THE YAU-TIAN-DONALDSON CONJECTURE FOR GENERAL POLARIZATIONS

TOSHIKI MABUCHI[∗]

Abstract. In this paper, assuming that a polarized algebraic manifold (X, L) is strongly K-stable in the sense of [8], we shall show that the class $c_1(L)_{\mathbb{R}}$ admits a constant scalar curvature Kähler metric. Since strong K-stability implies asymptotic Chow-stability (cf. [11]), we have a sequence $\{\omega_i\}$ of balanced metrics in the class $c_1(L)_{\mathbb{R}}$. Replace the sequence by its suitable subsequence if necessary. Then if $\{\omega_i\}$ were not convergent, the associated sequence $\{\mu_i\}$ of polarized test configurations would satisfy the inequality

 $F_1({\{\mu_i\}}) \geq 0$

in contradiction to strong K-stability for (X, L) . Hence the sequence $\{\omega_i\}$ converges to a constant scalar curvature Kähler metric in $c_1(L)_{\mathbb{R}}$.

1. INTRODUCTION

By a *polarized algebraic manifold* (X, L) , we mean a pair of a nonsingular irreducible projective algebraic variety X , defined over \mathbb{C} , and a very ample line bundle L over X . Replacing L by its positive integral multiple if necessary, we may assume that

$$
H^{q}(X, L^{\otimes \ell}) = \{0\}, \qquad \ell = 1, 2, \ldots; q = 1, 2, \ldots, n,
$$

where n is the complex dimension of X . In this paper, we fix once for all such a pair (X, L) . For the affine line $\mathbb{A}^1 := \{z \in \mathbb{C}\}\,$, let the algebraic torus $T := \mathbb{C}^*$ act on \mathbb{A}^1 by multiplication of complex numbers

$$
T \times \mathbb{A}^1 \to \mathbb{A}^1, \qquad (t, z) \mapsto tz.
$$

By fixing a Hermitian metric h for L such that $\omega := c_1(L; h)$ is Kähler, we endow the space $V_{\ell} := H^0(X, L^{\otimes \ell})$ of holomorphic sections for $L^{\otimes \ell}$ with the Hermitian metric ρ_{ℓ} defined by

$$
\langle \sigma', \sigma'' \rangle_{\rho_{\ell}} := \int_X (\sigma', \sigma'')_h \, \omega^n, \qquad \sigma', \sigma'' \in V_{\ell},
$$

where $(\sigma', \sigma'')_h$ denotes the pointwise Hermitian inner product of σ' and σ'' by the l-multiple of h. For the Kodaira embedding $Φ_{\ell}$: $X \hookrightarrow \mathbb{P}^*(V_{\ell})$

[∗]Supported by JSPS Grant-in-Aid for Scientific Research (A) No. 20244005.

associated to the complete linear system $|L^{\otimes \ell}|$ on X, we put $X_{\ell} := \Phi_{\ell}(X)$. Let $\psi : \mathbb{C}^* \to GL(V_{\ell})$ be an algebraic group homomorphism such that the compact subgroup $S^1 \subset \mathbb{C}^* (= T)$ acts isometrically on (V_{ℓ}, ρ_{ℓ}) . Take the irreducible algebraic subvariety \mathcal{X}^{ψ} of $\mathbb{A}^1 \times \mathbb{P}^*(V_{\ell})$ obtained as the closure of $\cup_{z\in\mathbb{C}^*}\mathcal{X}_z^{\psi}$ in $\mathbb{A}^1\times\mathbb{P}^*(V_{\ell})$. Here we set

$$
\mathcal{X}_z^{\psi} := \{z\} \times \psi(z)\Phi_{\ell}(X), \qquad z \in \mathbb{C}^*,
$$

and $\psi(z)$ in $GL(V_{\ell})$ acts naturally on the space $\mathbb{P}^*(V_{\ell})$ of all hyperplanes in V_{ℓ} passing through the origin. We then consider the map

$$
\pi: \mathcal{X}^\psi \to \mathbb{A}^1
$$

induced by the projection of $\mathbb{A}^1 \times \mathbb{P}^*(V_\ell)$ to the first factor \mathbb{A}^1 . Moreover, for the hyperplane bundle $\mathcal{O}_{\mathbb{P}^*(V_{\ell})}(1)$ on $\mathbb{P}^*(V_{\ell})$, we consider the pullback

$$
\mathcal{L}^\psi\,:=\,\operatorname{pr}_2^*\mathcal{O}_{\mathbb{P}^*(V_\ell)}(1)_{|\mathcal{X}^\psi},
$$

where $pr_2: \mathbb{A}^1 \times \mathbb{P}^*(V_\ell) \to \mathbb{P}^*(V_\ell)$ denotes the projection to the second factor. For the dual space V_{ℓ}^* of V_{ℓ} , the \mathbb{C}^* -action on $\mathbb{A}^1 \times V_{\ell}^*$ defined by

$$
\mathbb{C}^*\times(\mathbb{A}^1\times V_\ell^*)\to \mathbb{A}^1\times V_\ell^*,\quad (t,(z,p))\mapsto (tz,\psi(t)p),
$$

naturally induces the \mathbb{C}^* -action on $\mathbb{A}^1 \times \mathbb{P}^*(V_\ell)$ and $\mathcal{O}_{\mathbb{P}^*(V_\ell)}(-1)$, where $GL(V_\ell)$ acts on V_ℓ^* by the contragradient representation. This then induces \mathbb{C}^* -actions on \mathcal{X}^{ψ} and \mathcal{L}^{ψ} , and $\pi: \mathcal{X}^{\psi} \to \mathbb{A}^1$ is a \mathbb{C}^* -equivariant projective morphism with relative very ample line bundle \mathcal{L}^{ψ} such that

$$
(\mathcal{X}_z^{\psi}, \mathcal{L}_z^{\psi}) \,\,\cong\,\, (X, L^{\otimes \ell}), \qquad z \neq 0,
$$

where \mathcal{L}_z^{ψ} is the restriction of \mathcal{L}^{ψ} to $\mathcal{X}_z^{\psi} := \pi^{-1}(z)$. Then a triple $(\mathcal{X}, \mathcal{L}, \psi)$ is called a test configuration for (X, L) , if we have both $\mathcal{X} = \mathcal{X}^{\psi}$ and $\mathcal{L} = \mathcal{L}^{\psi}$. Here ℓ is called the *exponent* of $(\mathcal{X}, \mathcal{L}, \psi)$. From now on until the end of Step 1 of Section 4, for $(\mathcal{X}, \mathcal{L}, \psi)$ to be a test configuration, we make an additional assumption that ψ is written in the form

$$
\psi: \mathbb{C}^* \to \mathrm{SL}(V_{\ell}).
$$

Then $(\mathcal{X}, \mathcal{L}, \psi)$ is called *trivial*, if ψ is a trivial homomorphism. We now consider the set M of all sequences $\{\mu_i\}$ of test configurations

$$
\mu_j = (\mathcal{X}_j, \mathcal{L}_j, \psi_j), \qquad j = 1, 2, \dots,
$$

for (X, L) such that for each j, the exponent ℓ_j of the test configuration μ_j satisfies the following condition:

$$
\ell_j \to \infty
$$
, as $j \to \infty$.

In [8], for each $\{\mu_i\} \in \mathcal{M}$, we defined the Donaldson-Futaki invariant $F_1(\{\mu_i\}) \in \mathbb{R} \cup \{-\infty\}.$ Then we have the strong version of K-stability and K-semistability as follows:

Definition 1.1. (1) The polarized algebraic manifold (X, L) is called *strongly* K-semistable, if $F_1({\mu_i}) \leq 0$ for all ${\mu_i} \in \mathcal{M}$.

(2) A strongly K-semistable polarized algebraic manifold (X, L) is called strongly K-stable, if for every $\{\mu_i\} \in \mathcal{M}$ satisfying $F_1(\{\mu_i\}) = 0$, there exists a j_0 such that μ_j are trivial for all j with $j \geq j_0$.

Recall that these stabilities are independent of the choice of the Hermitian metric h for L (see [12]). The purpose of this paper is to show the following:

Main Theorem. If (X, L) is strongly K-stable, then the class $c_1(L)_{\mathbb{R}}$ admits a constant scalar curvature Kähler metric.

