
ing family such that KX · Ct = 0. Then κ(X) ≤ 0 unless we are in the following
special situation.
(i) KX is not nef, κ(X) = 1;

(ii) there is a sequence φ : X > X ′ of Mori contractions and flips such that

KX′ · C′
t = 0

for the induced family (C′
t) (φ is holomorphic near the general Ct);

(iii) on X ′ we have a flip

X ′
> X+,

the induced family (C+
t ) is no longer connecting, moreover KX+ · C+ = 0;

(iv) the Iitaka fibration is a holomorphic map f : X+ → Z+ ≃ P1 and f is a
quotient for the family (C+

t ).

(v) the exceptional locus E+ ⊂ X+ of the flip X ′
> X+ dominates Z+.

Proof. . Assume κ(X) ≥ 1, hence κ(X) = 1 (8.8). By [Workshop] KX cannot be
nef. Let φ : X → X1 be a Mori contraction, necessarily birational; let E be the
exceptional divisor. Then E · Ct = 0; otherwise KX1

· φ(Ct) < 0, and X1 would be
uniruled. Then we get a connecting family (C1

t ) in X1 and proceed inductively. So
we arrive at a flip

X ′
> X+.

Let E′ ⊂ X ′ resp. E+ ⊂ X+ be the 1-dimensional “exceptional” sets. ¿From (8.9)
and the fact that KX is negative on all components of E′, we deduce that

C′
t ∩ E′ = ∅

for general t. Hence

KX+ · C+
t = 0.
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If (C+
t ) is again connecting, then we proceed with X+. After finitely many steps

we must arrive at the case where (C+
t ) is no longer connecting, because by [Work-

shop] we cannot arrive at some X+ with KX+ nef and the induced family being
connecting. Therefore we consider the quotient

f : X+
> Z+.

Then E+ must map onto Z+; otherwise (C′
t) would not be connecting. Thus Z+ ≃

P1 and the almost holomorphic map f must be holomorphic. By (8.8), the general
fiber F of f has κ(F ) = 0, hence f is the Iitaka fibration. �

It is not completely clear whether the situation in (8.11) really occurs.
It is also interesting to look at covering families (Ct) of ample curves. Here “ample”
means that the dual of the conormal sheaf modulo torsion is ample (say on the
normalization). Then we have the same result as in (8.6) which is prepared by

8.12. Lemma. Let X be a projective manifold, C ⊂ X an irreducible curve with
normalization f : C̃ → C and ideal sheaf I. Let L be a line bundle on X. Then
there exists a positive number c such that for all t ≥ 0:

h0(X,Lt) ≤
ct∑

k=0

h0(f∗(Sk(I/I2/tor)⊗ Lt)).

Proof. . Easy adaptation of the proof of (2.1) in [PSS99]. �

8.13. Corollary. Let X be a projective manifold and C ⊂ X be an irreducible
curve with normalisation f : C̃ → C such that f∗(I/I2)∗ is ample. Let L be a line
bundle with L · Ct = 0. Then κ(L) ≤ 0. In particular this holds for the general
member of an ample covering family.

Proof. . By (8.12) it suffices to show that

h0(f∗(Sk(I/I2/tor)⊗ Lt)) = 0

for all k ≥ 1. This is however clear since by assumption f∗(I/I2)∗ is an ample
bundle. �

8.14. Corollary. Let X be a smooth projective threefold with KX pseudo-effective.
If there is a ample covering family or a connecting family (Ct) such that KX ·Ct = 0,
then κ(X) = 0.

Proof. . By (8.13) we have κ(X) ≤ 0. Suppose that κ(X) = −∞. Then X is
uniruled by Miyaoka’s theorem. Thus KX is not pseudo-effective. �

To complete the picture, we will construct a nef reduction for pseudo-effective
line bundles, generalizing to a certain extent the result of [Workshop] for nef line
bundle (however the result is weaker). A different type of reduction was constructed
in [Ts00],[Ec02].

8.15. Theorem. Let L be a pseudo-effective line bundle on a projective manifold
X. Then there exists an almost holomorphic meromorphic map f : X > Y such
that

(i) general points on the general fiber of F can be connected by a chain of L-trivial
irreducible curves.

