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1. Introduction

Setting-up:  (X,L) :  a polarized algebraic manifold, i.e.,

                     X  :  non-singular irreducible algebraic variety

                        L  :  very ample line bundle on X

In this talk, Donaldson-Tian-Yau’s Conjecture for general polarization

will be considered:

Conjecture: If (X,L) is strongly K-stable, then the polarization class

c1(L) admits a CSC Kähler metric.



     2. Background Materials



A test configuration (X,L,!) for (X,L)

Let X " C#P*(V) be a C*-invariant subset for the C*-action

                C*#(C#P*(V)) $ (t, (z,p)) % (tz,!(t)p),

for a 1-PS !: C* % SL(V), where SL(V) acts naturally on the

set P*(V) of all hyperplanes in V passing through the origin,

and we usually take V = Vl = &(X,Ll) assuming that V has a

natural metric structure such that S1 " C*acts isometrically on V.

A triple (X,L,!) is called a test configuration for (X,L) if

(1) L is the restriction to X of the pullback pr2*OP*(V)(1) of the

hyperplane bundle on P*(V) on which C* acts naturally;

(2) (Xt, Lt) ' (X, Ll), t!",

for some positive integer l independent of the choice of t.

This l is called the exponent of the test configuration µ = (X,L,!).



The Chow norm  on Wk by Zhang

d(k) := degree of X in P*(Vk) embedded by |Lm|, where

Vk := &(X,Lm),  m = kl,  n = dim X,   Wk := {Sd(k)(Vk)*}
(n+1.

Let 0!CHk(X) ) Wk be the Chow form for the

irreducible reduced algebraic cycle X on P*(Vk),

so that [CHk (X)] ) P(Wk) is the Chow point for the

cycle X.  Consider the Chow norm || || : Wk % R,

                          0 ! ||w|| ) R,        w )Wk.



The Donaldson-Futaki invariant

F1 = F1(µ) for µ = (X,L,!)

• Nk := dim &(X,Lk) = dim &(X0,L0
m), where k  = l m.

• wk := weight of the C*-action on det &(X0,L0
m)

  wk / (kNk )   (k >>1)

  = F0 (µ) + F1 (µ) k-1 + F2 (µ) k-2  + …

F1 = F1 (µ) is called the Donaldson-Futaki invariant

for test configuration µ = (X,L,!) of (X,L).



K-stability  and Li-Xu’s pathology

# A test configuration µ = (X,L,!) for (X,L) is called trivial if ! is trivial.

# (X,L) is called K-stable if the following conditions are satisfied:

 (1) F1(µ) * 0 for all test configurations µ = (X,L,!) for (X,L).

 (2) If F1(µ) = 0, then the normalization test configuration of µ is trivial.

# In the original definition of K-stability by Donaldson, (2) is stated as

“If F1(µ) = 0, then µ is trivial.”  However, Li-Xu gave an example of

a nontrivial test configuraton µ = (X,L,!) for (P1,OP1(3)) such that

F1(µ) vanishes, and that the normalization of µ is trivial. Hence

the definition of K-stability is reformulated as above.



Characterization of  F1 and the Chow weight

in terms of the Chow norm

For a test configuration µ = (X,L,!), we consider the homogeneous ideal

I = +m Im  for X0 in P*(V), where V := Vl. For k = l m, we put

                                         Vk = Sm(V) / Im,   m = 1,2, … ,

where Sk(V) denotes the k-th symmetric tensor product of V.

Then !: C* % SL(V) induces a represemntation !k : C* % GL(Vk ).

For its special linear form !k
SL : C* % SL(Vk) (modulo finite group), by

using the Chow norm || ||, we set

                   ,k(s) := log || !k
SL(exp(s))#CHk(X)||,

Let qk be the (possibly rational) Chow weight of the C*-action by !k
SL

on the line C#CHk(X0). Then by writing Fi(µ) as Fi shortly, we obtain

  qk = lims%--d,k(s)/ds = (n +1)! c1(L)n[X] (F1 k
n + F2 k

n -1 + F3 k
n -2 + … ).



3. The Donaldson-Futaki invariant F1

is generalized to f1



Norms for the the infinitesimal generator u

For a test configuration µ = (X,L,!), we consider the infinitesimal

generator u of ! satisfying exp (2.u/0-1) = idV, so that

                  !(exp s) = exp(su),         s ) C.

