STRONG K-STABILITY AND ASYMPTOTIC CHOW-STABILITY

TOSHIKI MABUCHI[∗] AND YASUFUMI NITTA∗∗

ABSTRACT. For a polarized algebraic manifold (X, L) , let T be an algebraic torus in the group $Aut(X)$ of all holomorphic automorphisms of X. Then strong relative K-stability (cf. [\[6\]](#page-6-0)) will be shown to imply asymptotic relative Chow-stability. In particular, by taking T to be trivial, we see that asymptotic Chow-stability follows from strong K-stability.

1. Introduction

In this paper, we consider a *polarized algebraic manifold* (X, L) , i.e., a nonsingular irreducible projective variety X , defined over \mathbb{C} , with a very ample line bundle L on X . Let T be an algebraic torus in Aut (X) . Then the main purpose of this paper is to show the following:

Main Theorem. If (X, L) is strongly K-stable relative to T, then (X, L) is asymptotically Chow-stable relative to T.

2. Relative Chow-stability

For the maximal compact subgroup T_c of T, we put $\mathfrak{t}_c := \text{Lie}(T_c)$. For every positive integer ℓ , we consider the space $V_{\ell} := H^{0}(X, L^{\otimes \ell})$ endowed with a Hermitian metric ρ_{ℓ} such that the infinitesimal action of \mathfrak{t}_c on V_{ℓ} preserves the metric ρ_{ℓ} . Put $\mathfrak{t} := \text{Lie}(T)$ and $n := \dim X$. Since the infinitesimal action of t on X lifts to an infinitesimal action of t on L , we view t as a Lie subalgebra, denoted by \mathfrak{t}_{ℓ} , of $\mathfrak{sl}(V_{\ell})$ by taking the traceless part. Let $(\mathfrak{t}_{\ell})_{\mathbb{Z}}$ be the kernel of the exponential map

$$
\mathfrak{t}_{\ell}\ni y\mapsto \exp(2\pi\sqrt{-1}\,y)\in \mathrm{SL}(V_{\ell}).
$$

Let \mathfrak{z}_{ℓ} denote the centralizer of \mathfrak{t}_{ℓ} in $\mathfrak{sl}(V_{\ell})$, and we consider a symmetric bilinear form \langle , \rangle_{ℓ} on $\mathfrak{sl}(V_{\ell})$ defined by

$$
\langle u, v \rangle_{\ell} = \text{Tr}(uv)/\ell^{n+2}, \qquad u, v \in \mathfrak{sl}(V_{\ell}),
$$

²⁰¹⁰ Mathematics Subject Classification. Primary 32Q26; Secondary 14L24, 53C25.

[∗] Supported by JSPS Grant-in-Aid for Scientific Research (A) No. 20244005.

^{∗∗}Supported by JSPS Grant-in-Aid for Young Scientiists (B) No. 23740063.

whose asymptotic limit as $\ell \to \infty$ plays an important role (cf. [\[9\]](#page-6-1)) in the study of relative K-stability for test configurations. We now consider the set $\mathfrak{t}_{\ell}^{\perp}$ of all $u \in \mathfrak{z}_{\ell}$ such that

$$
\langle u, v \rangle_{\ell} = 0 \quad \text{for all } v \in \mathfrak{t}.
$$

By the infinitesimal \mathfrak{t}_{ℓ} -action on V_{ℓ} , we can write the vector space V_{ℓ} as a direct sum of t_{ℓ} -eigenspaces

$$
V_{\ell} = \bigoplus_{k=1}^{m_{\ell}} V(\chi_{\ell;k}),
$$

for mutually distinct additive characters $\chi_{\ell;k} \in \text{Hom}((\mathfrak{t}_{\ell})_{\mathbb{Z}},\mathbb{Z}), k = 1, 2, \ldots, m_{\ell}$, where $V(\chi_{\ell;k})$ denotes the space of all $\sigma \in V_{\ell}$ such that

$$
u \sigma = \chi_{\ell;k}(u) \sigma \quad \text{for all } u \in (\mathfrak{t}_{\ell})_{\mathbb{Z}}.
$$

