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Abstract. In this paper, assuming that a polarized algebraic manifold

(X,L) is strongly K-stable in the sense of [8], we shall show that the

class c1(L)R admits a constant scalar curvature Kähler metric. Since

strong K-stability implies asymptotic Chow-stability (cf. [11]), we have

a sequence {ωi} of balanced metrics in the class c1(L)R. Replace the

sequence by its suitable subsequence if necessary. Then if {ωi} were not

convergent, the associated sequence {µi} of polarized test configurations

would satisfy the inequality

F1({µi}) ≥ 0

in contradiction to strong K-stability for (X,L). Hence the sequence

{ωi} converges to a constant scalar curvature Kähler metric in c1(L)R.

1. Introduction

By a polarized algebraic manifold (X,L), we mean a pair of a nonsingular

irreducible projective algebraic variety X, defined over C, and a very am-

ple line bundle L over X. Replacing L by its positive integral multiple if

necessary, we may assume that

Hq(X,L⊗`) = {0}, ` = 1, 2, . . . ; q = 1, 2, . . . , n,

where n is the complex dimension of X. In this paper, we fix once for all

such a pair (X,L). For the affine line A1 := {z ∈ C}, let the algebraic torus

T := C∗ act on A1 by multiplication of complex numbers

T × A1 → A1, (t, z) 7→ tz.

By fixing a Hermitian metric h for L such that ω := c1(L;h) is Kähler, we

endow the space V` := H0(X,L⊗`) of holomorphic sections for L⊗` with the

Hermitian metric ρ` defined by

〈σ′, σ′′〉ρ` :=

∫
X

(σ′, σ′′)h ω
n, σ′, σ′′ ∈ V`,

where (σ′, σ′′)h denotes the pointwise Hermitian inner product of σ′ and

σ′′ by the `-multiple of h. For the Kodaira embedding Φ` : X ↪→ P∗(V`)
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associated to the complete linear system |L⊗`| on X, we put X` := Φ`(X).

Let ψ : C∗ → GL(V`) be an algebraic group homomorphism such that the

compact subgroup S1 ⊂ C∗ (= T ) acts isometrically on (V`, ρ`). Take the

irreducible algebraic subvariety Xψ of A1 × P∗(V`) obtained as the closure

of ∪z∈C∗Xψz in A1 × P∗(V`). Here we set

Xψz := {z} × ψ(z)Φ`(X), z ∈ C∗,

and ψ(z) in GL(V`) acts naturally on the space P∗(V`) of all hyperplanes in

V` passing through the origin. We then consider the map

π : Xψ → A1

induced by the projection of A1 × P∗(V`) to the first factor A1. Moreover,

for the hyperplane bundle OP∗(V`)(1) on P∗(V`), we consider the pullback

Lψ := pr∗2OP∗(V`)(1)|Xψ ,

where pr2 : A1 × P∗(V`) → P∗(V`) denotes the projection to the second

factor. For the dual space V ∗` of V`, the C∗-action on A1 × V ∗` defined by

C∗ × (A1 × V ∗` )→ A1 × V ∗` , (t, (z, p)) 7→ (tz, ψ(t)p),

naturally induces the C∗-action on A1 × P∗(V`) and OP∗(V`)(−1), where

GL(V`) acts on V ∗` by the contragradient representation. This then induces

C∗-actions on Xψ and Lψ, and π : Xψ → A1 is a C∗-equivariant projective

morphism with relative very ample line bundle Lψ such that

(Xψz ,Lψz ) ∼= (X,L⊗`), z 6= 0,

where Lψz is the restriction of Lψ to Xψz := π−1(z). Then a triple (X ,L, ψ) is

called a test configuration for (X,L), if we have both X = Xψ and L = Lψ.

Here ` is called the exponent of (X ,L, ψ). From now on until the end of

Step 1 of Section 4, for (X ,L, ψ) to be a test configuration, we make an

additional assumption that ψ is written in the form

ψ : C∗ → SL(V`).

Then (X ,L, ψ) is called trivial, if ψ is a trivial homomorphism. We now

consider the set M of all sequences {µj} of test configurations

µj = (Xj ,Lj , ψj), j = 1, 2, . . . ,

for (X,L) such that for each j, the exponent `j of the test configuration µj
satisfies the following condition:

`j →∞, as j →∞.

In [8], for each {µj} ∈ M, we defined the Donaldson-Futaki invariant

F1({µj}) ∈ R ∪ {−∞}. Then we have the strong version of K-stability

and K-semistability as follows:
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Definition 1.1. (1) The polarized algebraic manifold (X,L) is called strongly

K-semistable, if F1({µj}) ≤ 0 for all {µj} ∈ M.

(2) A strongly K-semistable polarized algebraic manifold (X,L) is called

strongly K-stable, if for every {µj} ∈ M satisfying F1({µj}) = 0, there

exists a j0 such that µj are trivial for all j with j ≥ j0.

Recall that these stabilities are independent of the choice of the Hermitian

metric h for L (see [12]). The purpose of this paper is to show the following:

Main Theorem. If (X,L) is strongly K-stable, then the class c1(L)R admits

a constant scalar curvature Kähler metric.

