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STRONG K-STABILITY AND ASYMPTOTIC CHOW-STABILITY

TOSHIKI MABUCHI∗ AND YASUFUMI NITTA∗∗

Abstract. For a polarized algebraic manifold (X,L), let T be an alge-

braic torus in the group Aut(X) of all holomorphic automorphisms of X.

Then strong relative K-stability (cf. [6]) will be shown to imply asymp-

totic relative Chow-stability. In particular, by taking T to be trivial, we

see that asymptotic Chow-stability follows from strong K-stability.

1. Introduction

In this paper, we consider a polarized algebraic manifold (X,L), i.e., a

nonsingular irreducible projective variety X, defined over C, with a very

ample line bundle L on X. Let T be an algebraic torus in Aut(X). Then

the main purpose of this paper is to show the following:

Main Theorem. If (X,L) is strongly K-stable relative to T , then (X,L)

is asymptotically Chow-stable relative to T .

2. Relative Chow-stability

For the maximal compact subgroup Tc of T , we put tc := Lie(Tc). For

every positive integer ℓ, we consider the space Vℓ := H0(X,L⊗ℓ) endowed

with a Hermitian metric ρℓ such that the infinitesimal action of tc on Vℓ

preserves the metric ρℓ. Put t := Lie(T ) and n := dimX. Since the infin-

itesimal action of t on X lifts to an infinitesimal action of t on L, we view

t as a Lie subalgebra, denoted by tℓ, of sl(Vℓ) by taking the traceless part.

Let (tℓ)Z be the kernel of the exponential map

tℓ ∋ y 7→ exp(2π
√
−1 y) ∈ SL(Vℓ).

Let zℓ denote the centralizer of tℓ in sl(Vℓ), and we consider a symmetric

bilinear form 〈 , 〉ℓ on sl(Vℓ) defined by

〈u, v〉ℓ = Tr(uv)/ℓn+2, u, v ∈ sl(Vℓ),
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whose asymptotic limit as ℓ → ∞ plays an important role (cf. [9]) in the

study of relative K-stability for test configurations. We now consider the set

t⊥ℓ of all u ∈ zℓ such that

〈u, v〉ℓ = 0 for all v ∈ t.

By the infinitesimal tℓ-action on Vℓ, we can write the vector space Vℓ as a

direct sum of tℓ-eigenspaces

Vℓ =

mℓ
⊕

k=1

V (χℓ;k),

for mutually distinct additive characters χℓ;k ∈ Hom((tℓ)Z,Z), k = 1, 2, . . . ,mℓ,

where V (χℓ;k) denotes the space of all σ ∈ Vℓ such that

uσ = χℓ;k(u)σ for all u ∈ (tℓ)Z.

Since Tc acts isometrically on (Vℓ, ρℓ), the subspaces V (χℓ;k) and V (χℓ;k′)

are orthogonal if k 6= k′. For the Lie subalgebra sℓ of sl(Vℓ) defined by

sℓ =

mℓ
⊕

k=1

sl(V (χℓ;k)),

we consider the associated algebraic subgroup Sℓ := Πmℓ

k=1 SL(V (χℓ;k)) of

SL(Vℓ). Let Z(Sℓ) be the centralizer of Sℓ in SL(Vℓ). Then the Lie algebra

zℓ is written as a direct sum of Lie subalgebras

zℓ = z(sℓ)⊕ sℓ

where z(sℓ) := Lie(Z(Sℓ)). For the Lie subalgebra t′ℓ := t⊥ℓ ∩ z(sℓ) of z(sℓ),

we consider the associated algebraic subtorus T ′
ℓ of Z(Sℓ). Then

T⊥
ℓ := T ′

ℓ · Sℓ
is a reductive algebraic subgroup of SL(Vℓ) with the Lie algebra t⊥ℓ . Let

(t⊥ℓ )Z denote the set of all u ∈ (t⊥ℓ )Z in the kernel of the exponential map

zℓ ∋ u 7→ exp(2π
√
−1u) ∈ SL(Vℓ)

such that the circle group { exp(2πs
√
−1u) ; s ∈ R } acts isometrically on

(Vℓ, ρℓ). For each u ∈ (t⊥ℓ )Z, by varying s ∈ C, let

ψu : Gm → SL(Vℓ), exp(2πs
√
−1) 7→ exp(2πs

√
−1u),

be the algebraic one-parameter group generated by u, where Gm denotes

the 1-dimensional algebraic torus C∗. Let Xℓ be the image of X under the

Kodaira embedding

Φℓ : X → P
∗(Vℓ)
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associated to the complete linear system |L⊗ℓ| on X. For the degree dℓ of

