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Remarks on logarithmic K-stability
Chi Li
ABSTRACT: We make some observation on the logarithmic version of K-stability.

1 Introduction

Let (X, J) be a Fano manifold, that is, K;(l is ample. The basic problem in Kahler geometry is
to determine whether (X, .J) has a Kéhler-Einstein metric (cf. [12])

On way to attack this problem is to use continuity method. Fix a reference Kéhler metric
w € ¢1(X). Its Ricci curvature Ric(w) also lies in ¢1(X). So there exists h,, € C°°(X) such that

Ric(w) — w = 00h,,, / ehow™ = / w™
p's p's

Consider the following family of Monge-Ampere equations.

(w + 00p,)™ = ele—toyn (%)t
This is equivalent to the equation for Kéhler forms:

Ric(wg) = twy + (1 — t)w (1)

By Yau’s theorem [16], we can always solve (x); for t = 0. If we could solve (x); for ¢t = 1,
we would get Kéhler-Einstein metric. However, it was first showed by Tian [13] that we may not
be able to solve (*); on certain Fano manifold for ¢ sufficiently close to 1. Equivalently, for such
a Fano manifold, there is some o < 1, such that there is no Kéhler metric w in ¢;(X) which can
have Ric(w) > tow.

The existence problem of Kahler-Einstein metric is a special case of the existence problem of
constant scalar curvature Kéhler (cscK) metric. For the latter, we fix an ample line bundle L on
(X, J). We have the following folklore conjecture. For the definition of K-stability, see [14], [3] or
Definition 4.

Conjecture 1 (Tian-Yau-Donaldson). ([14],[3]) There is a smooth constant scalar curvature
Kahler metric in c¢y(L) on (X, J) if and only if (X, J, L) is K-stable.

Return to the continuity method (x); and let R(X) = sup{t : (%) is solvable }. Székelyhidi
proved that

Proposition 1 ([10]).
R(X) =sup{t: 3 a Kdhler metric w € c1(X) such that Ric(w) > tw}

In particular, R(X) is independent of reference metric w.

There is another continuity method we can try. Let Y € | — Kx| be a general element, then Y
is a smooth Calabi-Yau hypersurface. The Kahler-Einstein metric with cone singularity along Y
of cone angle 27/ is a solution to the following distributional equation

Ric(w) = fw + (1 = B){Y} (2)
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Conjecture 2 (Donaldson). There is a cone-singularity solution wg to (2) for any parameter
B € (0,R(X)). If R(X) < 1, there is no solution for parameter 8 € (R(X),1).

The purpose of this note is to discuss the logarithmic version of K-stability and prove the
following result.

Theorem 1. Let X be a toric Fano variety with a (C*)™ action. Let'Y be a general hyperplane
section of Xao. When B < R(Xp), (Xa,BY) is log-K-stable along any 1 parameter subgroup
in (C*)". When 8 = R(Xa), (Xa,BY) is semi-log-K-stable along any 1 parameter subgroup in
(C*)™ and there is a 1 parameter subgroup in (C*)™ which has vanishing log-Futaki invariant.

When 8 > R(XA), (Xa, BY) is not log-K-stable.

This explains and generalizes slightly the calculation in [4] and gives some evidence for the
Conjecture 2 (Combined with Conjecture 3).

We prove the above result by calculating R(X ) and log-Futaki invariant explicitly. R(Xa)
was calculated in [6] based on Wang-Zhu’s work [15]. The main formula for log-Futaki invariant is
(19).

A toric Fano manifold XA is determined by a reflexive lattice polytope A (For details on toric
manifolds, see [8]). For example, let Bl,P? denote the manifold obtained by blowing up one point
on P2. Then BI,P? is a toric Fano manifold and is determined by the following polytope.