2. THE DONALDSON-FUTAKI INVARIANT F_1 on M

Definition 2.1. For a complex vector space V, let $\phi: T \to GL(V)$ be an algebraic group homomorphism. For the real Lie subgroup

$$
T_{\mathbb{R}} := \{ t \in T \, ; \, t \in \mathbb{R}_+ \}
$$

of the algebraic torus $T = \{t \in \mathbb{C}^*\}$, we define the associated Lie group homomorphism $\phi^{\text{SL}}: T_{\mathbb{R}} \to \text{SL}(V)$ by

$$
\phi^{\text{SL}}(t) := \frac{\phi(t)}{\det(\phi(t))^{1/N}}, \qquad t \in T_{\mathbb{R}},
$$

where $N := \dim V$. Let b_1, b_2, \ldots, b_N be the weights of the action by ϕ^{SL} on the dual vector space V^* of V , so that we have the equalities

$$
\phi^{\text{SL}}(t) \cdot \sigma_{\alpha} = t^{-b_{\alpha}} \sigma_{\alpha}, \qquad \alpha = 1, 2, \dots, N,
$$

for some basis $\{\sigma_1, \sigma_2, \ldots, \sigma_N\}$ of V. Then we define $\|\phi\|_1$ and $\|\phi\|_{\infty}$ by

$$
\|\phi\|_1 := \sum_{\alpha=1}^N |b_{\alpha}|
$$
 and $\|\phi\|_{\infty} := \max\{|b_1|, |b_2|, \ldots, |b_N|\}.$

Definition 2.2. Put $d := \ell^n c_1(L)^n[X]$. For (V_ℓ, ρ_ℓ) in the introduction, we define a space W_{ℓ} by

$$
W_{\ell} := \{ \operatorname{Sym}^{d}(V_{\ell}) \}^{\otimes n+1},
$$

where $Sym^d(V_\ell)$ is the d-th symmetric tensor product of V_ℓ . Then the dual space W_ℓ^* of W_ℓ admits the Chow norm (cf. [16])

$$
W^*_{\ell} \ni w ~\mapsto~ \|w\|_{\operatorname{CH}(\rho_{\ell})} \in \mathbb{R}_{\geq 0},
$$

associated to the Hermitian metric ρ_{ℓ} on V_{ℓ} . For the Kodaira embedding $\Phi_{\ell}: X \hookrightarrow \mathbb{P}^*(V_{\ell})$ as in the introduction, let

$$
0\neq \hat{X}_\ell\in W^*_\ell
$$

be the associated Chow form for $X_{\ell} = \Phi_{\ell}(X)$ viewed as an irreducible reduced algebraic cycle on the projective space $\mathbb{P}^*(V_{\ell})$.

Let $\mu_j = (\mathcal{X}_j, \mathcal{L}_j, \psi_j), j = 1, 2, \dots$, be a sequence of test configurations for (X, L) . We then define $\|\mu_i\|_1$ and $\|\mu_i\|_{\infty}$ by

(2.3)
$$
\|\mu_j\|_1 := \|\psi_j\|_1 / \ell_j^{n+1} \text{ and } \|\mu_j\|_{\infty} := \|\psi_j\|_{\infty} / \ell_j,
$$

where ℓ_j denotes the exponent of the test configuration μ_j . Let $\delta(\mu_j)$ be $\|\mu_j\|_{\infty}/\|\mu_j\|_1$ or 1 according as $\|\mu_j\|_{\infty} \neq 0$ or $\|\mu_j\|_{\infty} = 0$. If $\|\mu_j\|_{\infty} \neq 0$, we write $t \in T_{\mathbb{R}}$ as $t = \exp(s/\Vert \mu_i \Vert_{\infty})$ for some $s \in \mathbb{R}$, while we require no relation between $s \in \mathbb{R}$ and $t \in T_{\mathbb{R}}$ if $\|\mu_{j}\|_{\infty} = 0$. Note that

$$
\psi_j^{\mathrm{SL}}:T_{\mathbb{R}}\to\mathrm{SL}(V_{\ell_j})
$$

is just the restriction of ψ_j to $T_{\mathbb{R}}$. Since the group $SL(V_{\ell_j})$ acts naturally on $W_{\ell_j}^*$, we can define a real-valued function $f_j = f_j(s)$ on \mathbb{R} by

$$
(2.4) \t f_j(s) := \delta(\mu_j) \ell_j^{-n} \log \|\psi_j(t) \cdot \hat{X}_{\ell_j}\|_{\text{CH}(\rho_{\ell_j})}, \t s \in \mathbb{R}.
$$

Put $\dot{f}_i := df_i/ds$. Here, once h is fixed, the derivative $\dot{f}_i(0)$ is bounded from above by a positive constant C independent of the choice of j (see [8]). Hence we can define $F_1(\{\mu_i\}) \in \mathbb{R} \cup \{-\infty\}$ by

(2.5)
$$
F_1(\{\mu_j\}) := \lim_{s \to -\infty} \{\lim_{j \to \infty} \dot{f}_j(s)\} \leq C,
$$

since the function $\underline{\lim}_{j\to\infty} \dot{f}_j(s)$ is non-decreasing in s by convexity of the function f_i (cf. [16]; see also [5], Theorem 4.5).

3. Test configurations associated to balanced metrics

Hereafter, we assume that the polarized algebraic manifold (X, L) is strongly K-stable. Then by [11], (X, L) is asymptotically Chow-stable, and hence for some $\ell_0 \gg 1$, for all $\ell \geq \ell_0$, there exists a Hermitian metric h_ℓ for L such that $\omega_{\ell} := c_1(L; h_{\ell})$ is a balanced Kähler metric (cf. [1], [16]) on $(X, L^{\otimes \ell})$ in the sense that

(3.1)
$$
|\sigma_1|^2_{h_\ell} + |\sigma_2|^2_{h_\ell} + \cdots + |\sigma_{N_\ell}|^2_{h_\ell} = N_\ell/c_1(L)^n[X],
$$

where $\{\sigma_{\alpha}; \alpha = 1, 2, \ldots, N_{\ell}\}\$ is an arbitrarily chosen orthonormal basis for (V_{ℓ}, ρ_{ℓ}) . Let $\hat{\rho}_{\ell}$ be the associated Hermitian metric on V_{ℓ} defined by

$$
\langle \sigma', \sigma'' \rangle_{\hat{\rho}_\ell} := \int_X (\sigma', \sigma'')_{h_\ell} \,\omega_\ell^n, \qquad \sigma', \sigma'' \in V_\ell
$$

,

where $(\sigma', \sigma'')_{h_\ell}$ denotes the pointwise Hermitian inner product of σ and σ' by the ℓ -multiple of h_ℓ . Now we can find orthonormal bases

$$
\{\sigma_{\ell,1}, \sigma_{\ell,2}, \ldots, \sigma_{\ell,N_{\ell}}\} \quad \text{and} \quad \{\tau_{\ell,1}, \tau_{\ell,2}, \ldots, \tau_{\ell,N_{\ell}}\}
$$

for $(V_{\ell}, \hat{\rho}_{\ell})$ and (V_{ℓ}, ρ_{ℓ}) , respectively, such that

(3.2)
$$
\sigma_{\ell,\alpha} = \lambda_{\ell,\alpha} \tau_{\ell,\alpha}, \qquad \alpha = 1, 2, \ldots, N_{\ell},
$$

for some positive real numbers $\lambda_{\ell,\alpha}$. Multiplying h_{ℓ} by a positive real constant which possibly depends on ℓ , we may assume that

$$
\Pi_{\alpha=1}^{N_{\ell}}\lambda_{\ell,\alpha}=1.
$$

Then for each $\ell \geq \ell_0$, we have a sequence of points $\hat{\gamma}_k = (\hat{\gamma}_{k;1}, \hat{\gamma}_{k;2}, \dots, \hat{\gamma}_{k;N_\ell}),$ $k = 1, 2, \dots$, in $\mathbb{Q}^{N_{\ell}}$ such that $\sum_{\alpha=1}^{N_{\ell}} \hat{\gamma}_{k;\alpha} = 0$ for all k, and that

(3.3)
$$
\hat{\gamma}_k \to -(\log \lambda_{\ell,1}, \log \lambda_{\ell,2}, \dots, \log \lambda_{\ell,N_{\ell}}), \text{ as } k \to \infty.
$$

Let $a_{\ell,k}$ be the smallest positive integer such that $a_{\ell,k}\hat{\gamma}_k$ is integral. By rewriting $a_{\ell,k}\hat{\gamma}_k$ as $\gamma_k = (\gamma_{k;1}, \gamma_{k;2}, \ldots, \gamma_{k;N_\ell})$ for simplicity, we now define an algebraic group homomorphism $\psi_{\ell,k} : T \subset \{ t \in \mathbb{C}^* \} \to SL(V_{\ell})$ by setting

$$
\psi_{\ell,k}(t) \cdot \tau_{\ell,\alpha} := t^{-\gamma_{k;\alpha}} \tau_{\ell,\alpha}, \qquad \alpha = 1,2,\ldots,N_{\ell},
$$

for all $t \in \mathbb{C}^*$. Let $\{\tau_{\ell,\alpha}^*; \alpha = 1, 2, \ldots, N_\ell\}$ be the basis for V_ℓ^* dual to $\{\tau_{\ell,\alpha}$; $\alpha = 1, 2, \ldots, N_{\ell}\}\$ defined by

$$
\langle \tau_{\ell,\alpha}, \tau_{\ell,\beta}^* \rangle \; = \; \begin{cases} \; & \text{if} \; \alpha = \beta, \\ \; & \text{if} \; \alpha \neq \beta. \end{cases}
$$