2. The Donaldson-Futaki invariant F1 on M

Definition 2.1. For a complex vector space V , let φ : T → GL(V ) be an

algebraic group homomorphism. For the real Lie subgroup

TR := {t ∈ T ; t ∈ R+}

of the algebraic torus T = {t ∈ C∗}, we define the associated Lie group

homomorphism φSL : TR → SL(V ) by

φSL(t) :=
φ(t)

det(φ(t))1/N
, t ∈ TR,

where N := dimV . Let b1, b2, . . . , bN be the weights of the action by φSL

on the dual vector space V ∗ of V , so that we have the equalities

φSL(t) · σα = t−bασα, α = 1, 2, . . . , N,

for some basis {σ1, σ2, . . . , σN} of V . Then we define ‖φ‖1 and ‖φ‖∞ by

‖φ‖1 := ΣN
α=1 |bα| and ‖φ‖∞ := max{ |b1|, |b2|, . . . , |bN | }.

Definition 2.2. Put d := `nc1(L)n[X]. For (V`, ρ`) in the introduction, we

define a space W` by

W` := {Symd(V`)}⊗n+1,

where Symd(V`) is the d-th symmetric tensor product of V`. Then the dual

space W ∗` of W` admits the Chow norm (cf. [16])

W ∗` 3 w 7→ ‖w‖CH(ρ`)
∈ R≥0,

associated to the Hermitian metric ρ` on V`. For the Kodaira embedding

Φ` : X ↪→ P∗(V`) as in the introduction, let

0 6= X̂` ∈W ∗`
be the associated Chow form for X` = Φ`(X) viewed as an irreducible

reduced algebraic cycle on the projective space P∗(V`).
3



Let µj = (Xj ,Lj , ψj), j = 1, 2, . . . , be a sequence of test configurations

for (X,L). We then define ‖µj‖1 and ‖µj‖∞ by

(2.3) ‖µj‖1 := ‖ψj‖1/`n+1
j and ‖µj‖∞ := ‖ψj‖∞/`j ,

where `j denotes the exponent of the test configuration µj . Let δ(µj) be

‖µj‖∞/‖µj‖1 or 1 according as ‖µj‖∞ 6= 0 or ‖µj‖∞ = 0. If ‖µj‖∞ 6= 0,

we write t ∈ TR as t = exp(s/‖µj‖∞) for some s ∈ R, while we require no

relation between s ∈ R and t ∈ TR if ‖µj‖∞ = 0. Note that

ψSL
j : TR → SL(V`j )

is just the restriction of ψj to TR. Since the group SL(V`j ) acts naturally on

W ∗`j , we can define a real-valued function fj = fj(s) on R by

(2.4) fj(s) := δ(µj) `
−n
j log ‖ψj(t) · X̂`j‖CH(ρ`j

), s ∈ R.

Put ḟj := dfj/ds. Here, once h is fixed, the derivative ḟj(0) is bounded

from above by a positive constant C independent of the choice of j (see [8]).

Hence we can define F1({µj}) ∈ R ∪ {−∞} by

(2.5) F1({µj}) := lim
s→−∞

{ lim
j→∞

ḟj(s)} ≤ C,

since the function limj→∞ ḟj(s) is non-decreasing in s by convexity of the

function fj (cf. [16]; see also [5], Theorem 4.5).

3. Test configurations associated to balanced metrics

Hereafter, we assume that the polarized algebraic manifold (X,L) is

strongly K-stable. Then by [11], (X,L) is asymptotically Chow-stable, and

hence for some `0 � 1, for all ` ≥ `0, there exists a Hermitian metric h`
for L such that ω` := c1(L;h`) is a balanced Kähler metric (cf. [1], [16]) on

(X,L⊗`) in the sense that

(3.1) |σ1|2h` + |σ2|2h` + · · ·+ |σN` |
2
h`

= N`/c1(L)n[X],

where {σα ; α = 1, 2, . . . , N`} is an arbitrarily chosen orthonormal basis for

(V`, ρ`). Let ρ̂` be the associated Hermitian metric on V` defined by

〈σ′, σ′′〉ρ̂` :=

∫
X

(σ′, σ′′)h` ω
n
` , σ′, σ′′ ∈ V`,

where (σ′, σ′′)h` denotes the pointwise Hermitian inner product of σ and σ′

by the `-multiple of h`. Now we can find orthonormal bases

{σ`,1, σ`,2, . . . , σ`,N`} and {τ`,1, τ`,2, . . . , τ`,N`}

for (V`, ρ̂`) and (V`, ρ`), respectively, such that

(3.2) σ`,α = λ`,ατ`,α, α = 1, 2, . . . , N`,
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for some positive real numbers λ`,α. Multiplying h` by a positive real con-

stant which possibly depends on `, we may assume that

ΠN`
α=1λ`,α = 1.

Then for each ` ≥ `0, we have a sequence of points γ̂k = (γ̂k;1, γ̂k;2, . . . , γ̂k;N`),

k = 1, 2, . . . , in QN` such that ΣN`
α=1γ̂k;α = 0 for all k, and that

(3.3) γ̂k → − (log λ`,1, log λ`,2, . . . , log λ`,N`), as k →∞.

Let a`,k be the smallest positive integer such that a`,kγ̂k is integral. By

rewriting a`,kγ̂k as γk = (γk;1, γk;2, . . . , γk;N`
) for simplicity, we now define

an algebraic group homomorphism ψ`,k : T = { t ∈ C∗} → SL(V`) by setting

ψ`,k(t) · τ`,α := t−γk;ατ`,α, α = 1, 2, . . . , N`,

for all t ∈ C∗. Let {τ∗`,α ; α = 1, 2, . . . , N`} be the basis for V ∗` dual to

{τ`,α ; α = 1, 2, . . . , N`} defined by

〈τ`,α, τ∗`,β〉 =

{
1, if α = β,

0, if α 6= β.