Since T_c acts isometrically on (V_{ℓ}, ρ_{ℓ}) , the subspaces $V(\chi_{\ell,k})$ and $V(\chi_{\ell,k'})$ are orthogonal if $k \neq k'$. For the Lie subalgebra \mathfrak{s}_{ℓ} of $\mathfrak{sl}(V_{\ell})$ defined by

$$
\mathfrak{s}_\ell\;=\;\bigoplus_{k=1}^{m_\ell}\; \mathfrak{sl}(V(\chi_{\ell;k})),
$$

we consider the associated algebraic subgroup $S_{\ell} := \prod_{k=1}^{m_{\ell}} \mathrm{SL}(V(\chi_{\ell,k}))$ of $\mathrm{SL}(V_{\ell})$. Let $Z(S_{\ell})$ be the centralizer of S_{ℓ} in $\mathrm{SL}(V_{\ell})$. Then the Lie algebra \mathfrak{z}_{ℓ} is written as a direct sum of Lie subalgebras

$$
\mathfrak{z}_\ell\ =\ \mathfrak{z}(\mathfrak{s}_\ell)\oplus\mathfrak{s}_\ell
$$

where $\mathfrak{z}(\mathfrak{s}_{\ell}) := \text{Lie}(Z(S_{\ell}))$. For the Lie subalgebra $\mathfrak{t}'_{\ell} := \mathfrak{t}_{\ell}^{\perp} \cap \mathfrak{z}(\mathfrak{s}_{\ell})$ of $\mathfrak{z}(\mathfrak{s}_{\ell}),$ we consider the associated algebraic subtorus T'_{ℓ} of $Z(S_{\ell})$. Then

$$
T_\ell^\perp \ := \ T_\ell' \cdot S_\ell
$$

is a reductive algebraic subgroup of $SL(V_{\ell})$ with the Lie algebra $\mathfrak{t}_{\ell}^{\perp}$. Let $(\mathfrak{t}_{\ell}^{\perp})_{\mathbb{Z}}$ denote the set of all $u \in (\mathfrak{t}_{\ell}^{\perp})_{\mathbb{Z}}$ in the kernel of the exponential map

$$
\mathfrak{z}_{\ell} \ni u \mapsto \exp(2\pi\sqrt{-1}u) \in \mathrm{SL}(V_{\ell})
$$

such that the circle group $\{\exp(2\pi s\sqrt{-1}u); s \in \mathbb{R}\}$ acts isometrically on (V_{ℓ}, ρ_{ℓ}) . For each $u \in (\mathfrak{t}_{\ell}^{\perp})_{\mathbb{Z}}$, by varying $s \in \mathbb{C}$, let

$$
\psi_u : \mathbb{G}_m \to \mathrm{SL}(V_\ell), \qquad \exp(2\pi s \sqrt{-1}) \mapsto \exp(2\pi s \sqrt{-1}u),
$$

be the algebraic one-parameter group generated by u , where \mathbb{G}_m denotes the 1-dimensional algebraic torus \mathbb{C}^* . Let X_{ℓ} be the image of X under the Kodaira embedding

$$
\Phi_{\ell} \; : \; X \to \mathbb{P}^*(V_{\ell})
$$

associated to the complete linear system $|L^{\otimes \ell}|$ on X. For the degree d_{ℓ} of X_{ℓ} in $\mathbb{P}^*(V_{\ell})$, we put $W_{\ell}^* := {\text{Sym}^{d_{\ell}}(V_{\ell}^*)}^{\otimes n+1}$. Let $\hat{X}_{\ell} \in W_{\ell}^*$ be the Chow form for the irreducible reduced algebraic cycle X_{ℓ} on $\mathbb{P}^*(V_{\ell})$, so that the associated point $[\hat{X}_{\ell}]$ in $\mathbb{P}^*(W_{\ell})$ is the Chow point for X_{ℓ} . Then the action of T_{ℓ}^{\perp} on V_{ℓ} induces an action of T_{ℓ}^{\perp} on W_{ℓ}^{*} and also on $\mathbb{P}^{*}(W_{\ell})$.

Definition 2.1. (1) $(X, L^{\otimes \ell})$ is called *Chow-stable relative to T*, if the following conditions are satisfied:

- (a) The isotropy subgroup of T_{ℓ}^{\perp} at $[\hat{X}_{\ell}]$ is finite;
- (b) The orbit $T_{\ell}^{\perp} \cdot \hat{X}_{\ell}$ in W_{ℓ}^{*} is closed.

 (2) (X, L) is called *asymptotically Chow-stable relative to T*, if there exists a positive integer ℓ_0 such that $(X, L^{\otimes \ell})$ are Chow-stable relative to T for all positive integers ℓ satisfying $\ell \geq \ell_0$.

