Kobayashi-Liibke inequalities for Chern classes
of Hermite-Einstein vector bundles and
Guggenheimer-Yau-Bogomolov-Miyaoka inequalities
for Chern classes of Kidhler-Einstein manifolds

Let (X,w) be a compact Kéhler manifold, n = dim X, and let F be a holomorphic vector
bundle over X, r = rank . We suppose that E is equipped with a hermitian metric, h and
denote by Dg j, the Chern connection on (E,h). The Chern curvature form is

@E’h - DQE,”L‘
In a (local) orthonormal frame (eq)1<a<r of E, we write

Ornr = (Oas)i<ap<r

where the ©,5 are complex valued (1, 1)-forms satisfying the hermitian condition ©,5 = O3,
We denote

@a,ﬁ =1 Z ®a,8jkdzj A dzy,.

1<a,f<r, 1<j,k<n

The hermitian symmetry condition can then be read O, gjk = Ogakj. 1f at some point o € X
the coordinates (z;) are chosen so that (dz;j(wo)) is an orthonormal basis of T% , , we define

Tr,Op, = <Z@a6jj> € C*(X,hom(E, E)).
J

Definition. The hermitian vector bundle (E,h) is said to be Hermite-Einstein with respect to
the Kdhler metric w if there is a constant A > 0 such that Tr,, O 5 = AdEg.

Recall that the Chern forms ¢, (E);, are defined by the formula
det (I + t@E,h) = det(5a5 + t@aﬁ) =1+ tcl(E)h + ...+ trcr(E)h.

This gives in particular the identities

CI(E)h = Z @aon

1
Cg(E)h = Z Oaa N @55 — ®a,8 A @,Ba = 5 Z@O‘O‘ A @55 — @aﬁ A @[3@-
a<f a,f

The trace Tr,0Og  can be computed by the formula

wn—l n

w
Opn A =Tr, O —.
Eh (n—1)! FwS B n!

By taking the trace with respect to the indices a in E and taking the Hermite-Einstein equation
into account, we find

wn—l wm
= \r —

cr(E)n A (n—1)! n!’
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This implies that the number A in the definition of Hermite-Einstein metrics is a purely numer-
ical invariant, namely
n
\ = —/ c1(E) /\w"l// w™.
rJx X

Kobayashi-Liibke inequality. If E admits a Hermite-Finstein metric h with respect to w,
then

[(r = Der(B); = 2r ea(E)p] Aw"™* <0

at every point of X. Moreover, the equality holds if and only if
1
Opn= ;Cl(E)h ® Ildg.
Observe that the equality holds pointwise already if we have the numerical equality
/ [(r—1)c1(E)?* = 2rca(BE)] Aw™ 2 =0,
X

If we introduce the (formal) vector bundle E = E @ (det E)~Y/7 (E is the “normalized” vector
bundle such that det E = O), then ¢;(F); = 0 and

1
@E’h = Oz - ;Cl(E)h = IdE> ® 1d (et ) —1/r-

By the formula for the chern classes of E'® L, the Kobayashi-Liibke inequality can be rewritten
as

ca(E)y Aw™ ™2 <0,

with equality if and only if E is unitary flat. In that case, we say that E is projectively flat.
Proof. By the above,

(r— 1)CI(E)}21 —2rcy(E)p = Z —BOna A BOgg + 1045 N Opgq.
a?ﬁ

Taking the wedge product with w™~2/(n—2)! means taking the trace, i.e. the sum of coefficients
of the terms idz; A dz; N idz, A dzy, for all j < k. For this, we have to look at products of the
type (idz; AN dz;) A (idzp A dZy) or (idz; A dzZk) A (idzi A dZzj). This yields

wn—2
2[(r — )e1(BE)j, — 2r ca(E)p] A w2
= Y —(OaajiOssrk — OuaikOpskj) + 7(Oapj;Opakk — OupjkOpak;)-

a?ﬁ’j7k

The initial factor 2 comes from the fact that the final sum is taken over all unordered indices
J,k (terms with j = k cancel). The Hermite-Einstein condition yields >, ©apj; = Adag, so we
get
Y —OaajiOpskk + 7 OapiiOsark = > —A0aadps + 1A 00p0sa
a,B,5,k a,B
=224+ 722 =0.



