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1. Introduction

The paper [CDP98] studied compact complex threefolds X such that the second
Betti number b2(X) = 0. The main result is based on Lemma 1.5, which is certainly
not true in general (but might still hold in the context of the paper). In any
case, some of the statements and proofs need to be adapted which is done in this
Corrigendum, with special regards to potential complex structures on the 6-sphere.

2. Statement of the results

We prove Theorem 2.1 in [CDP98] in full generality in case X has a meromorphic
non-holomorphic map X 99K P1. In the remaining case, X has algebraic dimension
1 and the algebraic reduction f : X → C is holomorphic. In this case we prove
that c3(X) ≤ 0; for simplicity, we will assume not only that b2(X) = 0 but slightly
stronger that H2(X,Z) = 0 and moreover that H1(X,Z) = 0, hence C ' P1. This
suffices to treat the main application of complex structures on S6.
In summary, we shall prove

2.1. Theorem. Let X be a 3−dimensional compact complex manifold with
b2(X) = 0. Assume that there exists a non-holomorphic meromorphic non-constant
map g : X 99K P1. Let B be a holomorphic vector bundle on X. Then

a) Hi(X,B ⊗M) = 0 for i ≥ 0 andM∈ Pic◦(X) generic.
b) χ(X,B ⊗M) = 0 for allM∈ Pic◦(X)
c) c3(X) = 0; i.e., either b1(X) = 0 and b3(X) = 2 or b1(X) = 1 and b3(X) =

0.

Another proof has been given in [LSS18].
Theorem 2.1 takes care of all threefolds X with 1 ≤ a(X) ≤ 2 and b2(X) = 0 except
of those whose algebraic reduction f : X → C is holomorphic onto a curve C. In
this case the general fiber has Kodaira dimension κ(Xc) ≤ 0.
By topological considerations and surface classification, the general fiber of f is
either a torus, a primary Kodaira surface or a surface of type VII; in the latter case
it is actually a primary Hopf surface or an Inoue surface, Lemma 4.2 and Lemma
4.3. The case that the general fiber is a Kodaira surface is ruled out in Corollary
5.3. Then we show
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2.2. Theorem. Let X be a 3−dimensional compact complex manifold with
H1(X,Z) = H2(X,Z) = 0 and algebraic dimension a(X) = 1. Assume that the
algebraic reduction f : X → C is holomorphic. Then

a) Hi(X,TX ⊗M) = 0 for i 6= 1.
b) χ(X,TX ⊗M) ≤ 0.
c) c3(X) ≤ 0.

As a consequence we deduce

2.3. Corollary. Let X be a 3-dimensional compact complex manifold homeomor-
phic to S6. Then a(X) = 0.

Proof. Obviously, a(X) 6= 3, otherwise X is Moishezon and therefore b2(X) 6= 0.
If a(X) = 2, then there exists a meromorphic non-holomorphic map g : X → P1.
Then we conclude by Theorem 2.1 that c3(X) = 0. By Hopf’s theorem, c3(X) =
χtop(S6) = 2, a contradiction. If a(X) = 1 and the algebraic reduction g : X 99K C
is not holomorphic, then C ' P1, and we conclude again by Theorem 2.1. If
a(X) = 1 and the algebraic reduction g : X 99K C is holomorphic, then we apply
Theorem 2.2 and obtain the same contradiction as before. �

We comment on the strategy to prove Theorem 2.2. The arguments of [CDP98]
show the following

2.4. Proposition. Let X be a 3-dimensional compact complex manifold with
b2(X) = 0 and algebraic dimension a(X) = 1. Assume that the algebraic reduction
f : X → C is holomorphic. If

(1) R2f∗(TX ⊗ L) = 0

for some (or general) L ∈ Pic(X), then the assertions of Theorem 2.2 hold.

Equation (1) is equivalent to the vanishing

H2(Xc, TX ⊗ L|Xc) = 0

for all complex-analytic fibers Xc (with the natural fiber structure) of f , equiva-
lently,

H0(Xc,Ω
1
X ⊗ L∗|Xc) = 0.

The key is to show that the restriction L|Xc of some or the general line bundle L
to any fiber is never torsion. Then we compute directly on Xc; here the case when
Xc is singular, in particular non-normal, needs special care.
For further informations on the problem of complex structures on S6, we refer to
[Et15] and to volume 57 of the journal Differential Geometry and its Applications.