3. TEST CONFIGURATIONS

Let $u \in (\mathfrak{t}_{\ell}^{\perp})_{\mathbb{Z}}$. For the complex affine line $\mathbb{A}^1 := \{z \in \mathbb{C}\},\$ we consider the algebraic subvariety \mathcal{X}^u of $\mathbb{A}^1 \times \mathbb{P}^*(V_\ell)$ obtained as the closure of

$$
\bigcup_{t \in \mathbb{C}^*} \{t\} \times \psi_u(t) X_\ell
$$

in $\mathbb{A}^1 \times \mathbb{P}^*(V_{\ell})$, where $SL(V_{\ell})$ acts naturally on the set $\mathbb{P}^*(V_{\ell})$ of all hyperplanes in V_{ℓ} passing through the origin. We now put $\mathcal{L}^u := \mathrm{pr}_2^* \mathcal{O}_{\mathbb{P}^*(V_{\ell})}(1)$, where $pr_2: \mathcal{X}^u \to \mathbb{P}^*(V_\ell)$ is the restriction to \mathcal{X}^u of the projection to the second factor: $\mathbb{A}^1 \times \mathbb{P}^*(V_{\ell}) \to \mathbb{P}^*(V_{\ell})$. The triple

$$
\mu \; = \; (\mathcal{X}^u, \mathcal{L}^u, \psi_u),
$$

is called a test configuration for (X, L) generated by u, where we call ℓ the exponent of the test configuration μ . If $u = 0$, then μ is called trivial.

For μ as above, taking the fiber \mathcal{X}_0^u of \mathcal{X}^u over the origin in \mathbb{A}^1 , we consider the Chow weight $q_{\ell}(u)$ for \mathcal{X}_0^u sitting in $\{0\} \times \mathbb{P}^*(V_{\ell}) \cong \mathbb{P}^*(V_{\ell})$, i.e., the weight at $\hat{\mathcal{X}}_0^u$ of the \mathbb{G}_m -action induced by ψ_u , where $\hat{\mathcal{X}}_0^u \in W^*_{\ell}$ denotes the Chow form for \mathcal{X}_0^u viewed as an algebraic cycle on $\mathbb{P}^*(V_\ell)$.

Definition 3.1. (1) $(X, L^{\otimes \ell})$ is called weakly Chow-stable relative to T, if $q_{\ell}(u) < 0$ for all $0 \neq u \in (\mathfrak{t}_{\ell}^{\perp})_{\mathbb{Z}}$.

 (2) (X, L) is called *asymptotically weakly Chow-stable relative to T*, if there exists a positive integer ℓ_0 such that $(X, L^{\otimes \ell})$ is weakly Chow-stable relative to T for all positive integers ℓ satisfying $\ell \geq \ell_0$.

Remark 3.2. (1) If $(X, L^{\otimes \ell})$ is weakly Chow-stable relative to T, then by [\[2\]](#page-6-2), Theorem 3.2, the orbit $T_{\ell}^{\perp} \cdot \hat{X}_{\ell}$ is closed in W_{ℓ}^{*} .

(2) If $(X, L^{\otimes \ell})$ is Chow-stable relative to T, then by the Hilbert-Mumford stability criterion, $(X, L^{\otimes \ell})$ is weakly Chow-stable relative to T.

4. Strong relative K-stability

For materials in this section, see [\[5\]](#page-6-3) and [\[6\]](#page-6-0). For a maximal algebraic torus \overline{T} in Aut (X) containing T, we fix a Hermitian metric h for L such that $\omega := c_1(L; h)$ is a Kähler form preserved by the action of the maximal compact subgroup \bar{T}_c of \bar{T} . Then each V_ℓ admits a Hermitian structure ρ_ℓ preserved by the T_c -action such that

$$
\langle \sigma, \tau \rangle_{\rho_{\ell}} := \int_X (\sigma, \tau)_h \, \omega^n, \qquad \sigma, \tau \in V_{\ell},
$$

where $(\sigma, \tau)_h$ is the pointwise Hermitian pairing of σ and τ on X by the Hermitian metric $h^{\otimes \ell}$. In this section, following [\[5\]](#page-6-3), we explain how we define the Donaldson-Futaki invariant F_1 for a sequence of test configurations

