Donaldson-Tian-Yau's Conjectuture for general polarization

Toshiki Mabuchi, Osaka University

Ricci curvature: limit spaces and Kähler geometry ICMS, Edinburgh, Scotland, UK

Table of Contents

1. Introduction

2. Background materials

- The Donaldson-Futaki invariant F_1 for test configurations
- K-stability and Li-Xu's pathology in Donaldson-Tian-Yau's Conjecture
- Characterization of F_1 and the Chow weight in terms of the Chow norm

3. The Donaldson-Futaki invariant F_1 is generalized to f_1

• f_1 is defined on the set \mathcal{M} of all sequences of test configurations.

4. Strong K-stabilities

- Li-Xu's pathology doesn't occur in the strong version of K-stability.
- Strong K-stability implies asymptotic Chow-stability.
- 5. Existence of CSC Kähler metrics
- An outline of our approach
- 6. Concluding Remarks

1. Introduction

Setting-up: (X,L): a polarized algebraic manifold, i.e.,

- *X* : non-singular irreducible algebraic variety
- L : very ample line bundle on X

In this talk, Donaldson-Tian-Yau's Conjecture for general polarization will be considered:

Conjecture: If (X,L) is strongly K-stable, then the polarization class $C_1(L)$ admits a CSC Kähler metric.

2. Background Materials

A test configuration $(\mathcal{X},\mathcal{L},\varphi)$ for (X,L)

Let $\mathcal{X} \subset \mathbf{C} \times \mathbf{P}^*(V)$ be a \mathbf{C}^* -invariant subset for the \mathbf{C}^* -action $\mathbf{C}^* \times (\mathbf{C} \times \mathbf{P}^*(V)) \ni (t, (z,p)) \rightarrow (tz, \varphi(t)p),$ for a 1-PS φ : $\mathbf{C}^* \rightarrow \mathrm{SL}(V)$, where $\mathrm{SL}(V)$ acts naturally on the set $\mathbf{P}^*(V)$ of all hyperplanes in V passing through the origin, and we usually take $V = V_l = \Gamma(X, L^l)$ assuming that V has a natural metric structure such that $S^1 \subset \mathbf{C}^*$ acts isometrically on V. A triple $(\mathcal{X}, \mathcal{L}, \varphi)$ is called a *test configuration* for (X, L) if (1) \mathcal{L} is the restriction to \mathcal{X} of the pullback $\mathrm{pr}_2^* \mathcal{O}_{\mathbf{P}^*(V)}(1)$ of the hyperplane bundle on $\mathbf{P}^*(V)$ on which \mathbf{C}^* acts naturally; (2) $(\mathcal{X}_l, \mathcal{L}_l) \cong (X, L^l), t \neq 0$,

for some positive integer *l* independent of the choice of *t*. This *l* is called the *exponent* of the test configuration $\mu = (\mathcal{X}, \mathcal{L}, \varphi)$.

The Chow norm on W_k by Zhang

 $d(k) := \text{degree of } X \text{ in } \mathbf{P}^*(V_k) \text{ embedded by } |L^m|, \text{ where}$ $V_k := \Gamma(X, L^m), m = kl, n = \dim X, W_k := \{S^{d(k)}(V_k)^*\}^{\otimes n+1}.$ Let $0 \neq CH_k(X) \in W_k$ be the Chow form for the irreducible reduced algebraic cycle X on $\mathbf{P}^*(V_k)$, so that $[CH_k(X)] \in \mathbf{P}(W_k)$ is the Chow point for the cycle X. Consider the *Chow norm* $|| || : W_k \rightarrow \mathbf{R}$,

$$0 \le ||w|| \in \mathbf{R}, \qquad w \in W_k.$$

The Donaldson-Futaki invariant $F_1 = F_1(\mu)$ for $\mu = (\mathcal{X}, \mathcal{L}, \varphi)$

- $N_k := \dim \Gamma(X, L^k) = \dim \Gamma(\mathcal{X}_0, \mathcal{L}_0^m)$, where k = l m.
- $w_k :=$ weight of the **C***-action on det $\Gamma(\mathcal{X}_0, \mathcal{L}_0^m)$

$$w_k / (kN_k)$$
 (k >>1)
= $F_0(\mu) + F_1(\mu) k^{-1} + F_2(\mu) k^{-2} + ...$

 $F_1 = F_1(\mu)$ is called the *Donaldson-Futaki invariant* for test configuration $\mu = (\mathcal{X}, \mathcal{L}, \varphi)$ of (X, L).