3. Proof of Theorem 2.1

Instead of simply pointing out the additions in the proof of [CDP98, Theorem 2.1] to
be made, we give full details for the benefit of the reader. Notice first that (2.1)(b)
follows from (2.1)(a) since χ(X,B ⊗M) does not depend onM, and (2.1)(c) is a
consequence of (2.1)(b) by applying Riemann-Roch to B = TX andM = OX . So
it remains to prove (2.1)(a). By Serre duality, (2.1)(a) needs only to be shown for
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i = 0 and i = 2. The case i = 0 follows from [CDP98, Cor1.3], since X does carry
effective non-zero divisors. Thus it remains to prove

(2) H2(X,B ⊗M)

for generic, equivalently one, line bundle M. Let g : X 99K P1 be a non-constant
non-holomorphic meromorphic map and σ : X̂ → X be a resolution of indetermi-
nacies of g. Let

f : X̂ → C ' P1

be the fiber space given by the Stein factorization of the holomorphic map σ ◦ g.
Replacing g by the induced meromorphic map X 99K C, we may assume from the
beginning that g has connected fibers, hence no Stein factorization has to be taken.
Note that the canonical map

H2(X,B ⊗M)→ H2(X̂, σ∗(B ⊗M))

is injective (by the Leray spectral sequence). Hence Equation (2) follows from

(3) H2(X̂, σ∗(B ⊗M)) = 0.

Fix an ample divisor A on C. Then f∗(OC(A)) can be written as

(4) f∗(OC(A)) = σ∗(L)⊗OX̂(−E)

with a line bundle L on X and a suitable effective divisor E which is supported on
the exceptional set of σ and projects onto C. To verify Equation (3) it suffices to
show that

(5) H2(X̂, σ∗(B ⊗M)⊗OX̂(−tE)) = 0

for some effective divisor E supported on the exceptional locus of σ and some t ≥ 0.
In fact, consider the exact sequence

H2(X̂, σ∗(B ⊗M)⊗OX̂(−tE))→ H2(X̂, σ∗(B ⊗M))→ H2(tE, σ∗(B ⊗M))

and note that
H2(tE, σ∗(B ⊗M)) = 0.

This last vanishing is seen as follows: let Zt be the complex subspace of X defined
by the ideal sheaf σ∗(OX̂(−tE)). Then by

Rq(σ|tE)∗(OtE) = 0

for q = 1, 2 and the Leray spectral sequence,

H2(tE, σ∗(B ⊗M)) = H2(Zt, B ⊗M).

Now the last group vanishes since dimZt = 1.
By replacingM byM⊗Lt+k for some positive integer k and using (4), Equation
(5) reads

(6) H2(X̂, σ∗(B ⊗M⊗Lt+k ⊗OX̂(−tE))) =

= H2(X̂, σ∗(B ⊗M⊗Lk ⊗ f∗(OC(tA))).

By the Leray spectral sequence applied to f , Equation (6) comes down to verify

(7) R2f∗(σ
∗(B ⊗M⊗Lk)) = 0

and

(8) H1(C,R1f∗(σ
∗(B ⊗M⊗Lk))⊗OC(tA)) = 0
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for suitable positive integers k and t and some line bundleM.
To prove (7), let C∗ ⊂ C be the finite set of points c ∈ C such that some component
of the fiber Xc does not meet E. In particular, if Xc is irreducible, then c ∈ C \C∗.
Notice also that

R2f∗(σ
∗(B ⊗ Lk))|{c} ' H2(X̂c, σ

∗(B ⊗ Lk)),

by the standard base change theorem. Applying Serre duality, we obtain

H2(X̂c, σ
∗(B ⊗ Lk)) ' H0(X̂c, σ

∗(B∗ ⊗ L−k)⊗ ωX̂c
) '

' H0(X̂c, σ
∗(B∗)⊗OX̂c

(−kE)⊗ ωX̂c
).

We claim first that there is a number k0 such that for k ≥ k0,
(9) supp R2f∗(σ

∗(B ⊗ Lk)) ⊂ C∗.
This is equivalent to saying that

H0(X̂c, σ
∗(B∗ ⊗M∗)⊗OX̂c

(−kE)⊗ ωX̂c
) = 0

for c 6∈ C∗. Fixing any point c0 ∈ C∗, this number k0 = k0(c) clearly exists; in case
Xc is reducible, we apply [CDP98, Prop.1.1]. Hence the support of the direct image
sheaf R2f∗(σ

∗(B ⊗ Lk0)) is contained in a finite set Ck0 in C. Since σ∗(L)|Xc is
effective, it follows that Ck ⊂ Ck0 . Thus, enlarging k0 if necessary, (9) is verified.
Hence we only need to consider the fibers X̂c with c ∈ C∗. Let P the set of line
bundlesM of the form

M = OX(
∑

miSi)

with mi positive integers and Si fiber components of f not meeting E (the Si
considered as surfaces in X).
Since all line bundlesM∈ P are trivial on X\f−1(C∗), our previous considerations
imply the existence of a number k0 such that for all k ≥ k0 and allM∈ P ,

supp R2f∗(σ
∗(B ⊗M⊗Lk)) ⊂ C∗.

We are now going to construct a line bundleM∈ P such that

R2f∗(σ
∗(B ⊗M⊗Lk)) = 0

for a suitable number k. Fix a point c ∈ C∗. Let F0 ⊂ Xc be the sub-divisor of
X̂c consisting of all components meeting E; let further F1 ⊂ X̂c be the sub-divisor
consisting of all components which meet F1 but not E. Continuing in this way we
obtain a decomposition

X̂c =

r∑
i=0

Fr

of sub-divisors Fj ⊂ Xc who pairwise do not have common components and which
have the property that all components of Fj meet Fj−1 but do not meet Fk for
k < j − 1. Now choose mr � 0 such that

H0(Fr,OX̂(−mrFr−1)⊗ σ∗(B∗)⊗ ωX̂c
|Fr) = 0

This is possible by our construction. Next choose mr−1 ≥ mr such that

H0(Fr−1,OX̂(−mr−1Fr−2)⊗ σ∗(B∗)⊗ ωX̂c
|Fr−1) = 0.