Then $\psi_{\ell,k}(t) \cdot \tau_{\ell,\alpha}^* = t^{\gamma_{k;\alpha}} \tau_{\ell,\alpha}^*$. Each $\vec{z} = (z_1, z_2, \dots, z_{N_\ell}) \in \mathbb{C}^{N_\ell} \setminus \{0\}$ sitting over $(z_1 : z_2 : \cdots : z_{N_\ell}) \in \mathbb{P}^{N_\ell-1}(\mathbb{C}) = \mathbb{P}^*(V_\ell)$ is expressible as $\Sigma_{\alpha=1}^{N_\ell} z_\alpha \tau_{\ell,\alpha}^*$, and hence the action by $t \in \mathbb{C}^*$ on \vec{z} is written in the form

$$
(z_1, z_2, \ldots, z_{N_{\ell}}) \ \mapsto \ (t^{\gamma_{k;1}} z_1, t^{\gamma_{k;2}} z_2, \ldots, t^{\gamma_{k;N_{\ell}}} z_{N_{\ell}}).
$$

We now identify X with the subvariety $X_{\ell} := \Phi_{\ell}(X)$ in the projective space $\mathbb{P}^*(V_\ell) = \mathbb{P}^{N_\ell-1}(\mathbb{C}) = \{(z_1 : z_2 : \cdots : z_{N_\ell})\}$ via the Kodaira embedding

$$
\Phi_{\ell}(x) := (\tau_{\ell,1}(x) : \tau_{\ell,2}(x) : \cdots : \tau_{\ell,2}(x)), \qquad x \in X.
$$

For each $\ell \geq \ell_0$, we observe that $SL(V_\ell)$ acts naturally on W^*_ℓ . Then by considering the sequence of test configurations

$$
\mu_{\ell,k} = (\mathcal{X}^{\psi_{\ell,k}}, \mathcal{L}^{\psi_{\ell,k}}, \psi_{\ell,k}), \qquad k = 1, 2, \dots,
$$

associated to $\psi_{\ell,k}$, we define a real-valued function $f_{\ell,k} = f_{\ell,k}(s)$ on the real line $\mathbb{R} = \{-\infty < s < +\infty\}$ by

$$
f_{\ell,k}(s) \; := \; \delta(\mu_{\ell,k}) \, \ell^{-n} \log \| \psi_{\ell,k}(t) \cdot \hat{X}_{\ell} \|_{\operatorname{CH}(\rho_{\ell})}.
$$

Here $s \in \mathbb{R}$ and $t \in \mathbb{R}_+$ are related by $t = \exp(s/\|\mu_{\ell,k}\|_{\infty})$ for $\|\mu_{\ell,k}\|_{\infty} \neq 0$, while we require no relations between $s \in \mathbb{R}$ and $t \in \mathbb{R}_+$ if $\|\mu_{\ell,k}\|_{\infty} = 0$. Put $\dot{f}_{\ell,k} := df_{\ell,k}/ds$ and $\theta_{s;\ell,k} := (1/2\pi) \log \{ (\sum_{\alpha=1}^{N_{\ell}} (n!/ \ell^{n}) t^{2\gamma_{k;\alpha}} | \tau_{\ell,\alpha}|^{2})^{1/\ell} \}.$ Then on X_{ℓ} viewed also as X via Φ_{ℓ} , we can write

(3.4)
$$
\psi_{\ell,k}(t)^*(\omega_{\rm FS}/\ell) = \sqrt{-1}\partial\bar{\partial}\theta_{s;\ell,k},
$$

where $\omega_{\rm FS} := (\sqrt{-1}/2\pi)\partial\bar{\partial}\log\{(\Sigma_{\alpha=1}^{N_{\ell}}(n!/ \ell^n)|z_{\alpha}|^2)^{1/\ell}\},\$ and $\psi_{\ell,k}(t)$ is regarded as a mapping from $X_{\ell} = (\mathcal{X}^{\psi_{\ell,k}})_{1}$ to $\psi_{\ell,k}(t)(X_{\ell}) = (\mathcal{X}^{\psi_{\ell,k}})_{t}$. In view of $[16]$ (see also $[5]$ and $[13]$), we obtain

(3.5)
$$
\dot{f}_{\ell,k}(s) = \ell \, \delta(\mu_{\ell,k}) \int_X (\partial \theta_{s;\ell,k}/\partial s) \, (\sqrt{-1} \partial \bar{\partial} \theta_{s;\ell,k})^n.
$$

Put $\nu_{\ell,k} := \|\mu_{\ell,k}\|_{\infty}/a_{\ell,k} = \max\{ |\hat{\gamma}_{k;\alpha}|/\ell; \alpha = 1, 2, \ldots, N_{\ell} \}$, where for the time being, we vary ℓ and k independently. Then

(3.6)
$$
(\partial \theta_{s;\ell,k}/\partial s)_{|s=-\nu_{\ell,k}} = \frac{\sum_{\alpha=1}^{N_{\ell}} \hat{\gamma}_{k;\alpha} \exp(-2\hat{\gamma}_{k;\alpha}) |\tau_{\ell,\alpha}|^2}{\pi \ell \nu_{\ell,k} \sum_{\alpha=1}^{N_{\ell}} \exp(-2\hat{\gamma}_{k;\alpha}) |\tau_{\ell,\alpha}|^2}.
$$

Now for each integer r, let $O(\ell^r)$ denote a function u satisfying the inequality $|u| \leq C_0 \ell^r$ for some positive constant C_0 independent of the choices of k, ℓ , and α . We now fix a positive integer $\ell \gg 1$. Then by (3.3), we obtain

(3.7)
$$
\lambda_{\ell,\alpha}^{-2} \exp(-2\hat{\gamma}_{k;\alpha}) - 1 = O(\ell^{-n-2}), \qquad k \gg 1.
$$

Moreover, in view of (3.1) and (3.2), the Kähler form ω_{ℓ} is written as (wherever, in view of (5.1) and (5.2), the Kallier form ω_{ℓ} is written as $\sqrt{-1}/2\pi\partial\bar{\partial}\log\{(\sum_{\alpha=1}^{N_{\ell}}(n!/\ell^{n})\lambda_{\ell,\alpha}^{2}|\tau_{\ell,\alpha}|^{2})^{1/\ell}\}.$ Now by (3.3), as $k \to \infty$, we have $\sqrt{-1}\partial\bar{\partial}\theta_{s;\ell,k}|_{s=-\nu_{\ell,k}} \to \omega_{\ell}$ in C^{∞} . In particular for $k \gg 1$, we can further assume that

(3.8)
$$
\|\sqrt{-1}\partial\bar{\partial}\theta_{s;\ell,k}\|_{s=-\nu_{\ell,k}} - \omega_{\ell}\|_{C^m(X)} = O(\ell^{-n-2}),
$$

where we fix an arbitrary integer m satisfying $m \geq 5$. Hence for each $\ell \gg 1$, we can find a positive integer $k(\ell) \gg 1$ such that both (3.7) and (3.8) hold for $k = k(\ell)$. From now on, we assume

$$
(3.9) \t\t k = k(\ell),
$$

and $\nu_{\ell,k} = \nu_{\ell,k(\ell)}$ will be written as ν_{ℓ} for simplicity. Then, since $\ell \nu_{\ell} \geq |\hat{\gamma}_{k;\alpha}|$ for all α , we have $(\partial \theta_{s;\ell,k}/\partial s)_{|s=-\nu_{\ell}} = O(1)$ by (3.6). Hence

$$
(3.10) \qquad \int_X (\partial \theta_{s;\ell,k}/\partial s) \left\{ \left(\sqrt{-1} \partial \overline{\partial} \theta_{s;\ell,k} \right)^n - \omega_\ell^n \right\}_{|s=-\nu_\ell} = O(\ell^{-n-2}).
$$

Put $I_1 := \pi \ell \nu_\ell \sum_{\alpha=1}^{N_\ell} \lambda_{\ell,\alpha}^2 |\tau_{\ell,\alpha}|^2$ and $I_2 := \pi \ell \nu_\ell \sum_{\alpha=1}^{N_\ell} \exp(-2\hat{\gamma}_{k;\alpha}) |\tau_{\ell,\alpha}|^2$. Put also $J_1 := \sum_{\alpha=1}^{N_{\ell}} \hat{\gamma}_{k;\alpha} \lambda_{\ell,\alpha}^2 |\tau_{\ell,\alpha}|^2$ and $J_2 := \sum_{\alpha=1}^{N_{\ell}} \hat{\gamma}_{k;\alpha} \exp(-2\hat{\gamma}_{k;\alpha}) |\tau_{\ell,\alpha}|^2$. Then by (3.6), we obtain

(3.11)
$$
\int_X \left(\partial \theta_{s;\ell,k}/\partial s\right)_{|s=-\nu_\ell} \omega_\ell^n = A + B + P,
$$

where $A := \int_X \{ (J_2/I_2) - (J_2/I_1) \} \omega_{\ell}^n$, $B := \int_X \{ (J_2/I_1) - (J_1/I_1) \} \omega_{\ell}^n$ and $P := \int_X (J_1/I_1) \omega_{\ell}^n$. Note that $J_2/I_2 = O(1)$ by $\ell \nu_{\ell} \geq |\hat{\gamma}_{k;\alpha}|$, while by (3.7),

$$
(I_1 - I_2)/I_1 = O(\ell^{-n-2})
$$
. Then
(3.12)
$$
A = \int_X \frac{J_2}{I_2} \cdot \frac{I_1 - I_2}{I_1} \omega_{\ell}^n = O(\ell^{-n-2}).
$$