$$
\mu_j = (\mathcal{X}^{u_j}, \mathcal{L}^{u_j}, \psi_{u_j}), \qquad j = 1, 2, \ldots,
$$

generated by $u_j \in (\mathfrak{t}_{\ell_j}^{\perp})_{\mathbb{Z}}$, where the positive integer ℓ_j , called the exponent of μ_j , is required to satisfy $\ell_j \to +\infty$ as $j \to \infty$. Let M be the set of all such sequences $\{\mu_j\}$. For the image X_{ℓ_j} of X under the Kodaira embedding

$$
\Phi_{\ell_j}:X\to \mathbb{P}^*(V_{\ell_j}),
$$

we consider its associated Chow form $\hat{X}_{\ell_j} \in W^*_{\ell_j} := \{ \text{Sym}^{d_{\ell_j}}(V^*_{\ell_j}) \}^{\otimes n+1}$. Let $b_{j,\alpha}, \alpha = 1, 2, \ldots, N_{\ell_j}$, be the weights of the \mathbb{G}_m -action on V_{ℓ_j} induced by ψ_{u_j} . We then define the norms $\|\mu_j\|_1$ and $\|\mu_j\|_{\infty}$ by

$$
\begin{cases} \|\mu_j\|_1 := \sum_{\alpha=1}^{N_{\ell_j}} |b_{j,\alpha}|/\ell_j^{n+1}, \\ \|\mu_j\|_{\infty} := \max\{|b_{j,1}|, |b_{j,2}|, \ldots, |b_{j,N_{\ell_j}}|\}/\ell_j. \end{cases}
$$

Let $\delta(\mu_j)$ denote $\|\mu_j\|_{\infty}/\|\mu_j\|_1$ or 1 according as $\|\mu_j\|_{\infty} \neq 0$ or $\|\mu_j\|_{\infty} = 0$. If $\|\mu_j\|_{\infty} \neq 0$, we write $t \in \mathbb{R}_+$ as $t = \exp(s/\|\mu_j\|_{\infty})$ for some $s \in \mathbb{R}$, while we require no relations between s and t if $\|\mu_j\|_{\infty}$ vanishes. Since $SL(V_{\ell_j})$ acts naturally on $W^*_{\ell_j}$, we define a function $f_{u_j} = f_{u_j}(s)$ in s on R by

$$
(4.1) \t f_{u_j}(s) := \delta(\mu_j) \ell_j^{-n} \log \|\psi_{u_j}(t) \cdot \hat{X}_{\ell_j}\|_{\text{CH}(\rho_{\ell_j})}, \t s \in \mathbb{R},
$$

where $W_{\ell_j}^* \ni w \mapsto ||w||_{\text{CH}(\rho_{\ell_j})} \in \mathbb{R}_{\geq 0}$ is the Chow norm for $W_{\ell_j}^*$ (see [\[10\]](#page-6-4)). Taking the derivative $\dot{f}_{u_j}(s) := df_{u_j}/ds$, we define $F_1(\{\mu_j\}) \in \mathbb{R} \cup \{-\infty\}$ by

$$
F_1(\{\mu_j\}) := \lim_{s \to -\infty} \{\underline{\lim}_{j \to \infty} \dot{f}_{u_j}(s)\}.
$$

Definition 4.2 (cf. [\[6\]](#page-6-0)). (1) (X, L) is called strongly K-semistable relative to T, if $F_1({\mu_j}) \leq 0$ for all ${\mu_j} \in \mathcal{M}$.

(2) Let (X, L) be strongly K-semistable relative to T. Then (X, L) is called strongly K-stable relative to T, if for every $\{\mu_j\} \in \mathcal{M}$ satisfying $F_1(\{\mu_j\}) =$ 0, there exists a j_0 such that for all $j \ge j_0$, μ_j is trivial, i.e., $u_j = 0$.

Note that neither strong K-semistability relative to T nor strong Kstability relative to T depends on the choice of \overline{T} and h (see [\[8\]](#page-6-5)).

5. Proof of Main Theorem

In this section, we consider a polarized algebraic manifold (X, L) which is strongly K-stable relative to T . The proof is divided into two parts.