Hence, using the hermitian symmetry of ©,3;1, we find

wn—2
2[(r — 1)ex(E)i — 2r c2(E)n] A n_2)
= Z @aajk@ﬁb’jk -Tr ‘@aﬁjkP
a’65j7k
= —r Z Oasjrl® + Z <Z®aajk@ﬁﬁjk - TZ ’@aajk|2>
a;é/Bajak J’k Q’B o
1 2
=T Z |@aﬁjk’2 ) Z |@aajk - @/Bﬁjk‘ < 0.
a#B,j,k a,B,5,k

This proves the expected inequality. Moreover, the equality holds if and only if we have
Oapjr =0 for a# B, Ouajr = forall a.

where v = zzjk vikdz; A dZy is a (1,1)-form (take e.g., vjx = ©11,%). Hence O ) = v ® Idg.
By taking the trace with respect to E in this last equality, we get ¢1(E), = r. Therefore the
equality occurs if and only if

1
@Eyh = ;Cl(E)h@)IdE. O

Corollary 1. Let (E,h) be a Hermite-FEinstein vector bundle with ¢1(E) = 0 and co(E) = 0.
Then E is unitary flat for some hermitian metric h' = he™%.

Proof. By the assumption ¢ (E) = 0, we can write ¢1(F), = # 001 for some global function
1 on X. The equality case of the Kobayashi-Liibke inequality yields

11 —
G)Ehew/r:GE,h___08¢®IdE:0- O
’ r 2T

Corollary 2. Let X be a compact Kihler manifold with ¢1(X) = co(X) = 0. Then X is a finite
unramified quotient of a torus.

Proof. By the Aubin-Calabi-Yau theorem, X admits a Ricci-flat Kéhler metric w. Since
Ricci(w) = Tr, 0, (Tx ), we see that (T'x, w) is a Hermite-Einstein vector bundle, and ¢1 (T'x ), =
Ricci(w) = 0. By the Kobayashi-Liibke inequality, we conclude that (Tx,w) is unitary flat,
given by a unitary representation m (X) — U(n). Let X be the universal covering of X and
w the induced metric. Then (T g,@) is a trivial vector bundle equipped with a flat metric.
Let (&1, ... ,&,) be an orthonormal parallel frame of Tx. Since V¢; = 0, we conclude that
d€; = 0, and it is easy to infer from this that [§;,{x] = 0. The flow of each vector field ) A;¢;
is defined for all times (this follows from the fact the length of a trajectory is proportional to
the time, and @ is complete). Hence we get an action of C™ on X , and it follows easily that
(X,&) ~ (C™,can). Now, m(X) acts by isometries on this C". The classification of subgroups
of affine transformations acting freely (and with compact quotient) shows that 71 (X) must be
a semi-direct product of a finite group of isometries by a group of translations associated to a
lattice A C C™. Hence there is an exact sequence

0—A—mX)—G—0

where G is a finite group of isometries. It follows that there is a finite unramified covering map
C"/A - X /m1(X) ~ X of X by a torus. O



We now discuss the special case of the tangent bundle T'x in case (X,w) is a compact
Kéhler-Einstein manifold. The Kéhler-Einstein condition means that Ricci(w) = Aw for some
real constant A, i.e., Tr,0,(Tx) = Aldr,. In particular, (Tx,w) is a Hermite-Einstein vector
bundle. Here, however, the coefficients (O.8jk)1<a,3,j,k<n Of the curvature tensor O, (Tx)
satisfy the additional symmetry relations

(*) Oapik = Ojpak = Oakjp = Ojkas-

These relations follow easily from the identity ©.s;r = —02wap/ 0207, in normal coordinates,
when we apply the Kéhler condition Owap/0z; = Ow;jg/0z4. It follows that the Chern forms
satisfy a slightly stronger inequality than the general inequality valid for Hermite-Einstein
bundles. In fact (T'x,w) satisfies a similar inequality where the rank r = n is replaced by n + 1.