Then ψ`,k(t) · τ∗`,α = tγk;ατ∗`,α. Each ~z = (z1, z2, . . . , zN`) ∈ CN` \ {0} sitting

over (z1 : z2 : · · · : zN`) ∈ PN`−1(C) = P∗(V`) is expressible as ΣN`
α=1zατ

∗
`,α,

and hence the action by t ∈ C∗ on ~z is written in the form

(z1, z2, . . . , zN`) 7→ (tγk;1z1, t
γk;2z2, . . . , t

γk;N`zN`).

We now identify X with the subvariety X` := Φ`(X) in the projective space

P∗(V`) = PN`−1(C) = {(z1 : z2 : · · · : zN`)} via the Kodaira embedding

Φ`(x) := (τ`,1(x) : τ`,2(x) : · · · : τ`,2(x)), x ∈ X.

For each ` ≥ `0, we observe that SL(V`) acts naturally on W ∗` . Then by

considering the sequence of test configurations

µ`,k = (Xψ`,k ,Lψ`,k , ψ`,k), k = 1, 2, . . . ,

associated to ψ`,k, we define a real-valued function f`,k = f`,k(s) on the real

line R = {−∞ < s < +∞} by

f`,k(s) := δ(µ`,k) `
−n log ‖ψ`,k(t) · X̂`‖CH(ρ`)

.

Here s ∈ R and t ∈ R+ are related by t = exp(s/‖µ`,k‖∞) for ‖µ`,k‖∞ 6= 0,

while we require no relations between s ∈ R and t ∈ R+ if ‖µ`,k‖∞ = 0. Put

ḟ`,k := df`,k/ds and θs;`,k := (1/2π) log{(ΣN`
α=1(n!/`n) t2γk;α |τ`,α|2)1/`}. Then

on X` viewed also as X via Φ`, we can write

(3.4) ψ`,k(t)
∗(ωFS/`) =

√
−1∂∂̄θs;`,k,
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where ωFS := (
√
−1/2π)∂∂̄ log{(ΣN`

α=1(n!/`n)|zα|2)1/`}, and ψ`,k(t) is re-

garded as a mapping from X` = (Xψ`,k)1 to ψ`,k(t)(X`) = (Xψ`,k)t. In

view of [16] (see also [5] and [13]), we obtain

(3.5) ḟ`,k(s) = ` δ(µ`,k)

∫
X

(∂θs;`,k/∂s) (
√
−1∂∂̄θs;`,k)

n.

Put ν`,k := ‖µ`,k‖∞/a`,k = max{ |γ̂k;α|/` ; α = 1, 2, . . . , N` }, where for the

time being, we vary ` and k independently. Then

(3.6) (∂θs;`,k/∂s) |s=−ν`,k =
ΣN`
α=1 γ̂k;α exp(−2γ̂k;α) |τ`,α|2

π` ν`,k ΣN`
α=1 exp(−2γ̂k;α) |τ`,α|2

.

Now for each integer r, let O(` r) denote a function u satisfying the inequality

|u| ≤ C0`
r for some positive constant C0 independent of the choices of k, `,

and α. We now fix a positive integer `� 1. Then by (3.3), we obtain

(3.7) λ−2
`,α exp(−2γ̂k;α) − 1 = O(`−n−2), k � 1.

Moreover, in view of (3.1) and (3.2), the Kähler form ω` is written as

(
√
−1/2π)∂∂̄ log{(ΣN`

α=1(n!/`n)λ 2
`,α|τ`,α|2)1/`}. Now by (3.3), as k → ∞,

we have
√
−1∂∂̄θs;`,k | s=−ν`,k → ω` in C∞. In particular for k � 1, we can

further assume that

(3.8) ‖
√
−1∂∂̄θs;`,k | s=− ν`,k − ω` ‖Cm(X) = O(`−n−2),

where we fix an arbitrary integer m satisfying m ≥ 5. Hence for each `� 1,

we can find a positive integer k(`)� 1 such that both (3.7) and (3.8) hold

for k = k(`). From now on, we assume

(3.9) k = k(`),

and ν`,k = ν`,k(`) will be written as ν` for simplicity. Then, since `ν` ≥ |γ̂k;α|
for all α, we have (∂θs;`,k/∂s)| s=−ν`

= O(1) by (3.6). Hence

(3.10)

∫
X

(∂θs;`,k/∂s) { (
√
−1∂∂̄θs;`,k)

n − ω n` } | s=−ν`
= O(`−n−2).

Put I1 := π` ν` ΣN`
α=1 λ

2
`,α |τ`,α|2 and I2 := π` ν` ΣN`

α=1 exp(−2γ̂k;α) |τ`,α|2.

Put also J1 := ΣN`
α=1 γ̂k;αλ

2
`,α|τ`,α|2 and J2 := ΣN`

α=1γ̂k;α exp(−2γ̂k;α)|τ`,α|2.