K-stability and Li-Xu's pathology

- A test configuration $\mu = (\mathcal{X}, \mathcal{L}, \varphi)$ for (X, L) is called *trivial* if φ is trivial.
- (*X*,*L*) is called *K*-stable if the following conditions are satisfied:
 (1) *F*₁(μ) ≤ 0 for all test configurations μ = (*X*,*L*,φ) for (*X*,*L*).
 (2) If *F*₁(μ) = 0, then the normalization test configuration of μ is trivial.

• In the original definition of K-stability by Donaldson, (2) is stated as "If $F_1(\mu) = 0$, then μ is trivial." However, Li-Xu gave an example of a nontrivial test configuraton $\mu = (\mathcal{X}, \mathcal{L}, \varphi)$ for ($\mathbf{P^1}, \mathcal{O}_{\mathbf{P1}}(3)$) such that $F_1(\mu)$ vanishes, and that the normalization of μ is trivial. Hence the definition of K-stability is reformulated as above.

Characterization of F_1 and the Chow weight in terms of the Chow norm

For a test configuration $\mu = (\mathcal{X}, \mathcal{L}, \varphi)$, we consider the homogeneous ideal $I = \bigoplus_m I_m$ for \mathcal{X}_0 in $\mathbf{P}^*(V)$, where $V := V_l$. For k = l m, we put

 $V_k = S^m(V) / I_m, m = 1, 2, ...,$

where $S^k(V)$ denotes the *k*-th symmetric tensor product of *V*. Then $\varphi: \mathbb{C}^* \to SL(V)$ induces a represemntation $\varphi_k: \mathbb{C}^* \to GL(V_k)$. For its special linear form $\varphi_k^{SL}: \mathbb{C}^* \to SL(V_k)$ (modulo finite group), by using the Chow norm || ||, we set

 $\mathbf{v}_k(s) := \log || \boldsymbol{\varphi}_k^{\mathsf{SL}}(\exp(s)) \cdot \mathsf{CH}_k(X) ||,$

Let q_k be the (possibly rational) Chow weight of the **C***-action by φ_k^{SL} on the line **C**•CH_k(\mathcal{X}_0). Then by writing $F_i(\mu)$ as F_i shortly, we obtain

$$q_k = \lim_{s \to -\infty} dv_k(s)/ds = (n+1)! c_1(L)^n[X] (F_1 k^n + F_2 k^{n-1} + F_3 k^{n-2} + \dots)$$

3. The Donaldson-Futaki invariant F_1 is generalized to f_1

Norms for the the infinitesimal generator u

For a test configuration $\mu = (\mathcal{X}, \mathcal{L}, \varphi)$, we consider the infinitesimal generator *u* of φ satisfying *exp* $(2\pi u\sqrt{-1}) = \mathrm{id}_{V}$, so that

 $\varphi(exp \ s) = exp(su), \quad s \in \mathbb{C}.$ Then φ is called the 1-PS generated by u, and is written as φ_u . Let b_1, b_2, \ldots, b_N be the weights of the \mathbb{C}^* -action for φ , so that each $\varphi(t), t \in \mathbb{C}^*$, is written as a diagonal matrix with the γ -th diagonal elements $t^{b\gamma}, \gamma=1,2,\ldots,N$. Let n be the dimension of X, and l be the exponent of the test configuration $\mu = (\mathcal{X}, \mathcal{L}, \varphi)$. Define