Then ! is called the 1-PS generated by u, and is written as !u. Let

b1, b2, … , bN be the weights of the C*-action for !, so that each

!(t), t ) C*, is written as a diagonal matrix with the 1-th diagonal

elements tb1 , 1=1,2,…, N. Let n be the dimension of X, and l be

the exponent of the test configuration µ = (X,L,!). Define

               |u|1 := l-n-1( |b1| + |b2| + … + |bN| ),

               |u|- := l-1 max{|b1|, |b2|, … , |bN|}.



Definition of  f1: M %R2{--}

Consider a sequence {µj} of test configurations µj = (Xj,Lj,!j)

such that the exponent lj of µj satisfies lj  % +- as j % -.

Let M be the set of all such sequences {µj}. For s ) R, we define

           ,j(s) := (|uj|-/|uj|1)
 lj

-n  log ||!j(t)#CHj(X)||

                    = (|uj|-/|uj|1)
 lj

-n log ||exp(suj /|uj|-)#CHj(X)||,

where t = exp(s/|uj|-). We can then define

           f1({µj}) :=  lims%--limj%- d,j /ds.

If the double limit commutes and if limj%- |uj|1 exists as a positive

real number r > 0, then by characterization of F1 in terms of the

Chow norm, we obtain (compare this with Szekelyhidi’s approach)

           f1({µj}) = r-1(n+1)! c1 (L)n [X] limj%- F (µj).



Some remark on  f1

For instance, for a test configuration µ = (X,L,!) for (X,L)

of exponent 1, let µj = (Xj,Lj,!j), j =1,2, … , be the test

configurations such that

                        Xj = X,    Lj  = Lj

and that !j : C* % SL(Vj) is induced by !: C* % SL(V), where

Vj := &(X0,L0
j) and V := &(X0,L0). Replacing {µj} by its subsequence

if necessary, we may assume that r = limj%- |uj|1 3 0 exists.

For this sequence, if r > 0, then the double limit commutes, so that

                f1({µj}) = r-1(n+1)! c1 (L)n [X] F1(µ).

Note that, for the test configuration in Li-Xu’s pathology, r = 0.



              4.  Stabilities



Asymptotic Chow-stability

Let Gk := SL(Vk) which naturally acts on Vk and also on Wk.

For the Chow form CHk(X) for X " P*(Vk), we consider its orbit

Gk# CHk(X) in Wk.

Definition: (1) (X,Lk) is called Chow-stable, if Gk# CHk(X) is closed

in Wk
 and the isotropy subgroup of Gk at CHk(X) is finite.

(2) (X,L) is called asymptotically Chow-stable, if for all k >> 1,

(X,Lk) is Chow-stable.



Hilbert-Mumford stability criterion

Definition: (1) Fix a Hermitian metric 4k on Vk. We define (!"k)Z as

the set of all u ) !"(Vk) such that exp(2./0- 01u) = 1Vk and that the

circle group exp(2./0- 01su), s ) R, acts isometrically on (Vk,4k).

(2) For each u ) !"(Vk), let Gu denote the 1-dimensional algebraic

torus in SL(Vk) generated by u.

Then by the Hilbert-Mumford stability criterion, in order to show the

closedness of Gk#CHk(X) in Wk,
 it suffices to show the closedness

of the orbit Gu # CHk(X) in Wk
 for all 0 5 u ) (!"k)Z , i.e., suffices to

show that the Chow weight q(u) at lims%--exp(2./0- 01su) # CHk(X)

is negative for all 0 5 u ) (!"k)Z .



Strong K-stability

For each u ) (!"k)Z, we consider the 1-PS !u: C*% SL(Vk)

generated by u, and let (Xu,Lu,!u) be the associated test

configuration obtained as the DeContini Procesi family.

Let M be the set of all sequences  µj = (Xuj,Luj,!uj), j =1,2, … ,

of test configurations for (X,L) such that uj ) (!"k)Z, and that

the exponent lj of µj satisfies l j  % +- as j % -.

Definition:  (1) (X,L) is strongly K-semistable, if f1 ({µj}) ! 0 for

all {µj} ) M .