Since supp(Fr−2) ∩ supp(Fr) = ∅, we obtain

H0(Fr−1 + Fr,OX̂(−mr−1(Fr−2 + Fr−1)⊗ σ∗(B∗)⊗ ωX̂c
|Fr−1) = 0.
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Continuing in this way, we obtain a line bundle

M′(c) = OX(

r∑
i=2

miFi)

(having in mind that the divisors Fi, i ≥ 1 do not meet the exceptional locus of σ),
such that

H0
( r∑
i=2

Fi, σ
∗(B∗ ⊗M′(c))⊗ ωX̂c

|(
r∑
i=2

Fi)
)

= 0.

Since the component F0 meets E, it needs a special treatment. We observe that

OX̂(F0) ' σ∗
(
OX(σ(F0)

)
⊗OX̂(−E′)

with some effective σ-exceptional divisor E′. Hence, choosing m1 � 0 and setting

M(c) =M′(c)⊗OX(m1σ(F0)),

then

H0
( r∑
i=1

Fi, σ
∗(B∗ ⊗M(c)∗)⊗ ωX̂c

|(
r∑
i=1

Fi)
)

= 0.

Finally, enlarging k, we get

H0(X̂c, σ
∗(B∗ ⊗M(c)∗)⊗OX̂(−kE)⊗ ωX̂c

|Xc) = 0.

Setting
M =

⊗
c∈C∗

M(c),

this settles (7).
As to (8), we fix k as in (7) and then apply Serre’s vanishing theorem to the ample
divisor A to obtain t.

4. General structure of the fibers

From now on - for the rest of the paper - we let X be a compact complex manifold
of dimension 3 with

H1(X,Z) = H2(X,Z) = 0

and holomorphic algebraic reduction f : X → C to the curve C ' P1. We will freely
use the theory of compact complex surfaces, in particular of non-Kähler surfaces,
and refer to [BHPV04] as general reference.
An application of Riemann-Roch gives

4.1. Lemma. χ(D,OD) = 0 for all effective divisors D on X.

Proof. By Riemann-Roch,

χ(X,OX(−D)) = χ(X,OX),

hence
χ(D,OD) = χ(X,OX)− χ(X,OX(−D)) = 0.

�
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4.2. Lemma. Let s be the number of singular fibers and r be the numbers of
irreducible components of the singular fibers. Then

r = s− 1 + b1(Xc),

where Xc is a smooth fiber. Moreover H1(Xc,Z) is torsion free for all smooth fibers
Xc.

Proof. The first assertion is [CDP98, Lemma 3.2]. For the second, fix a smooth
fiber Xc and let A ⊂ the union of all singular fibers of f and set X ′ = X \ A. As
seen in the proof of [CDP98, Lemma 3.2],

H1(X ′,Z) ' H1(C \ f(A),Z)⊕H1(Xc,Z),

hence it suffices to show that H1(X ′,Z) is torsion free. To do this, we consider the
cohomology sequence for pairs,

0 = H4(X,Z)→ H4(A,Z)→ H5(X,A,Z)→ H5(X,Z)→ 0.

Notice first that H4(A,Z) is torsion free. Further, H5(X,Z) is torsion free by the
universal coefficent theorem, since H4(X,Z) is torsion free: by Poincaré duality,

H4(X,Z) ' H2(X,Z) = 0.

Actually, H5(X,Z) = 0. Consequently,

H5(X,A,Z) ' H1(X ′,Z)

is torsion free. �

4.3. Lemma. Let Xc be a smooth fiber of f . Then Xc is either a primary Hopf
surface, an Inoue surface, a torus or a primary Kodaira surface with torsion free
first homology group.

Proof. Note first that KXc
is topologically trivial, since KX is topologically trivial,

due to b2(X) = 0. Then we use the tangent sequence

0→ TXc → TX |Xc → NXc/X ' OXc → 0

and observe that c2(X) = 0, since b4(X) = 0. Thus c2(Xc) = 0. Since the (suffi-
ciently) general fiber of an algebraic reduction has non-positive Kodaira dimension,
[Ue75, Thm. 12.1], so does every smooth fiber (see e.g. [BHPV04, VI.8.1]. Then
we conclude by surface classification and using the torsion freeness of H1(Xc,Z),
Lemma 4.2.

�

4.4. Corollary. All fibers of f are irreducible unless the general fiber of f is a
torus or a primary Kodaira surface with torsion free first homology.

We fix some notations for the rest of the paper.