Xℓ in P
∗(Vℓ), we put W ∗

ℓ := {Symdℓ(V ∗
ℓ )}⊗n+1. Let X̂ℓ ∈ W ∗

ℓ be the Chow

form for the irreducible reduced algebraic cycle Xℓ on P
∗(Vℓ), so that the

associated point [X̂ℓ] in P
∗(Wℓ) is the Chow point for Xℓ. Then the action

of T⊥
ℓ on Vℓ induces an action of T⊥

ℓ on W ∗
ℓ and also on P

∗(Wℓ).

Definition 2.1. (1) (X,L⊗ℓ) is called Chow-stable relative to T , if the fol-

lowing conditions are satisfied:

(a) The isotropy subgroup of T⊥
ℓ at [X̂ℓ] is finite;

(b) The orbit T⊥
ℓ · X̂ℓ in W

∗
ℓ is closed.

(2) (X,L) is called asymptotically Chow-stable relative to T , if there exists

a positive integer ℓ0 such that (X,L⊗ℓ) are Chow-stable relative to T for all

positive integers ℓ satisfying ℓ ≥ ℓ0.

3. Test configurations

Let u ∈ (t⊥ℓ )Z. For the complex affine line A
1 := {z ∈ C}, we consider

the algebraic subvariety X u of A1 × P
∗(Vℓ) obtained as the closure of

⋃

t∈C∗

{t} × ψu(t)Xℓ

in A
1 × P

∗(Vℓ), where SL(Vℓ) acts naturally on the set P∗(Vℓ) of all hyper-

planes in Vℓ passing through the origin. We now put Lu := pr∗2 OP∗(Vℓ)(1),

where pr2 : X u → P
∗(Vℓ) is the restriction to X u of the projection to the

second factor: A1 × P
∗(Vℓ) → P

∗(Vℓ). The triple

µ = (X u,Lu, ψu),

is called a test configuration for (X,L) generated by u, where we call ℓ the

exponent of the test configuration µ. If u = 0, then µ is called trivial.

For µ as above, taking the fiber X u
0 of X u over the origin in A

1, we consider

the Chow weight qℓ(u) for X u
0 sitting in {0} × P

∗(Vℓ) (∼= P
∗(Vℓ)), i.e., the

weight at X̂ u
0 of the Gm-action induced by ψu, where X̂ u

0 ∈W ∗
ℓ denotes the

Chow form for X u
0 viewed as an algebraic cycle on P

∗(Vℓ).

Definition 3.1. (1) (X,L⊗ℓ) is called weakly Chow-stable relative to T , if

qℓ(u) < 0 for all 0 6= u ∈ (t⊥ℓ )Z.

(2) (X,L) is called asymptotically weakly Chow-stable relative to T , if there

exists a positive integer ℓ0 such that (X,L⊗ℓ) is weakly Chow-stable relative

to T for all positive integers ℓ satisfying ℓ ≥ ℓ0.
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Remark 3.2. (1) If (X,L⊗ℓ) is weakly Chow-stable relative to T , then by

[2], Theorem 3.2, the orbit T⊥
ℓ · X̂ℓ is closed in W ∗

ℓ .

(2) If (X,L⊗ℓ) is Chow-stable relative to T , then by the Hilbert-Mumford

stability criterion, (X,L⊗ℓ) is weakly Chow-stable relative to T .

