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Rationally connected manifolds and
semipositivity of the Ricci curvature

Frédéric Campana, Jean-Pierre Demailly, Thomas Peternell

Abstract

This contribution establishes a structure theorem for compact Kähler

manifolds with semipositive anticanonical bundle. Up to finite étale

cover, it is proved that such manifolds split holomorphically and iso-

metrically as a product of Ricci flat varieties and of rationally con-

nected manifolds. The proof is based on a characterization of rationally

connected manifolds through the non-existence of certain twisted con-

travariant tensor products of the tangent bundle, along with a general-

ized holonomy principle for pseudoeffective line bundles. A crucial in-

gredient for this is the characterization of uniruledness by the property

that the anticanonical bundle is not pseudoeffective.
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1. Main results

The goal of this work is to understand the geometry of compact Kähler

manifolds with semipositive Ricci curvature, and especially to study the

relations that tie Ricci semipositivity with rational connectedness. Many

of the ideas are borrowed from [DPS96] and [BDPP]. Recall that a com-

pact complex manifold X is said to be rationally connected if any two

points of X can be joined by a chain of rational curves. A line bundle L

is said to be hermitian semipositive if it can be equipped with a smooth
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hermitian metric of semipositive curvature form. A sufficient condition

for hermitian semipositivity is that some multiple of L is spanned by

global sections; on the other hand, the hermitian semipositivity condi-

tion implies that L is numerically effective (nef) in the sense of [DPS94],

which, for X projective algebraic, is equivalent to saying that L · C ≥ 0

for every curve C in X . Examples contained in [DPS94] show that all

three conditions are different (even forX projective algebraic). The Ricci

curvature is the curvature of the anticanonical bundle K−1
X = det(TX),

and by Yau’s solution of the Calabi conjecture (see [Aub76], [Yau78]), a

compact Kähler manifold X has a hermitian semipositive anticanonical

bundleK−1
X if and only if X admits a Kähler metric ω with Ricci(ω) ≥ 0.

A classical example of projective surface with K−1
X nef is the complex

projective plane P2
C
blown-up in 9 points, no 3 of which are collinear and

no 6 of which lie on a conic; in that case Brunella [Bru10] showed that

there are configurations of the 9 points for which K−1
X admits a smooth

(but non-real analytic) metric with semipositive Ricci curvature; de-

pending on some diophantine condition introduced in [Ued82], there are

also configurations for which some multiple K−m
X of K−1

X is generated

by sections and others for which K−1
X is nef without any smooth metric.

Finally, let us recall that a line bundle L→ X is said to be pseudoeffec-

tive if here exists a singular hermitian metric h on L such that the Chern

curvature current T = iΘL,h = −i∂∂ log h is non-negative; equivalently,

if X is projective algebraic, this means that the first Chern class c1(L)

belongs to the closure of the cone of effective Q-divisors.

We first give a criterion characterizing rationally connected mani-

folds by the non-existence of sections in certain twisted tensor powers

of the cotangent bundle; this is only a minor variation of Theorem 5.2

in [Pet06], cf. also Remark 5.3 therein.

1.1. Criterion for rational connectedness. Let X be a projective al-

gebraic n-dimensional manifold. The following properties are equivalent.

(a) X is rationally connected.

(b) For every invertible subsheaf F ⊂ ΩpX := O(ΛpT ∗
X), 1 ≤ p ≤ n,

F is not pseudoeffective.

(c) For every invertible subsheaf F ⊂ O((T ∗
X)⊗p), p ≥ 1, F is not

pseudoeffective.

(d) For some (resp. for any) ample line bundle A on X, there exists a

constant CA > 0 such that

H0(X, (T ∗
X)⊗m ⊗A⊗k) = 0 for all m, k ∈ N∗ with m ≥ CAk.
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1.2. Remark. The proof follows easily from the uniruledness criterion

established in [BDPP] : a non-singular projective variety X is uniruled

if and only if KX is not pseudoeffective. A conjecture attributed to

Mumford asserts that the weaker assumption

(d′) H0(X, (T ∗
X)

⊗m) = 0

for all m ≥ 1 should be sufficient to imply rational connectedness. Mum-

ford’s conjecture can actually be proved by essentially the same argu-

ment if one uses the abundance conjecture in place of the more de-

manding uniruledness criterion from [BDPP] – more specifically that

H0(X,K⊗m
X ) = 0 for all m ≥ 1 would imply uniruledness.

1.3. Remark. By [DPS94], hypotheses 1.1 (b) and (c) make sense on an

arbitrary compact complex manifold and imply that H0(X,Ω2
X) = 0. If

X is assumed to be compact Kähler, then X is automatically projective

algebraic by Kodaira [Kod54], therefore, 1.1 (b) or (c) also characterize

rationally connected manifolds among all compact Kähler ones.

The following structure theorem generalizes the Bogomolov-Kobayashi-

Beauville structure theorem for Ricci-flat manifolds ([Bog74a], [Bog74b],

[Kob81], [Bea83]) to the Ricci semipositive case. Recall that a holomor-

phic symplectic manifold X is a compact Kähler manifold admitting

a holomorphic symplectic 2-form ω (of maximal rank everywhere); in

particular KX = OX . A Calabi-Yau manifold is a simply connected pro-

jective manifold with KX = OX and H0(X,ΩpX) = 0 for 0 < p < n =

dimX (or a finite étale quotient of such a manifold).

1.4. Structure theorem. Let X be a compact Kähler manifold with

K−1
X hermitian semipositive. Then

(a) The universal cover X̃ admits a holomorphic and isometric splitting

X̃ ≃ Cq ×
∏

Yj ×
∏

Sk ×
∏

Zℓ

where Yj, Sk, and Zℓ are compact simply connected Kähler mani-

folds of respective dimensions nj, n
′
k, n

′′
ℓ with irreducible holonomy,

Yj being Calabi-Yau manifolds (holonomy SU(nj)), Sk holomorphic

symplectic manifolds (holonomy Sp(n′
k/2)), and Zℓ rationally con-

nected manifolds with K−1
Zℓ

semipositive (holonomy U(n′′
ℓ )).