Any such polytope A contains the origin O € R™. We denote the barycenter of A by P,.. If

P. # O, the ray P. +R>¢ - m intersects the boundary A at point Q.
Theorem 2. [6] If P. # O,

0@
|P:Q)|

Here }m’, ’PCQ} are lengths of line segments OQ and P.Q. In other words,

R(Xa) =

R(XA)

Q=

If P. = O, then there is Kahler-FEinstein metric on XA and R(XaA) = 1.
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2 Log-Futaki invariant

In this section, we recall Donaldson’s definition of log-Futaki invariant (6). Let (X, L) be a polarized
projective variety and D be a normal crossing divisor:

D = i Oél'D
i=1

with o; € (0,1).
From now on, we fix a Hermitian metric || - ||; = h; and defining section s; of the line bundle
[D].
Assume w € ¢1(L) is a smooth Kéhler form. We define
V-1 V=1
(w) =

P wy 1= w+ =5—00¢; ¢ € L*(X) N C™(X\D) such that w + ——00¢ > 0
7T ™

Around any point p € X, we can find local coordinate {z;;4 = 1,--- ,n}, such that D is defined
by
D =U? a;{z =0}

where r, = #{i;p € D;}.

Definition 1. We say that & € P(w) is a conic Kihler metric on (X, D), if around p, w is
quasi-isometric to the metric

dz; N dzl
Z | 2] 2 Z dzj \ dz;
1=1 Jj=rp+1
We will simply say that & is a conic metric if it’s clear what D is.

Geometrically, this means the Riemannian metric determined by w has conic singularity along
each D; of conic angle 27(1 — «).

Remark 1. Construction of Kahler-Einstein metrics with conic singularites was proposed long
time ago by Tian, see [11] in which he used such metrics to prove inequalities of Chern numbers
in algebraic geometry.

One consequence of this definition is that globally the volume form has the form
o Q
= o
[T lIsall;®

where Q is a smooth volume form. For any volume form €2, let Ric(€2) denote the curvature of the
Hermitian metric on K ;{1 determined by . Then, by abuse of notation,

Ric(@) = Ric(@™) = Ric(Q) + \/_ Z a;0010g ||si||? = Ric(Q) — Z il ([Dil, hi) + Z o {D;}

= Ric(Q) — 1 ([D], h) + {D}

where h = ®_, h"" and s = ®]_; 57" are Hermitian metric and defining section of the R-line bundle
[D] = @i [Da]*".
Here we used the Poincare-Lelong identity:

J-1
7331% l[sill7 = —c1([Ds], hi) + {Ds}

3)



where {D;} is the current of integration along the divisor D;.
The scalar curvature of & on its smooth locus X\ D is

nRic(w) A o™ n(Ric(Q) - clA([D], h)) Aot

wn w™

So if S(®) is constant, then the constant only depends on cohomological classes by the identity:

e (0 — (D) A (P _ —nlKy +D)-170 _ VaD)
1 (L) - In — T Vol (X)

npy =

Here

~ nc(X) cep(L)n L  —nKx - Lt
- Cc1 (L)" - Ln

is the average scalar curvature for smooth Kéhler form in ¢;(L). And

ci(L)"!  D.Lnt c(L)" L7
VOZ(D):/D (n—1)! - (n—1)!" VOZ(X):/X ol

Now assume C* acts on (X, L) and v is the generating holomorphic vector field. Recall that
the ordinary Futaki-Calabi invariant ([5], [2]) is defined by

F(e /9 —nu) e

where 6, satisfies -
Lyw = 00,

Now assume @, € P(w) is a conic metric and satisfies

S(Weo) = Nt (5)
Assume D is preserved by the C* action. Let’s calculate the ordinary Futaki invariant using the
conic metric Woo. Let 0, = (oo, v). Then near p € D, v ~ 37, ¢;2;0,, + 0 with & = o(z - - < Zr,)
holomorphic. 6, ~ 707 |z;[2(1—4).
We then make use of the distributional identity (3) to get

(2171

F(ei(L)(v) = —/ Oy (NRic(Go0) — Nptlos) A %!

~n—1

0, [(nRic(Q) — nei([D], h) — npn@eo) + n{D} — (nu — np1 )Doo] A

n!

1

0u(8 ) = min) 2 = [ (DYoo (o =) [ 0,55

n!
</Dé <fi11> ¥Z§<X>/9 n!>

~oont Vol(D) A on
0= F(e1(L 0y —>— — 0,—=
(ea(L)(w) + (/D (n—11  Vol(X) /X n!>
Since the two integrals in the above formula is integration of (singular) equivariant forms, they
are independent of the chosen Kéhler metric in P(w) with at worst conic singularities. In particular,

we can choose the smooth Kéahler metric w, then we just discover the log-Futaki invariant defined
by Donaldson:

I
|
T~

So we get




Definition 2. [}/

F(ci(L), D)(v) = F(ei(L))(v) + (/D 0o (:i})! - X‘;ZEQ /Xev%> )

Remark 2. This differs from the formula in [4] by a sign. And we think of D as a cycle with real
coefficients, so if we replace D by (1 — B)A\, we have the same formua as that in [/].