On the other hand by (3.7), $J_2 - J_1 = O(\ell^{-n-2}) \left(\sum_{\alpha=1}^{N_{\ell}} |\hat{\gamma}_{k,\alpha}| \lambda_{\ell,\alpha}^2 |\tau_{\ell,\alpha}|^2 \right)$. From this together with $\ell \nu_\ell \geq |\hat{\gamma}_{k;\alpha}|$, we obtain

(3.13)
$$
B = \int_X \frac{J_2 - J_1}{I_1} \omega_{\ell}^{n} = O(\ell^{-n-2}).
$$

By (3.2), $I_1 = \pi \ell \nu_\ell \sum_{\alpha=1}^{N_\ell} |\sigma_{\ell,\alpha}|^2$ and $J_1 := \sum_{\alpha=1}^{N_\ell} \hat{\gamma}_{k;\alpha} |\sigma_{\ell,\alpha}|^2$. Note also that $a_0 := \delta(\mu_{\ell,k})$ satisfies $0 < a_0 \leq \ell^n$. Put $a_1 := c_1(L)^n[X]$. In view of (3.1) and (3.5) , by adding up (3.10) , (3.11) , (3.12) and (3.13) , we obtain

$$
(3.14) \begin{cases} \dot{f}_{\ell,k}(-\nu_{\ell}) = \ell a_0 \int_X \{ (\partial \theta_{s;\ell,k}/\partial s) (\sqrt{-1} \partial \bar{\partial} \theta_{s;\ell,k})^n \}_{|s=-\nu_{\ell}} \\ = a_0 \{ \ell P + O(\ell^{-n-1}) \} = \int_X \frac{a_0 \sum_{\alpha=1}^{N_{\ell}} \hat{\gamma}_{k;\alpha} |\sigma_{\ell,\alpha}|_{h_{\ell}}^2}{\pi \nu_{\ell} \sum_{\alpha=1}^{N_{\ell}} |\sigma_{\ell,\alpha}|_{h_{\ell}}^2} \omega_{\ell}^n + O(\ell^{-1}) \\ = a_0 a_1 (\sum_{\alpha=1}^{N_{\ell}} \hat{\gamma}_{k;\alpha}) (\pi \nu_{\ell} N_{\ell})^{-1} + O(\ell^{-1}) = O(\ell^{-1}), \end{cases}
$$

where in the last line, we used the equality $\Sigma_{\alpha=1}^{N_{\ell}} \hat{\gamma}_{k;\alpha} = 0$. In the next $\text{section, the sequence of test configurations }\mu_{\ell,k(\ell)} = (\mathcal{X}^{\psi_{\ell,k(\ell)}}, \mathcal{L}^{\psi_{\ell,k(\ell)}}, \psi_{\ell,k(\ell)}),$ $\ell \geq \ell_0$, for (X, L) will be considered.

4. Proof of Main Thorem

In this section, under the same assumption as in the previous section, we shall show that $c_1(L)$ admits a constant scalar curvature Kähler metric. Put

$$
\nu_\infty\ :=\ \sup_\ell\ \nu_\ell,
$$

where the supremum is taken over all positive integers ℓ satisfying $\ell \geq \ell_0$. Then the following cases are possible:

Case 1:
$$
\nu_{\infty} = +\infty
$$
. Case 2: $\nu_{\infty} < +\infty$.

Step 1. If Case 1 occurs, then an increasing subsequence $\{ \ell_j ; j = 1, 2, \dots \}$ of $\{\ell \in \mathbb{Z}; \ell \geq \ell_0\}$ can be chosen in such a way that $\{\nu_{\ell_j}\}$ is a monotone increasing sequence satisfying

(4.1)
$$
\lim_{j \to \infty} \nu_{\ell_j} = +\infty.
$$

For simplicity, the functions $f_{\ell_j, k(\ell_j)}$ will be written as f_j , while we write the test configurations

$$
\mu_{\ell_j,k(\ell_j)} = (\mathcal{X}^{\psi_{\ell_j,k(\ell_j)}}, \mathcal{L}^{\psi_{\ell_j,k(\ell_j)}}, \psi_{\ell_j,k(\ell_j)}), \qquad j=1,2,\ldots,
$$

as $\mu_j = (\mathcal{X}_j, \mathcal{L}_j, \psi_j)$. Now by (3.14), there exists a positive constant C independent of j such that

$$
-\,C/\ell_j\,\,\leq\,\, \dot{f}_j(-\nu_{\ell_j})
$$

for all j. On the other hand, for all positive integers j' satisfying $j' \geq j$, we have $-\nu_{\ell_{j'}} \leq -\nu_{\ell_j}$ by monotonicity. Since the function $\dot{f}_{j'}(s)$ in s is non-decreasing, we obtain

(4.2)
$$
-C/\ell_{j'} \leq \dot{f}_{j'}(-\nu_{\ell_{j'}}) \leq \dot{f}_{j'}(-\nu_{\ell_{j}}).
$$

We here observe that $-C/\ell_{j'} \to 0$ as $j' \to \infty$. It now follows from (4.2) that, for each fixed i ,

$$
\lim_{j'\to\infty}\dot{f}_{j'}(-\nu_{\ell_j})\ \geq\ 0.
$$

Since the function $\underline{\lim}_{j'\to\infty} \dot{f}_{j'}(s)$ in s is non-decreasing, we therefore obtain

$$
\lim_{j'\to\infty} \dot{f}_{j'}(s) \ge 0 \text{ for all } s \ge -\nu_{\ell_j},
$$

while this holds for all positive integers j. Then by (4.1), $\underline{\lim}_{j'\to\infty} \dot{f}_{j'}(s)$ is a nonnegative function in s on the whole real line R. Hence

$$
F_1(\{\mu_j\}) = \lim_{s \to -\infty} \{\lim_{j' \to \infty} \dot{f}_{j'}(s)\} \geq 0.
$$

Now by the strong K-stability of (X, L) , we obtain $F_1(\{\mu_i\}) = 0$, so that μ_i are trivial for all $j \gg 1$. Then $\psi_{\ell_i, k(\ell_i)}$ are trivial for all $j \gg 1$. This usually gives us a contradiction. Even if not, however, by assuming the triviality of μ_j for all $j \gg 1$, we proceed as follow. By (3.4), for all $s \in \mathbb{R}$, we obtain

$$
\sqrt{-1}\partial\bar{\partial}\theta_{s;\ell_j,k(\ell_j)} = (\omega_{\rm FS}/\ell_j)|_{X_{\ell_j}} = \Phi_{\ell_j}^*(\omega_{\rm FS}/\ell_j), \qquad j \gg 1,
$$

by identfying X_{ℓ_j} with X via Φ_{ℓ_j} , where by [15], $\|\Phi_{\ell_j}^*(\omega_{\text{FS}}/\ell_j) - \omega\|_{C^5(X)} =$ $O(\ell_j^{-2})$. From this together with (3.8), we obtain

(4.3)
$$
\|\omega - \omega_{\ell_j}\|_{C^m(X)} = O(\ell_j^{-2}), \quad j \gg 1.
$$

Let S_{ω} be the scalar curvature function for ω . Then by [4] (see also [15]), we obtain the following asymptotic expansion:

(4.4)
$$
1 + (S_{\omega}/2)\ell_j^{-1} + O(\ell_j^{-2}) = \Sigma_{\alpha=1}^{N_{\ell_j}}(n!/\ell_j^n) |\tau_{\ell_j,\alpha}|_h^2 = B_{\ell_j}(\omega),
$$

where for every Kähler form θ in $c_1(L)_{\mathbb{R}}$, $B_{\ell_j}(\theta)$ denotes the ℓ_j -th asymptotic Bergman kernel for (X, θ) . On the other hand, for $\ell \gg 1$, we observe that N_{ℓ} is a polynomial in ℓ . Since each ω_{ℓ_j} is balanced, by setting $\ell = \ell_j$ in (3.1) and dividing both sides of the equality by $\ell_j^n/n!$, we obtain (cf. [7], (1.4))

$$
(4.5) \t 1 + C_0 \ell_j^{-1} + O(\ell_j^{-2}) = \Sigma_{\alpha=1}^{N_{\ell_j}} (n!/\ell_j^n) |\sigma_{\ell_j,\alpha}|_{h_{\ell_j}}^2 = B_{\ell_j}(\omega_{\ell_j}),
$$

where C_0 is a real constant independent of the choice of j. In view of (4.3), by comparing (4.4) with (4.5), we now conclude that $S_{\omega}/2 = C_0$. Hence ω is a constant scalar curvature Kähler metric in the class $c_1(L)_{\mathbb{R}}$.