4.5. Notation. Let S ⊂ X be an irreducible reduced surface. In particular, S is
Gorenstein. We denote by ωS the dualizing sheaf, which is a line bundle. Let

η : S̃ → S

be the normalization of S; denote by N ⊂ S the non-normal locus, equipped with
the complex structure given by the conductor ideal. Let Ñ ⊂ S̃ be the complex-
analytic preimage. Let

π : Ŝ → S̃
6



be a minimal desingularization and

σ : Ŝ → S0

be a minimal model. For the class of ωS we write KS , analogously for ωS̃ , etc.

4.6. Lemma. In the notations of (4.5), we have

ωS̃ ' η
∗(ωS)⊗ IÑ

and

ωŜ ' π
∗η∗(ωS)⊗ π∗(IÑ )⊗OŜ(E) = π∗η∗(ωS)⊗OŜ(−N̂)⊗OŜ(−Ê)

with an effective divisor E supported on the exceptional locus of π and N̂ the strict
transform of Ñ in Ŝ. Moreover, there are exact sequences

0→ OS → η∗(OS̃)→ ω−1S ⊗ ωN → 0

and
0→ ON → η∗(OÑ )→ ω−1S ⊗ ωN → 0

Proof. [Mo82, chap.3, sect.8]. �

As an immediate consequence, we note

4.7. Proposition. Let S be any irreducible reduced compact Gorenstein surface
with ωS ≡ 0 and χ(S,OS) = 0. Then

a) χ(S̃,OS̃) = χ(N,ω−1S ⊗ ωN ) = −χ(N,ON );
b) χ(Ñ ,OÑ ) = 0.

Proof. The first equation in (a) follows from Lemma 4.6. As to the second equation
in (a), observe by Serre duality

χ(N,ω−1S ⊗ ωN ) = −χ(N,ωS |N ) = −χ(N,ON ),

since ωS ≡ 0. For the same reasons

χ(Ñ ,OÑ ) = χ(N,ON ) + χ(N,ω−1S ⊗ ωN ) = 0.

�

4.8. Proposition. Let Xc be a smooth fiber of f . Then

H0(Xc, TX |Xc
) 6= 0.

Proof. Consider the exact sequence

0→ H0(Xc, TXc
)→ H0(Xc, TX |Xc

)
κ−→H0(Xc, NXc/X) ' C.

If H0(Xc, TXc
) 6= 0, the assertion is clear. So it remains to treat the case that Xc

has no vector fields. By Lemma 4.3 and [In74], Xc is an Inoue surface of type SM
or S−N , in which cases H1(Xc, TXc) = 0. Thus Xc is rigid and κ is surjective, so
that H0(Xc, TX |Xc) 6= 0 also in these cases.

�

4.9. Corollary. Let Xc = λS be a fiber with S an irreducible singular surface and
λ ≥ 1. Then there exists a finite étale cover S′ → S such that H0(S′, TS′) 6= 0.
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Proof. We consider the tangent sequence

0→ TS → TX |S
κ−→NS/X .

If λ = 1, then NS/X ' OS . However, κ is not surjective, since S is singular. Hence

H0(S, TS) = H0(S, TX |S).

By semicontinuity and Proposition 4.8, H0(S, TX |S) 6= 0 and we conclude.
If λ ≥ 2, arguing in the same way, we obtain a torsion line bundle L on X such
that

H0(S, TS ⊗ L|S) 6= 0.

Then we pass to a finite étale cover S̃ → S to trivialize L|S .
�

4.10. Remark. A vector field v ∈ H0(S, TS) induces canonically a vector field
v0 ∈ H0(S0, TS0). We shortly say that v0 comes from S.

4.11. Proposition. Let Xc = λS with S singular, irreducible. Then S is non-
normal.

Proof. Suppose S normal and let π : Ŝ → S be a minimal desingularization and
σ : Ŝ → S0 a minimal model.
(a) Suppose that S has only rational singularities, hence S has only rational double
points. Then KŜ ≡ 0, in particular Ŝ is a minimal surface containing (−2)-curves.
By surface classification, Ŝ is either a K3 surface, an Enriques surface, of type VII
or non-Kähler of Kodaira dimension κ(Ŝ) = 1. The first two cases are impossible
since

χ(Ŝ,OŜ) = χ(S,OS) = 0.

If Ŝ is of type VII, then it must be a Hopf surface or an Inoue surface, since KŜ ≡ 0,
but these surfaces do not contain (−2)-curves. If κ(Ŝ) = 1, then, since Ŝ has a
vector field, it does not any rational curve, see e.g. [GH90, Satz 1].

(b) Suppose now that S has at least one irrational singularity. Then χ(Ŝ,OŜ) <
χ(S,OS) = 0, hence

h1(S0,OS0
) = h1(Ŝ,OŜ) ≥ 2.