(2) Let (X,L) be strongly K-semistable. Then (X,L) is called

strongly K-stable, if the equality f1 ({µj}) = 0 for {µj} ) M implies that

there exists a j0 such that µj is trivial for all j satisfying j 3 j0.



Strong K-stability and Li-Xu’s pathology

Li-Xu’s pathology doesn’t occur in our new definition of f1.

Actually, for their example of a test configuration, we have f1 = --

(see arXiv: 1305.6411). Hence the following conjecture in the

introduction is proposed:

Conjecture: If (X,L) is strongly K-stable, then the polarization class

c1(L) admits a CSC Kähler metric.



Strong K-stability implies asymptotic Chow-stability

Our strong K-stability concept seems to be natural in the

sense that we have the following result (“Strong K-stability

and asymptotic Chow-stability”, joint work with Y. Nitta,

arXiv: 1307.1959):

Theorem:    If (X,L) is strongly K-stable, then (X,L) is

asymptotically Chow-stable.



Outline of proof for the Theorem

We here explain how, for l >> 1, the Chow weight q(u) is shown to

satisfy: q(u) < 0  for all 0 5 u ) (!"l)Z. Assume, for contradiction, that

there exists a sequence

                         l1 < l2 < … < lj < …

with 0 5 uj ) (!"lj)Z such that q(uj) 3 0 for all positive integers j.

Now we consider the test configurations

                             (Xj,Lj,!j),       j = 1,2, … ,

associated to uj above. By the characterization of F1 and the Chow

weight in terms of the Chow norm, we obtain

        0 * lj
-n |uj|1

-1 q(uj) = lims%--d,j(s)/ds

By convexity of the function ,j, we have d,j(s)/ds 3 0 on --<s<--.

Then by taking lims%--limj%-, we obtain f1({µj}) 3 0. Hence by strong

K-stability, it follows that f1({µj}) = 0 and µj is trivial for j >> 1.

This is a contradiction to the fact that uj  5 0 for all j.



5. Existence of CSC Kähler metrics



Geometry of Hermitian metrics

on a complex vector space V

Let 41, 42 be Hermitian metrics on a vector space  V.  Then for a

suitable orthonormal basis (e1,e2, … ,eN) for (V, 41), we can write

                            42 (e6,e7) = 0,$ $6 5 7,

                               42 (e6,e6) = 86,    6 = 1,2, …,N,

where 86 are positive real numbers. Replacing 42 by its positive

constant multiple, we may assume that 96 86 = 1. Put b6 = log /086.

Then the 1-PS !(exp s) = :6 exp(b6s) e6(e6* from R+ to SL(V)

interpolates 41 and 42 in the sense that !(exp s) ; 41 is 41 or 42

accoding as s = 0 or s = 1.

The (multiplicative) C0-distance d(41,42) between 41 and 42 is defined as

              d(41,42) = C max{ |b6| ; 6 = 1,2, …,N },

where C is a positive real constant depending only on V. We often

reparametrize !(exp s) by replacing s by d(41,42)
-1s. Namely,

 !(exp s) = :6 exp(b6d(41,42)
-1s) e6(e6* is C0-distance parametrized in

the sense that !(exp s) ; 41 is 41 or 42 accoding as s = 0 or s = d(41,42).



An outline of our approach (I)

Assume that (X,L) is strongly K-stable relative to T. By the joint work with Nitta,

(X,L) is asymptotically Chow-stable. Then replacing L by its positive integral multiple,

we may assume that (X,Lj) are Chow-stable for all positive integers j. Hence we

have a sequence of balanced metrics <j in the sense that it is a critical point of the

Chow norm satisfying Bj (<j) = constant.

Fix a Hermitian metric h on L such that < = c1(L,h) is Kähler.

Let <j = c1(L,hj) be a balanced metric. Then Vj = H0(X, Lj) has Hermitian metrics

41 and 4j  defined by

          41 (=,=’) = >X (=,=’)h <
n   and      4j  (=,=’) = >X (=,=’)hj <j

n,

for =, =’ ) Vj . We then have the interpolation of 41 and 42 by a 1-PS !j of SL(Vj),

where replacing s by d(41,42)
-1s, we may assume that !j  is C0-distance parametrized.