Step 2. Suppose that Case 2 occurs. Put $\hat{\lambda}_{\ell,\alpha} := -(1/\ell) \log \lambda_{\ell,\alpha}$. Then by (3.3), we may assume that $k = k(\ell)$ in (3.9) is chosen in such a way that

$$
(4.6) \qquad \hat{\gamma}_{k(\ell);\alpha} - 1 \leq \ell \,\hat{\lambda}_{\ell,\alpha} \leq \hat{\gamma}_{k(\ell);\alpha} + 1, \qquad \alpha = 1, 2, \ldots, N_{\ell},
$$

for all ℓ with $\ell \geq \ell_0$. Then for each ℓ , by using the notation in Definition 5.3 in Appendix, we have an ℓ -th root

$$
(\mathcal{Y}^{(\ell)}, \mathcal{Q}^{(\ell)}, D^{(\ell)}, \varphi_{\ell}), \qquad \ell \geq \ell_0,
$$

of the test configuration $\mu_{\ell,k(\ell)}$ in Section 3. Let $\chi_{\ell,\beta}, \beta = 1, 2, \ldots, N_1$, be the weights of the $T_{\mathbb{R}}$ -action via $\varphi_{\ell}^{\text{SL}}$ on V_1^* , where $V_1 := H^0(X, L)$. Put $\hat{\chi}_{\ell,\beta} := \chi_{\ell,\beta}/a_{\ell,k(\ell)}$. For ℓ with $\ell \geq \ell_0$, let α and β be arbitrary integers satisfying $1 \le \beta \le N_1$ and $1 \le \alpha \le N_\ell$. By (4.6) together with the definition of $\nu_{\ell,k}$, we easily see from the inequality ν_{∞} < + ∞ that

(4.7)
$$
|\hat{\lambda}_{\ell,\alpha}| \leq C_1
$$
 and $|\hat{\chi}_{\ell,\beta}| \leq C_1$,

where C_1 is a positive real constant independent of the choices of ℓ , α and β (see [12] for the second inequality of (4.7); see also [10]). Let $Z_{\ell} :=$ $(\varphi_{\ell})_*(t\partial/\partial t) \in \mathfrak{sl}(V_1)$ be the infinitesimal generator for the one-parameter group $\varphi_{\ell}^{\text{SL}}$. Then by setting $\hat{Z}_{\ell} := Z_{\ell}/a_{\ell,k(\ell)}$, we obtain

$$
\hat{Z}_{\ell} \cdot \kappa_{\ell,\beta} = -\hat{\chi}_{\ell,\beta} \kappa_{\ell,\beta}, \qquad \beta = 1, 2, \ldots, N_1,
$$

for a suitable orthonormal basis $\{\kappa_{\ell,1}, \kappa_{\ell,2}, \ldots, \kappa_{\ell,N_1}\}$ for (V_1, ρ_1) . For the sequence $\{\,\hat Z_\ell\,;\,\ell\geq\ell_0\,\}$, by choosing its suitable subsequence

$$
\{\,\hat{Z}_{\ell_j}\,;\,j=1,2,\dots\},\,
$$

we obtain real numbers $\hat{\chi}_{\infty,\beta} \in \mathbb{R}, \beta = 1, 2, ..., N_1$, and an orthonormal basis $\{\kappa_{\infty,1}, \kappa_{\infty,2}, \ldots, \kappa_{\infty,N_1}\}$ for V_1 such that, for all β ,

$$
\kappa_{\ell_j, \beta} \to \kappa_{\infty, \beta} \quad \text{and} \quad \hat{\chi}_{\ell_j, \beta} \to \hat{\chi}_{\infty, \beta},
$$

as $j \to \infty$. Hence we can define $\mathcal{Z}_{\infty} \in \mathfrak{sl}(V_1)$ such that $\mathcal{Z}_{\infty} \cdot \kappa_{\infty, \beta}$ $-\hat{\chi}_{\infty,\beta} \kappa_{\infty,\beta}$ for all β . Then we have the following convergence in C^{∞} :

 (4.8) $\hat{Z}_{\ell_j} \to \hat{Z}_{\infty}$, as $j \to \infty$.

For each ℓ , in view of the relation $t = \exp(s/\Vert \mu_{\ell,k(\ell)} \Vert_{\infty}), s = -\nu_{\ell}$ corresponds to $t = \hat{t}_{\ell}$, where $\hat{t}_{\ell} := \exp(-\nu_{\ell}/\|\mu_{\ell,k(\ell)}\|_{\infty}) = \exp(-1/a_{\ell,k(\ell)})$. Until the end of this section, test configurations $\mu_{\ell,k(\ell)}$ for (X, L) will be written simply as

$$
\mu_{\ell} = (\mathcal{X}^{(\ell)}, \mathcal{L}^{(\ell)}, \psi_{\ell}), \qquad \ell \geq \ell_0.
$$

For the test configuration μ_{ℓ} , each $t \in T$ not as a complex number but as an element of the group T of transformations on μ_{ℓ} will be written as $g_{\mu_{\ell}}(t)$. For the Kodaira embedding $\Phi_{\ell}: X \hookrightarrow \mathbb{P}^{N_{\ell}-1}(\mathbb{C})$ in Section 3, we consider $\mathbb{C}^{N_{\ell}}\setminus\{0\}=\{(z_1,z_2,\ldots,z_{N_{\ell}})\neq 0\}$ over $\mathbb{P}^{N_{\ell}}(\mathbb{C})$, so that $z=(z_1,z_2,\ldots,z_{N_{\ell}})$ sits over $[z] = (z_1 : z_2 : \cdots : z_{N_\ell})$. Since the restriction of $\mathcal{O}_{\mathbb{P}^{N_\ell-1}}(\mathbb{C})$ to X_ℓ is viewed as L by identifying X with its image $X_{\ell} := \Phi_{\ell}(X)$, we can write

$$
z_{\alpha|X_{\ell}} = \tau_{\ell,\alpha}, \qquad \alpha = 1, 2, \ldots, N_{\ell},
$$

for the orthonormal basis $\{\tau_{\ell,1}, \tau_{\ell,2}, \ldots, \tau_{\ell,N_{\ell}}\}$ of (V_{ℓ}, ρ_{ℓ}) . We now define a Hermitian metric ϕ_{ℓ} for L^{-1} by setting, for all $[z] = \Phi_{\ell}(x)$ in X_{ℓ} ,

$$
\phi_{\ell}([z]) := \{ (n!/ \ell^n) \sum_{\alpha=1}^{N_{\ell}} |z_{\alpha}|^2 \}^{1/\ell} = \{ (n!/ \ell^n) \sum_{\alpha=1}^{N_{\ell}} |\tau_{\ell,\alpha}(x)|^2 \}^{1/\ell},
$$

where the line bundle $L^{-\ell}$ on X is viewed as the dual $\{\mathcal{L}^{(\ell)}|_{X_{\ell}}\}^{-1}$ of the line bundle $\mathcal{L}^{(\ell)}$ restricted to $\mathcal{X}_1^{(\ell)}$ $\mathcal{L}_1^{(t)}$ (= X_{ℓ}). Let \mathcal{K}_t , $t \neq 0$, denote the set of all Hermitian metrics on the line bundle $\{\mathcal{L}^{(\ell)}_{\vert \mathcal{X}_t^{(\ell)}}\}^{-1}$. Then the action by $g_{\mu_\ell}(t)$ takes \mathcal{K}_1 to \mathcal{K}_t . For instance, $g_{\mu_\ell}(t)$ takes the point $z = (z_1, z_2, \ldots, z_{N_\ell})$ to $g_{\mu_{\ell}}(t) \cdot z = (t^{\gamma_{k(\ell),1}}z_1, t^{\gamma_{k(\ell),2}}z_2, \ldots, t^{\gamma_{k(\ell),N_{\ell}}}z_{N_{\ell}}),$ while for each $[z] \in X_{\ell}$, $\phi_{\ell}([z])$ is mapped to the point $g_{\mu_{\ell}}(t) \cdot \phi_{\ell}([z])$ defined by

$$
\{(n!/\ell^n)\Sigma_{\alpha=1}^{N_{\ell}}|g_{\mu_{\ell}}(t)\cdot z_{\alpha}|^2\}^{1/\ell} = \{(n!/\ell^n)\Sigma_{\alpha=1}^{N_{\ell}}|t|^{2\gamma_{k(\ell),\alpha}}|z_{\alpha}|^2\}^{1/\ell},
$$

and this defines $g_{\mu_\ell}(t) \cdot \phi_\ell \in \mathcal{K}_t$. Now by [15], $u_\ell := (1/2\pi) \log(\phi_\ell/h^*)$ viewed as a function on X can be estimated in the form

(4.9)
$$
||u_{\ell}||_{C^{m+2}(X)} = O(\ell^{-2}),
$$

where the dual h^* of h is viewed as a Hermitian metric for the line bundle where the dual *h* of *h* is viewed as a riefullidan metric for the fine bundle
 L^{-1} . Put $\omega(\ell, t) := (\sqrt{-1}/2\pi)\partial\bar{\partial} \log(g_{\mu_{\ell}}(t)^* \{g_{\mu_{\ell}}(t) \cdot h^*\}), t \neq 0$. For the Fubini-Study form ω_{FS} in Section 3, its restriction to $X_{\ell} (= X)$ is written as

$$
\omega_{\rm FS\,|X_\ell} \;=\; (\sqrt{-1}\,\ell/2\pi) \partial\bar\partial \log \phi_\ell.
$$

Since $\psi_{\ell}(t)^*(\omega_{\rm FS}/\ell) = (\sqrt{-1}/2\pi)\partial\bar{\partial}\log(g_{\mu_{\ell}}(t)^*\{g_{\mu_{\ell}}(t)\cdot\phi_{\ell}\})$ on X_{ℓ} (see (3.4)), we can rewrite it in the form (see [9])