Step 1. We shall first show that (X, L) is asymptotically weakly Chow-stable relative to T . Assume the contrary for contradiction. Then we can find an increasing sequence of positive integer ℓ_j , $j = 1, 2, \ldots$, such that

$$
\ell_j \to +\infty, \qquad \text{as } j \to \infty,
$$

and that $(X, L^{\otimes \ell_j})$ is not weakly Chow-stable relative to T for any j. Then by Definition 3.1, to each j, we can assign a element $0 \neq u_j \in (\mathfrak{t}_{\ell_j}^{\perp})_{\mathbb{Z}}$ such that $q_{\ell_j}(u_j) \geq 0$. Recall that (see for instance [\[4\]](#page-6-6), Appendix I)

$$
q_{\ell_j}(u_j) = \|\mu_j\|_1 \,\ell_j^n \lim_{s \to -\infty} \dot{f}_{u_j}(s).
$$

Since the function $\dot{f}_{u_j}(s)$ is non-decreasing in s for each j, it follows that

$$
0 \leq \|\mu_j\|_1^{-1} \ell_j^{-n} q_{\ell_j}(u_j) \leq \dot{f}_{u_j}(s), \qquad -\infty < s < +\infty.
$$

Hence $0 \leq \dot{f}_{u_j}(s)$ for each fixed $s \in \mathbb{R}$. Taking $\underline{\lim}$ as $j \to \infty$, we have

(5.1)
$$
0 \leq \underline{\lim}_{j \to \infty} \dot{f}_{u_j}(s),
$$

for every $s \in \mathbb{R}$. By taking limit of (5.1) as $s \to -\infty$, we obtain

$$
0 \leq \lim_{s \to -\infty} \lim_{j \to \infty} \dot{f}_{u_j}(s) = F_1(\{\mu_j\}).
$$

Since (X, L) is strongly K-stable relative to T, this inequality implies that $F_1(\{\mu_j\})$ vanishes. Again by strong K-stability of (X, L) relative to T, there exists a j_0 such that μ_j are trivial for all j with $j \geq j_0$ in contradiction to $u_j \neq 0$, as required.

Step 2. In view of (1) of Remark 3.2, we see from Step 1 above that the orbit $O_{\ell} := T_{\ell}^{\perp} \cdot \hat{X}_{\ell}$ is closed in W_{ℓ}^{*} . Hence O_{ℓ} is an affine algebraic subset of W_{ℓ}^* . Since O_{ℓ} is closed in W_{ℓ}^* , we here observe that:

(5.2)
$$
O_{\ell} \cap \mathbb{C}\hat{X}_{\ell} \text{ is a finite set,}
$$

where $\mathbb{C}\hat{X}_{\ell}$ is the one-dimensional vector subspace of W_{ℓ}^{*} generated by \hat{X}_{ℓ} . Consider the identity components H_{ℓ} and H'_{ℓ} of the isotropy subgroups of the reductive algebraic group T_{ℓ}^{\perp} at the point \hat{X}_{ℓ} and $[\hat{X}_{\ell}]$, respectively. Since dim $H_{\ell} = \dim H'_{\ell}$ by (5.2), it suffices to show that an ℓ_0 exists such that dim $H_{\ell} = 0$ for all ℓ with $\ell \geq \ell_0$. Assume the contrary for contradiction. Then we have an increasing sequence of positive integers ℓ_j such that

$$
\dim H_{\ell_j} > 0, \qquad j = 1, 2, \dots,
$$

and that $\ell_j \to +\infty$, as $j \to \infty$. Since by [\[7\]](#page-6-7) the isotropy subgroup H_{ℓ_j} of the reductive algebraic group $T_{\ell_j}^{\perp}$ at the point \hat{X}_{ℓ_j} is a reductive algebraic group, the group H_{ℓ_j} contains a nontrivial algebraic torus \mathbb{G}_m . Since (5.2) allows us to obtain a natural isogeny $\iota: H_{\ell_j} \to \bar{H}_{\ell_j}$ from H_{ℓ_j} to an algebraic subgroup \bar{H}_{ℓ_j} of $\text{Aut}(X)$, the image \bar{H}_{ℓ_j} also contains a nontrivial algebraic torus $G_j = \mathbb{G}_m$. For T in Section 4, replacing \overline{T} by its conjugate in Aut(X) if necessary, we may assume that \overline{T} contains G_i . For the maximal compact subgroup $(G_j)_c$ of G_j , we choose a generator $u_j \neq 0$ for the one-dimensional real Lie subalgebra