Then by (3.6), we obtain

(3.11)

∫
X

(∂θs;`,k/∂s) |s=−ν`
ω n` = A + B + P,

where A :=
∫
X{(J2/I2) − (J2/I1)}ω n` , B :=

∫
X{(J2/I1) − (J1/I1)}ω n` and

P :=
∫
X (J1/I1)ω n` . Note that J2/I2 = O(1) by `ν` ≥ |γ̂k;α|, while by (3.7),
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(I1 − I2)/I1 = O(`−n−2). Then

(3.12) A =

∫
X

J2

I2
· I1 − I2

I1
ωn` = O(`−n−2).

On the other hand by (3.7), J2 − J1 = O(`−n−2)(ΣN`
α=1 |γ̂k;α|λ2

`,α |τ`,α|2).

From this together with `ν` ≥ |γ̂k;α|, we obtain

(3.13) B =

∫
X

J2 − J1

I1
ω n` = O(`−n−2).

By (3.2), I1 = π` ν` ΣN`
α=1 |σ`,α|2 and J1 := ΣN`

α=1 γ̂k;α |σ`,α|2. Note also that

a0 := δ(µ`,k) satisfies 0 < a0 ≤ `n. Put a1 := c1(L)n[X]. In view of (3.1)

and (3.5), by adding up (3.10), (3.11), (3.12) and (3.13), we obtain

(3.14)


ḟ`,k(−ν`) = ` a0

∫
X{ (∂θs;`,k/∂s) (

√
−1∂∂̄θs;`,k)

n} |s=−ν`

= a0 { ` P + O(`−n−1) } =
∫
X

a0Σ
N`
α=1 γ̂k;α|σ`,α|

2
h`

π ν` Σ
N`
α=1|σ`,α|

2
h`

ωn` + O(`−1)

= a0 a1 (ΣN`
α=1 γ̂k;α) (π ν`N`)

−1 + O(`−1) = O(`−1),

where in the last line, we used the equality ΣN`
α=1 γ̂k;α = 0. In the next

section, the sequence of test configurations µ`,k(`) = (Xψ`,k(`) ,Lψ`,k(`) , ψ`,k(`)),

` ≥ `0, for (X,L) will be considered.

4. Proof of Main Thorem

In this section, under the same assumption as in the previous section, we

shall show that c1(L) admits a constant scalar curvature Kähler metric. Put

ν∞ := sup
`

ν`,

where the supremum is taken over all positive integers ` satisfying ` ≥ `0.

Then the following cases are possible:

Case 1: ν∞ = +∞. Case 2: ν∞ < +∞.

Step 1. If Case 1 occurs, then an increasing subsequence { `j ; j = 1, 2, . . . }
of { ` ∈ Z ; ` ≥ `0 } can be chosen in such a way that {ν`j} is a monotone

increasing sequence satisfying

(4.1) lim
j→∞

ν`j = +∞.

For simplicity, the functions f`j ,k(`j)
will be written as fj , while we write the

test configurations

µ`j ,k(`j)
= (Xψ`j ,k(`j) ,Lψ`j ,k(`j) , ψ`j ,k(`j)

), j = 1, 2, . . . ,
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as µj = (Xj ,Lj , ψj). Now by (3.14), there exists a positive constant C

independent of j such that

−C/`j ≤ ḟj(−ν`j )

for all j. On the other hand, for all positive integers j′ satisfying j′ ≥ j,

we have −ν`j′ ≤ −ν`j by monotonicity. Since the function ḟj′(s) in s is

non-decreasing, we obtain

(4.2) −C/`j′ ≤ ḟj′(−ν`j′ ) ≤ ḟj′(−ν`j ).

We here observe that −C/`j′ → 0 as j′ → ∞. It now follows from (4.2)

that, for each fixed j,

lim
j′→∞

ḟj′(−ν`j ) ≥ 0.

Since the function limj′→∞ ḟj′(s) in s is non-decreasing, we therefore obtain

lim
j′→∞

ḟj′(s) ≥ 0 for all s ≥ −ν`j ,

while this holds for all positive integers j. Then by (4.1), limj′→∞ ḟj′(s) is

a nonnegative function in s on the whole real line R. Hence

F1({µj}) = lim
s→−∞

{ lim
j′→∞

ḟj′(s)} ≥ 0.

Now by the strong K-stability of (X,L), we obtain F1({µj}) = 0, so that µj
are trivial for all j � 1. Then ψ`j ,k(`j) are trivial for all j � 1. This usually

gives us a contradiction. Even if not, however, by assuming the triviality of

µj for all j � 1, we proceed as follow. By (3.4), for all s ∈ R, we obtain
√
−1∂∂̄θs;`j ,k(`j) = (ωFS/`j)|X`j

= Φ∗`j (ωFS/`j), j � 1,

by identfying X`j with X via Φ`j , where by [15], ‖Φ∗`j (ωFS/`j) − ω ‖C5(X) =

O(`−2
j ). From this together with (3.8), we obtain

(4.3) ‖ω − ω`j ‖Cm(X) = O(`−2
j ), j � 1.