(b) There exists a finite étale Galois cover X̂ → X such that the Al-

banese variety Alb(X̂) is a q-dimensional torus and the Albanese

map α : X̂ → Alb(X̂) is an (isometrically) locally trivial holomor-
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phic fiber bundle whose fibers are products
∏
Yj ×

∏
Sk ×

∏
Zℓ of

the type described in a). Even more holds after possibly another finite

étale cover : X̂ is a fiber bundle with fiber
∏
Zℓ on

∏
Yj ×

∏
Sk ×

Alb(X̂).

(c) We have π1(X̂) ≃ Z2q and π1(X) is an extension of a finite group

Γ by the normal subgroup π1(X̂). In particular there is an exact

sequence

0 → Z2q → π1(X) → Γ → 0,

and the fundamental group π1(X) is almost abelian.

The proof relies on the holonomy principle, De Rham’s splitting theo-

rem [DR52] and Berger’s classification [Ber55]. Foundational background

can be found in papers by Lichnerowicz [Lic67], [Lic71], and Cheeger-

Gromoll [CG71], [CG72]. The restricted holonomy group of a hermitian

vector bundle (E, h) of rank r is by definition the subgroup H ⊂ U(r) ≃

U(Ez0) generated by parallel transport operators with respect to the

Chern connection ∇ of (E, h), along loops based at z0 that are con-

tractible (up to conjugation, H does not depend on the base point z0).

We need here a generalized “pseudoeffective” version of the holonomy

principle, which can be stated as follows.

1.5. Generalized holonomy principle. Let E be a holomorphic vector

bundle of rank r over a compact complex manifold X. Assume that E is

equipped with a smooth hermitian structure h and X with a hermitian

metric ω, viewed as a smooth positive (1, 1)-form ω = i
∑
ωjk(z)dzj ∧

dzk. Finally, suppose that the ω-trace of the Chern curvature tensor

ΘE,h is semipositive, that is

iΘE,h ∧
ωn−1

(n− 1)!
= B

ωn

n!
, B ∈ Herm(E,E), B ≥ 0 on X,

and denote by H the restricted holonomy group of (E, h).

(a) If there exists an invertible sheaf L ⊂ O((E∗)⊗m) which is pseudo-

effective as a line bundle, then L is flat and L is invariant under

parallel transport by the connection of (E∗)⊗m induced by the Chern

connection ∇ of (E, h) ; in fact, H acts trivially on L.

(b) If H satisfies H = U(r), then none of the invertible subsheaves L of

O((E∗)⊗m) can be pseudoeffective for m ≥ 1.

The generalized holonomy principle is based on an extension of the

Bochner formula as found in [BY53], [Ko83] : for (X,ω) Kähler, every
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section u in H0(X, (T ∗
X)⊗m) satisfies

(1.6) ∆(‖u‖2) = ‖∇u‖2 +Q(u),

where Q(u) ≥ mλ1‖u‖
2 is bounded from below by the smallest eigen-

value λ1 of the Ricci curvature tensor of ω. If λ1 ≥ 0, the equality∫
X ∆(‖u‖2)ωn = 0 implies ∇u = 0 and Q(u) = 0. The generalized prin-

ciple consists essentially in considering a general vector bundle E rather

than E = T ∗
X , and replacing ‖u‖2ω with ‖u‖2ωe

ϕ where u is a local trivial-

izing section of L, where ϕ is the corresponding local plurisubharmonic

weight representing the metric of L and ω a Gauduchon metric, cf. (3.2).

1.7. Remark. If one makes the weaker assumption that K−1
X is nef,

then Qi Zhang [Zha96, Zha05] proved that the Albanese mapping α :

X → Alb(X) is surjective in the case where X is projective, and Păun

[Pau12] recently extended this result to the general Kähler case (cf.

also [CPZ03]). One may wonder whether there still exists a holomorphic

splitting

X̃ ≃ Cq ×
∏

Yj ×
∏

Sk ×
∏

Zℓ

of the universal covering as above. However the example where X =

P(E) is the ruled surface over an elliptic curve C = C/(Z+Zτ) associated

with a non-trivial rank 2 bundle E → C with

0 → OC → E → OC → 0

shows that X̃ = C × P1 cannot be an isometric product for a Kähler

metric ω on X . Actually, such a situation would imply that K−1
X =

OP(E)(1) is semipositive, but we know by [DPS94] that OP(E)(1) is nef

and non semipositive. Under the mere assumption that K−1
X is nef, it is

unknown whether the Albanese map α : X → Alb(X) is a submersion,

unless X is a projective threefold [PS98], and even if it is supposed to

be so, it seems to be unknown whether the fibers of α may exhibit non-

trivial variation of the complex structure (and whether they are actually

products of Ricci flat manifolds by rationally connected manifolds). The

main difficulty is that, a priori, the holonomy argument used here breaks

down – a possibility would be to consider some sort of “asymptotic

holonomy” for a sequence of Kähler metrics satisfying Ricci(ωε) ≥ −εωε,

and dealing with the Gromov-Hausdorff limit of the variety.

This work was completed while the three authors were visiting the

Mathematisches Forschungsinstitut Oberwolfach in September 2012.
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They wish to thank the Institute for its hospitality and the exceptional

quality of the environment.

2. Proof of the criterion for rational connectedness

In this section we prove Criterion 1.1. Observe first that if X is ra-

tionally connected, then there exists an immersion f : P1 ⊂ X passing

through any given finite subset of X such that f∗TX is ample, see e.g.

[Kol96, Theorem 3.9, p. 203]. In other words f∗TX =
⊕

OP1(aj), aj > 0,

while f∗A = OP1(b), b > 0. Hence

H0(P1, f∗((T ∗
X)⊗m ⊗A⊗k)) = 0 for m > kb/min(ai).

As the immersion f moves freely in X , we immediately see from this

that 1.1 (a) implies 1.1 (d) with any constant value CA > b/min(aj).