$$|u|_{1} := l^{-n-1}(|b_{1}| + |b_{2}| + \dots + |b_{N}|),$$

$$|u|_{\infty} := l^{-1} \max\{|b_{1}|, |b_{2}|, \dots, |b_{N}|\}.$$

Definition of $f_1: \mathcal{M} \to \mathbf{R} \cup \{-\infty\}$

Consider a sequence { μ_j } of test configurations $\mu_j = (\mathcal{X}_j, \mathcal{L}_j, \varphi_j)$ such that the exponent l_j of μ_j satisfies $l_j \rightarrow +\infty$ as $j \rightarrow \infty$. Let \mathcal{W} be the set of all such sequences { μ_j }. For $s \in \mathbf{R}$, we define $v_j(s) := (|u_j|_{\infty}/|u_j|_1) l_j^{-n} \log ||\varphi_j(t) \cdot CH_j(X)||$ $= (|u_j|_{\infty}/|u_j|_1) l_j^{-n} \log ||exp(su_j/|u_j|_{\infty}) \cdot CH_j(X)||$, where $t = exp(s/|u_j|_{\infty})$. We can then define $f_1({\{\mu_j\}}) := \lim_{s \rightarrow -\infty} \lim_{j \rightarrow \infty} dv_j/ds$. If the double limit commutes and if $\lim_{j \rightarrow \infty} |u_j|_1$ exists as a positive real number r > 0, then by characterization of F_1 in terms of the Chow norm, we obtain (compare this with Szekelyhidi's approach) $f_1({\{\mu_j\}}) = r^{-1}(n+1)! c_1(L)^n [X] \underline{\lim}_{j \rightarrow \infty} F(\mu_j)$.

Some remark on f_1

For instance, for a test configuration $\mu = (\mathcal{X}, \mathcal{L}, \varphi)$ for (X, L) of exponent 1, let $\mu_j = (\mathcal{X}_j, \mathcal{L}_j, \varphi_j)$, j = 1, 2, ..., be the test configurations such that

 $\mathcal{X}_j = \mathcal{X}, \quad \mathcal{L}_j = \mathcal{L}^j$ and that $\varphi_j \colon \mathbb{C}^* \to \mathrm{SL}(V_j)$ is induced by $\varphi \colon \mathbb{C}^* \to \mathrm{SL}(V)$, where $V_j \coloneqq \Gamma(\mathcal{X}_0, \mathcal{L}_0^j)$ and $V \coloneqq \Gamma(\mathcal{X}_0, \mathcal{L}_0)$. Replacing $\{\mu_j\}$ by its subsequence if necessary, we may assume that $r = \lim_{j \to \infty} |u_j|_1 \ge 0$ exists. For this sequence, if r > 0, then the double limit commutes, so that $f_1(\{\mu_j\}) = r^{-1}(n+1)! \operatorname{c}_1(L)^n [X] F_1(\mu).$

Note that, for the test configuration in Li-Xu's pathology, r = 0.

4. Stabilities

Asymptotic Chow-stability

Let $G_k := SL(V_k)$ which naturally acts on V_k and also on W_k . For the Chow form $CH_k(X)$ for $X \subset P^*(V_k)$, we consider its orbit $G_k \cdot CH_k(X)$ in W_k .

Definition: (1) (X, L^k) is called *Chow-stable*, if $G_k \cdot CH_k(X)$ is closed in W_k and the isotropy subgroup of G_k at $CH_k(X)$ is finite. (2) (X,L) is called *asymptotically Chow-stable*, if for all k >> 1, (X, L^k) is Chow-stable.

Hilbert-Mumford stability criterion

Definition: (1) Fix a Hermitian metric ρ_k on V_k . We define $(\mathbf{sl}_k)_{\mathbf{Z}}$ as the set of all $u \in \mathbf{sl}(V_k)$ such that $exp(2\pi\sqrt{-1}u) = \mathbf{1}_{Vk}$ and that the circle group $exp(2\pi\sqrt{-1}su)$, $s \in \mathbf{R}$, acts isometrically on (V_k, ρ_k) . (2) For each $u \in \mathbf{sl}(V_k)$, let \mathbf{G}_u denote the 1-dimensional algebraic torus in $SL(V_k)$ generated by u.