(ii) if x ∈ X is general and C is an irreducible curve through x with dim f(C) > 0,
then L · C > 0.
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Proof. . Start with a covering L-trivial family (Ct) and build the relative nef
reduction h : X > Z (if the family does not exist, put f = id). Now take
another covering L-trivial family (Bs) (if this does not exist, just stop) with relative
nef reduction g. For general z ∈ Z let Fz be the set of all x ∈ X which can
be joined with the fiber Xz by a chain of curves Bs. In other words, Fz is the
closure of g−1(g(Xz)). Now the Fz define a covering family (of higher-dimensional
subvarieties) which defines by Campana’s theorem a new reduction map. After
finitely many steps we arrive at the map we are looking for. �

Finally we give a criterion when a covering family is actually connecting:

8.16. Theorem. Let X be a projective manifold and (Ct) a covering family. Sup-
pose that [Ct] is an interior point of the movable cone M. Then (Ct) is connecting.

Proof. . Let f : X > Z be the reduction of the family (Ct). If the family is

not connecting, then dimZ > 0. Let π : X̃ → X be a modification such that
the induced map f̃ : X̃ → Z is holomorphic. Let A be very ample on Z and put
L = π∗(f̃

∗(A))∗∗. Then L is an effective line bundle on X with L · Ct = 0 since L
is trivial on the general fiber of f , this map being almost holomorphic. Hence [Ct]
must be on the boundary of M. �

The converse of (8.16) is of course false: consider the family of lines l in P2 and
let X be the blow-up of some point in P2. Let (Ct) be the closure of the family of
preimages of general lines. This is a connecting family, but if E is the exceptional
divior, then E · Ct = 0. So (Ct) cannot be in the interior of M.

9. Towards abundance

In this section we prove that a smooth projective 4-fold X with KX pseudo-
effective and with the additional property that KX ·Ct = 0 for some good covering
family of curves (Ct), has κ(X) ≥ 0. In other words we deal with problem (B2)
from the introduction in dimension 4. In the remaining case that KX is positive
on all covering and non-connecting or strongly connecting families of curves one
expects that KX is big.

9.1. Proposition. Let X be a smooth projective 4-fold with KX pseudo-effective.
Suppose that there exists a dominant rational map f : X > Y to a projective
manifold Y with κ(Y ) ≥ 0 (and 0 < dimY < 4). Then κ(X) ≥ 0.

Proof. We may assume f holomorphic with general fiber F . If κ(F ) = −∞, then
F would be uniruled, hence X would be uniruled. Hence κ(F ) ≥ 0. Now Cn,n−3,
Cn,n−2 and Cn,n−1 hold true, see e.g. [Mo87] for further references. This gives

κ(X) ≥ κ(F ) + κ(Y ) ≥ 0

and therefore our claim. �

9.2. Corollary. Let X be a smooth projective 4-fold with KX pseudo-effective.
Let f : X > Y be a dominant rational map (0 < dimY < 4) with Y not rationally
connected. Then κ(X) ≥ 0.

Proof. If dimY ≤ 2, this is immediate from (9.1). So let dim Y = 3. Since we
may assume κ(Y ) = −∞, the threefold Y is uniruled. Let h : Y > Z be the
rational quotient; we may assume that h is holomorphic and Z smooth. Since Y
is not rationally connected, we have dimZ ≥ 1 and moreover Z is not uniruled
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by Colliot-Thélène [CT86], see also Graber-Harris-Starr [GHS03]. Hence κ(Z) ≥ 0
and we conclude by (9.1). �

9.3. Conclusion. In order to prove κ(X) ≥ 0 in case of a dominant rational map
f : X4 > Y , we may assume that Y is a rational curve, a rational surface or a
rationally connected 3-fold.

9.4. Proposition. Let X be a smooth projective 4-fold with KX pseudo-effective.
If p(KX) = 1, then κ(X) ≥ 0.

Proof. By assumption we have a covering family (Ct) with KX ·Ct = 0, so that the
relative nef reduction is a holomorphic map f : X → Y to a curve Y . By (9.3) we
may assume Y = P1. We already saw that κ(F ) ≥ 0. By (8.11)/(8.12) “mostly”
we even have κ(F ) = 0 unless we are in a very special situation. We begin treating

the case κ(F ) = 0. Choose m such that h0(mKF ) 6= 0 for the general fiber F of f .
Thus f∗(mKX) is a line bundle on Y , and we can write

mKX = f∗(A) +
∑

aiFi + E

where Fi are fiber components and E surjects onto Y with h0(OX(E)) = 1. The
divisor E comes from the fact that F is not necessarily minimal; actually E|F =
mKF . By enlarging m we may also assume that the support of