3 log-K-energy and Berman’s formulation

We can integrate the log-Futaki-invariant to get log-K-energy

= ol e oo )
= //(—aalogﬂ I+ c1([D], ))é(:till)!-FKZ;E?;FBW)
Vol(

_ D) po(s) + o
— w0+ P F6) + 72 (0) + [ gl ™)

where xp = c1([D], h) is the Chern curvature form. The functionals F2(¢) and JX(¢) are defined
by:
1
- [ a
0 b's
TX () = / dt / dx /\

Let’s now focus on the Fano case as in the beglnnlng of this paper. (2) is equivalent to the
following singular complex Monge-Ampere equation:

- Q
n _ ,—Bé 1
(w+00p)" =e TS0 (8)

with Q1 = e“w" and s is a defining section of [Y]. Note that the line bundle [Y] = K" has the
Hermitian metric || - || such that the curvature is w.
We have D = (1 — B)Y. Since [Y] = Ky', we can assume yp = (1 — B)w, Vol((1 — B)D) =
n(l — B)Vol(X). Then (7) becomes
vap = wa(6)+ (1= B) (FS0) + T2 (0) + (1= 8) [ g |52
= w6+ (=B = T+ (1) [ log ls]?=2

n

e . 243
= [tox g 8 = 1)+ (1= 5) [ tog]sl*

We have used the well known formula for K-energy [12]:

v(@) = [ Tos 2 = (1.~ L)(@)

1

- /X Bw” — i) /!

where



TA0) = Fo(o) + [ 0%

WEL() + T2(0) = (L~ 16 = - ( [ w4 F2(0))

And it’s easy to verify that

From above formula, we see that, in Fano case, the log-K-energy coincides with Berman’s free
energy associated with (8) ([1])

w’n,
”‘”’D:/Xk’g T v (/ o+ F 0“”)

4 Log-K-stability

We imitate the definition of K-stability to define log-K-stability. First we recall the definition of
test configuration [3] or special degeneration [14] of a polarized projective variety (X, L).

Definition 3. A test configuration of (X, L), consists of
1. a scheme X with a C*-action;
2. a C*-equivariant line bundle L — X

3. a flat C*-equivariant map m: X — C, where C* acts on C by multiplication in the standard
way;

such that any fibre Xy = 7= (t) fort # 0 is isomorphic to X and (X, L) is isomorphic to (X, L|x, ).

Any test configuration can be equivariantly embedded into PY x C* where the C* action on
PV is given by a 1 parameter subgroup of SL(N + 1,C). If Y is any subvariety of X, the test
configuration of (X, L) also induces a test configuration (3, L|y) of (Y, L|y) .

Let dy, dj, be the dimensions of HO(X, L*), H(Y, L|), and wg, Wy, be the weights of C* action
on H°(Xo, L| %), H°(Yy, L[ ), respectively. Then we have expansions:

wi, = apk™ + a k™ + O(k"7Y),  dy = bok™ + bik" "t 4+ O(k"2)

Wy = aogk™ + O(K™™Y),  dyp = bok™ ™' + O(k"2)

If the central fibre X is smooth, we can use equivariant differential forms to calculate the
coefficients by [3]. Let w be a smooth Kéhler form in ¢; (L), and 6, = £, — V,, then

w 1 w"
—/‘Xevm, a; = —5/)(91)5(00)? (9)
bo _/ Y —Vol(X / S(w n' (10)

whto w"

ao = — 0, ——; bo :/ —— =Vol(Yp) (11)
v =) vy 1= 1>!