To see that 1.1 (d) implies 1.1 (c), assume that F ⊂ (T ∗
X)⊗p is a

pseudoeffective line bundle. Then there exists k0 ≫ 1 such that

H0(X,F⊗m ⊗Ak0 ) 6= 0

for all m ≥ 0 (for this, it is sufficient to take k0 such that Ak0 ⊗

(KX ⊗ Gn+1)−1 > 0 for some very ample line bundle G). This implies

H0(X, (T ∗
X)⊗mp ⊗Ak0) 6= 0 for all m, contradicting assumption 1.1 (d).

The implication 1.1 (c) ⇒ 1.1 (b) is trivial.

It remains to show that 1.1 (b) implies 1.1 (a). First note that KX is

not pseudoeffective, as one sees by applying the assumption 1.1 (b) with

p = n. Hence X is uniruled by [BDPP]. We consider the quotient with

maximal rationally connected fibers (rational quotient or MRC fibration,

see [Cam92], [KMM92])

f : X > W

to a smooth projective variety W . By [GHS01], W is not uniruled, oth-

erwise we could lift the ruling to X and the fibers of f would not be

maximal. We may further assume that f is holomorphic. In fact, as-

sumption 1.1 (b) is invariant under blow-ups. To see this, let π : X̂ → X

be a birational morphisms from a projective manifold X̂ and consider a

line bundle F̂ ⊂ Ωp
X̂
. Then π∗(F̂) ⊂ π∗(Ω

p

X̂
) = ΩpX , hence we introduce

the line bundle

F := (π∗(F̂))∗∗ ⊂ ΩpX .

Now, if F̂ were pseudoeffective, so would be F . Thus 1.1 (b) is invariant

under π and we may suppose f holomorphic. In order to show that X
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is rationally connected, we need to prove that p := dimW = 0. Other-

wise KW = ΩpW is pseudoeffective by [BDPP], and we obtain a pseudo-

effective invertible subsheaf F := f∗(ΩpW ) ⊂ ΩpX , in contradiction with

1.1 (b).

3. Bochner formula and generalized holonomy principle

Let (E, h) be a hermitian holomorphic vector bundle over a n-dimen-

sional compact complex manifold X . The semipositivity hypothesis on

B = TrωΘE,h is invariant by a conformal change of metric ω. Without

loss of generality we can assume that ω is a Gauduchon metric, i.e.

that ∂∂ωn−1 = 0, cf. [Gau77]. We consider the Chern connection ∇

on (E, h) and the corresponding parallel transport operators. At every

point z0 ∈ X , there exists a local coordinate system (z1, . . . , zn) centered

at z0 (i.e. z0 = 0 in coordinates), and a holomorphic frame (eλ(z))1≤λ≤r
such that

〈eλ(z), eµ(z)〉h = δλµ −
∑

1≤j,k≤n

cjkλµzjzk +O(|z|3), 1 ≤ λ, µ ≤ r,(3.1)

ΘE,h(z0) =
∑

1≤j,k,λ,µ≤n

cjkλµdzj ∧ dzk ⊗ e∗λ ⊗ eµ, ckjµλ = cjkλµ,(3.1′)

where δλµ is the Kronecker symbol and ΘE,h(z0) is the curvature tensor

of the Chern connection ∇ of (E, h) at z0.

Assume that we have an invertible sheaf L ⊂ O((E∗)⊗m) that is

pseudoeffective. There exist a covering Uj by coordinate balls and holo-

morphic sections fj of L|Uj
generating L over Uj. Then L is associated

with the Čech cocycle gjk in O∗
X such that fk = gjkfj , and the singular

hermitian metric e−ϕ of L is defined by a collection of plurisubharmonic

functions ϕj ∈ PSH(Uj) such that e−ϕk = |gjk|
2e−ϕj . It follows that we

have a globally defined bounded measurable function

ψ = eϕj‖fj‖
2 = eϕj‖fj‖

2
h∗m

overX , which can be viewed also as the hermitian metric ratio (h∗)m/e−ϕ

along L, i.e. ψ = (h∗)m|Le
ϕ. We are going to compute the Laplacian ∆ωψ.

For simplicity of notation, we omit the index j and consider a local holo-

morphic section f of L and a local weight ϕ ∈ PSH(U) on some open

subset U of X . In a neighborhood of an arbitrary point z0 ∈ U , we write

f =
∑

α∈Nm

fα e
∗
α1

⊗ . . .⊗ e∗αm
, fα ∈ O(U),



8 F. Campana, J.-P. Demailly, Th. Peternell

where (e∗λ) is the dual holomorphic frame of (eλ) in O(E∗). The hermi-

tian matrix of (E∗, h∗) is the transpose of the inverse of the hermitian

matrix of (E, h), hence (3.1) implies

〈e∗λ(z), e
∗
µ(z)〉h = δλµ +

∑

1≤j,k≤n

cjkµλzjzk +O(|z|3), 1 ≤ λ, µ ≤ r.

On the open set U the function ψ = (h∗)m|Le
ϕ is given by

ψ =
( ∑

α∈Nm

|fα|
2+

∑

α,β∈Nm, 1≤j,k≤n, 1≤ℓ≤m

fαfβ cjkβℓαℓ
zjzk+O(|z|

3)|f |2
)
eϕ(z).

By taking i∂∂(...) of this at z = z0 in the sense of distributions (that is,

for almost every z0 ∈ X), we find

i∂∂ψ = eϕ
(
|f |2i∂∂ϕ+ i〈∂f + f∂ϕ, ∂f + f∂ϕ〉+

+
∑

α,β,j,k,1≤ℓ≤m

fαfβ cjkβℓαℓ
idzj ∧ dzk

)
.