∑
aiFi does not

contain any fiber and also that mKX is Cartier. We consider the divisorial Zariski
decomposition

mKX = Ñ + Z̃

with Ñ being R−effective and Z̃ nef in codimension 1. The clearly E ⊂ Ñ so that

(∗) f∗(A) +
∑

aiFi = Ñ ′ + Z̃

with Ñ ′ again R−effective.
Now let S ⊂ X be a surface cut out by 2 general hyperplane sections. Let L =
mKX |S and E′ = E|S. Denoting Gi = Fi|S, g = f |S and N = Ñ ′|, Z = Z̃, we
obtain

(∗∗) L = g∗(A) +
∑

aiGi + E′

and from from (∗)
(∗∗∗) g∗(A) +

∑
aiGi = N ′ + Z.

Then N ′ is R−effective and not nef, and Z is nef. However N ′ might a priori have
a nef part; so we consider the divisorial Zariski decomposition N ′ = N0 + Z0 and
set Z1 = Z0 + Z. Let l be a general fiber of g. Then we conclude from (∗∗∗) that
(N ′ + Z) · l = (N0 + Z0) · l = 0 and thus

N0 · l = Z0 · l = 0.

So N0 is contained in fibers of g and Z0 = f∗(OY (a)), [Work, 2.11]; moreover a ≥ 0.
Comparing with (∗∗∗) and using the fact that

∑
aiGi does not contain the support

of a full fiber, A must be nef. Hence (∗) gives κ(X) ≥ 0. It remains to treat the case

κ(F ) = 1. Then we can use the relative Iitaka fibration of f and obtain a birational

model X̂ of X such that the induced map f̂ : X̂ → Y factors as f̂ = h ◦ g, where
g|X̂y is the Iitaka fibration of X̂y, so that the general fiber Fg of g has κ(Fg) = 0.
Now we conclude by (9.7). �
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9.5. Proposition. Let X be a smooth projective 4-fold with KX pseudo-effective.
If p(KX) = 3, then κ(X) ≥ 0.

Proof. Here any reduction is a (possibly meromorphic) elliptic fibration. We choose
a holomorphic birational model f : X −→ Y (with X and Y smooth), such that
(a) f is smooth over Y0 and Y \ Y0 is a divisor with simple normal crossings only;
(b) the j−function extends to a holomorphic map J : Y −→ P1.

By the first property, f∗(KX) is locally free [Ko86], and we obtain the well-known
formula of Q−divisors

(∗) KX = f∗(KY +∆) + E −G.

Here E is an effective divisor such that f∗(OX(E)) = OY and G is an effective
divisor such that dim f(G) ≤ 1. Moreover

∆ = ∆1 +∆2

with

∆1 =
∑

(1− 1

mi
)Fi +

∑
ak

and

∆2 ∼ 1

12
J∗(O(1)).

Here Fi are the components over which we have multiple fibers and Dk are the
other divisor components over which there singular fibers. The ak ∈ 1

12N according
to Kodaira’s list. Then by a general choice of the divisor ∆2, the pair (Y,∆1 +∆2)
is klt. Now KY + ∆ is pseudo-effective. In fact, by Theorem 2.2 it suffices to
show that (KY + ∆) · Bs ≥ 0 for every covering family (Bs) of curves. But this
is checked very easily by restricting to f−1(Ct). Hence the log Minimal Model
Program [Ko92] in dimension 3 implies that KY + ∆ is effective. If G = 0, then
we could conclude immediately κ(X) ≥ 0 by (*). In general we argue as follows.
Consider the divisorial Zariski decomposition

KX = f∗(KY +∆) + E −G = N + Z

with Z nef in codimension 1 and N the “exceptional” part. Using the log minimal
model of (Y,∆) we can write

KY +∆ = N ′ + Z ′,

where Z ′ is the movable part and N ′ the fixed part; this is automatically the
divisorial Zariski decomposition of KY + ∆. Since f∗(Z ′) might not be nef in
codimension 1 due to the large fibers of f , we consider the decomposition

f∗(Z ′) = N0 + Z0

into the movable part Z0 and the fixed part N0 which is again the divisorial Zariski
decomposition. Notice that N ′, E,N0, Z0 and G are Q−divisors. We obtain

f∗(N ′) +N0 + E + Z0 = N +G+ Z.