Remark 3. To see the signs of coefficients and give an example, we consider the case where

X =P, L = Opi(k). C* acts on P! by multiplication: t -z = tz. A general D € |L| consists

of k points. Ast — 0, t-D — k{0}. D is the zero set of a general degree k homogeneous

polynomial Py (20, 21) and k{0} is the zero set of zF. C* acts on HO(PL,O(k)) by t-ziz] =t ziz]



so that limy_,o[t - Py(20,21)] = [2¥], where [Py] € P(H(PY,O(k))). Take the Fubini-Study metric
)

7 dlog(1+]z|? 2
wrs = L00log(1 + o) = S i, then 6, = 2R = i So

+o0 T2 1
—ap= | Oywps = —rdr = =
aq /IFDl wWrs /0 (1 +r2)3 rar )

1 1
—ay = —/ S(wrs)bowrs = / Ovwrs = 3
2 Pl Pt 2

1 1
wp=—(1+- k) = =5k - ok

While
which gives exactly ag = a1 = —%.

Comparing (6), (9)-(11), we can define the algebraic log-Futaki invariant of the given test
configuration to be

2(a1bg — apb - b
F(X.).L) = w + (~dio + ;>ao)
0 0
_ (2&1 — do)bob— a0(2b1 — bo) (12)
0

Definition 4. (X,Y, L) is log-K-stable along the test configuration (X, L) if F(X,Y,L) <0, and
equality holds if and only if (X,Y, L) is a product configuration.

(X,Y, L) is semi-log-K-stable along (X, L) if F(X,Y,L) < 0. Otherwise, it’s unstable.

(X,Y, L) is log-K-stable (semi-log-K-stable) if, for any integer r > 0, (X,Y, L") is log-K-stable
(semi-log-K-stable) along any test configuration of (X,Y,L").

Remark 4. When Y is empty, then definition of log-K-stability becomes the definition of K-
stability. ([14], [3])

Remark 5. In applications, we sometimes meet the following situation. Let A(t) : C* — SL(N +
1,C) be a 1 parameter subgroup. Ast — oo, A(t) will move X,Y C PN to the limit scheme Xo, Yy.
Then stability condition is equivalent to the other opposite sign condition F(Xo,Yo,v) > 0. This
is of course related to the above definition by transformation t — t=1.

Example 1 (Orbifold). Assume X is smooth. Y =3 (1— —)D is a normal crossing divisor,

where n; > 0 are integers. The conic Kahler metric on (X,Y) is ]ust the orbifold Kdhler metric on

the orbifold (X,Y). Orbifold behaves similarly as smooth variety, but in the calculation, we need

to use orbifold canonical bundle K., = Kx + Y. For example, think L as an orbifold line bundle

on X, then the orbifold Riemann-Roch says that
L’n.

dimH? ,(X,Y),L) = Fkn %%

1 -
bok™ + 5(21;1 —bo)k" "t + O(k" %)

fn— 1 O(kn72)

For the C*-weight of H,

o

O, ((X,Y), L), we have expansion:
’szb _ agrbkn-i-l + a(larbkn + O(kn—l)

By orbifold equivariant Riemann-Roch, we have the formula:

ag’t = /9 /9



ag™ = / 0,5 (@)=~
X

n!

To calculate the second coefficient a"™, we choose an orbifold metric &, then by (9):

1 R ~n—1
P __/ Bun Ric(@) A
2 D' mn.
1 R ) (:)n—l
= —5/ Oun(Ric(Q2) — c1([D], h) +{D}) A —
D' n.
1 R ~m 1 R ~n—1
- __/ v (d))w_ - _/ v d
1 Wt 1
orb orb ~
- E/DU(n—v_al T3
So
1 .
ag™t = 5(20“ —ao) (13)

Comparing (12), we see that the log-Futaki invariant recovers the orbifold Futaki invariant, and
similarly log-K-stability recovers orbifold K-stability. Orbifold Futaki and orbifold K-stability were
studied by Ross-Thomas [9].

Example 2. X =P!, L = KIFTll =0p(2),Y =3_,ap;. Foranyie {1, --,r}, we choose the
coordinate z on P, such that z(p;) = 0. Then consider the holomorphic vector field v = 20,. v

generates the 1 parameter subgroup \(t) : AN(t) -z =1t-z. Ast — oo, A(t) degenerate (X,Y) into

-2 2 s )
the pair (P, a; {0} + >z aj{oo}). We take 0, = % Then it’s easy to get the log-Futaki
invariant of the degeneration determined by A:

F(PLY " aipi, 001 (2)(A) =D 0 — i

i=1 j#i

If (PY, 370 qups) is log-K-stable, by Remark 5, we have

ZO[J'—OZZ'>O (14)

J#i

Equivalently, if we let t — 0, we get a; — Z#i a; <0 from log-K-stability.