(4.10)
$$
\psi_{\ell}(t)^{*}(\omega_{\text{FS}}/\ell)_{|X_{\ell}} = \omega(\ell,t) + \sqrt{-1}\,\partial\bar{\partial}u_{\ell}.
$$

Let us consider the test configuration $\bar{\mu}_{\ell} := (\mathcal{Y}^{(\ell)}, \mathcal{Q}^{(\ell)}, \varphi_{\ell})$ for (X, L) of exponent 1. Each $t \in T$, not as a complex number but as an element of the group T of transformations on $\bar{\mu}_{\ell}$, will be denoted by $g_{\bar{\mu}_{\ell}}(t)$. Then by (5.8) in Appendix, we also have the expression

(4.11)
$$
\omega(\ell, t) = (\sqrt{-1}/2\pi)\partial\bar{\partial}\log(g_{\bar{\mu}_{\ell}}(t)^{*}\{g_{\bar{\mu}_{\ell}}(t) \cdot h^{*}\}), \quad t \in T_{\mathbb{R}},
$$

since for each such t, the action of $g_{\mu_{\ell}}(t)$ on $|\mathcal{L}|^{2/\ell}$ coincides with the action of $g_{\bar{\mu}_{\ell}}(t)$ on $|\mathcal{Q}|^2$ up to constant scalar multiplication, where constant scalar multiplication arises from the action on the factor $|\zeta|^{2/\ell}$. Since $\omega(\ell, t)$ doesn't change even if $g_{\bar{\mu}_{\ell}}(t) \cdot h^*$ in (4.11) is replaced by $C(t)g_{\bar{\mu}_{\ell}}(t) \cdot h^*$ for a positive real constant $C(t)$ possibly depending on t. Hence we may consider the action by $g_{\bar{\mu}_{\ell}}(t)$ on $|\mathcal{L}|^{2/\ell}$ modulo constant scalar multiplication. In this sense, for each $t \in T_{\mathbb{R}}$, the action by $g_{\bar{\mu}_{\ell}}(t)$ in (4.11) is induced by the action by the element $\varphi_{\ell}^{\text{SL}}(t)$ in $\text{SL}(V_1)$. In particular for $t = \hat{t}_{\ell}$,

 (4.12) (\hat{t}_{ℓ}) 's action is induced by $\varphi_{\ell}^{\text{SL}}(\hat{t}_{\ell}) = \exp(-\hat{Z}_{\ell}) \in \text{SL}(V_1)$.

For $\theta_{s;\ell,k(\ell)} := (1/2\pi) \log \{ (\sum_{\alpha=1}^{N_{\ell}} (n!/\ell^{n}) t^{2\gamma_{k(\ell)};\alpha} |\tau_{\ell,\alpha}|^{2})^{1/\ell} \}$ in Section 3, at the point $s = -\nu_{\ell}$, we see from (3.4) that

(4.13)
$$
\sqrt{-1}\partial\bar{\partial}\theta_{s;\ell,k(\ell)}|_{s=-\nu_{\ell}} = \psi_{\ell}(\hat{t}_{\ell})^*(\omega_{\text{FS}}/\ell)|_{X_{\ell}}.
$$

Then by (3.8), (4.10) and (4.13),

(4.14)
$$
\|\omega_{\ell} - \omega(\ell, \hat{t}_{\ell}) - \sqrt{-1} \partial \bar{\partial} u_{\ell}\|_{C^m(X)} = O(\ell^{-n-2}).
$$

For the element \hat{Z}_{∞} of $\mathfrak{sl}(V_1)$ in (4.8), we now define a subset $\mathcal{Y}_{\mathbb{R}}^{(\infty)}$ of $\mathbb{R} \times \mathbb{P}^*(V_1)$ as the closure of

$$
\bigcup_{s \in \mathbb{R}} \left\{ \pm \exp s \right\} \times \exp(s\hat{Z}_{\infty})(X_1)
$$

in the real manifold $\mathbb{R} \times \mathbb{P}^*(V_1)$, where X_1 is the image $\Phi_1(X)$ of X under the Kodaira embedding

$$
\Phi_1:X\to\mathbb{P}^*(V_1)
$$

associated to the complete linear system $|L|$ on X. By the projection of $\mathbb{R} \times \mathbb{P}^*(V_1)$ to the first factor \mathbb{R} , we see that $\mathcal{Y}_{\mathbb{R}}^{(\infty)}$ has a natural structure of a fiber space over R. Let $\mathcal{Q}^{(\infty)}$ denote the restriction to $\mathcal{Y}^{(\infty)}_{\mathbb{R}}$ of the pullback $pr_2^* \mathcal{O}_{\mathbb{P}^*(V_1)}(1)$, where $pr_2 : \mathbb{R} \times \mathbb{P}^*(V_1) \to \mathbb{P}^*(V_1)$ is the projection to the second factor. Then the $T_{\mathbb{R}}$ -action on $\mathcal{Y}^{(\infty)}_{\mathbb{R}}$ induced by

 $T_{\mathbb{R}} \times (\mathbb{R} \times \mathbb{P}^*(V_1)) \to \mathbb{R} \times \mathbb{P}^*(V_1), \ \ (\exp s, (r, x)) \mapsto (\ (\exp s)r, \exp(s\hat{Z}_{\infty}) \cdot x),$ naturally lifts to a $T_{\mathbb{R}}$ -action on $\mathcal{Q}^{(\infty)}$. This action is induced by the Lie

group homomorphism $\varphi_{\infty} : \mathbb{R}_+ \to SL(V_1)$ defined by

$$
\varphi_{\infty}(t) := \exp((\log t)\hat{Z}_{\infty}), \qquad t \in \mathbb{R}_{+}.
$$

For $\bar{\mu}_{\infty} := (\mathcal{Y}_{\mathbb{R}}^{(\infty)}, \mathcal{Q}^{(\infty)}, \varphi_{\infty}),$ each $t \in T_{\mathbb{R}}$ not as a real number but as an element of the group $T_{\mathbb{R}}$ of transformations on $\bar{\mu}_{\infty}$ will be written as $g_{\bar{\mu}_{\infty}}(t)$. Consider the action by $g_{\bar{\mu}_{\infty}}(\hat{t}_\ell)$ on $|\mathcal{Q}^{(\infty)}|^2$ modulo constant scalar multiplication. For $\hat{t}_{\infty} := 1/e$, we have $\varphi_{\infty}(\hat{t}_{\infty}) = \exp(-\hat{Z}_{\infty})$, and hence

(4.15) $g_{\bar{\mu}_{\infty}}(\hat{t}_{\infty})$'s action is induced by $\varphi_{\infty}(\hat{t}_{\infty}) = \exp(-\hat{Z}_{\infty}) \in SL(V_1)$.

Put $\omega_{\infty} := (\sqrt{-1}/2\pi)\partial\bar{\partial}\log(g_{\bar{\mu}_{\infty}}(\hat{t}_{\infty})^*\{g_{\bar{\mu}_{\infty}}(\hat{t}_{\infty})\cdot h^*\})$ (cf. Remark 5.9). By (4.11), (4.12) and (4.15), it follows from (4.8) that

(4.16)
$$
\omega(\ell_j, \hat{t}_{\ell_j}) \to \omega_{\infty} \text{ in } C^{\infty}, \quad \text{as } j \to \infty.
$$

Then by (4.9), (4.14) and (4.16),

(4.17)
$$
\omega_{\ell_j} \to \omega_{\infty} \text{ in } C^m, \text{ as } j \to \infty.
$$

By (4.17), given a sufficiently small $\varepsilon > 0$, there exists a $j_0 \gg 1$ such that $||S_{\omega_{\ell_j}} - S_{\omega_{\infty}}||_{C^0(X)} \leq \varepsilon$ for all $j \geq j_0$. Hence by [4] (see also [15]),

$$
|\ell_j\{B_{\ell_j}(\omega_{\ell_j})-\hat{N}_{\ell_j}\}-\ell_j\{B_{\ell_j}(\omega_{\infty})-\hat{N}_{\ell_j}\}|\leq \varepsilon/2+O(1/\ell_j),\quad j\geq j_0,
$$

where $\hat{N}_{\ell_j} := (n!/\ell_j^n) N_{\ell_j}/c_1(L)^n[X]$. On the other hand, since each ω_{ℓ_j} is balanced, we have $B_{\ell_j}(\omega_{\ell_j}) = \hat{N}_{\ell_j}$ for all j. It then follows that

$$
|\ell_j\{B_{\ell_j}(\omega_\infty)-\hat{N}_{\ell_j}\}|\leq \varepsilon/2\,+\,O(1/\ell_j),\quad j\geq j_0.
$$

Hence, since $\hat{N}_{\ell_j} = 1 + C_0 \ell_j^{-1} + O(\ell_j^{-2})$ for a real constant C_0 independent of j, again by [4] (see also [15]) applied to ω_{∞} , we obtain

$$
|(S_{\omega_{\infty}}/2) - C_0| \le \varepsilon/2 + O(1/\ell_j), \qquad j \ge j_0,
$$

so that by letting $j \to \infty$, we have $|(S_{\omega_{\infty}}/2) - C_0| \leq \varepsilon/2$. Since $\varepsilon > 0$ can be chosen arbitrarily, we obtain $S_{\omega_{\infty}} = 2C_0$, as required.