$$
\sqrt{-1}(\mathfrak{g}_j)_c := \sqrt{-1} \mathrm{Lie}((G_j)_c)
$$

in $\mathfrak{t}_{\ell_j}^{\perp} \cap H^0(X,\mathcal{O}(T_X))$ such that $\exp(2\pi\sqrt{-1}u_j) = id_X$. Then for the algebraic group homomorphisms $\psi_{u_j} : \mathbb{G}_m \to T_\ell^\perp \subset SL(V_{\ell_j})$ generated by u_j , we obtain the associated test configurations

$$
\mu_{u_j} = (\mathcal{X}^{u_j}, \mathcal{L}^{u_j}, \psi_{u_j}), \qquad j = 1, 2, \dots,
$$

for (X, L) generated by u_j . Let β_j be the weight of the \mathbb{G}_m -action by ψ_{u_j} at \hat{X}_{ℓ_j} . Since $\psi_{u_j}(t) \cdot \hat{X}_{\ell_j} = t^{\beta_j} \hat{X}_{\ell_j}$, by differentiating the functions $f_{u_j}(s)$ in (4.1) with respect to s, we obtain

(5.3)
$$
\dot{f}_{u_j}(s) = \ell_j^{-n} \beta_j / ||\mu_{u_j}||_1, \quad -\infty < s < +\infty.
$$

Replacing u_j by $v_j := -u_j$, we also have the test configurations

$$
\mu_{v_j} = (\mathcal{X}^{v_j}, \mathcal{L}^{v_j}, \psi_{v_j}), \qquad j = 1, 2, ...,
$$

for (X, L) generated by v_i . Replace u_j by v_j in (4.1). Then by differentiating the functions $f_{v_j}(s)$ with respect to s, we obtain

(5.4)
$$
\dot{f}_{v_j}(s) = -\ell_j^{-n} \beta_j / ||\mu_{v_j}||_1, \quad -\infty < s < +\infty.
$$

Note that $\|\mu_{u_j}\|_1 = \|\mu_{v_j}\|_1$. The right-hand side of (5.3) and the righthand side of (5.4) are both bounded from above by a positive constant independent of j (see [\[5\]](#page-6-3), Section 3). Hence, replacing $\{u_j; j = 1, 2, ...\}$ by its subsequence if necessary, we may assume that

$$
\{\ell_j^{-n}\beta_j/\|\mu_{u_j}\|_1; j=1,2,\ldots,\}
$$

is a convergent sequence. Let γ be its limit. Then by (5.3) and (5.4), $F_1(\{\mu_{u_j}\}) = \gamma = -F_1(\{\mu_{v_j}\})$. Since (X, L) is strongly K-stable relative to T, the inequalities $F_1(\{\mu_{u_j}\}) \leq 0$ and $F_1(\{\mu_{v_j}\}) \leq 0$ hold, and hence

 $\gamma = 0.$

Again by strong K-stability of (X, L) relative to T, we see that μ_{u_j} are trivial for $j \gg 1$, so that $u_j = 0$ for $j \gg 1$ in contradiction, as required.

REFERENCES

- [1] S.K. DONALDSON: Scalar curvature and stability of toric varieties, J. Differential Geom. **62** (2002), 289-349.
- [2] T. MABUCHI Stability of extremal Kähler manifolds Osaka J. Math. 41 (2004), 563–582.
- [3] T. Mabuchi Asymptotics of polybalanced metrics under relative stability constraints, Osaka J. Math. 48 (2011), 845–856.
- [4] T. MABUCHI: Relative stability and extremal metrics, to appear in J. Math. Soc. Japan.
- [5] T. MABUCHI: The Donaldson-Futaki invariant for sequences of test configurations, arXiv: 1307.1957.
- [6] T. MABUCHI: Existence problem of extremal Kähler metrics, in preparation.
- [7] Y. MATSUSHIMA: Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. J. 18 (1961), 153–164.
- [8] T. MABUCHI AND Y. NITTA: Completion of the space of test configurations, in preparation.
- [9] G. SzÉKELYHIDI: Extremal metrics and K-stability, Bull. London Math. Soc. 39 (2007), 76–84.
- [10] S. Zhang: Heights and reductions of semi-stable varieties, Compositio Math. 104 (1996), 77–105.

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 Japan, mabuchi@math.sci.osaka-u.ac.jp

Department of Mathematics, Graduate School of Science, Tokyo Institute OF TECHNOLOGY, MEGRO, TOKYO, 152-8551 JAPAN, $n_yakkun82@yahoo.co.jp$