Suppose first that S0 is not Kähler. By classification, S0 has to be a primary
Kodaira surface or κ(S0) = 1. By Corollary 4.9, H0(S0, TS0) 6= 0 (up to finite
étale cover). Choose a nonzero vector field v0 coming from S; then v0 does not
have zeroes by classification, [GH90, Satz 1]; note that in case κ(S0) = 1, S0 is an
elliptic bundle over a curve of genus at least 2. Hence we must have Ŝ = S0. But
then Ŝ does not contain contractible curves, so that S is smooth, a contradiction.
Thus S0 is Kähler. Since KŜ = π∗(KS) − E with E a non-zero effective divisor,
κ(S0) = −∞ and S0 is a ruled surface over a curve B of genus g = g(B) ≥ 2.
Since S has an irrational singularity, π must contract an irrational curve whose
normalization necessarily has genus at least g. Thus

h0(S,R1π∗(OŜ)) ≥ g
and therefore

1− g = χ(Ŝ,OŜ) ≤ χ(S,OS)− g = −g,
which is absurd. �
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5. Kodaira surfaces and tori

In this section we consider the case that the general fiber of f is a Kodaira surface
or a torus. We rule out the case of Kodaira fibers and show in the torus case that
for general line bundles L on X, the restriction L|Xc

to any fiber is never torsion.

5.1. Proposition. Assume that the general fiber of f is a Kodaira surface or a
torus. Then Rjf∗(OX) is locally free for all j, in fact, hj(Xc,OXc

) is independent
on c ∈ C.

Proof. It suffices to show that h2(Xc,OXc) is independent of c. Indeed, since
h0(Xc,OXc

) = 1 for all c and since χ(Xc,OXc
) is constant, h1(Xc,OXc

) does
not depend on c as well, and the assertions follow by Grauert’s theorem. By Serre
duality,

H2(Xc,OXc) = H0(Xc, ωXc) = H0(Xc, ωX |Xc).

Setting L = f∗(ωX), a locally free sheaf of rank one, we obtain

ωX = f∗(L)⊗OX(
∑
i

(mi − 1)Fi),

where Fi are the non-reduced fiber components. In particular, ωX |Xc
= OXc for

all reduced fibers Xc and therefore

h0(Xc, ωXc) = 1

for all those c. So let Xc be a non-reduced fiber and set Y = red(Xc). We consider
the complex subspace

Z =
∑

(mi − 1)Fi

of Xc and have an induced exact sequence

0→ IZ/Xc
⊗ ωX |Xc

' OXc
→ ωX |Xc

→ ωX |Z → 0.

Applying f∗ and observing that

f∗(OXc) = f∗(ωX |Xc
) = O{c},

shows that the restriction map

H0(Xc, ωX |Xc
)→ H0(Z, ωX |Z)

vanishes. Since

dimH0(Xc, ωX |Xc
) = dimH0(Xc,OXc) = 1,

we conclude h0(Xc, ωXc
) = 1.

�

5.2. Corollary. Let F be a general smooth fiber of f . Then the restriction map

H1(X,OX)→ H1(F,OF )

is surjective.

Proof. This is Theorem 3.1 in [CDP98]; the proof works since we now know that
R1f∗(OX) is locally free. �

As a consequence, we obtain
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5.3. Corollary.
The general fiber of f cannot be a Kodaira surface.

Proof. This is Proposition 3.6 in [CDP98]. In the proof of Proposition 3.6, Theorem
3.1 is used which is now established by Corollary 5.2. Notice that in Step 2 of the
proof of Proposition 3.6 in [CDP98], the local freeness of Rjf∗(L̃) is used only
generically. �

5.4. Remark. The same arguments also rule out Hopf surfaces of algebraic di-
mension one.

From now - for the remainder of this section - we assume that the general of f is a
torus.

5.5. Proposition. R1f∗(OX)) ' OC(b1)⊕OC(b2) with bj ≥ 0.

Proof. By Proposition 5.1, the sheaf R1f∗(OX) is locally free of rank two. Write

R1f∗(OX) = OC(b1)⊕OC(b2).

We observe that R1f∗(OX) is generically spanned by Corollary 5.2, since

H1(X,OX) = H0(C,R1f∗(OX)).

Hence bj ≥ 0.
�

5.6. Proposition. For general L ∈ Pic(X), the restriction L|Xc
is not torsion for

all c ∈ C.

Proof. By Proposition 5.5, h1(X,OX) ≥ 2 and the restriction

H1(X,OX)→ H1(Xc,OXc
)

is surjective for all c. Consequently, the kernel of the restriction

Pic(X) = H1(X,OX)→ Pic◦(Xc) = H1(Xc,OXc)/H1(Xc,Z)

is discrete for all c plus a linear subspace of codimension 2. Since dimC = 1, it
follows that for L ∈ Pic(X) general, the restriction L|Xc

is never trivial and thus
also not torsion. �

6. Hopf and Inoue surfaces

In this section we assume that the general fiber of f is a Hopf or Inoue surface and
show that for general line bundles L on X, the restriction L|Xc

is never torsion.

6.1. Proposition. Assume that the general fiber of f is a Hopf or Inoue surface.
Let L ∈ Pic(X) be general. Then L|Xc

is not torsion for all c ∈ C, and the
restriction map Pic(X)→ Pic(Xc) is surjective for any smooth fiber Xc.