Guggenheimer-Yau inequality. Let (T'x,w) be a compact n-dimensional Kdihler-FEinstein
manifold, with constant X\ € R. If X = 0, then co(Tx), Aw™ 2 > 0. If X # 0, we have the
inequality
[ncl(X)2 — (2n +2)ca(X)] - (Aex (X)"2 <0,

and the equality also holds pointwise if we replace the Chern classes by the Chern forms cx(Tx ).,
The equality occurs in the following cases:

(i) If A\ =0, then (X,w) is a finite unramified quotient of a torus.

(ii) If A > 0, then (X,w) ~ (P", Fubini Study).

(iii) If A < 0, then (X,w) ~ (B, /T, Poincaré metric), i.e. X is a compact unramified quotient
of the ball in C™.

Corollary (Bogomolov-Miyaoka-Yau). Let X be a surface of general type with Kx ample.
Then there is an inequality c¢1(X)? < 3ca(X), and the equality occurs if and only if X is a
quotient of the ball Bs.

Miyaoka has shown that the inequality holds in fact as soon as X is a surface with general

type.
Proof. As in the proof of the Kobayashi-Liibke inequality, we find

nel(Tx)2 = (2n+2)c2(Tx)w = 3 —Oaa AOps + (n+1)Oap A Oga.
o,B

Taking the wedge product with w™=2/(n — 2)!, we get

n—2
) W
= ) —(O0ajiOsskk — OaajkOpsks) + (n+ 1)(OapiOpark — Oupk©pak;)-

a7ﬂ7j7k

If we had the factor » = n instead of (n 4 1) in the right hand side, the terms in jj and kk
would cancel (as they did before). Hence we find

wn—Z
2[n c1(Tx)? — (2n +2) c2(Tx )w] A (n—2)
= Z O0ajkOppk; + OapjjOpakk — (1 + 1)OapjkOpak;
a757j7k
= Z 2040108k — (N +1)O0pjkOsak;-
a?B’j7k



Here, the symmetry relation (x) was used in order to obtain the equality of the summation of
the first two terms. Using also the hermitian symmetry relation, our sum Y can be rewritten
as

S== > [Oaajr — Opgikl> = (n+ 1)[Oapjkl* + 21 Y [Oaqjul’
O‘7ﬁajak Oé,j,k
== Y Oaajk — Opprl’ — (n+1) > ©agpjnl?
a,B,5,k a,f,7,k, pairwise #
(n+ 1|8 D Oaasl® + 4D [Ouaasl® + 43 [Oaas;l +Z|@ma| |
a#j<k#a aj a<j
+20[2 > Baaitl? + 23 Oaaasl +2 Y [Oaassl + Z Oacanl?]
a#j<k#a a#j a<j
=— ) [Oaajk — Opgikl* — (n+1) > ©agjkl?
a#B,5,k a,B,j,k, pairwise #
— (4n+8) Z |®aajk|2_4Z|@aaaj|2_42|@aajj|2
aFj<kFa a#j a<j

+(n—1)) " [Oacaal*

All terms are negative except the last one. We try to absorb this term in the summations
involving the coefficients ©,4;;. This gives

S== Y [Oaajk —Oppl’ — (n+1) > Oagpjnl®
a#B,jF£k o, f3,j,k, pairwise #
— (4n—|—8) Z |@o¢ajk|2 _42 |(.-‘)Of0401j|2
aFj<k#o aFEj
. Z Oaajj — @ﬁﬁjjlz —4 Z ’@aajj‘z +(n—1) Z |@aaaa|2'
a8, a<j a