Since i∂∂ψ ∧ ωn−1

(n−1)! = ∆ωψ
ωn

n! (we actually take this as a definition of

∆ω), a multiplication by ωn−1 yields the fundamental inequality

(3.2) ∆ωψ ≥ |f |2eϕ(∆ωϕ+mλ1) + |∇1,0
h f + f∂ϕ|2ω,h∗m eϕ

where λ1(z) ≥ 0 is the lowest eigenvalue of the hermitian endomorphism

B = Trω ΘE,h at an arbitrary point z ∈ X . As ∂∂ωn−1 = 0, we have
∫

X

∆ψ
ωn

n!
=

∫

X

i∂∂ψ ∧
ωn−1

(n− 1)!
=

∫

X

ψ ∧
i∂∂(ωn−1)

(n− 1)!
= 0

by Stokes’ formula. Since i∂∂ϕ ≥ 0, (3.2) implies ∆ωϕ = 0, i.e. i∂∂ϕ = 0,

and ∇1,0
h f+f∂ϕ=0 almost everywhere. This means in particular that

the line bundle (L, e−ϕ) is flat. In each coordinate ball Uj the pluri-

harmonic function ϕj can be written ϕj = wj + wj for some holo-

morphic function wj ∈ O(Uj), hence ∂ϕj = dwj and the condition

∇1,0
h fj + fj∂ϕj = 0 can be rewritten ∇1,0

h (ewjfj) = 0 where ewjfj is a

local holomorphic section. This shows that L must be invariant by par-

allel transport and that the local holonomy of the Chern connection of

(E, h) acts trivially on L. Statement 1.5 (a) follows.

Finally, if we assume that the restricted holonomy group H of (E, h)

is equal to U(r), there cannot exist any holonomy invariant invertible

subsheaf L ⊂ O((E∗)⊗m), m ≥ 1, on which H acts trivially, since the

natural representation of U(r) on (Cr)⊗m has no invariant line on which

U(r) induces a trivial action. Property 1.5 (b) is proved.
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4. Proof of the structure theorem

We suppose here that X is equipped with a Kähler metric ω such that

Ricci(ω) ≥ 0, and we set n = dimCX . We consider the holonomy rep-

resentation of the tangent bundle E = TX equipped with the hermitian

metric h = ω. Here

B = Trω ΘE,h = Trω ΘTX ,ω ≥ 0

is nothing but the Ricci operator.

Proof of 1.4 (a). Let

(X̃, ω) ≃
∏

(Xi, ωi)

be the De Rham decomposition of (X̃, ω), induced by a decomposition

of the holonomy representation in irreducible representations. Since the

holonomy is contained in U(n), all factors (Xi, ωi) are Kähler manifolds

with irreducible holonomy and holonomy group Hi ⊂ U(ni),

ni = dimXi. By Cheeger-Gromoll [CG71], there is possibly a flat factor

X0 = Cq and the other factors Xi, i ≥ 1, are compact and simply

connected. Also, the product structure shows that each K−1
Xi

is hermi-

tian semipositive. By Berger’s classification of holonomy groups [Ber55]

there are only three possibilities, namely Hi = U(ni), Hi = SU(ni)

or Hi = Sp(ni/2). The case Hi = SU(ni) leads to Xi being a Calabi-

Yau manifold, and the case Hi = Sp(ni/2) implies that Xi is holomor-

phic symplectic (see e.g. [Bea83]). Now, if Hi = U(ni), the generalized

holonomy principle 1.5 shows that none of the invertible subsheaves

L ⊂ O((T ∗
Xi

)⊗m) can be pseudoeffective for m ≥ 1. Therefore Xi is

rationally connected by Criterion 1.1.

Proof of 1.4 (b). Set X ′ =
∏
i≥1Xi. The group of covering transforma-

tions acts on the product X̃ = Cq×X ′ by holomorphic isometries of the

form x = (z, x′) 7→ (u(z), v(x′)). At this point, the argument is slightly

more involved than in Beauville’s paper [Bea83], because the group G′ of

holomorphic isometries of X ′ need not be finite (X ′ may be for instance

a projective space); instead, we imitate the proof of ([CG72], Theorem

9.2) and use the fact that X ′ and G′ = Isom(X ′) are compact. Let

Eq = Cq ×U(q) be the group of unitary motions of Cq. Then π1(X) can

be seen as a discrete subgroup of Eq ×G′. As G′ is compact, the kernel

of the projection map π1(X) → Eq is finite and the image of π1(X) in

Eq is still discrete with compact quotient. This shows that there is a

subgroup Γ of finite index in π1(X) which is isomorphic to a crystallo-

graphic subgroup of Cq. By Bieberbach’s theorem, the subgroup Γ0 ⊂ Γ
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of elements which are translations is a subgroup of finite index. Taking

the intersection of all conjugates of Γ0 in π1(X), we find a normal sub-

group Γ1 ⊂ π1(X) of finite index, acting by translations on Cq. Then

X̂ = X̃/Γ1 is a fiber bundle over the torus Cq/Γ1 with X ′ as fiber and

π1(X
′) = 1. Therefore X̂ is the desired finite étale covering of X .

For the second assertion we consider fiberwise the rational quotient

and obtain a factorization

X̂
β
→W

γ
→ Alb(X̂)

with fiber bundles β (fiber
∏
Zℓ) and γ (fiber

∏
Yj×

∏
Sk). Since clearly

KW ≡ 0, the claim follows from the Beauville-Bogomolov decomposition

theorem.

Proof of 1.4 (c). The statement is an immediate consequence of 1.4 (b),

using the homotopy exact sequence of a fibration.

5. Further remarks

We finally point out two direct consequences of Theorem 1.4. Since

the property

H0(X, (T ∗
X)⊗m) = 0 (m ≥ 1)

is invariant under finite étale covers, we obtain immediately from The-

orem 1.4 :

5.1. Corollary. Let X be a compact Kähler manifold with K−1
X hermi-

tian semi-positive. Assume that H0(X, (T ∗
X)⊗m) = 0 for all positive m.

Then X is rationally connected.

This establishes Mumford’s conjecture in case X has semi-positive Ricci

curvature.