Remark 4.18. The (1, 1)-form ω_{∞} on X is positive-definite as follows: For each $t \in T_{\mathbb{R}}$ viewed as a real number, the fiber of $\mathcal{Y}_{\mathbb{R}}^{(\infty)}$ over $t \in \mathbb{R} \setminus \{0\}$ will be denoted by \mathcal{Y}_t , where $\mathcal{Y}_t \cong X$ biholomorphically. For simplicity, the fiber $(Q^{(\infty)})_t$ of $Q^{(\infty)}$ over t will be written as Q_t , and $g_{\bar{\mu}_{\infty}}(\hat{t}_{\infty})$ will be written as g. Then g takes \mathcal{Y}_1 holomorphically onto $\mathcal{Y}_{\hat{t}_{\infty}}$. Hence

(4.19)
$$
\omega_{\infty} = (\sqrt{-1}/2\pi) g^* \partial \bar{\partial} \log(g \cdot h^*).
$$

Moreover $g: \mathcal{Y}_1 \to \mathcal{Y}_{t'}$ lifts holomorphically to a map, denoted also by g by abuse of terminology, of \mathcal{Q}_1 onto $\mathcal{Q}_{\hat{t}_\infty}$. By choosing a local base b for \mathcal{Q}_1 on an open subset U of \mathcal{Y}_1 , we can write h^* as $Hb\bar{b}$ for some positive \mathcal{L}_1 on an open subset \hat{U} or $\hat{\mathcal{Y}}_1$, we can write \hat{n} as \hat{T} as \hat{T} or some positive real-valued function H on U . Since $\omega = c_1(L; h)$ is Kähler, $\sqrt{-1}\partial\bar{\partial} \log H$ is positive-definite on U. Then by $g \cdot h^* = (H \circ g^{-1}) g(b) \overline{g(b)}$, we see that

$$
\sqrt{-1}\partial\bar{\partial}\log(g\cdot h^*)\;=\;\sqrt{-1}\partial\bar{\partial}\log(H\circ g^{-1})
$$

is positive-definite on $q(U)$. From this together with (4.19), we now conclude that ω_{∞} is positive-definite.

5. Appendix

In this appendix, we consider a test configuration $\mu = (\mathcal{X}, \mathcal{L}, \psi)$ for (X, L) , and let $\pi : \mathcal{X} \to \mathbb{A}^1$ be the associated T-equivariant projective morphism. For the exponent ℓ of μ , ψ is an algebraic group homomorphism

$$
\psi : \mathbb{C}^* \to \mathrm{GL}(V_{\ell}),
$$

$$
\frac{12}{}
$$

and by choosing a Hermitian metric h for L, we endow $V_{\ell} := H^0(X, L^{\otimes \ell})$ with the Hermitian metric ρ_{ℓ} as in the introduction.

Definition 5.1. A pair $(\hat{\mathcal{X}}, \hat{\mathcal{L}})$ of a non-singular irreducible algebraic variety $\hat{\mathcal{X}}$ and an invertible sheaf $\hat{\mathcal{L}}$ over $\hat{\mathcal{X}}$ is called a T-equivariant desingularization of (X, \mathcal{L}) , if there exists a T-equivariant proper birational morphism $\iota : \hat{\mathcal{X}} \to \hat{\mathcal{X}}$ $\mathcal{X},$ isomorphic over $\mathcal{X} \setminus \mathcal{X}_0$, such that $\hat{\mathcal{L}} = \iota^* \mathcal{L}.$

Theorem 5.2. There exist a T-equivariant desingularization $(\hat{\mathcal{X}}, \hat{\mathcal{L}})$ of (X, \mathcal{L}) and a test configuration $(Y, \mathcal{Q}, \varphi)$ for (X, L) of exponent 1 such that

$$
\hat{\mathcal{L}} = \mathcal{O}_{\hat{\mathcal{X}}}(\hat{D}) \otimes \eta^* \mathcal{Q}^{\otimes \ell},
$$

where $\eta : \hat{\mathcal{X}} \to \mathcal{Y}$ is a T-equivariant proper birational morphism, isomorphic over $\mathcal{Y} \setminus \mathcal{Y}_0$, and \hat{D} is a divisor on $\hat{\mathcal{X}}$ sitting in $\hat{\mathcal{X}}_0$ set-theoretically.

Definition 5.3. Taking the Q-divisor $D := \hat{D}/\ell$ on $\hat{\mathcal{X}}$, we call the quadruple (Y, Q, D, φ) an ℓ -th root of the test configuration (X, \mathcal{L}, ψ) .

Proof: Consider the relative Kodaira embedding

$$
\mathcal{X} \ \hookrightarrow \ \mathbb{A}^1 \times \mathbb{P}^*(V_{\ell})
$$

whose restriction $\mathcal{X}_z \hookrightarrow \{z\} \times \mathbb{P}^*(V_\ell)$ over each $z \in \mathbb{A}^1$ is the Kodaira embedding of \mathcal{X}_z by the complete linear system $|\mathcal{L}_z|$. Let H be a general member in the complete linear system $|L|$ for the line bundle L on X. By the identification $X = \mathcal{X}_1$, we view H as a divisor on \mathcal{X}_1 . Then on the projective bundle $\mathbb{A}^1 \times \mathbb{P}^*(V_{\ell})$, a T-invariant irreducible reduced divisor δ can be chosen as a projective subbundle such that

$$
\delta \cdot \mathcal{X}_1 \ = \ \ell H,
$$

where ℓH is viewed as a member of the complete linear system $|\mathcal{L}_1| = |L^{\otimes \ell}|$ on $\mathcal{X}_1 = X$. For \mathcal{X} , we choose its proper T-equivariant desinguralization

$$
\iota: \hat{\mathcal{X}} \to \mathcal{X}
$$

isomorphic over $\mathcal{X} \setminus \mathcal{X}_0$. Put $\hat{\pi} := \pi \circ \iota$. Consider the T-invariant irreducible reduced divisor H on $\hat{\mathcal{X}}$ obtained as the closure in $\hat{\mathcal{X}}$ of the preimage of

$$
\bigcup_{t \in \mathbb{C}^*} \{t\} \times \psi(t)H
$$

under the mapping ι , where H on X is viewd as a subset $\mathbb{P}^*(V_\ell)$ via the Kodaira embedding $X \subset \mathbb{P}^*(V_\ell)$ associated to the complete linear system $|L^{\otimes \ell}|$. Then we have the following equality of divisors on $\hat{\mathcal{X}}$:

(5.4)
$$
\iota^*(\delta \cdot \mathcal{X}) = \hat{D} + \ell \mathcal{H},
$$

where \hat{D} is an effective divisor on $\mathcal X$ with support sitting in $\mathcal X_0$ set-theoretically. Since H is a T-invariant divisor on $\hat{\mathcal{X}}$, the T-action on $\hat{\mathcal{X}}$ lifts to a Tlinearization of $\hat{\mathcal{Q}} := \mathcal{O}_{\hat{\mathcal{X}}}(\mathcal{H})$. Since $\mathcal{L} = \mathcal{O}_{\mathcal{X}}(\delta \cdot \mathcal{X})$, by (5.4), we obtain

.

(5.5)
$$
\hat{\mathcal{L}} = \mathcal{O}_{\hat{\mathcal{X}}}(\hat{D}) \otimes \hat{\mathcal{Q}}^{\otimes \ell}
$$

For the direct image sheaf $F := \hat{\pi}_* \hat{\mathcal{Q}}$ over \mathbb{A}^1 , let F_z be the fiber of F over each $z \in \mathbb{A}^1$. Then we have a T-equivariant rational map

$$
\eta: \hat{\mathcal{X}} \to \mathbb{P}^*(F)
$$

whose restriction over each $z \in \mathbb{A}^1 \setminus \{0\}$ is the Kodaira embedding η_z : $\hat{\mathcal{X}}_z \hookrightarrow \mathbb{P}^*(F_z)$ associated to the complete linear system $|\hat{\mathcal{Q}}_z|$ on $\hat{\mathcal{X}}_z$. Put $\mathcal{Y}_z:=\eta_z(\hat{\mathcal{X}}_z).$ Then the open subset $\hat{\pi}^{-1}(\mathbb{A}^1\setminus\{0\})$ of $\hat{\mathcal{X}}$ is naturally identified with the T-invariant subset

$$
\mathcal{Y}^{\circ}:=\bigcup_{0\neq z\in \mathbb{A}^{1}}\mathcal{Y}_{z}
$$

of $\mathbb{P}^*(F)$. Let Y be the T-invariant subvariety of $\mathbb{P}^*(F)$ obtained as the closure of \mathcal{Y}° in $\mathbb{P}^{*}(F)$, i.e., \mathcal{Y} is the meromorphic image of $\hat{\mathcal{X}}$ under the rational map η . Then the restriction

$$
\pi_{\mathcal{Y}}: \, \mathcal{Y} \, \rightarrow \, \mathbb{A}^1
$$

to Y of the natural projection of $\mathbb{P}^*(F)$ onto \mathbb{A}^1 is a T-equivariant projective morphism with a relatively very ample invertible sheaf