Proof. The exact sequence

0→ Z→ C→ C∗ → 1

and our assumptions give
H1(X,C∗) = 0.
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Moreover, H2(X,C∗) is torsion. Consider the canonical morphism

λ : H0(C,R1f∗(C∗))→ H2(C,C∗) ' C∗.

Then by the Leray spectral sequence, λ is injective and the cokernel is torsion.
Hence

H0(C,R1f∗(C∗)) ' C∗.
Choose

1 6= u ∈ H0(C,R1f∗(C∗))
non-torsion. This section defines an inclusion

ι : C∗ → R1f∗(C∗).

Let C0 be the smooth locus of f in C. We claim that

(10) R1f∗(C∗)|C0 = R1f0∗(C∗) ' C∗.

Suppose first that Claim (10) holds. Then we conclude as follows. Certainly, ι is
an isomorphism over C0. Thus we obtain a sequence

0→ C∗ → R1f∗(C∗)→ Q→ 0

whereQ is supported on the finite set C\C0. SinceH0(C,R1f∗(C∗)) ' C∗ and since
H1(C,C∗) = 0, it follows H0(C,Q) = 0, hence Q = 0. Thus ι is an isomorphism
everywhere and consequently u never takes value one, nor does - by our choice of
u - any multiple um. Hence u defines a line bundle L such that L|Xc

is not torsion
for all c ∈ C.

It remains to prove Claim (10). As before, set ∆ = C \ C0, A = f−1(∆) and
X0 = X \A. Then, as in the proof of Lemma 4.2,

H4(A,C∗) = H1(X0,C∗) = H1(C0,C∗)⊕H0(C0, R
1f0∗(C∗)).

Since H4(A,C∗) ' (C∗)s, it follows

H0(C0, R
1f0∗(C∗)) ' C∗.

Since R1f0∗(C∗) is locally constant of rank one, the claim follows.
�

As a consequence we obtain

6.2. Corollary.

a) R1f∗(OX) ' OC ;
b) R2f∗(OX) = 0;
c) for general L ∈ Pic(X) and all c ∈ C, we have

H0(Xc,L|Xc
) = H0(Xc,L∗|Xc

) = 0.

Proof. (a) Since R1f∗(OX) has rank one, we may write

R1f∗(OX) ' OC(a)⊕ torsion.

By Proposition 6.1, a = 0. So it remains to show that R1f∗(OX) is torsion free. If
not, there exists a line bundleM, such thatM|Xc0

is not torsion for some c0 but
M|Xc

' OXc
for c 6= c0. Write S = red(Xc0). Then

M = f∗f∗(M)⊗OX(D),
11



with an effective divisor D supported on S. Since S is irreducible, D = mS and
therefore OX(D)|Xc

is a torsion line bundle, contradiction.
(b) By (a), h1(X,OX) = 1. Since the general fiber of f having negative Kodaira
dimension, we have

H3(X,OX) = H0(X,ωX) = 0.

Thus we conclude from χ(X,OX) = 0, that

H2(X,OX) = 0.

Hence, by the Leray spectral sequence, R2f∗(OX) must be torsion free, therefore

R2f∗(OX) = 0.

(c) As a consequence of (b), R2f∗(L) = 0 for general L, hence
H2(Xc,LXc

) = 0

for all c. Thus
H0(Xc,LXc

) = 0

for general L and all c as well. In summary, we may say that

H0(Xc,L|Xc
) = H0(Xc,L∗|Xc

)

for general L and all c.
Now ωmX defines a section tm ∈ H0(C,R1f∗(O∗X)). Notice that for c ∈ C0, the
smooth locus of f , the bundle ωmX|Xc

= ωm|Xc
) is never trivial and thus tm does not

take value 1 on C0. Since R1f∗(O∗X) ' O∗C , the section never takes value 1, hence
our claim follows. �

We will further need the following basic statement on Hopf and Inoue surfaces.

6.3. Proposition.
Let S be a primary Hopf surface. Assume that

H0(S,Ω1
S ⊗ L) 6= 0

for some line bundle L on S. Then

H0(S,L) 6= 0.

Proof. Choose a vector field v on S and let C be the zero locus of v which is purely
one-dimensional. We obtain an exact sequence

0→ OS(C)→ TS → OS(−C)⊗ ω−1S → 0.

Dualizing,
0→ OS(C)⊗ ωS → Ω1

S ⊗OS(−C)→ 0.

Hence
H0(S,OS(C)⊗ ωS ⊗ L) 6= 0

or
H0(S,OS(−C)⊗ L) 6= 0,

In the latter case, the claim is clear. In the first case we observe that

H0(S, ω−1S ⊗OS(−C)) 6= 0.

Indeed, there exists another vector field v′, and v ∧ v′ is a section of ω−1S vanishing
on C.

�
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6.4. Proposition. Let S be an Inoue surface. Then there is a unique line bundle
L such that

H0(S,Ω1
S ⊗ L) 6= 0.