Theorem 1.4 also gives strong implications for small deformations of a

manifold with semi-positive Ricci curvature:

5.2. Corollary. Let X be a compact Kähler manifold with K−1
X hermi-

tian semi-positive. Let π : X → ∆ be a proper submersion from a Kähler

manifold X to the unit disk ∆ ⊂ C. Assume that X0 = π−1(0) ≃ X.

Then there exists a finite étale cover X̂ → X with projection π̂ : X̂ → ∆

such that - after possibly shrinking ∆ - the following holds.

(a) The relative Albanese map α : X̂ → Alb(X/∆) is a surjective sub-

mersion; thus the Albanese map αt : X̂t = π̂−1(t) → Alb(Xt) is a

surjective submersion for all t.
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(b) Every fiber of αt is a product of Calabi-Yau manifolds, irreducible

symplectic manifolds and irreducible rationally connected manifolds.

(c) There exists a factorization of α :

X̂
β
→ Y

γ
→ Alb(X/∆)

such that βt = β|X̂t
is a submersion and a rational quotient of X̂t

for all t, and γt = γ|Yt
is a trivial fiber bundle.

Corollary 5.2 is an immediate consequence of Theorem 1.4 and the

following proposition.

5.3. Proposition. Let π : Y → ∆ be a proper Kähler submersion over

the unit disk. Assume that Y0 ≃
∏
Xi ×

∏
Yj ×

∏
Zk with Xi Calabi-

Yau, Yj irreducible symplectic and Zk irreducible rationally connected.

Then (possibly after shrinking ∆) every Yt has a decomposition

Yt ≃
∏

Xi,t ×
∏

Yj,t ×
∏

Zk,t

with factors of the same types as above, and the factors form families

Xi, Yj and Zk.

Proof. It suffices to treat the case of two factors, say Y0 = A1×A2 where

the Ai are Calabi-Yau, irreducible symplectic or rationally connected.

Since H1(Aj ,OAj
) = 0, the factors Aj deform to the neighboring Yt. By

the properness of the relative cycle space we obtain families qi : Ui → Si
over ∆ with projections pi : Ui → Y. Possibly after shrinking ∆, this

yields holomorphic maps fi : Y → Si. Then the map

f1 × f2 : Y → S1 × S2

is an isomorphism, since At · Bt = A0 · B0 = 1. This gives the families

(Ai)t we are looking for.

A. Appendix (by Jean-Pierre Demailly):

a flag variety version of the holonomy principle

Our goal here is to derive a related version of the holonomy principle

over flag varieties, based on a modified Bochner formula which we hope

to be useful in other contexts (especially since no assumption on the

base manifold is needed). If E is as before a holomorphic vector bundle

of rank r over a n-dimensional complex manifold, we denote by F (E) the

flag manifold of E, namely the bundle F (E) → X whose fibers consist
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of flags

ξ : Ex = V0 ⊃ V1 ⊃ . . . ⊃ Vr = {0}, dimEx = r, codimVλ = λ,

in the fibers of E, along with the natural projection π : F (E) → X ,

(x, ξ) 7→ x. We let Qλ, 1 ≤ λ ≤ r be the tautological line bundles over

F (E) such that

Qλ,ξ = Vλ−1/Vλ,

and for a weight a = (a1, . . . , ar) ∈ Zr we set

Qa = Qa11 ⊗ . . .⊗Qarr .

In additive notation, viewing the Qj as divisors, we also denote

a1Q1 + . . .+ arQr

any real linear combination (aj ∈ R). Our goal is to compute explicitly

the curvature tensor of the line bundles Qa with respect to the tautolo-

gical metric induced by h. For convenience of notation, we prefer to work

on the dual flag manifold F (E∗), although there is a biholomorphism

F (E) ≃ F (E∗) given by

(Ex =W0 ⊃W1 ⊃ ... ⊃Wr = {0}) 7→ (E∗
x = V0 ⊃ V1 ⊃ ... ⊃ Vr = {0})

where Vλ = W †
r−λ is the orthogonal subspace of Wr−λ in E∗

x. In this

context, we have an isomorphism

Vλ−1/Vλ =W †
r−λ+1/W

†
r−λ ≃ (Wr−λ/Wr−λ+1)

∗.

This shows that Qa → F (E∗) is isomorphic to Qb → F (E) where bλ =

−ar−λ+1, that is

(b1, b2, . . . , br−1, br) = (−ar,−ar−1, . . . ,−a2,−a1).

We now proceed to compute the curvature of Qa → F (E∗), using the

same notation as in section 3. In a neighborhood of every point z0 ∈ X ,

we can find a local coordinate system (z1, . . . , zn) centered at z0 and a

holomorphic frame (eλ)1≤λ≤r such that

〈eλ(z), eµ(z)〉 = 1{λ=µ} −
∑

1≤j,k≤n

cjkλµzjzk +O(|z|3), 1 ≤ λ, µ ≤ r,(A.1)

ΘE,h(z0) =
∑

1≤j,k,λ,µ≤n

cjkλµdzj ∧ dzk ⊗ e∗λ ⊗ eµ, ckjµλ = cjkλµ,(A.1′)

where 1S denotes the characteristic function of the set S. For a given



Rationally connected manifolds and Ricci semipositivity 13

point ξ0 ∈ F (E∗
z0) in the flag variety, one can always adjust the frame

(eλ) in such a way that the flag corresponding to ξ0 is given by

(A.2) Vλ,0 = Vect(e1, . . . , eλ)
† ⊂ E∗

z0 .

A point (z, ξ) in a neighborhood of (z0, ξ0) is likewise represented by

the flag associated with the holomorphic tangent frame (ẽλ(z, ξ))1≤λ≤r
defined by

(A.3)

ẽλ(z, ξ) = eλ(z) +
∑

λ<µ≤r

ξλµeµ(z), (ξλµ)1≤λ<µ≤r ∈ Cr(r−1)/2.