Then by the Hilbert-Mumford stability criterion, in order to show the closedness of $G_k \cdot CH_k(X)$ in W_k , it suffices to show the closedness of the orbit $\mathbf{G}_u \cdot CH_k(X)$ in W_k for all $0 \neq u \in (\mathbf{sl}_k)_{\mathbf{Z}}$, i.e., suffices to show that the Chow weight q(u) at $\lim_{s \to -\infty} exp(2\pi\sqrt{-1}su) \cdot CH_k(X)$ is negative for all $0 \neq u \in (\mathbf{sl}_k)_{\mathbf{Z}}$.

Strong K-stability

For each $u \in (\mathbf{sl}_k)_{\mathbf{Z}}$, we consider the 1-PS φ_u : $\mathbf{C}^* \to \mathrm{SL}(V_k)$ generated by u, and let $(\mathcal{X}^u, \mathcal{L}^u, \varphi_u)$ be the associated test configuration obtained as the DeContini Procesi family. Let \mathcal{M} be the set of all sequences $\mu_j = (\mathcal{X}^{uj}, \mathcal{L}^{uj}, \varphi_{uj}), j = 1, 2, ...,$ of test configurations for (X, L) such that $u_j \in (\mathbf{sl}_k)_{\mathbf{Z}}$, and that the exponent l_j of μ_j satisfies $l_j \to +\infty$ as $j \to \infty$.

Definition: (1) (*X*,*L*) is *strongly K-semistable*, if $f_1({\mu_j}) \le 0$ for all ${\mu_j} \in \mathcal{M}$.

(2) Let (*X*,*L*) be strongly K-semistable. Then (*X*,*L*) is called *strongly K-stable*, if the equality $f_1({\mu_j}) = 0$ for ${\mu_j} \in \mathcal{M}$ implies that there exists a j_0 such that μ_i is trivial for all j satisfying $j \ge j_0$.

Strong K-stability and Li-Xu's pathology

Li-Xu's pathology doesn't occur in our new definition of f_1 . Actually, for their example of a test configuration, we have $f_1 = -\infty$ (see arXiv: 1305.6411). Hence the following conjecture in the introduction is proposed:

Conjecture: If (X,L) is strongly K-stable, then the polarization class $C_1(L)$ admits a CSC Kähler metric.

Strong K-stability implies asymptotic Chow-stability

Our strong K-stability concept seems to be natural in the sense that we have the following result ("*Strong K-stability and asymptotic Chow-stability*", joint work with Y. Nitta, arXiv: 1307.1959):

Theorem: If (X,L) is strongly K-stable, then (X,L) is asymptotically Chow-stable.

Outline of proof for the Theorem

We here explain how, for l >> 1, the Chow weight q(u) is shown to satisfy: q(u) < 0 for all $0 \neq u \in (\mathbf{sl}_l)_{\mathbb{Z}}$. Assume, for contradiction, that there exists a sequence

 $l_1 < l_2 < ... < l_j < ...$ with $0 \neq u_j \in (\mathbf{sl}_{l_j})_{\mathbb{Z}}$ such that $q(u_j) \ge 0$ for all positive integers *j*. Now we consider the test configurations

 $(\mathcal{X}_j, \mathcal{L}_j, \varphi_j), \qquad j = 1, 2, \dots,$

associated to u_j above. By the characterization of F_1 and the Chow weight in terms of the Chow norm, we obtain

 $0 \le l_j^{-n} |u_j|_1^{-1} q(u_j) = \lim_{s \to -\infty} dv_j(s)/ds$ By convexity of the function v_j , we have $dv_j(s)/ds \ge 0$ on $-\infty <_S < -\infty$. Then by taking $\lim_{s \to -\infty} \underline{\lim}_{j \to \infty}$, we obtain $f_1(\{\mu_j\}) \ge 0$. Hence by strong K-stability, it follows that $f_1(\{\mu_j\}) = 0$ and μ_j is trivial for j >> 1. This is a contradiction to the fact that $u_j \ne 0$ for all j. **5.** Existence of CSC Kähler metrics