Then f∗(N ′) +N0 +E is the exceptional part of the left hand side while N +G is
the exceptional part of the right hand side. Thus Z = Z0, so that Z is an effective
Q−divisor. Then also N is an effective Q−divisor, and we conclude. �

9.6. Proposition. Let X be a smooth projective 4-fold with KX pseudo-effective.
If p(KX) = 2, then κ(X) ≥ 0.
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Proof. Again we may assume that we have a holomorphic relative nef reduction
f : X → Y with Y smooth and that f is smooth over Y0 and Y \ Y0 is a divisor
with simple normal crossings only. By (8.9) κ(F ) = 0 for the general fiber F of f .
As in (9.6) we can write - possibly after birational transformation -

KX = f∗(KY +∆) + E −G

with E effective, f∗(OX(E)) = OY , G consisting of threedimensional fiber compo-
nents and (Y,∆) klt. This is proved in [Am04], proof of (5.1). Then we can proceed
as in (9.5). �

The arguments of (9.6) actually show

9.7. Proposition. Let X be a smooth projective 4-fold with KX pseudo-effective.
Suppose X has a holomorphic surjective map (with connected fibers) X → Y whose
general fiber F has κ(F ) = 0. Then κ(X) ≥ 0.

Proposition 9.4 could have been proved in the same way as (9.6); but maybe
the ad hoc proof given above is instructive. The case p(KX) is finally settled by
Theorem 8.6 together with (3.11):

9.8. Theorem. Let X be a projective manifold such that KX is pseudo-effective.
If there is a strongly connecting family (Ct) such that KX ·Ct = 0, then κ(X) = 0.

9.9. Remark. Let X be a projective manifold of dimension n and (Ct) a con-
necting family which is not strongly connecting. Assume L ·Ct = for some pseudo-
effective line bundle L on X . One may wonder whether L is numerically equivalent
to an effective divisor. Let us concentrate on the case n = 4 and L = KX . Fix a
general curve Ct, consider the possibly non-compact subspace of X filled up by the
chains of irreducible Cs meeting Ct and take closure. If this subspace is reducible,
pick some irreducible component, say Y . Since we assume the family not to be
strongly connecting, Y 6= X , so Y is either a surface or a divisor. It is not difficult
to see (using (8.8)) that

ν(KX |Y ) = 0.

Let us assume that dimY = 3. Varying the curve Ct, we obtain a family (Ys) of
divisors. We may assume that the parameter space S of the family is 1-dimensional.
If it is not connecting, we obtain a holomorphic map f : X → S. Let F be the
general fiber; then ν(KF ) = 0 and by abundance for threefolds, κ(F ) = 0. Hence
we conclude by (9.5).
If the family is connecting, we have to pass to the graph: p : C → X with projection
q : C → S. In that case it might happen that ν(p∗(KX)) = 1 and it seems likely
that the part of p∗(KX) which is nef in codimension 1 comes from S, hence is
effective. Then we obtain κ(X) ≥ 0. Details are left to a future paper.

9.10. Definition. Let X be a projective manifold and (Ct) a covering family of
curves. Then (Ct) is a good covering family if it is either non-connecting or strongly
connecting.

Using this notation, we may summarize our results as follows.

9.11. Theorem. Let X be a smooth projective 4-fold (or a normal projective
4-fold with only canonical singularities). If KX is pseudo-effective and if there is a
good covering family (Ct) of curves such that KX · Ct = 0, then κ(X) ≥ 0.
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9.12. Remark. Let X be a projective manifold of dimension n.
(1) Suppose 1 ≤ κ(X) ≤ n − 1. If X has a good minimal model via contractions
and flips, then X carries a covering non-connecting family of curves. If we require
only that X has a good minimal model, then at least some blow-up of X carries a
covering non-connecting family of curves.
(2) Suppose κ(X) = 0. If X has a good minimal model via contractions and flips,
then X carries a strongly connecting family of curves. Again, if we require only that
X has a good minimal model, then at least some blow-up of X carries a covering
non-connecting family of curves.
(3) This shows that the program of proving Problem (B) via (B1) and (B2) - in the
version with good connecting families - is really meaningful, i.e., we do not try to
prove too much.

The remaining task is essentially to consider 4-folds X with KX · Ct > 0 for all
good covering families (Ct) (but a priori it might happen that KX · Ct = 0 for a
connecting, but not strongly connecting family (Ct). In that case one expects that
X is of general type. It is easy to see that every proper subvariety S of X passing
through a very general point of X is of general type, i.e. its desingularisation is of
general type; see 9.13 below. But it is not at all clear whether KX |S is big, which
is of course still not enough to conclude.