Let’s consider the problem of constructing singular Riemannian metric g of constant scalar
curvature on P' which has conic angle 27(1 — «;) at p; and is smooth elsewhere. Assume p; # 0o
for anyi=1,...,r. Under conformal coordinate z of C C P!, g = e“|dz|?. u is a smooth function
in the punctured complex plane C — {p1,...,p,} so that near each p;, u(z) = —2«; log |z — p;|+a
continuous function, where o;; € (0,1) and u = —2log|z|+ a continuous function near infinity.
We call such function is of conic type. The condition of constant scalar curvature corresponds to
the following Liouville equations.

1. Ay = —e2v
2. Au=0
3. Ay = e

which correspond to scalar curvature=1, 0, -1 case respectively.
For such equations, we have the following nice theorem due to Troyanov, McOwen, Thurston,
Luo-Tian.



Theorem 3 (See [7] and the reference there). 1. For equation 1, it has a solution of conic type
if and only if
(a) 0_ i <2, and
(b) Z#iaj —a; >0, foralli=1,...,n.

2. For equation 2, it has a solution of conic type if and only if (a): >_i_; oy = 2.

In this case, (a) implies the condition: (b) 37, ;a5 — ;i >0, for alli=1,...,r.
3. For equation 3, it has a solution of conic type if and only if (a): > ._ a; > 2.

Again in this case, (a) implies the condition: (b) 32, ;a5 —a; >0, foralli=1,....r.
Moreover, the above solutions are all unique.

Note that deg(—(Kpr + Y ;_; cipi)) =2 — >, o, so by (4), conditions (a) in above theorem
correspond to the cohomological conditions for the scalar curvature to be positive, zero, negative re-
spectively. While the condition (b) is the same as (14). So by the above theorem, if (P*,>"7_| a;p;)
is log-K-stable, then there is a conic metric on (P*, 1| a;p;) with constant curvature whose sign
is the same as that of 2 — ", ;.

This example clearly suggests

Conjecture 3 (Logarithmic version of Tian-Yau-Donaldson conjecture). There is a constant scalar
curvature conic Kahler metric on (X,Y) if and only if (X,Y) is log-K-stable.

5 Toric Fano case

5.1 Log-Futaki invariant for 1psg on toric Fano variety

For a reflexive lattice polytope A in R” = A ®z R, we have a Fano toric manifold (C*)" C Xa
with a (C*)™ action. In the following, we will sometimes just write X for XA for simplicity.

Let (S*)™ C (C*)™ be the standard real maximal torus. Let {z;} be the standard coordinates
of the dense orbit (C*)", and x; = log|z;|*>. We have

Lemma 1. Any (S')" invariant Kihler metric w on X has a potential u = u(x) on (C*)", i.e.

w = —gjaéu u s a proper convex function on R™, and satisfies the momentum map condition:
Du(R") = A

Also,

(90u)"/n! _det( 0*u > (15)

dz1 p dZy | A dzn A dZn
ZLANGE - NERA

Let {pa; o =1,---, N} be all the lattice points of A. Each p, corresponds to a holomorphic
section s, € H%(Xa, K;(i) We can embed X into PV using {s,}. Define u to be the potential

on (C*)™ for the pull back of Fubini-Study metric (i.e. %aéu = wpg):

N
u = log (Z e<p"“””>> +C (16)

a=1

C' is some constant determined by normalization condition:

/n e "dx = Vol(N) = ! / wr = B8 (X.A)n

!