Let Sω be the scalar curvature function for ω. Then by [4] (see also [15]),

we obtain the following asymptotic expansion:

(4.4) 1 + (Sω/2)`−1
j +O(`−2

j ) = Σ
N`j
α=1(n!/`nj ) |τ`j ,α|

2
h = B`j (ω),

where for every Kähler form θ in c1(L)R, B`j (θ) denotes the `j-th asymptotic

Bergman kernel for (X, θ). On the other hand, for ` � 1, we observe that

N` is a polynomial in `. Since each ω`j is balanced, by setting ` = `j in (3.1)

and dividing both sides of the equality by `nj /n!, we obtain (cf. [7], (1.4))

(4.5) 1 + C0 `
−1
j + O(`−2

j ) = Σ
N`j
α=1(n!/`nj ) |σ`j ,α|

2
h`j

= B`j (ω`j ),
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where C0 is a real constant independent of the choice of j. In view of (4.3),

by comparing (4.4) with (4.5), we now conclude that Sω/2 = C0. Hence ω

is a constant scalar curvature Kähler metric in the class c1(L)R.

Step 2. Suppose that Case 2 occurs. Put λ̂`,α := −(1/`) log λ`,α. Then by

(3.3), we may assume that k = k(`) in (3.9) is chosen in such a way that

(4.6) γ̂k(`);α − 1 ≤ ` λ̂`,α ≤ γ̂k(`);α + 1, α = 1, 2, . . . , N`,

for all ` with ` ≥ `0. Then for each `, by using the notation in Definition

5.3 in Appendix, we have an `-th root

(Y(`),Q(`), D(`), ϕ`), ` ≥ `0,

of the test configuration µ`,k(`) in Section 3. Let χ`,β, β = 1, 2, . . . , N1,

be the weights of the TR-action via ϕSL
` on V ∗1 , where V1 := H0(X,L).

Put χ̂`,β := χ`,β/a`,k(`). For ` with ` ≥ `0, let α and β be arbitrary integers

satisfying 1 ≤ β ≤ N1 and 1 ≤ α ≤ N`. By (4.6) together with the definition

of ν`,k, we easily see from the inequality ν∞ < +∞ that

(4.7) |λ̂`,α| ≤ C1 and |χ̂`,β| ≤ C1,

where C1 is a positive real constant independent of the choices of `, α and

β (see [12] for the second inequality of (4.7) ; see also [10]). Let Z` :=

(ϕ`)∗(t∂/∂t) ∈ sl(V1) be the infinitesimal generator for the one-parameter

group ϕSL
` . Then by setting Ẑ` := Z`/a`,k(`), we obtain

Ẑ` · κ`,β = − χ̂`,βκ`,β, β = 1, 2, . . . , N1,

for a suitable orthonormal basis {κ`,1, κ`,2, . . . , κ`,N1} for (V1, ρ1). For the

sequence { Ẑ` ; ` ≥ `0 }, by choosing its suitable subsequence

{ Ẑ`j ; j = 1, 2, . . . },

we obtain real numbers χ̂∞,β ∈ R, β = 1, 2, . . . , N1, and an orthonormal

basis {κ∞,1, κ∞,2, . . . , κ∞,N1
} for V1 such that, for all β,

κ`j ,β → κ∞,β and χ̂`j ,β → χ̂∞,β,

as j → ∞. Hence we can define Ẑ∞ ∈ sl(V1) such that Ẑ∞ · κ∞,β =

− χ̂∞,βκ∞,β for all β. Then we have the following convergence in C∞:

(4.8) Ẑ`j → Ẑ∞, as j →∞.

For each `, in view of the relation t = exp(s/‖µ`,k(`)‖∞), s = −ν` corresponds

to t = t̂`, where t̂` := exp(−ν`/‖µ`,k(`)‖∞) = exp(−1/a`,k(`)). Until the end

of this section, test configurations µ`,k(`) for (X,L) will be written simply as

µ` = (X (`),L(`), ψ`), ` ≥ `0.
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For the test configuration µ`, each t ∈ T not as a complex number but as an

element of the group T of transformations on µ` will be written as gµ`(t).

For the Kodaira embedding Φ` : X ↪→ PN`−1(C) in Section 3, we consider

CN` \ {0} = {(z1, z2, . . . , zN`) 6= 0} over PN`(C), so that z = (z1, z2, . . . , zN`)

sits over [z] = (z1 : z2 : · · · : zN`). Since the restriction of OPN`−1(C) to X`

is viewed as L by identifying X with its image X` := Φ`(X), we can write

zα|X` = τ`,α, α = 1, 2, . . . , N`,

for the orthonormal basis {τ`,1, τ`,2, . . . , τ`,N`} of (V`, ρ`). We now define a

Hermitian metric φ` for L−1 by setting, for all [z] = Φ`(x) in X`,

φ`([z]) := { (n!/`n)ΣN`
α=1|zα|

2 }1/` = { (n!/`n)ΣN`
α=1|τ`,α(x)|2 }1/`,

where the line bundle L−` on X is viewed as the dual {L(`)
|X`}

−1 of the line

bundle L(`) restricted to X (`)
1 (= X`). Let Kt, t 6= 0, denote the set of all

Hermitian metrics on the line bundle {L(`)
|X (`)
t
}−1. Then the action by gµ`(t)

takes K1 to Kt. For instance, gµ`(t) takes the point z = (z1, z2, . . . , zN`)

to gµ`(t) · z = (tγk(`),1z1, t
γk(`),2z2, . . . , t

γk(`),N`zN`), while for each [z] ∈ X`,

φ`([z]) is mapped to the point gµ`(t) · φ`([z]) defined by

{ (n!/`n)ΣN`
α=1|gµ`(t) · zα|

2 }1/` = { (n!/`n)ΣN`
α=1|t|

2γk(`),α |zα|2 }1/`,

and this defines gµ`(t) ·φ` ∈ Kt. Now by [15], u` := (1/2π) log(φ`/h
∗) viewed

as a function on X can be estimated in the form

(4.9) ‖u`‖Cm+2(X) = O(`−2),

where the dual h∗ of h is viewed as a Hermitian metric for the line bundle

L−1. Put ω(`, t) := (
√
−1/2π)∂∂̄ log(gµ`(t)

∗{gµ`(t) · h∗}), t 6= 0. For the

Fubini-Study form ωFS in Section 3, its restriction to X` (= X) is written as

ωFS |X` = (
√
−1 `/2π)∂∂̄ log φ`.