9.13. Proposition. Let X be a smooth projective 4-fold with p(KX) = 0. Then
every proper subvariety S ⊂ X through a very general point of X is of general type.

Proof. Supposing the contrary, we find a covering family (St) of subvarieties such
that the general St, hence every St, is not of general type. Consider the desingu-
larised graph p : C → X of this family; by passing to a subfamily we may assume
p generically finite. Denoting q : C → T the parametrising projection, the general
fiber Ŝt is a smooth variety of dimension at most 3 and not of general type. We
have an equation

KC = p∗(KX) + E

with an effective divisor E. Notice that E must dominate T , otherwise q induces (up
to finite étale cover ofX) an almost holomorphic mapX > T which would give rise
to a covering non-connecting family (Ct) with KX ·Ct = 0. By further blowing-up

and using [KM92] we may assume that the general Ŝt dominates holomorphically
a minimal model. We now easily find a covering family (Cs) of curves (sitting
in q−fibers) such that KC · Cs = 0 but E · Cs > 0. Hence KX · p∗(Cs) < 0, a
contradiction. �

Using the Iitaka fibration we obtain

9.14. Proposition. Let X be a smooth projective 4-fold with p(KX) = 0. Then
κ(X) 6= 1, 2, 3.

10. Appendix: towards transcendental Morse inequalities

As already pointed out, for the general case of the conjecture 2.3 a transcendental
version of the holomorphic Morse inequalities would be needed. The expected
statements are contained in the following conjecture, which is also discussed in
[Dem10].

10.1. Conjecture. Let X be a compact complex manifold, and n = dimX.
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(i) Let α be a closed, (1, 1)-form on X. We denote by X(α,≤ 1) the set of points
x ∈ X such that αx has at most one negative eigenvalue. If

∫
X(α,≤1) α

n > 0,

the class {α} contains a Kähler current and

Vol(α) ≥
∫

X(α,≤1)

αn.

(ii) Let {α} and {β} be nef cohomology classes of type (1, 1) on X satisfying the
inequality αn − nαn−1 · β > 0. Then {α− β} contains a Kähler current and

Vol(α− β) ≥ αn − nαn−1 · β.

Remarks about the conjecture. If α = c1(L) for some holomorphic line bundle
L on X , then the inequality (i) was established in [Bou02a] as a consequence of the
results of [Dem85]. In general, (ii) is a consequence of (i). In fact, if α and β are
smooth positive definite (1, 1)-forms and

λ1 ≥ . . . ≥ λn > 0

are the eigenvalues of β with respect to α, thenX(α−β,≤ 1) = {x ∈ X ; λ2(x) < 1}
and

1X(α−β,≤1)(α− β)n = 1X(α−β,≤1)(1 − λ1) . . . (1− λn) ≥ 1− (λ1 + . . .+ λn)

everywhere on X . This is proved by an easy induction on n. An integration on
X yields inequality (ii). In case α and β are just nef but not necessarily positive
definite, we argue by considering (α+εω)− (β+εω) with a positive hermitian form
ω and ε > 0 small. �

The full force of the conjecture is not needed here. First of all, we need only
the case when X is compact Kähler. Let us consider a big class {α}, and a se-
quence of Kähler currents Tm ∈ {α} with logarithmic poles, such that there exists
a modification µm : Xm 7→ X , with the properties

(10.2′) µ∗
mTm = βm + [Em] where βm is a semi-positive (1, 1)-form, and Em is an

effective Q-divisor on Xm.

(10.2′′) Vol({α}) = limm 7→∞

∫
X
βn
m.

(see Definition 3.2).

A first trivial observation is that the following uniform upper bound for c1(Em)
holds.

10.3. Lemma. Let ω be a Kähler metric on X, such that {ω − α} contains a
smooth, positive representative. Then for each m ∈ Z+, the (1, 1)-class µ∗

m{ω} −
c1(Em) on Xm is nef.

Proof. If γ is a smooth positive representative in {ω − α}, then µ⋆
mγ + βm is a

smooth semi-positive representative of µ∗
m{ω} − c1(Em). �

A second remark is that in order to prove the duality statement 2.3 for projective
manifolds, it is enough to establish the estimate

(∗) Vol(ω −A) ≥
∫

X

ωn − n

∫

X

ωn−1 ∧ c1(A)
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where ω is a Kähler metric, and A is an ample line bundle on X . Indeed, if {α} is
a big cohomology class, we use the above notations and we can write

βm + tEm = βm + tµ∗
mA− t(µ∗

mA− Em)

where A is an ample line bundle on X such that c1(A) − {α} contains a smooth,
positive representative. The arguments of the proof of 4.1 will give the orthogonality
estimate, provided that we are able to establish (∗).