$$
\mathcal{Q} := \mathcal{O}_{\mathbb{P}^*(F)}(1)_{|\mathcal{Y}}
$$

on the fiber space $\mathcal Y$ over $\mathbb A^1$. Note that $\hat \pi = \pi_{\mathcal Y} \circ \eta$. The T-action on \hat{Q} naturally induces a T-action on F, and it then induces a T-action on $\mathcal{O}_{\mathcal{V}/\mathbb{A}^1}(1)$ covering the T-action on \mathcal{Y} . By the affirmative solution of Tequivariant Serre's conjecture, we have a T-equivariant trivialization

$$
F \cong \mathbb{A}^1 \times F_0,
$$

where this isomorphism can be chosen in such a way that the Hermitian metric $\rho_1 (= \rho_{\ell | \ell=1})$ as in the introduction on

$$
F_1 = V_1 = H^0(X, L)
$$

is taken to a Hermitian metric on F_0 which is preserved by the action of the compact subgroup $S^1 \subset T$ (see [3]). By this trivialization, F_0 can be identified with $F_1 (= V_1)$, so that the T-action on F_0 induces a representation

$$
\varphi: T \to \mathrm{GL}(V_1).
$$

Hence $(\mathcal{Y}, \mathcal{Q}, \varphi)$ is a test configuration for (X, L) of exponent 1. Since $\hat{\mathcal{Q}} =$ $\mathcal{O}_{\hat{\mathcal{X}}}(\mathcal{H})$, the base point set B for the subspace of $H^0(\hat{\mathcal{X}}_0, \hat{\mathcal{Q}}_0)$ associated to F_0 contains no components of dimension n. However, replacing $\hat{\mathcal{X}}$ by its suitable birational model obtained from $\hat{\mathcal{X}}$ by a sequence of T-equivariant blowing-ups with centers sitting over B , we may assume without loss of generality that B is purely n-dimensional, i.e., $B = \emptyset$. Now the rational map $\eta: \hat{\mathcal{X}} \to \mathcal{Y} \subset \mathbb{P}^*(F)$ is holomorphic, and hence

$$
\hat{\mathcal{Q}} = \eta^* \mathcal{Q},
$$

as required. This together with (5.5) completes the proof of Theorem 5.2.

Remark 5.6. Note that the divisor \hat{D} on $\hat{\mathcal{X}}$ is preserved by the T-action. Since $\mathcal{O}_{\hat{\mathcal{X}}}(\hat{D}) = \eta^* \mathcal{Q}^{\otimes \ell} \otimes \hat{\mathcal{L}}^{-1}$, the actions of $T (= \mathbb{C}^*)$ on $\mathcal Q$ and $\hat{\mathcal{L}}$ induce a T-action on the invertible sheaf $\mathcal{O}_{\hat{\mathcal{X}}}(\hat{D})$. Let ζ be a natural nonzero section for $\mathcal{O}_{\hat{\mathcal{X}}}(\hat{D})$ on $\hat{\mathcal{X}}$ having \hat{D} as the divisor zero(ζ) of the zeroes. Then the action of each element t of T on the line $\mathbb{C}\zeta$ is written as

$$
\zeta \ \mapsto \ t^{\alpha} \zeta,
$$

where $\alpha \in \mathbb{Z}$ is the weight of the T-action on $\mathbb{C}\zeta$.

For test configurations μ and $\bar{\mu} := (\mathcal{Y}, \mathcal{Q}, \varphi)$ above, each $t \in T$ not as a complex number but as an element of the group T of transformation on μ and $\bar{\mu}$ will be written as $g_{\mu}(t)$ and $g_{\bar{\mu}}(t)$, repectively. Let $\text{Aut}(\hat{\mathcal{L}})$ and Aut(Q) denote the groups of all biholomorphisms of the total spaces of $\mathcal{\hat{L}}$ and Q , respectively. Then for φ in Theorem 5.2, the T-linearization of Q defines a T-action on the real line bundle $|Q|^2 := Q \otimes \bar{Q}$ over X by

$$
g_{\bar{\mu}}(t) \cdot |q|^2 := |g_{\bar{\mu}}(t) \cdot q|^2 = |\tilde{\varphi}(t)(q)|^2, \qquad (t, q) \in T \times \mathcal{Q},
$$

where $\tilde{\varphi}: T \to \text{Aut}(\mathcal{Q})$ denotes the homomorphism induced by φ . Note also that the T-linearization of $\hat{\mathcal{L}}$ induces a T-action on the real line bundle $|\hat{\mathcal{L}}|^2 := \hat{\mathcal{L}} \otimes \bar{\mathcal{L}}$ such that

$$
g_{\mu}(t) \cdot |\sigma|^2 := |g_{\mu}(t) \cdot \sigma|^2 = |\tilde{\psi}(t)(\sigma)|^2, \qquad (t, \sigma) \in T \times \hat{\mathcal{L}},
$$

where $\tilde{\psi}: T \to \text{Aut}(\hat{\mathcal{L}})$ denotes the homomorphism induced by ψ . Note that both $g_{\bar{\mu}}(t)$ and $g_{\mu}(t)$ come from the same T-action. Then for $\hat{\mathcal{Q}} := \eta^* \mathcal{Q}$, by Theorem 5.2, we see that

(5.7)
$$
|\hat{\mathcal{L}}|^{2/\ell} = |\zeta|^{2/\ell} |\hat{\mathcal{Q}}|^2,
$$

where $T_{\mathbb{R}}$ acts on the real line $\mathbb{R}|\zeta|^{2/\ell}$ with weight $2\alpha/\ell$, so that $g_{\mu}(t)\cdot|\zeta|^{2/\ell} =$ $t^{2\alpha/\ell} |\zeta|^{2/\ell}$ for all $t \in T_{\mathbb{R}}$. Since birational morphisms ι and η are isomorphic over $\mathbb{A}^1 \setminus \{0\}$, by restricting them to $\{z \neq 0\}$, we can identify the line bundles $\hat{\mathcal{L}}$ and $\hat{\mathcal{Q}}$ with \mathcal{L} and \mathcal{Q} , respectively. Hence (5.7) restricts to

(5.8)
$$
|\mathcal{L}|^{2/\ell} = |\zeta|^{2/\ell} |\mathcal{Q}|^2, \qquad z \neq 0.
$$

Remark 5.9. The restriction of ζ to $z = 1$ gives a non-vanishing holomorphic

section for $\mathcal{O}_{\hat{\mathcal{X}}}(\hat{D})_{|\hat{\mathcal{X}}_0}$. Define a Hermitian metric ρ for $\mathcal{O}_{\hat{\mathcal{X}}}(\hat{D})_{|\hat{\mathcal{X}}_0}$ by

$$
|\zeta_{|\hat{\mathcal{X}}_0}|_\rho^2=1
$$

everywhere on $\hat{\mathcal{X}}_0$. Then by Theorem 5.2, when restricted to $z = 1$, we may assume that $\mathcal L$ and $\mathcal Q^{\otimes \ell}$ coincides holomorphically and metrically. In particular, any Hermitian metric for L can be viewed as a Hermitian metric for $\mathcal{Q}_{|\hat{\mathcal{X}}_0}$ via the identification of $\hat{\mathcal{X}}_0$ with X.

REFERENCES

- [1] S.K. DONALDSON: Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001), 479–522.
- [2] S.K. DONALDSON: Scalar curvature and stability of toric varieties, J. Differential Geom. **62** (2002), 289-349.
- [3] S.K. DONALDSON: Lower bounds on the Calabi functional, J. Differential Geom. 70 (2005), 453–472.
- [4] Z. Lu: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. 122 (2000), 235–273.
- [5] T. MABUCHI: Stability of extremal Kähler manifolds, Osaka J. Math. 41 (2004), 563–582.
- [6] T. Mabuchi: An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, II, Osaka J. Math. 46 (2009), 115–139.
- [7] T. Mabuchi: Asymptotics of polybalanced metrics under relative stability constraints, Osaka J. Math. 48 (2011), 845–856.
- [8] T. MABUCHI: The Donaldson-Futaki invariant for sequences of test configurations, arXiv:1307.1957.
- [9] T. Mabuchi: A remark on the Donaldson-Futaki invariant for sequences of test configurations, in preparation.
- [10] T. Mabuchi: A stronger concept of K-stability, a revised version of arXiv: 0910.4617, in preparation.
- [11] T. Mabuchi and Y. Nitta: Strong K-stability and asymptotic Chow stability, arXiv: 1307.1959.
- [12] T. Mabuchi and Y. Nitta: Completion of the moduli space of test configurations, in preparation.
- [13] Y. Sano: On stability criterion of complete intersections J. Geom. Anal. 14 (2004), 533–544.
- [14] G. TIAN: Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 1–37.
- [15] S. ZELDITCH: Szegö kernels and a theorem of Tian, Int. Math. Res. Not. 6 (1998), 317–331.
- [16] S. Zhang: Heights and reductions of semi-stable varieties, Compositio Math. 104 (1996), 77–105.

Department of Mathematics

Osaka University

Toyonaka, Osaka, 560-0043

Japan