Moreover, one of the following statements holds.

a) either H0(S, TS) 6= 0 and L = ω−1S
b) or H0(S, TS) = 0 and L⊗2 ' ω−1S .

Proof. The existence of L is classical, [In74].
If S has a non-zero vector field v, necessarily without zeroes, then v induces an
exact sequence

0→ OS → TS → ω∗S → 0,

and the claim is immediate, since S has no curves and since H0(S,Ω1
S) = 0. If

H0(S, TS) = 0, consider the exact sequence

0→ L∗ → Ω1
S → L⊗ ωS → 0.

Since the sequence does not split,

H1(S, ω−1S ⊗ L
⊗−2) 6= 0.

Hence either ω−1S ' O⊗2 or ωS ' L, [In74, Lemma 1]. The second case however
cannot happen, since

H0(S,Ω1
S ⊗⊗ωS ' H2(S, TS) 6= 0,

[In74, Prop.2].
�

7. Proof of Theorem 2.2

As already said in the introduction, it suffices to prove Proposition 2.4. Thus we
need to show that

H2(Xc, TX |Xc
⊗ L|Xc

) = 0

for all c ∈ C. By Serre duality, this comes down to show that

H0(Xc,Ω
1
X |Xc

⊗ L|Xc
) = 0

for some L ∈ Pic(X) and for all c ∈ C.
We first consider irreducible fibers. Let

S = redXc.

Using the (co-)tangent sheaf sequence

0→ N∗S → Ω1
X |S → Ω1

S → 0

it is immediate that it suffices to show - provided L|S is not torsion - the following
statement

(11) H0(S, Ω̃1
S ⊗ L|S) = 0,

where
Ω̃1
S = Ω1

S/torsion.

We first treat smooth fibers S = Xc.
13



7.1. Proposition. Equations (11) holds for smooth fibers S (independent on the
structure of the general fiber), i.e., for L ∈ Pic(X) general

H0(S,Ω1
S ⊗ L|S) = 0

simultaneously for all smooth fibers S.

Proof. (a) First, if S is a torus, then

H0(S, TS ⊗A) = H0(S,Ω1
S ⊗A) = 0

for all non-trivial A, hence we may take any L such that L|Xc
is never trivial,

Proposition 5.6.
(b) If S is a Hopf surface, then by Corollary 6.2, H0(S,L|S) = 0 for general L,
hence we conclude by Propositions 6.1 and 6.3.
(c) If S is an Inoue surface with a vector field, then for L general, also L∗ ⊗ ωX is
general, hence

H0(S,L∗|S ⊗ (ωX)|S) = H0(S,L∗ ⊗ ωS)) = 0,

hence we conclude by Propositions 6.1 and 6.4.
(d) Finally, assume that S is an Inoue surface without vector field. Then we argue
as in (c), observing that (L∗)⊗2 ⊗ ωX is general for general L. �

7.2. Remark. Since the conormal bundle of a multiple fiber is torsion, the argu-
ments also apply to fibers Xc = λS with λ ≥ 2 and S smooth.

7.3. Proposition. Equation (11) holds for singular reduced fibers.

Proof. Recall the notations 4.5. By Lemma 4.6 and Proposition 4.11, κ(S0) = −∞,
the surface S is non-normal and

H2(S̃,OS̃) = H0(S̃, ωS̃) = 0.

Arguing by contradiction, there exists a one-dimensional family Lt of line bundles
on X such that

H0(S, Ω̃1
S ⊗ Lt|S) 6= 0.

Passing to a desingularization and then to a minimal model S0 as in Notation 4.5,
there are numerically trivial line bundlesMt on S0 such that

Mt = σ∗π
∗η∗(Lt)∗∗

with a one-dimensional family of sections in

H0(S0,Ω
1
S0
⊗Mt).

Thus

(12) H0(S0,Ω
1
S0
⊗Mt) 6= 0.

Observe that all line bundlesMt might be trivial.

Step 1. Suppose first that S0 is Kähler. Then by (12), S0 must be ruled over a
curve of genus at least two.
Claim. S̃ has rational singularities, only.
Proof of the Claim. Assume to the contrary that S̃ has an irrational singularity. We
claim that H1(S̃,OS̃) = 0. In fact, π must contract a curve B0 projecting onto B.
Thus h1(B0,OB0

) ≥ g and therefore h0(S̃, R1π∗(OŜ)) ≥ g. Since H2(S̃, ωS̃) = 0,
the Leray spectral sequence yields H1(S̃,OS̃) = 0 (and h0(S̃, R1π∗(OŜ)) = g).

14



Thus all line bundles η∗(Lt) are trivial and we obtain a one-dimensional family ω̃t
of holomorphic one-forms on S̃. Moreover there exists a one-dimensional family ωt
of one-forms on B such that

σ∗p∗(ωt) = π∗(ω̃t),

where p : S0 → B is the ruling. Since p(σ(B0)) = B, we have ι∗B0
σ∗p∗(ωt) 6=

0. On the other hand, since π contracts B0, it follows that ι∗B0
(π∗(ωt)) = 0, a

contradiction. This proves the Claim and thus S̃ has rational singularities, only.
In this case the morphism p0 : S0 → B induced a morphism p̃ : S̃ → B. In the
language of divisors and using the notations of (4.5) and (4.6) we have

−KŜ ≡ N̂ + Ê,

where N̂ is the strict transform of Ñ in Ŝ. Set

N0 = σ∗(N̂).