4. Strong relative K-stability

For materials in this section, see [5] and [6]. For a maximal algebraic

torus T̄ in Aut(X) containing T , we fix a Hermitian metric h for L such

that ω := c1(L;h) is a Kähler form preserved by the action of the maximal

compact subgroup T̄c of T̄ . Then each Vℓ admits a Hermitian structure ρℓ

preserved by the Tc-action such that

〈σ, τ〉ρℓ :=

∫

X

(σ, τ)h ω
n, σ, τ ∈ Vℓ,

where (σ, τ)h is the pointwise Hermitian pairing of σ and τ on X by the

Hermitian metric h⊗ℓ. In this section, following [5], we explain how we define

the Donaldson-Futaki invariant F1 for a sequence of test configurations

µj = (X uj ,Luj , ψuj
), j = 1, 2, . . . ,

generated by uj ∈ (t⊥ℓj )Z, where the positive integer ℓj , called the exponent

of µj, is required to satisfy ℓj → +∞ as j → ∞. Let M be the set of all

such sequences {µj}. For the image Xℓj of X under the Kodaira embedding

Φℓj : X → P
∗(Vℓj ),

we consider its associated Chow form X̂ℓj ∈W ∗
ℓj

:= {Symdℓj (V ∗
ℓj
)}⊗n+1. Let

bj,α, α = 1, 2, . . . , Nℓj , be the weights of the Gm-action on Vℓj induced by

ψuj
. We then define the norms ‖µj‖1 and ‖µj‖∞ by







‖µj‖1 := Σ
Nℓj

α=1 |bj,α|/ℓn+1
j ,

‖µj‖∞ := max{ |bj,1|, |bj,2|, . . . , |bj,Nℓj
| }/ℓj .

Let δ(µj) denote ‖µj‖∞/‖µj‖1 or 1 according as ‖µj‖∞ 6= 0 or ‖µj‖∞ = 0.

If ‖µj‖∞ 6= 0, we write t ∈ R+ as t = exp(s/‖µj‖∞) for some s ∈ R, while

we require no relations between s and t if ‖µj‖∞ vanishes. Since SL(Vℓj )

acts naturally on W ∗
ℓj
, we define a function fuj

= fuj
(s) in s on R by

(4.1) fuj
(s) := δ(µj)ℓ

−n
j log ‖ψuj

(t) · X̂ℓj‖CH(ρ
ℓj
), s ∈ R,
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where W ∗
ℓj

∋ w 7→ ‖w‖CH(ρℓj )
∈ R≥0 is the Chow norm for W ∗

ℓj
(see [10]).

Taking the derivative ḟuj
(s) := dfuj

/ds, we define F1({µj}) ∈ R∪ {−∞} by

F1({µj}) := lim
s→−∞

{ lim
j→∞

ḟuj
(s) }.

Definition 4.2 (cf. [6]). (1) (X,L) is called strongly K-semistable relative to

T , if F1({µj}) ≤ 0 for all {µj} ∈ M.

(2) Let (X,L) be strongly K-semistable relative to T . Then (X,L) is called

strongly K-stable relative to T , if for every {µj} ∈ M satisfying F1({µj}) =
0, there exists a j0 such that for all j ≥ j0, µj is trivial, i.e., uj = 0.

Note that neither strong K-semistability relative to T nor strong K-

stability relative to T depends on the choice of T̄ and h (see [8]).

5. Proof of Main Theorem

In this section, we consider a polarized algebraic manifold (X,L) which

is strongly K-stable relative to T . The proof is divided into two parts.

Step 1. We shall first show that (X,L) is asymptotically weakly Chow-stable

relative to T . Assume the contrary for contradiction. Then we can find an

increasing sequence of positive integer ℓj, j = 1, 2, . . . , such that

ℓj → +∞, as j → ∞,

and that (X,L⊗ℓj ) is not weakly Chow-stable relative to T for any j. Then

by Definition 3.1, to each j, we can assign a element 0 6= uj ∈ (t⊥ℓj )Z such

that qℓj(uj) ≥ 0. Recall that (see for instance [4], Appendix I)

qℓj(uj) = ‖µj‖1 ℓnj lim
s→−∞

ḟuj
(s).

Since the function ḟuj
(s) is non-decreasing in s for each j, it follows that

0 ≤ ‖µj‖−1
1 ℓ−n

j qℓj(uj) ≤ ḟuj
(s), −∞ < s < +∞.

Hence 0 ≤ ḟuj
(s) for each fixed s ∈ R. Taking lim as j → ∞, we have

(5.1) 0 ≤ lim
j→∞

ḟuj
(s),

for every s ∈ R. By taking limit of (5.1) as s→ −∞, we obtain

0 ≤ lim
s→−∞

lim
j→∞

ḟuj
(s) = F1({µj}).