Since ψ`(t)
∗(ωFS/`) = (

√
−1/2π)∂∂̄ log(gµ`(t)

∗{gµ`(t)·φ`}) on X` (see (3.4)),

we can rewrite it in the form (see [9])

(4.10) ψ`(t)
∗(ωFS/`) |X` = ω(`, t) +

√
−1 ∂∂̄u`.

Let us consider the test configuration µ̄` := (Y(`),Q(`), ϕ`) for (X,L) of

exponent 1. Each t ∈ T , not as a complex number but as an element of the

group T of transformations on µ̄`, will be denoted by gµ̄`(t). Then by (5.8)

in Appendix, we also have the expression

(4.11) ω(`, t) = (
√
−1/2π)∂∂̄ log(gµ̄`(t)

∗{gµ̄`(t) · h
∗}), t ∈ TR,

since for each such t, the action of gµ`(t) on |L|2/` coincides with the action

of gµ̄`(t) on |Q|2 up to constant scalar multiplication, where constant scalar

multiplication arises from the action on the factor |ζ|2/`. Since ω(`, t) doesn’t
10



change even if gµ̄`(t) ·h∗ in (4.11) is replaced by C(t)gµ̄`(t) ·h∗ for a positive

real constant C(t) possibly depending on t. Hence we may consider the

action by gµ̄`(t) on |L|2/` modulo constant scalar multiplication. In this

sense, for each t ∈ TR, the action by gµ̄`(t) in (4.11) is induced by the action

by the element ϕSL
` (t) in SL(V1). In particular for t = t̂`,

(4.12) gµ̄`(t̂`) ’s action is induced by ϕSL
` (t̂`) = exp(−Ẑ`) ∈ SL(V1).

For θs;`,k(`) := (1/2π) log{(ΣN`
α=1(n!/`n) t

2γ
k(`);α |τ`,α|2)1/`} in Section 3, at

the point s = −ν`, we see from (3.4) that

(4.13)
√
−1∂∂̄θs;`,k(`) |s=−ν` = ψ`(t̂`)

∗(ωFS/`) |X` .

Then by (3.8), (4.10) and (4.13),

(4.14) ‖ω` − ω(`, t̂`)−
√
−1∂∂̄u`‖Cm(X) = O(`−n−2).

For the element Ẑ∞ of sl(V1) in (4.8), we now define a subset Y(∞)
R of

R× P∗(V1) as the closure of⋃
s∈R
{± exp s} × exp(sẐ∞)(X1)

in the real manifold R × P∗(V1), where X1 is the image Φ1(X) of X under

the Kodaira embedding

Φ1 : X → P∗(V1)

associated to the complete linear system |L| on X. By the projection of

R × P∗(V1) to the first factor R, we see that Y(∞)
R has a natural structure

of a fiber space over R. Let Q(∞) denote the restriction to Y(∞)
R of the

pullback pr∗2OP∗(V1)(1), where pr2 : R × P∗(V1) → P∗(V1) is the projection

to the second factor. Then the TR-action on Y(∞)
R induced by

TR× (R×P∗(V1))→ R×P∗(V1), (exp s, (r, x)) 7→ ( (exp s)r, exp(sẐ∞) · x ),

naturally lifts to a TR-action on Q(∞). This action is induced by the Lie

group homomorphism ϕ∞ : R+ → SL(V1) defined by

ϕ∞(t) := exp( (log t)Ẑ∞ ), t ∈ R+.

For µ̄∞ := (Y(∞)
R ,Q(∞), ϕ∞), each t ∈ TR not as a real number but as

an element of the group TR of transformations on µ̄∞ will be written as

gµ̄∞(t). Consider the action by gµ̄∞(t̂`) on |Q(∞)|2 modulo constant scalar

multiplication. For t̂∞ := 1/e, we have ϕ∞(t̂∞) = exp(−Ẑ∞), and hence

(4.15) gµ̄∞(t̂∞) ’s action is induced by ϕ∞(t̂∞) = exp(−Ẑ∞) ∈ SL(V1).

Put ω∞ := (
√
−1/2π)∂∂̄ log(gµ̄∞(t̂∞)∗{gµ̄∞(t̂∞) · h∗}) (cf. Remark 5.9). By

(4.11), (4.12) and (4.15), it follows from (4.8) that

(4.16) ω(`j , t̂`j )→ ω∞ in C∞, as j →∞.
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Then by (4.9), (4.14) and (4.16),

(4.17) ω`j → ω∞ in Cm, as j →∞.