In this direction, we can get only a weaker statement with a suboptimal con-
stant cn.

10.4. Theorem (analogue of Lemma 4.2). Let X be a projective manifold of
dimension n. Then there exists a constant cn depending only on dimension (actually
one can take cn = (n+ 1)2/4 ), such that the inequality

Vol(ω −A) ≥
∫

X

ωn − cn

∫

X

ωn−1 ∧ c1(A)

holds for every Kähler metric ω and every ample line bundle A on X.

Proof. Without loss of generality, we can assume that A is very ample (otherwise
multiply ω and A by a large positive integer). Pick generic sections σ0, σ1, . . . , σn ∈
|A| so that one gets a finite map

F : X → Pn
C, x 7→ [σ0(x) : σ1(x) : . . . : σn(x)].

We let θ = F ∗ωFS ∈ c1(A) be the pull-back of the Fubini-Study metric on Pn
C
(in

particular θ ≥ 0 everywhere on X), and put

ψ = log
|σ0|2

|σ0|2 + |σ1|2 + . . .+ |σn|2
.

We also use the standard notation dc = i
4π (∂ − ∂) so that ddc = i

2π∂∂. Then

ddcψ = [H ]− θ

where H is the hyperplane section σ0 = 0 and [H ] is the current of integration over
H (for simplicity, we may further assume that H is smooth and reduced, although
this is not required in what follows). The set Uε = {ψ ≤ 2 log ε} is an ε-tubular
neighborhood ofH . Take a convex increasing function χ : R → R such that χ(t) = t
for t ≥ 0 and χ(t) = constant on some interval ]−∞, t0]. We put ψε = ψ − 2 log ε
and

αε := ddcχ(ψε) + θ = (1 − χ′(ψε))θ + χ′′(ψε)dψε ∧ dcψε ≥ 0.

Thanks to our choice of χ, this is a smooth form with support in Uε. In particular,
we find ∫

Uε

αn
ε =

∫

Uε

αε ∧ θn−1 =

∫

X

θn = c1(A)
n.

It follows from these equalities that we have limε→0 αε = [H ] in the weak topology
of currents. Now, for each choice of positive parameters ε, δ, we consider the Monge-
Ampère equation

(10.5) (ω + i∂∂ϕε)
n = (1− δ)ωn + δ

∫
X
ωn

c1(A)n
αn
ε .

By the theorem of S.-T. Yau [Yau78], there exists a smooth solution ϕε, unique up

to normalization by an additive constant, such that ωε := ω + i∂∂ϕε > 0. Since
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∫
X
ωε ∧ ωn−1 =

∫
X
ωn remains bounded, we can extract a weak limit T out of the

family ωε ; then T is a closed positive current, and the arguments in [Bou02a] show
that its absolutely continuous part satisfies

∫

X

T n
ac ≥ (1 − δ)

∫

X

ωn.

We are going to use the same ideas as in [DPa04], in order to estimate the singularity
of the current T on the hypersurface H . For this, we estimate the integral

∫
Uε
ωε ∧

θn−1 on the tubular neighborhood Uε of H . Let us denote by ρ1 ≤ . . . ≤ ρn the
eigenvalues of ωε with respect to αε, computed on the open set U ′

ε ⊂ Uε where αε

is positive definite. The Monge-Ampère equation (10.5) implies

ρ1ρ2 . . . ρn ≥ δ

∫
X ωn

c1(A)n
.

On the other hand, we find ωε ≥ ρ1αε on U ′
ε, hence

(10.6)

∫

Uε

ωε ∧ θn−1 ≥
∫

U ′

ε

ρ1αε ∧ θn−1 ≥ δ

∫
X ωn

c1(A)n

∫

U ′

ε

1

ρ2 . . . ρn
αε ∧ θn−1.

In order to estimate the last integral in the right hand side, we apply the Cauchy-
Schwarz inequality to get

(10.7)
( ∫

U ′

ε

(αn
ε )

1/2(αε ∧ θn−1)1/2
)2

≤
∫

U ′

ε

ρ2 . . . ρnα
n
ε

∫

U ′

ε

1

ρ2 . . . ρn
αε ∧ θn−1.