Since (X,L) is strongly K-stable relative to T , this inequality implies that

F1({µj}) vanishes. Again by strong K-stability of (X,L) relative to T , there
5



exists a j0 such that µj are trivial for all j with j ≥ j0 in contradiction to

uj 6= 0, as required.

Step 2. In view of (1) of Remark 3.2, we see from Step 1 above that the

orbit Oℓ := T⊥
ℓ · X̂ℓ is closed in W ∗

ℓ . Hence Oℓ is an affine algebraic subset

of W ∗
ℓ . Since Oℓ is closed in W ∗

ℓ , we here observe that:

(5.2) Oℓ ∩CX̂ℓ is a finite set,

where CX̂ℓ is the one-dimensional vector subspace of W ∗
ℓ generated by X̂ℓ.

Consider the identity components Hℓ and H ′
ℓ of the isotropy subgroups of

the reductive algebraic group T⊥
ℓ at the point X̂ℓ and [X̂ℓ], respectively.

Since dimHℓ = dimH ′
ℓ by (5.2), it suffices to show that an ℓ0 exists such

that dimHℓ = 0 for all ℓ with ℓ ≥ ℓ0. Assume the contrary for contradiction.

Then we have an increasing sequence of positive integers ℓj such that

dimHℓj > 0, j = 1, 2, . . . ,

and that ℓj → +∞, as j → ∞. Since by [7] the isotropy subgroup Hℓj of

the reductive algebraic group T⊥
ℓj

at the point X̂ℓj is a reductive algebraic

group, the group Hℓj contains a nontrivial algebraic torus Gm. Since (5.2)

allows us to obtain a natural isogeny ι : Hℓj → H̄ℓj from Hℓj to an algebraic

subgroup H̄ℓj of Aut(X), the image H̄ℓj also contains a nontrivial algebraic

torus Gj = Gm. For T̄ in Section 4, replacing T̄ by its conjugate in Aut(X)

if necessary, we may assume that T̄ contains Gj . For the maximal compact

subgroup (Gj)c of Gj , we choose a generator uj 6= 0 for the one-dimensional

real Lie subalgebra
√
−1 (gj)c :=

√
−1 Lie((Gj)c)

in t⊥ℓj ∩H
0(X,O(TX)) such that exp(2π

√
−1uj) = idX . Then for the alge-

braic group homomorphisms ψuj
: Gm → T⊥

ℓ ⊂ SL(Vℓj ) generated by uj, we

obtain the associated test configurations

µuj
= (X uj ,Luj , ψuj

), j = 1, 2, . . . ,

for (X,L) generated by uj . Let βj be the weight of the Gm-action by ψuj

at X̂ℓj . Since ψuj
(t) · X̂ℓj = tβjX̂ℓj , by differentiating the functions fuj

(s)

in (4.1) with respect to s, we obtain

(5.3) ḟuj
(s) = ℓ−n

j βj/‖µuj
‖1, −∞ < s < +∞.

Replacing uj by vj := −uj, we also have the test configurations

µvj = (X vj ,Lvj , ψvj
), j = 1, 2, . . . ,
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for (X,L) generated by vj. Replace uj by vj in (4.1). Then by differentiating

the functions fvj (s) with respect to s, we obtain

(5.4) ḟvj (s) = − ℓ−n
j βj/‖µvj‖1, −∞ < s < +∞.

Note that ‖µuj
‖1 = ‖µvj‖1. The right-hand side of (5.3) and the right-

hand side of (5.4) are both bounded from above by a positive constant

independent of j (see [5], Section 3). Hence, replacing {uj ; j = 1, 2, . . . } by

its subsequence if necessary, we may assume that

{ ℓ−n
j βj/‖µuj

‖1 ; j = 1, 2, . . . , }

is a convergent sequence. Let γ be its limit. Then by (5.3) and (5.4),

F1({µuj
}) = γ = −F1({µvj}). Since (X,L) is strongly K-stable relative to

T , the inequalities F1({µuj
}) ≤ 0 and F1({µvj}) ≤ 0 hold, and hence

γ = 0.

Again by strong K-stability of (X,L) relative to T , we see that µuj
are trivial

for j ≫ 1, so that uj = 0 for j ≫ 1 in contradiction, as required.
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