The last line is equal to

— Y 1®aaji —OpgislP =2 ) 1@aass — Oppssl’

a#B#ja azf
—4 Z ‘@aa5,3|2 + (n - 1) Z |®aao¢o¢|2
a<p a
== ) |Oaaj; — Oppjsl’
aFtB#ja
(n—1) Z Oacaal” =8 [Oaassl® +2 ) Oaass®ppss + OoapsOssss
a<p B
=— Y 1Ouaii — Ospiil° = D [Oanaa — 20aassl>
aFB#jta B
Therefore we find
S== Y [Oaask —Opsl* — (n+1) > ©agpjl”
a#8,j#k «,f,7,k, pairwise #
— (4n+8) Z |®aajk’2 _4Z|@aaaj 2
atj <k -
— Y [Oaaii —©ss5° = D [Onana — 20aassl*
a# B aB



This proves the expected inequality ¥ < 0. Moreover, we have ¥ = 0 if and only if there is a
scalar p such that

60505/35 = @065506 = @aﬁaﬁ = for o 7é Ba @aaaa == 2#7

and all other coefficients ©ap;) are zero. By taking the trace >, Oaajj, We get A = (n + 1)pu.
We thus obtain that the hermitian form associated to the curvature tensor is

A

(Ou(Tx)(E @) E @ o = = D Eans€alls + EanplsTa

a,

(%) = 2 (Il + e P)

for all £,m € Tx. When A = 0, the curvature tensor vanishes identically and we have already
seen that X is a finite unramified quotient of a torus. Assume from now on that A # 0. The
formula (xx) shows that the curvature tensor is constant and coincides with the curvature tensor
of P" (case A > 0), or of the ball B,, (case A < 0), relatively to the canonical metrics on these
spaces. By a well-known result from the theory of hermitian symmetric spaces™®, it follows that
(X,w) is locally isometric to P™ (resp. B,,). Since the universal covering X is a complete and
locally symmetric hermitian manifold, we conclude that X ~ P", resp. X ~ B". In the case
A > 0, X is a Fano manifold, thus X is simply connected and X = X. The proof is complete.
d

To compute the curvature of P and B", we use the fact that the canonical metric is
- i
W= oo 90log(1+ |z|?) on P", resp. w = ~5- 001og(1 — |z|?) on B™,
T T

with respect to the non homogeneous coordinates on P". We thus get

i <dz®d2 |(dz, z)|? > i (dz@dE [(dz, z)|? )

w=— — ,  resp. w= — .

2r\1+ 2|2 (14 2]?)? 2r\1—|z]2 (1 —|z]?)?

By computing the derivatives Onpgx = —0*wap/02;0Z) at z = 0, we easily see that the cur-
vature is given by (%x) with A = +(n + 1). The equality also holds at any other point by the
homogeneity of P and B”.

Observe that the riemannian exponential map exp : T'x o — X at the origin of C* C P"
or B" is unitary invariant. It follows that the holomorphic part h of the Taylor expansion of
exp at 0 is unitary invariant. This invariance forces h to coincide with the identity map in
the standard coordinates of P and B™. From this observation, it is not difficult to justify
intuitively the local isometry statement used above. In fact let X be a hermitian manifold
whose curvature tensor is given by (xx), A # 0. Then w is proportional to ¢;(Tx ), and so
w is a Kéhler-Einstein metric. Since the Kéhler-Einstein equation is (nonlinear) elliptic with
real analytic coefficients in terms of any real analytic Kéhler form, it follows that w is real
analytic, and so is the exponential map. Fix a point g € X and let h : C" ~ Tx ,, = X
be the holomorphic part of the Taylor expansion of exp at the origin. Then h must provide
the holomorphic coordinates we are looking for, i.e. h*w must coincide with the metric of P”
(resp. B™) in a neighborhood of the origin.

* See for example, F. Tricerri et L. Vanhecke, Variétés riemanniennes dont le tenseur de courbure est celui d’un espace
symétrique riemannien irréductible, C. R. Acad. Sc. Paris, 302 (1986), 233-235.