By definition of the eigenvalues ρj , we have

(10.8)

∫

U ′

ε

ρ2 . . . ρnα
n
ε ≤ n

∫

X

ωn−1
ε ∧ αε = n

∫

X

ωn−1 ∧ c1(A).

On the other hand, an explicit calculation shows that

αn
ε ≥ n(1− χ′(ψε))

n−1χ′′(ψε) dψε ∧ dcψε ∧ θn−1,

αε ∧ θn−1 ≥ χ′′(ψε) dψε ∧ dcψε ∧ θn−1,

hence∫

U ′

ε

(αn
ε )

1/2(αε ∧ θn−1)1/2 ≥ n1/2

∫

X

(1− χ′(ψε))
(n−1)/2χ′′(ψε) dψε ∧ dcψε ∧ θn−1

(we can integrate on X since the integrand is zero anyway outside U ′
ε). Now, we

have

n+ 1

2
(1− χ′(ψε))

(n−1)/2χ′′(ψε) dψε ∧ dcψε

= −d
(
(1− χ′(ψε))

(n+1)/2dcψε

)
+ (1− χ′(ψε))

(n+1)/2ddcψε

= −d
(
(1− χ′(ψε))

(n+1)/2dcψε

)
+ [H ]− (1 − χ′(ψε))

(n+1)/2θ

and from this we infer

n+ 1

2

∫

X

(1− χ′(ψε))
(n−1)/2χ′′(ψε) dψε ∧ dcψε ∧ θn−1

=

∫

X

[H ] ∧ θn−1 −
∫

X

(1− χ′(ψε))
(n+1)/2θn

→ c1(A)
n as ε→ 0.



THE PSEUDO-EFFECTIVE CONE OF A COMPACT KÄHLER MANIFOLD 33

We thus obtain

(10.9)

∫

U ′

ε

(αn
ε )

1/2(αε ∧ θn−1)1/2 ≥ 2
√
n

n+ 1
c1(A)

n − o(1) as ε→ 0.

The reader will notice, and this looks at first a bit surprising, that the final lower
bound does not depend at all on the choice of χ. This seems to indicate that our
estimates are essentially optimal and will be hard to improve. Putting together
(10.7), (10.8) and (10.9) we find the lower bound

(10.10)

∫

U ′

ε

1

ρ2 . . . ρn
αε ∧ θn−1 ≥ 4δ

(n+ 1)2
(c1(A)

n)2∫
X ωn−1 ∧ c1(A)

− o(1).

Finally, (10.6) and (10.10) yield
∫

Uε

ωε ∧ θn−1 ≥ 4δ

(n+ 1)2

∫
X ωn

∫
X
ωn−1 ∧ c1(A)

c1(A)
n − o(1).

As
⋂
Uε = H , the standard support theorems for currents imply that the weak

limit T = limωε carries a divisorial component c[H ] with
∫

X

c[H ] ∧ θn−1 ≥ 4δ

(n+ 1)2

∫
X
ωn

∫
X ωn−1 ∧ c1(A)

c1(A)
n.

Therefore, as [H ] ≡ θ ∈ c1(A), we infer

c ≥ 4δ

(n+ 1)2

∫
X ωn

∫
X
ωn−1 ∧ c1(A)

.

The difference T − c[H ] is still a positive current and has the same absolutely
continuous part as T . Hence

Vol(T − c[H ]) ≥
∫

X

T n
ac ≥ (1− δ)

∫

X

ωn.

The specific choice

δ =
(n+ 1)2

4

∫
X
ωn−1 ∧ c1(A)∫

X
ωn

gives c ≥ 1, hence

Vol(T − [H ]) ≥
∫

X

ωn − (n+ 1)2

4

∫

X

ωn−1 ∧ c1(A).

Theorem 10.4 follows from this estimate. �

10.11. Remark. By using similar methods, we could also obtain an estimate
for the volume of the difference of two Kähler classes on a general compact Kähler
manifold, by using the technique of concentrating the mass on the diagonal ofX×X
(see [DPa04]). However, the constant c implied by this technique also depends on
the curvature of the tangent bundle of X .

We show below that the answer to conjecture 10.1 is positive at least when X is
a compact hyperkähler manifold ( = compact irreducible holomorphic symplectic
manifold). The same proof would work for a compact Kähler manifold which is a
limit by deformation of projective manifolds with Picard number ρ = h1,1.
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10.12. Theorem. Let X be a compact hyperkähler manifold, and let α be a closed,
(1, 1)-form on X. Then we have

Vol(α) ≥
∫

X(α,≤1)

αn.