Geometry of Hermitian metrics on a complex vector space V

Let ρ_1 , ρ_2 be Hermitian metrics on a vector space *V*. Then for a suitable orthonormal basis (e_1, e_2, \dots, e_N) for (*V*, ρ_1), we can write

$$\begin{array}{ll} \rho_2\left(e_{\alpha},e_{\beta}\right)=0, & \alpha\neq\beta, \\ \rho_2\left(e_{\alpha},e_{\alpha}\right)=\lambda_{\alpha}, & \alpha=1,2,\ldots,N, \end{array}$$

where λ_{α} are positive real numbers. Replacing ρ_2 by its positive constant multiple, we may assume that $\prod_{\alpha} \lambda_{\alpha} = 1$. Put $b_{\alpha} = \log \sqrt{\lambda_{\alpha}}$. Then the 1-PS $\varphi(exp \ s) = \sum_{\alpha} exp(b_{\alpha}s) \ e_{\alpha} \otimes e_{\alpha}^{*}$ from \mathbf{R}_{+} to SL(*V*) interpolates ρ_1 and ρ_2 in the sense that $\varphi(exp \ s) \cdot \rho_1$ is ρ_1 or ρ_2 accoding as s = 0 or s = 1.

The (multiplicative) C^{θ} -distance $d(\rho_1, \rho_2)$ between ρ_1 and ρ_2 is defined as

 $d(\rho_1, \rho_2) = C \max\{ |b_{\alpha}| ; \alpha = 1, 2, ..., N \},\$

where *C* is a positive real constant depending only on *V*. We often reparametrize $\varphi(exp \ s)$ by replacing *s* by $d(\rho_1, \rho_2)^{-1}s$. Namely,

 $\varphi(exp \ s) = \sum_{\alpha} exp(b_{\alpha}d(\rho_1,\rho_2)^{-1}s) \ e_{\alpha} \otimes e_{\alpha}^*$ is *C⁰-distance parametrized* in the sense that $\varphi(exp \ s) \cdot \rho_1$ is ρ_1 or ρ_2 accoding as s = 0 or $s = d(\rho_1,\rho_2)$.

An outline of our approach (I)

Assume that (X,L) is strongly K-stable relative to *T*. By the joint work with Nitta, (X,L) is asymptotically Chow-stable. Then replacing *L* by its positive integral multiple, we may assume that (X,L) are Chow-stable for all positive integers *j*. Hence we have a sequence of balanced metrics ω_j in the sense that it is a critical point of the Chow norm satisfying $B_j(\omega_j)$ = constant.

Fix a Hermitian metric *h* on *L* such that $\omega = c_1(L,h)$ is Kähler. Let $\omega_j = c_1(L,h_j)$ be a balanced metric. Then $V_j = H^0(X, L^j)$ has Hermitian metrics ρ_1 and ρ_j defined by

 $\rho_1(\tau,\tau') = \int_X (\tau,\tau')_h \omega^n$ and $\rho_j(\tau,\tau') = \int_X (\tau,\tau')_{hj} \omega_j^n$, for $\tau, \tau' \in V_j$. We then have the interpolation of ρ_1 and ρ_2 by a 1-PS φ_j of SL(V_j), where replacing *s* by $d(\rho_1,\rho_2)^{-1}s$, we may assume that φ_j is C⁰-distance parametrized.

An outline of our approach (II)

• If $\beta_j = (b_1, b_2, ..., b_{N_j})$ is a rational vector, then 1-PS φ_j comes from a C*-action. If not, approximating β_j by a sequence of rational vectors, we may assume that β_i is a rational vector.

•Since the Chow norm is critical at balanced metrics, we have $dv_j(s)/ds = 0$ at *s* corresponding to the Chow norm, i.e., at $s = -d(\rho_1, \rho_j)$. •Then we consider the sequence of test configurations $\mu_j = (\mathcal{X}_j, \mathcal{L}_j, \varphi_j)$ associated to φ_j .

Put $d_{\infty} = \sup_{j} d(\rho_1, \rho_j)$

Then the following two cases are possible:

(Case 1) $d_{\infty} < +\infty$.

(Case 2) $d_{\infty} = +\infty$.

An outline of our aproach (III)

• If Case 1 occurs, then the C⁰-distances $d(\rho_1, \rho_j)$ are uniformly bounded from above, and hence it is not difficult to show that a suitable subsequence of the balanced Kähler metrics ω_j , j = 1, 2, ..., converges to a CSC Kähler metric.