By (4.17), given a sufficiently small ε > 0, there exists a j0 � 1 such that

‖Sω`j − Sω∞‖C0(X) ≤ ε for all j ≥ j0. Hence by [4] (see also [15]),

| `j{B`j (ω`j )− N̂`j} − `j{B`j (ω∞)− N̂`j} | ≤ ε/2 + O(1/`j), j ≥ j0,

where N̂`j := (n!/`nj )N`j/c1(L)n[X]. On the other hand, since each ω`j is

balanced, we have B`j (ω`j ) = N̂`j for all j. It then follows that

| `j{B`j (ω∞)− N̂`j} | ≤ ε/2 + O(1/`j), j ≥ j0.

Hence, since N̂`j = 1 + C0`
−1
j + O(`−2

j ) for a real constant C0 independent

of j, again by [4] (see also [15]) applied to ω∞, we obtain

| (Sω∞/2) − C0 | ≤ ε/2 + O(1/`j), j ≥ j0,

so that by letting j →∞, we have | (Sω∞/2) − C0 | ≤ ε/2. Since ε > 0 can

be chosen arbitrarily, we obtain Sω∞ = 2C0, as required.

Remark 4.18. The (1, 1)-form ω∞ on X is positive-definite as follows: For

each t ∈ TR viewed as a real number, the fiber of Y(∞)
R over t ∈ R \ {0} will

be denoted by Yt, where Yt ∼= X biholomorphically. For simplicity, the fiber

(Q(∞))t of Q(∞) over t will be written as Qt, and gµ̄∞(t̂∞) will be written

as g. Then g takes Y1 holomorphically onto Yt̂∞ . Hence

(4.19) ω∞ = (
√
−1/2π)g∗∂∂̄ log(g · h∗).

Moreover g : Y1 → Yt′ lifts holomorphically to a map, denoted also by g

by abuse of terminology, of Q1 onto Qt̂∞ . By choosing a local base b for

Q1 on an open subset U of Y1, we can write h∗ as Hbb̄ for some positive

real-valued function H on U . Since ω = c1(L;h) is Kähler,
√
−1∂∂̄ logH is

positive-definite on U . Then by g · h∗ = (H ◦ g−1) g(b)g(b), we see that
√
−1∂∂̄ log(g · h∗) =

√
−1∂∂̄ log(H ◦ g−1)

is positive-definite on g(U). From this together with (4.19), we now conclude

that ω∞ is positive-definite.

5. Appendix

In this appendix, we consider a test configuration µ = (X ,L, ψ) for (X,L),

and let π : X → A1 be the associated T -equivariant projective morphism.

For the exponent ` of µ, ψ is an algebraic group homomorphism

ψ : C∗ → GL(V`),
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and by choosing a Hermitian metric h for L, we endow V` := H0(X,L⊗`)

with the Hermitian metric ρ` as in the introduction.

Definition 5.1. A pair (X̂ , L̂) of a non-singular irreducible algebraic variety

X̂ and an invertible sheaf L̂ over X̂ is called a T -equivariant desingularization

of (X ,L), if there exists a T -equivariant proper birational morphism ι : X̂ →
X , isomorphic over X \ X0, such that L̂ = ι∗L.

Theorem 5.2. There exist a T -equivariant desingularization (X̂ , L̂) of

(X ,L) and a test configuration (Y,Q, ϕ) for (X,L) of exponent 1 such that

L̂ = OX̂ (D̂)⊗ η∗Q⊗`,

where η : X̂ → Y is a T -equivariant proper birational morphism, isomorphic

over Y \ Y0, and D̂ is a divisor on X̂ sitting in X̂0 set-theoretically.

Definition 5.3. Taking the Q-divisor D := D̂/` on X̂ , we call the quadruple

(Y,Q, D, ϕ) an `-th root of the test configuration (X ,L, ψ).

Proof: Consider the relative Kodaira embedding

X ↪→ A1 × P∗(V`)

whose restriction Xz ↪→ {z} × P∗(V`) over each z ∈ A1 is the Kodaira

embedding of Xz by the complete linear system |Lz|. Let H be a general

member in the complete linear system |L| for the line bundle L on X. By

the identification X = X1, we view H as a divisor on X1. Then on the

projective bundle A1 × P∗(V`), a T -invariant irreducible reduced divisor δ

can be chosen as a projective subbundle such that

δ · X1 = `H,

where `H is viewed as a member of the complete linear system |L1| = |L⊗`|
on X1 = X. For X , we choose its proper T -equivariant desinguralization

ι : X̂ → X

isomorphic over X \X0. Put π̂ := π ◦ ι. Consider the T -invariant irreducible

reduced divisor H on X̂ obtained as the closure in X̂ of the preimage of⋃
t∈C∗
{t} × ψ(t)H

under the mapping ι, where H on X is viewd as a subset P∗(V`) via the

Kodaira embedding X ⊂ P∗(V`) associated to the complete linear system

|L⊗`|. Then we have the following equality of divisors on X̂ :

(5.4) ι∗(δ · X ) = D̂ + `H,
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where D̂ is an effective divisor on X with support sitting in X0 set-theoretically.

Since H is a T -invariant divisor on X̂ , the T -action on X̂ lifts to a T -

linearization of Q̂ := OX̂ (H). Since L = OX (δ · X ), by (5.4), we obtain

(5.5) L̂ = OX̂ (D̂)⊗ Q̂⊗`.