We obtain in this way a local coordinate system (zj, ξλµ) near (z0, ξ0) on

the total space of F (E∗), where the (ξλµ) are the fiber coordinates. The

frame ẽ(z, ξ) is not orthonormal, but by the Gram-Schmidt orthogonal-

ization process, the flag ξ is also induced by the (non-holomorphic) or-

thonormal frame (êλ(z, ξ)) obtained inductively by putting ê1 = ẽ1/|ẽ1|

and

êλ =
(
ẽλ −

∑

1≤µ<λ

〈ẽλ, êµ〉 êµ

)
/(norm of numerator).

Straightforward calculations imply that the hermitian inner products

involved are O(|ξ| + |z|2) and the norms equal to 1 + O((|ξ| + |z|)2),

hence we get

êλ(z, ξ) = eλ(z, ξ) +
∑

λ<µ≤r

ξλµeµ(z)−
∑

1≤µ<λ

ξµλeµ(z) +O
(
(|ξ|+ |z|)2

)
,

and more precisely (omitting variables for simplicity of notation)

êλ =
(
1−

1

2

∑

1≤µ<λ

|ξµλ|
2 −

1

2

∑

λ<µ≤r

|ξλµ|
2 +

1

2

∑

1≤j,k≤n

cjkλλzjzk

)
eλ

+
∑

λ<µ≤r

ξλµeµ

−
∑

1≤µ<λ

(
ξµλ +

∑

λ<ν≤r

ξλνξµν −
∑

1≤j,k≤n

cjkλµzjzk

)
eµ

+ O
(
(|ξ|+ |z|)3

)
.(A.4)

The curvature of the tautological line bundle Qλ = Vλ−1/Vλ can be

evaluated by observing that the dual line bundle

Q∗
λ = V †

λ /V
†
λ−1 = Vect(ẽ1, . . . , ẽλ)/Vect(ẽ1, . . . , ẽλ−1)
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admits a holomorphic section given by

vλ(z, ξ) = ẽλ(z, ξ)modVect(ẽ1, . . . , ẽλ−1).

The tautological norm of this section is

|vλ|
2 = |ẽλ|

2 −
∑

1≤µ<λ

|〈ẽλ, êµ〉|
2

= 1−
∑

1≤j,k≤n

cjkλλzjzk

+
∑

λ<µ≤r

|ξλµ|
2 −

∑

1≤µ<λ

|ξµλ|
2 +O

(
(|z|+ |ξ|)3

)
.

Therefore we obtain the formula

ΘQλ
(z0, ξ0) = ∂∂ log |vλ|

2
|(z0,ξ0)

= −
∑

1≤j,k≤n

cjkλλdzj ∧ dzk

+
∑

λ<µ≤r

dξλµ ∧ dξλµ −
∑

1≤µ<λ

dξµλ ∧ dξµλ,

ΘQa(z0, ξ0) =
∑

1≤λ≤r

aλΘQλ
(z0, ξ0)

= −
∑

1≤j,k≤n, 1≤λ≤r

aλcjkλλdzj ∧ dzk

+
∑

1≤λ<µ≤r

(aλ − aµ)dξλµ ∧ dξλµ.

This calculation holds true only at (z0, ξ0), but it shows that we have

at every point a decomposition of ΘQa in horizontal and vertical parts

given by

ΘQa = θHa + θVa ,(A.5)

θHa (z0, ξ0) = −
∑

j,k,λ

aλcjkλλdzj ∧ dzk

= −
∑

1≤λ≤r

aλ π
∗〈ΘTX ,ω(eλ), eλ〉,

(A.6H)





θVa (z0, ξ0) =
∑

1≤λ<µ≤r

(aλ − aµ)dξλµ ∧ dξλµ.(A.6V )

The decomposition is taken here with respect to the C∞ splitting of the
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exact sequence

(A.7) 0 → TY/X → TY → π∗TX → 0, Y := F (E∗)

provided by the Chern connection ∇ of (E, h) ; horizontal directions are

those coming from flags associated with ∇-parallel frames. In order to

express (A.6H) in a more intrinsic way at an arbitrary point (z, ξ) ∈ Y ,

we have to replace (eλ(z)) by the orthonormal frame (êλ(z, ξ)) associated

with the flag ξ ; such frames are not unique, actually they are defined up

to the action of (S1)r, but such a change does not affect the expression

of θHa . We then get the intrinsic formula

θHa (z, ξ) = −
∑

1≤λ≤r

aλ π
∗
〈
ΘTX ,ω(êλ(z, ξ)), êλ(z, ξ)

〉

= −
∑

1≤λ≤r

aλ
∑

1≤j,k≤n, 1≤σ,τ≤r

cjkστ (z) êλσ(z, ξ) êλτ (z, ξ) dzj ∧ dzk(A.8)

where we put

êλ(z, ξ) =
∑

1≤σ≤r

êλσ(z, ξ) eσ(z)

(the coefficients êλσ(z, ξ) can be computed from (A.4)). Moreover, since

θVa and ΘQa have the same restriction to the fibers of Y → X , we con-

clude that θVa is in fact unitary invariant along the fibers (the tautological

metric of Qa clearly has this property). Let us consider the vertical and

normalized unitary invariant relative volume form η of Y → X given by

(A.9) η(z0, ξ0) =
∧

1≤λ<µ≤r

i dξλµ ∧ dξλµ at (z0, ξ0).

Let N = r(r − 1)/2 be the fiber dimension. For a strictly dominant

weight a, i.e. a1 > a2 > . . . > ar, the line bundle Qa is relatively ample

with respect to the projection π : Y = F (E∗) → X , and iθVa induces a

Kähler form on the fibers. Formula (A.6V ) shows that the corresponding

volume form is

(iθVa )
N = N !

∏

1≤λ<µ≤r

(aλ − aµ) η.

A.10. Curvature formulas. Consider as above Qa → Y := F (E∗).

Then :

(a) The curvature form of Qa is given by ΘQa = θHa + θVa where the
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horizontal part is given by

θHa = −
∑

1≤λ≤r

aλ π
∗〈ΘTX ,ω(êλ), êλ〉

and the vertical part by

θVa (z0, ξ0) =
∑

1≤λ<µ≤r

(aλ − aµ)dξλµ ∧ dξλµ

in normal coordinates at any point (z0, ξ0).