• If Case 2 occurs, replacing $\{\omega_j\}$ by its subsequence if necessary, we may assume that the sequence $d(\rho_1, \rho_j), j = 1, 2, ...$, is monotone-increasing (to + ∞), as $j \rightarrow \infty$.

Note that $dv_j(s)/ds = 0$ at $s = -d(\rho_1, \rho_j)$. Then for every j' with $j' \ge j$, since $dv_{j'}(s)/ds$ is non-decreasing in s,

 $0 = dv_{j'}(s)/ds|s=-d(\rho_1,\rho_{j'}) \le dv_{j'}(s)/ds|s=-d(\rho_1,\rho_j)$ Hence the non-decreasing function $\lim_{j'\to\infty} dv_{j'}(s)/ds$ satisfies ≥ 0 on the interval $-d(\rho_1,\rho_j) \le s$. Since $d(\rho_1,\rho_j) \to +\infty$ as $j \to \infty$, it now follows that $\lim_{j'\to\infty} dv_{j'}(s)/ds \ge 0$ on the whole real line $-\infty < s < +\infty$. Then $f_1(\{\mu_j\}) = \lim_{s\to\infty} \lim_{j'\to\infty} dv_{j'}(s)/ds \ge 0$. Now by strong K-stability of (X,L), $f_1(\{\mu_j\}) = 0$ and μ_j are trivial for j >>1. Thus $\{\omega_j\}$ converges to a CSC Kähler metric.

6. Concluding remarks

Why strong K-stability ?

E : irreducible holomorphic vector bundle over a compact Kähler manifold (M,ω) $\mu(S) := \deg(S)/rk(S)$ for *S* below.

E is stable (in the sense of Mumford-Takemoto) $\Leftrightarrow \mu(S) < \mu(E) \forall$ coherent subsheaf *S* of O(E)with 0 < rk(S) < rk(E)

Remark: If dim_C M = 1, then \mathcal{S} can be chosen as a vector subbundle of E.

Hitchin-Kobayashi correspondence (Narasimhan-Seshadri, Kobayashi, Lübke, Donaldson, Uhlenbeck-Yau): *E is stable ⇔ ∃ Hermitian-Einstein metric on E*

Manifolds case versus vector bundles case in the Hitchin-Kobayashi correspondence

vector bundles.

manifolds

holomorphic vector bundlespolarized a
test configvector subbundlestest configrank of a vector subbundleexponent ocoherent subsheaf?slope v(S) = deg(S)/rk(S)the Donalds $v(S) \leq v(E)$ $F_1(\mu) \leq$ the Mumford-Takemoto stability(strong)compact Riemann surfaces caseKähler-Ein

polarized algebraic manifolds test configurations exponent of a test configuration ? the Donaldson-Futaki invariant $F_1(\mu) \le 0$ (strong) K-stability Kähler-Einstein case

This indicates the necessity of considering a suitable compactification \mathcal{M} of the moduli space of test configurations for (X,L).

K-stability versus strong K-stability

Recent results by Tian and Chen-Donaldson-Sun show that K-stability is equivalent (up to Li-Xu's pathology) to strong Kstability for Kähler-Einstein case, i.e., for anti-canonical polarization. Donaldson's result for toric case shows also that these two stability concepts coincide for toric case.

However, for general polarization L on a general X, the graded Calgebra associated to the limit μ_{∞} in the compactified moduli space \mathcal{M} is not finitely generated in general. Hence we proposed the concept of strong K-stability.

Extremal Kähler case

By taking a maximal algebraic torus T in Aut(X), we see that the arguments above is valid not only for non-discrete automorphisms cases but also for extremal Kähler cases.

For extremal Kähler cases,

(1) balanced metrics, the Chow norm, asymptotic Chow stability, CSC Kähler metrics, strong K-stability, the Kodaira embedding have to be replaced by

(2) polybalanced metrics, the weighted Chow norm, asymptotic relative Chow stability, extremal Kähler metrics, strong relative K-stability, the weighted Kodaira embedding, respectively.

Thank you.