An outline of our approach (II)

#If 7j  = (b1, b2, … , bNj ) is a rational vector, then 1-PS !j comes from

a C*-action. If not, approximating 7j by a sequence of rational vectors,

 we may assume that 7j is a rational vector.

#Since the Chow norm is critical at balanced metrics, we have

d,j(s)/ds = 0 at s corresponding to the Chow norm, i.e., at s = - d(41,4j).

#Then we consider the sequence of test configurations µj = (Xj,Lj,!j)

associated to !j.

Put d- = supj d(41,4j)

Then the following two cases are possible:

(Case 1)  d- < +-.

(Case 2)  d- = +-.



An outline of our aproach (III)

# If Case 1 occurs, then the C0-distances d(41,4j) are uniformly

bounded from above, and hence it is not difficult to show that a suitable

subsequence of the balanced Kähler metrics <j, j =1,2, … , converges

to a CSC Kähler metric.

# If Case 2 occurs, replacing {<j} by its subsequence if necessary,

we may assume that the sequence d(41,4j), j =1,2, … , is monotone-

increasing (to + -), as j % -.

Note that d,j(s)/ds = 0 at s = - d(41,4j). Then for every j' with j'3 j, since

d,j'(s)/ds is non-decreasing in s,

 0  =  d,j'(s)/ds|s=-d(41,4j')  !  d,j'(s)/ds|s=-d(41,4j)

Hence the non-decreasing function limj'%- d,j'(s)/ds satisfies 3 0 on the

interval -d(41,4j) ! s. Since d(41,4j) % + - as j % -, it now follows that

limj'%- d,j'(s)/ds 3 0 on the whole real line - -< s < + -. Then

f1 ({µj }) = lims%--limj'%- d,j'(s)/ds 3 0. Now by strong K-stability of (X,L),

f1 ({µj }) = 0 and µj are trivial for  j >>1.

Thus {<j} converges to a CSC Kähler metric.



6. Concluding remarks



Why strong K-stability ?

E : irreducible holomorphic vector bundle over a

      compact Kähler manifold (M,<)

µ(S) : = deg(S)/rk(S)   for S below.

E is stable (in the sense of Mumford-Takemoto)

?  µ(S) < µ(E)  @ coherent subsheaf S of O(E)

                              with 0 < rk(S) < rk(E)

Remark: If dimC M =1, then S can be chosen as a vector

subbundle of E.

 Hitchin-Kobayashi correspondence (Narasimhan-Seshadri,

 Kobayashi, Lübke, Donaldson, Uhlenbeck-Yau):

    E is stable ? A Hermitian-Einstein metric on E



Manifolds case versus vector bundles case

in the Hitchin-Kobayashi correspondence

vector bundles                  manifolds
 holomorphic vector bundles            polarized algebraic manifolds

 vector subbundles                           test configurations

 rank of a vector subbundle             exponent of a test configuration

 coherent subsheaf                                       ?

 slope ,(S) = deg(S)/rk(S)               the Donaldson-Futaki invariant

           ,(S) * ,(E)                                    F1(µ) *  0

 the Mumford-Takemoto stability          (strong) K-stability

 compact Riemann surfaces case     Kähler-Einstein case

 This indicates the necessity of considering a suitable compactification

 M of the moduli space of test configurations for (X,L).



K-stability versus strong K-stability

Recent results by Tian and Chen-Donaldson-Sun show that

K-stability is equivalent (up to Li-Xu’s pathology) to strong K-

stability for Kähler-Einstein case, i.e., for anti-canonical polarization.

Donaldson’s result for toric case shows also that these two

stability concepts coincide for toric case.

However, for general polarization L on a general X, the graded C-

algebra associated to the limit µ- in the compactified moduli space M

is not finitely generated in general. Hence we proposed the concept of

strong K-stability.



Extremal Kähler case

By taking a maximal algebraic torus T in Aut(X), we see that

the arguments above is valid not only for non-discrete

automorphisms cases but also for extremal Kähler cases.

For extremal Kähler cases,

(1) balanced metrics, the Chow norm, asymptotic Chow stability,

CSC Kähler metrics, strong K-stability, the Kodaira embedding

have to be replaced by

(2) polybalanced metrics, the weighted Chow norm, asymptotic

relative Chow stability, extremal Kähler metrics, strong relative

K-stability, the weighted Kodaira embedding, respectively.



Thank you.