(b) The relative canonical bundle KY/X is isomorphic with Qρ for the

(anti-dominant ) canonical weight ρλ = 2λ − r − 1, 1 ≤ λ ≤ r. For

any positive definite (1, 1)-form ω on X we have

i∂∂η ∧ π∗ωn−1 = −iθHρ ∧ η ∧ π∗ωn−1

=
∑

1≤λ≤r

ρλ π
∗〈iΘTX ,ω(êλ), êλ〉 ∧ η ∧ π

∗ωn−1.

Proof. (a) follows entirely from the previous discussion.

(b) The formula for the canonical weight is a classical result in the

theory of flag varieties. As (iθVa )
N and η are proportional for a strictly

dominant, we compute instead

∂∂(θVa )
N = N (θVa )

N−1 ∧ ∂∂θVa +N(N − 1) (θVa )
N−2 ∧ ∂θVa ∧ ∂θVa ,

and for this, we use a Taylor expansion of order 2 at (z0, ξ0). Since ΘQa

is closed, we have ∂∂θVa = −∂∂θHa , hence

∂∂θVa = ∂∂
∑

1≤λ≤r

aλ
∑

1≤j,k≤n, 1≤σ,τ≤r

cjkστ (z) êλσ(z, ξ) êλτ (z, ξ) dzj∧dzk,

and we have similar formulas for ∂(θVa ) and ∂(θVa ). When taking ∂, ∂

and ∂∂ we need only consider the differentials in ξ, otherwise we get

terms Λ≥3(dz, dz) of degree at least 3 in the dzj or dzk and the wedge

product of these with π∗ωn−1 is zero. For the same reason, ∂θVa ∧ ∂θVa
will not contribute to the result since it produces terms of degree ≥ 4 in

dzj , dzk. Formula (A.4) gives

êλσ = 1{λ=σ}

(
1−

1

2

∑

1≤µ<λ

|ξµλ|
2 −

1

2

∑

λ<µ≤r

|ξλµ|
2
)

+ 1{λ<σ}ξλσ − 1{σ<λ}

(
ξσλ +

∑

µ>λ

ξλµξσµ

)
+O(|z|2 + |ξ|3).
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Notice that we do not need to look at the terms O(|z|), O(|z|2) as they

will produce no contribution at (z0, ξ0). From this we infer

êλσ êλτ = 1{λ=σ=τ}

(
1−

∑

1≤µ<λ

|ξµλ|
2 −

∑

λ<µ≤r

|ξλµ|
2
)

+ 1{λ=τ<σ}ξλσ − 1{σ<λ=τ}ξσλ + 1{λ=σ<τ}ξλτ − 1{τ<λ=σ}ξτλ

+ 1{σ,τ>λ}ξλσξλτ + 1{σ,τ<λ}ξτλξσλ

+ 1{τ<λ<σ}ξλσξτλ + 1{σ<λ<τ}ξσλξλτ

−
∑

1≤µ≤r

1{σ<λ=τ<µ}ξλµξσµ + 1{τ<λ=σ<µ}ξτµξλµ mod(|z|2, |ξ|3).

In virtue of (A.7), only “diagonal terms” of the form dξλµ ∧ dξλµ in the

∂∂ of this expression can contribute to (θVa )
N−1∧∂∂θVa , all others vanish

at z = ξ = 0. The useful terms are thus

∂∂
( ∑

1≤λ≤r

aλ
∑

1≤σ,τ≤r

cjkστ êλσ êλτdzj ∧ dzk

)
= (unneeded terms)+

+
∑

1≤λ<µ≤r

(
− aµcjkµµ − aλcjkλλ + aλcjkµµ + aµcjkλλ

)
dξλµ∧dξλµ∧dzj∧dzk

=
∑

1≤λ<µ≤r

(aλ − aµ)(cjkµµ − cjkλλ) dξλµ ∧ dξλµ ∧ dzj ∧ dzk + (unneeded).

From this we infer

∂∂(θVa )
N ∧ π∗ωn−1 =

(θVa )
N ∧

∑

1≤j,k≤n, 1≤λ≤r

(2λ− 1− r) cjkλλ dzj ∧ dzk ∧ π
∗ωn−1,

in fact, the coefficient of cjkλλ is the number (λ − 1) of indices < λ

(coming from the term (aλ−aµ)cjkµµ above) minus the number r−λ of

indices > λ (coming from the term −(aλ − aµ)cjkλλ). Formula A.10 (b)

follows.

A.11. Bochner formula. Assume that X is a compact complex man-

ifold possessing a balanced metric, i.e. a positive smooth (1, 1)-form

ω = i
∑

1≤j,k≤n ωjk(z) dzj ∧ dzk such that dωn−1 = 0. Assume also

that for some dominant weight a (a1 ≥ . . . ≥ ar ≥ 0), the R-line bundle

Qa is pseudoeffective on Y := F (E∗), i.e. that there exists a quasi-

plurisubharmonic function ϕ such that i(ΘQa + ∂∂ϕ) ≥ 0 on Y . Then

∫

Y

(
i∂ϕ ∧ ∂ϕ− iθHa−ρ

)
eϕ η ∧ π∗ωn−1 ≤ 0,
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or equivalently

∫

Y

(
i∂ϕ ∧ ∂ϕ+

∑

1≤λ≤r

(aλ − ρλ)〈iΘTX,ω(êλ), êλ〉
)
eϕ η ∧ π∗ωn−1 ≤ 0.

Proof. The idea is to use the ∂∂-formula
∫

Y

i∂∂(eϕ) ∧ η ∧ π∗ωn−1 − eϕ ∧ i∂∂η ∧ π∗ωn−1

=

∫

Y

d
(
i∂(eϕ) ∧ η ∧ π∗ωn−1 + eϕ i∂η ∧ π∗ωn−1

)
= 0

which follows immediately from Stokes. We get

(A.12)

∫

Y

(i∂∂ϕ+ i∂ϕ ∧ ∂ϕ)eϕ ∧ η ∧ π∗ωn−1 − eϕ i∂∂η ∧ π∗ωn−1 = 0.