By the above normalization of u, it’s easy to see that

2 —Uu
ehw:|'|FS: e
[ B wn/(de AL g e B

zZ1 Zn

So
he, = —logdet(u;;) —u (17)

Now let’s calculate the log-Futaki invariant for any 1-parameter subgroup in (C*)™. Each 1-
parameter subgroup in (C*)™ is determined by some A € R™ such that the generating holomorphic

vector field is
- 0
Uy = i:E : Azzla—zz

A general Calabi-Yau hypersurface Y € | — K x| is a hyperplane section given by the equation:

N
s = Z b(pa)zPe =0
a=1

By abuse of notation, we denote A(¢) to be the 1 parameter subgroup generated by vy, then

N
At) 5= b(pa)t™ Pt zPe (18)

a=1

Let
W(A) = mazpen(p, \)

Then Hy = {p € R™, {p, \) = W(A)} is a supporting plane of A, and
Fr:={pel;p,\) =W} =H.nNA
is a face of A.

We have limyo[s] = |s0 :=>_, <7, b(pa)zpﬂ}, and by (18), the C*-weight of s¢ is =W ().

Proposition 2. Let F(Ky', BY)()\) denote the Futaki invariant of the test configuration associated
with the 1 parameter subgroup generated by vy. We have

F(EX' BY)N) = = (B(Pe, ) + (1 = B)W(N)) Vol(L) (19)

Proof. We will use the algebraic definition of log-Futaki invariant (12) to do the calculation.
Note that (X,Y, Ky') degenerates to (X, Yy, Kx') under .
Yy is a hyperplane section of X, and s € H°(X, K') is the defining section, i.e. Yy = {so = 0}.
Then

_ ~ — —(k—1
HO(Yo, Kx') = HO(X, K")/(s0 @ HO(X, K1)

So
ﬁ}k = Wk — (wk_l — W()\)dk_l)

Plugging the expansions, we get
ELO = (n + 1)a0 + W()\)bo

Note that by = nbyg = nVol(A), we have

b
—ZLO + b—OCLQ = —ap — W(/\)bo
0

10



where

—ag _/ 0, — / Z)\ w; det (ug;)dz _/ Z/\lyzdy = Vol(A)(P,, )

By (17), the ordinary Futaki invariant is given by

(o) = [ o= [ nZ)\ det(uyy)d
— /A Z/\iyidy = —Vol(A){(P.,\)

Substituting these into (12), we get

F(KLBY)(N) = —Vol(A) (P A) + (1= B)(Vol(A)(Pey, ) — W(A)Vol(A))
= —(B(Pe, \) + (1 = B)W(N)Vol(L)

O

Proof of Theorem 1. Note that for any Py € Fx C 9A, W(A) = (Py, A). By Theorem 2, we have

F(K',BY)(\) = <%%}§§)X)<Q, A) — W(A)) (1—B)\Vol(A)
= (Qp—P\,\)
where Q3 = 5 1RR)(())<)Q

Note that )\ is a outward normal vector of Hy. By convexity of A, it’s easy to see that (see the
picture after Example 2)

e B < R(X): Qpe A° Forany A € R, (Qs — Px,\) <0.

o f=R(X): Qs=@Q € I0A. For any A € R", (Q3 — P, \) < 0. Equality holds if and only if
(Q,\) =W()), i.e. Hy is a supporting plane of A at point Q.

e B> R(X): Qp ¢ A. There exists A € R such that (Qz — Py, \) >0

5.2 Example
1. X = BI,P?. See the picture in Introduction. P, = 1(3,3), Q = —6P. € 9A, so R(X) = £.
If we take A = (—1,—1), then W(\) = 1. So by (19)

(K, BY)(N) = 26— 401~ §)

So F(K)_(l, BY)(N\) <0 if and only if 8 < 9, and equality holds exactly when g = 2

2. XaA =Bl P? P.=2(—3,—3), Q= —3P. € 0/, s0 R(Xp) =
If we take Ay = (1,1), then W (\;) = 1. By (19),

PR BY)(M) = 56— 2(1 - 5)

F(Kx"',BY)(A\1) <0 if and only if 8 < 2L

This is essentially the same as Donaldson’s calculation in [4].

11



If we take A3 = (—1,2), then W(Ag) = (—1,2) - (—1,1) = 3. By (19)
FKY6Y)09) = 58— 5 (1= )

So F(Ky',BY)(A\3) < 0if and only if 8 < 53 which means that (X, 8Y) is log-K-stable along

21 63
Agwhen5§%<@.

A3 Hs
A .Q>_1
Qa
Q<%‘
P.
Py
i
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