Proof. We follow closely the approach of D. Huybrechts in [Huy02], page 44.
Consider X 7→ Def(X) the universal deformation of X , such that X0 = X . If
β ∈ H2(X,R) is a real cohomology class, then we denote by Sβ the set of points
t ∈ Def(X) such that the restriction β|Xt

is of (1, 1)-type.

Next, we take a sequence of rational classes {αk} ∈ H2(X,Q), such that αk → α
on X as k 7→ ∞. As {αk} → {α}, the hypersurface Sαk

converge to Sα; in
particular, we can take tk ∈ Sαk

such that tk → 0. In this way, the rational
(1, 1)-forms αk|Xtk

will converge to our form α on X .

We have
Vol(α) ≥ lim sup

k 7→∞
Vol(αk|Xtk

) ≥

≥ lim sup
k 7→∞

∫

Xtk
(αtk

,≤1)

αn
tk

=

∫

X(α,≤1)

αn

where the first inequality is a consequence of the semi-continuity of the volume
obtained in [Bou02b], and the second one is a consequence of the convergence
statement above.

10.13. Corollary. If X be a compact hyperkähler manifold, or more generally, a
limit by deformation of projective manifolds with Picard number ρ = h1,1, then the
cones E and M are dual.

11. Concluding remarks

We would like to conclude with some new developments and applications of the
main theorem. For a general overview article we refer to [Dem07] and also to the
Bourbaki talk by Debarre [Deb06].
(1) In the paper [BFJ09], Boucksom, Favre and Jonsson consider the volume func-
tion on the big cone of a projective manifold X of dimension n. They showed
(Theorem A) that the volume function vol is differentible of class C1 and com-
puted the derivative. Namely, given a big class α and γ ∈ N1(X), then, using the
notations of section 3,

( d
dt

)
t=0

vol(α+ tγ) = n〈αn−1〉 · γ.

In particular, setting γ = α, one obtains

〈αn〉 = 〈αn−1〉 · α,
which implies Corollary 4.5.

(2) Hacon-McKernan [HM08] showed, solving a conjecture of Shokurov, that given
a divisorial log terminal pair (X,∆) and a birational map f : Y → X , then all fibers
f−1(x) are rationally chain connected. A crucial point in the proof is to check that
the images of rational maps from fibers of f are uniruled. This is done using the
uniruledness criterion Theorem 2.6.
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(3) As indicated in section 2, given a surjective map

(Ω1
X)⊗m

X → Q→ 0,

then by [CP09], detQ is pseudo-effective unless X is uniruled. This generalises a
theorem of Miyaoka and again Theorem 2.6 is indispensable.
At this point we add a remark concerning general complete intersection curves.
For many purposes, e.g., in connection with stability, when one wants to use the
theorem of Mehta-Ramanathan, those curve play a central role. The movable cone
was defined as the closed cone of curves generated by complete intersection curves
on birational models of the variety X which dominate X holomorphically. One
might ask whether the movable cone actually agrees with the complete intersection
on X , i.e., with the cone generated by curves cut out by sufficiently high multiples
of ample divisors. Very unfortunately however, these curves do not coincide in
general. Some example was already exhibited in [DPS96], Example 4.8 (and then
forgotten, so that we worked also an example of a P1−bundle over P2).

(4) As already mentioned Theorem 2.6 in the Kähler case is wide open. However
in dimension 3, Brunella [Br06] was able to establish the uniruledness of a (non-
algebraic) Kähler manifold X with KX not nef. In fact, if X is a non-algebraic
Kähler threefold, then X carries a holomorphic 2−form which can be seen as a
foliation F = KX ⊂ TX , possible with singularities in codimension 1. Now, KX

being not pseudo-effective, then the canonical bundle of the foliation (by curves)
F is not pseudo-effective. In this situation Brunella shows that F is a foliation by
rational curves (actually in any dimension).

(5) There is also a version of Theorem 2.6 for the cotangent bundle. In fact, fix an
ample line bundle A and suppose that

H0(X, ((Ω1
X)⊗m ⊗A)⊗N ) = 0

form,N sufficiently large, thenX is rationally connected. A conjecture of Mumford
says that one can actually omit the ample line bundle A. See [Pe06] for details; the
proof uses once more Theorem 2.6 to get uniruledness.
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