Now, i∂∂ϕ ≥ −iΘQa in the sense of currents, and therefore by A.10 (a,b)

we obtain

(A.13) i∂∂ϕ∧η∧π∗ωn−1−i∂∂η∧π∗ωn−1 ≥ (−iθHa +iθHρ )∧η∧π∗ωn−1.

The combination of (A.12) and (A.13) yields the inequality of Corol-

lary A.11.

The parallel transport operators of (E, h) can be considered to operate

on the global flag variety Y = F (E∗) as follows. For any piecewise

smooth path γ : [0, 1] → X , we get a (unitary) hermitian isomorphism

τγ : Ep → Eq where p = γ(0), q = γ(1). Therefore τγ induces an

isomorphism τ̃γ : F (E∗
p) → F (E∗

q ) of the corresponding flag varieties,

and an isomorphism over τ̃γ of the tautological line bundles Qa. Given

a local C∞ vector field v on an open open set U ⊂ X , there is a unique

horizontal lifting ṽ of v to a C∞ vector field on π−1(U) ⊂ Y , where

horizontality refers again to ∇ = ∇E,h. Now, the flow of ṽ consists of

parallel transport operators along the trajectories of v. By definition, h is

invariant by parallel transport, therefore the associated hermitian metric

ha on each line bundle Qa is also invariant. Another metric ha,ϕ = hae
−ϕ

is invariant if and only if the weight function ϕ is invariant by the flows

of all such vector fields ṽ on Y , that is if dϕ(ζ) = 0 for all horizontal

vector fields ζ ∈ TY .

A.14. Theorem. Let E → X be a holomorphic vector bundle of rank

r over a compact complex manifold X. Assume that X is equipped with



Rationally connected manifolds and Ricci semipositivity 19

a hermitian metric ω and E with a hermitian structure h such that

B := Trω(iΘE,h) ≥ 0. At each point z ∈ X, let

0 ≤ b1(z) ≤ . . . ≤ br(z)

be the eigenvalues of B(z) with respect to h(z). Finally, let Qa be a

pseudoeffective R-line bundle on Y := F (E∗) associated with a dominant

weight a1 ≥ . . . ≥ ar ≥ 0, and let ϕ be a quasi-plurisubharmonic function

on Y such that i(ΘQa + ∂∂ϕ) ≥ 0. Then

(a) The function ψ(z) = supξ∈F (E∗

z )
ϕ(z, ξ) is constant and bλ ≡ 0 as

soon as aλ > 0, and in particular B ≡ 0 if ar > 0.

(b) Assume that B ≡ 0. Then the function ϕ must be invariant by par-

allel transport on Y .

Proof. Since our hypotheses are invariant by a conformal change on the

metric ω, we can assume by Gauduchon [Gau77] that ∂∂ωn−1 = 0.

(a) Notice that if a is integral and ϕ is given by a holomorphic section

of Qa, then eϕ is the square of the norm of that section with respect

to h, and eψ is the sup of that norm on the fibers of Y → X . In general,

formula A.10 (a) shows that

i∂∂ϕ(z, ξ) ≥ −iθHa (z, ξ)− iθVa (z, ξ),

hence

(A.15)

i∂∂
H
ϕ(z, ξ) ∧ ωn−1(z) ≥

∑

1≤λ≤r

aλ 〈iΘTX,ω(êλ), êλ〉(z, ξ) ∧ ω
n−1(z)

where i∂∂
H
ϕmeans the restriction of i∂∂ϕ to the horizontal directions in

TY . By taking the supremum in ξ, we conclude from standard arguments

of subharmonic function theory that

∆ωψ(z) ≥
∑

1≤λ≤r

aλbλ(z),

since the right hand side is the minimum of the coefficient of the (n, n)-

form occurring in the RHS of (A.15). Therefore ψ is ω-subharmonic and

so must be constant on X by Aronszajn [Aro57]. It follows that bλ ≡ 0

whenever aλ > 0, in particular B ≡ 0 if ar > 0.

(b) Under the assumption B = Trω ΘE,h ≡ 0, the calculations made in

the course of the proof of A.10 (b) imply that

∂η ∧ π∗ωn−1 = 0, ∂∂η ∧ π∗ωn−1 = 0.
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By the proof of the Bochner formula A.11 (the fact that ∂∂ωn−1 = 0 is

enough here), we get

0 ≤

∫

Y

i∂ϕ ∧ ∂ϕ ∧ η ∧ π∗ωn−1 ≤ 0,

and we conclude from this that the horizontal derivatives ∂Hϕ vanish.

Therefore ϕ is invariant by parallel transport.

In the vein of Criterion 1.1, we have the following additional state-

ment.

A.16. Proposition. Let X be a compact Kähler manifold. Then X

is projective and rationally connected if and only if none of the R-line

bundles Qa over Y = F (T ∗
X) is pseudoeffective for weights a 6= 0 with

a1 ≥ . . . ≥ ar ≥ 0.

Proof. If X is projective rationally connected and some Qa, a 6= 0,

is pseudoeffective, we obtain a contradiction with Theorem A.14 by

pulling-back TX and Qa via a map f : P1 → X such that E = f∗TX is

ample on P1 (as B > 0 in this circumstance).

Conversely, if the R-line bundles Qa, a 6= 0, are not pseudoeffective on

Y = F (T ∗
X), we obtain by taking a1 = . . . = ap = 1, ap+1 = . . . = an = 0

that π∗Q
a = ΩpX . Therefore H0(X,ΩpX) = 0 and all invertible sub-

sheaves F ⊂ ΩpX are not pseudoeffective for p ≥ 1. Hence X is projec-

tive (take p = 2 and apply Kodaira [Kod54]) and rationally connected

by Criterion 1.1 (b).
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