For the direct image sheaf F := π̂∗Q̂ over A1, let Fz be the fiber of F over

each z ∈ A1. Then we have a T -equivariant rational map

η : X̂ → P∗(F )

whose restriction over each z ∈ A1 \ {0} is the Kodaira embedding ηz :

X̂z ↪→ P∗(Fz) associated to the complete linear system |Q̂z| on X̂z. Put

Yz := ηz(X̂z). Then the open subset π̂−1(A1\{0}) of X̂ is naturally identified

with the T -invariant subset

Y◦ :=
⋃

06=z∈A1

Yz

of P∗(F ). Let Y be the T -invariant subvariety of P∗(F ) obtained as the

closure of Y◦ in P∗(F ), i.e., Y is the meromorphic image of X̂ under the

rational map η. Then the restriction

πY : Y → A1

to Y of the natural projection of P∗(F ) onto A1 is a T -equivariant projective

morphism with a relatively very ample invertible sheaf

Q := OP∗(F )(1)|Y

on the fiber space Y over A1. Note that π̂ = πY ◦ η. The T -action on

Q̂ naturally induces a T -action on F , and it then induces a T -action on

OY/A1(1) covering the T -action on Y. By the affirmative solution of T -

equivariant Serre’s conjecture, we have a T -equivariant trivialization

F ∼= A1 × F0,

where this isomorphism can be chosen in such a way that the Hermitian

metric ρ1 (= ρ` |`=1) as in the introduction on

F1 = V1 = H0(X,L)

is taken to a Hermitian metric on F0 which is preserved by the action of

the compact subgroup S1 ⊂ T (see [3]). By this trivialization, F0 can be

identified with F1 (= V1), so that the T -action on F0 induces a representation

ϕ : T → GL(V1).

Hence (Y,Q, ϕ) is a test configuration for (X,L) of exponent 1. Since Q̂ =

OX̂ (H), the base point set B for the subspace of H0(X̂0, Q̂0) associated to

F0 contains no components of dimension n. However, replacing X̂ by its
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suitable birational model obtained from X̂ by a sequence of T -equivariant

blowing-ups with centers sitting over B, we may assume without loss of

generality that B is purely n-dimensional, i.e., B = ∅. Now the rational

map η : X̂ → Y ⊂ P∗(F ) is holomorphic, and hence

Q̂ = η∗Q,

as required. This together with (5.5) completes the proof of Theorem 5.2.

Remark 5.6. Note that the divisor D̂ on X̂ is preserved by the T -action.

Since OX̂ (D̂) = η∗Q⊗`⊗ L̂−1, the actions of T (= C∗) on Q and L̂ induce a

T -action on the invertible sheaf OX̂ (D̂). Let ζ be a natural nonzero section

for OX̂ (D̂) on X̂ having D̂ as the divisor zero(ζ) of the zeroes. Then the

action of each element t of T on the line Cζ is written as

ζ 7→ tαζ,

where α ∈ Z is the weight of the T -action on Cζ.

For test configurations µ and µ̄ := (Y,Q, ϕ) above, each t ∈ T not as

a complex number but as an element of the group T of transformation on

µ and µ̄ will be written as gµ(t) and gµ̄(t), repectively. Let Aut(L̂) and

Aut(Q) denote the groups of all biholomorphisms of the total spaces of L̂
and Q, respectively. Then for ϕ in Theorem 5.2, the T -linearization of Q
defines a T -action on the real line bundle |Q|2 := Q⊗ Q̄ over X by

gµ̄(t) · |q|2 := |gµ̄(t) · q|2 = |ϕ̃(t)(q)|2, (t, q) ∈ T ×Q,

where ϕ̃ : T → Aut(Q) denotes the homomorphism induced by ϕ. Note

also that the T -linearization of L̂ induces a T -action on the real line bundle

|L̂|2 := L̂ ⊗ L̄ such that

gµ(t) · |σ|2 := |gµ(t) · σ|2 = |ψ̃(t)(σ)|2, (t, σ) ∈ T × L̂,

where ψ̃ : T → Aut(L̂) denotes the homomorphism induced by ψ. Note that

both gµ̄(t) and gµ(t) come from the same T -action. Then for Q̂ := η∗Q, by

Theorem 5.2, we see that

(5.7) |L̂|2/` = |ζ|2/` |Q̂|2,

where TR acts on the real line R|ζ|2/` with weight 2α/`, so that gµ(t)·|ζ|2/` =

t2α/`|ζ|2/` for all t ∈ TR. Since birational morphisms ι and η are isomorphic

over A1\{0}, by restricting them to {z 6= 0}, we can identify the line bundles

L̂ and Q̂ with L and Q, respectively. Hence (5.7) restricts to

(5.8) |L|2/` = |ζ|2/`|Q|2, z 6= 0.

Remark 5.9. The restriction of ζ to z = 1 gives a non-vanishing holomorphic
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section for OX̂ (D̂)|X̂0
. Define a Hermitian metric ρ for OX̂ (D̂)|X̂0

by

|ζ|X̂0
|2ρ = 1

everywhere on X̂0. Then by Theorem 5.2, when restricted to z = 1, we

may assume that L and Q⊗` coincides holomorphically and metrically. In

particular, any Hermitian metric for L can be viewed as a Hermitian metric

for Q|X̂0
via the identification of X̂0 with X.
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[15] S. Zelditch: Szegö kernels and a theorem of Tian, Int. Math. Res. Not. 6 (1998),

317–331.

[16] S. Zhang: Heights and reductions of semi-stable varieties, Compositio Math. 104

(1996), 77–105.

Department of Mathematics

Osaka University

Toyonaka, Osaka, 560-0043

Japan

16