We are now using the theory of ruled surfaces as in [Ha77, section V.2], taking over
also the notations from [Ha77]. In particular we have the invariant e and a section
C0 with minimal self-intersection C2

0 = −e. Moreover,

−KS0
≡ 2C0 + (e+ 2− 2g)F,

where F is a fiber of p0 and g = g(B) the genus of B. Since S̃ has rational
singularities, π cannot contract any curve projecting onto B. Hence we must have

N ≡ 2C0 + aF

with a ≤ e + 2 − 2g. Taking into account the numerical description of irreducible
curves in S0, as given in [Ha77, section V.2], it follows immediately that e > 0 and
that

N = 2C0 +R

with an effective divisor R ∼ aF (note that the curve C0 is the unique contractible
curve in S0). Consequently, Ñ has a unique component, say Ñ1, projecting onto
B, and this component has multiplicity two. The map p̃ : S̃ → B induces a
holomorphic map p : S → B′ and a commutative diagram

S̃

p̃

��

η // S

p

��
B

τ
// B′.

The general fiber Sb of p is a reduced Gorenstein curve with

ωSb
≡ 0

whose normalization of Sb is a disjoint union of smooth rational curves. Thus, if
Sb is irreducible, then Sb is a rational curve with one node or cusp, and if Sb is
reducible, it is a cycle of smooth rational curves. In case Sb has a node or is a cycle,
the normalization map η is generically 2 : 1 along Ñ1. In these cases however,
Ñ1 would be reduced, see [KW88], a contradiction. In the remaining case, η has
degree one along Ñ1, hence τ has degree one, too. Unless τ is an isomorphism and
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g(B) = 2, we have h1(B′,OB′) ≥ 3, hence h1(S,OS) ≥ 3. Since χ(S,OS) = 0, we
conclude

h0(S, ωS) = h2(S,OS) ≥ 2.

Since S is Moishezon and ωS ≡ 0, this is impossible. Alternatively, apply Proposi-
tion 5.5 or Corollary 6.2, respectively.
Hence τ is biholomorphic, i.e., p maps to the smooth curve B of genus two and
h1(S,OS) = h1(B,OB) = 2. Moreover, h0(S, ωS) = 1, and therefore ωS ' OS .
The map p being flat, R1p∗(OS) is locally free of rank one, and by relative duality,

R1p∗(OS) ' p∗(ωS/B)∗ = ωB ,

hence
H0(B,R1p∗(OS)) 6= 0.

But then h1(S,OS) > h1(B,OB), a contradiction. This shows that g(B) ≥ 2 is
impossible and concludes the proof in the Kähler case.

Step 2. We thus are reduced to the case that S0 is not Kähler.
If S0 is of type VII, then H0(S0,Ω

1
S0

) = 0, hence H0(S0,Ω
1
S0
⊗M) = 0 for M

general, contradicting (12).
The same argument applies to a secondary Kodaira surface S0. If S0 is a primary
Kodaira surface, then the cotangent sequence reads

0→ OS0 → Ω1
S0
→ OS0 → 0,

which immediately gives a contradiction by tensorizing withMt.
It remains to exclude the case κ(S0) = 1. Since H0(S0, TS0

) 6= 0, (4.9) and (4.10),
the Iitaka fibration h0 : S0 → B is an elliptic bundle over a curve of genus g(B) ≥ 2,
[GH90, Satz 1] and, as already noticed, the induced vector field v0 has no zeroes.
Hence S̃ = Ŝ = S0. Since ωS̃ = IÑ ⊗ η∗(ωS), we have

h2(S,OS) ≥ h2(S̃,OS̃),

hence h2(S,OS) ≥ 2, contradicting Proposition 5.5 or Corollary 6.2, respectively.
�

7.4. Remark. If the fiber Xc = λS with S an irreducible reduced singular surface
and λ ≥ 2, we argue in the same way, passing to a finite étale cover.

Finally, we have to treat reducible fibers:

7.5. Proposition. Equation (11) holds for reducible fibers.

Proof. Let
F =

∑
aiSi

be a reducible fiber. Arguing by contradiction, there is a one-dimensional family
Lt of line bundles on X such that

H0(F,Ω1
X |F ⊗ (Lt)|F ) 6= 0.

Hence there exists a number i0 such that

H0(Si0 , Ω̃
1
X |Si0 ⊗ (Lt)|Si0

) 6= 0

for all t, and therefore
H0(Si0 , Ω̃

1
Si0
⊗ (Lt)|Si0

) 6= 0

16



Now we argue as in Proposition 7.3 to obtain a contradiction. One might also use
the line bundle OX(−kSi1) for k � 0, where the surface Si1 meets in Si0 in a curve.

�
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