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Remarks on logarithmic K-stability

Chi Li

ABSTRACT: We make some observation on the logarithmic version of K-stability.

1 Introduction

Let (X, J) be a Fano manifold, that is, K−1
X is ample. The basic problem in Kähler geometry is

to determine whether (X, J) has a Kähler-Einstein metric (cf. [12])
On way to attack this problem is to use continuity method. Fix a reference Kähler metric

ω ∈ c1(X). Its Ricci curvature Ric(ω) also lies in c1(X). So there exists hω ∈ C∞(X) such that

Ric(ω)− ω = ∂∂̄hω,

∫

X

ehωωn =

∫

X

ωn

Consider the following family of Monge-Ampère equations.

(ω + ∂∂̄φt)
n = ehω−tφωn (∗)t

This is equivalent to the equation for Kähler forms:

Ric(ωφ) = tωφ + (1− t)ω (1)

By Yau’s theorem [16], we can always solve (∗)t for t = 0. If we could solve (∗)t for t = 1,
we would get Kähler-Einstein metric. However, it was first showed by Tian [13] that we may not
be able to solve (∗)t on certain Fano manifold for t sufficiently close to 1. Equivalently, for such
a Fano manifold, there is some t0 < 1, such that there is no Kähler metric ω in c1(X) which can
have Ric(ω) ≥ t0ω.

The existence problem of Kähler-Einstein metric is a special case of the existence problem of
constant scalar curvature Kähler (cscK) metric. For the latter, we fix an ample line bundle L on
(X, J). We have the following folklore conjecture. For the definition of K-stability, see [14], [3] or
Definition 4.

Conjecture 1 (Tian-Yau-Donaldson). ([14],[3]) There is a smooth constant scalar curvature
Kähler metric in c1(L) on (X, J) if and only if (X, J, L) is K-stable.

Return to the continuity method (∗)t and let R(X) = sup{t : (∗)t is solvable }. Székelyhidi
proved that

Proposition 1 ([10]).

R(X) = sup{t : ∃ a Kähler metric ω ∈ c1(X) such that Ric(ω) > tω}

In particular, R(X) is independent of reference metric ω.
There is another continuity method we can try. Let Y ∈ | −KX | be a general element, then Y

is a smooth Calabi-Yau hypersurface. The Kähler-Einstein metric with cone singularity along Y
of cone angle 2πβ is a solution to the following distributional equation

Ric(ω) = βω + (1 − β){Y } (2)
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Conjecture 2 (Donaldson). There is a cone-singularity solution ωβ to (2) for any parameter
β ∈ (0, R(X)). If R(X) < 1, there is no solution for parameter β ∈ (R(X), 1).

The purpose of this note is to discuss the logarithmic version of K-stability and prove the
following result.

Theorem 1. Let X△ be a toric Fano variety with a (C∗)n action. Let Y be a general hyperplane
section of X△. When β < R(X△), (X△, βY ) is log-K-stable along any 1 parameter subgroup
in (C∗)n. When β = R(X△), (X△, βY ) is semi-log-K-stable along any 1 parameter subgroup in
(C∗)n and there is a 1 parameter subgroup in (C∗)n which has vanishing log-Futaki invariant.
When β > R(X△), (X△, βY ) is not log-K-stable.

This explains and generalizes slightly the calculation in [4] and gives some evidence for the
Conjecture 2 (Combined with Conjecture 3).

We prove the above result by calculating R(X△) and log-Futaki invariant explicitly. R(X△)
was calculated in [6] based on Wang-Zhu’s work [15]. The main formula for log-Futaki invariant is
(19).

A toric Fano manifold X△ is determined by a reflexive lattice polytope △ (For details on toric
manifolds, see [8]). For example, let BlpP

2 denote the manifold obtained by blowing up one point
on P2. Then BlpP

2 is a toric Fano manifold and is determined by the following polytope.
Any such polytope △ contains the origin O ∈ Rn. We denote the barycenter of △ by Pc. If

Pc 6= O, the ray Pc + R≥0 ·
−−→
PcO intersects the boundary ∂△ at point Q.

Theorem 2. [6] If Pc 6= O,

R(X△) =

∣

∣OQ
∣

∣

∣

∣PcQ
∣

∣

Here
∣

∣OQ
∣

∣,
∣

∣PcQ
∣

∣ are lengths of line segments OQ and PcQ. In other words,

Q = − R(X△)

1−R(X△)
Pc ∈ ∂△

If Pc = O, then there is Kähler-Einstein metric on X△ and R(X△) = 1.
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2 Log-Futaki invariant

In this section, we recall Donaldson’s definition of log-Futaki invariant (6). Let (X,L) be a polarized
projective variety and D be a normal crossing divisor:

D =

r
∑

i=1

αiDi

with αi ∈ (0, 1).
From now on, we fix a Hermitian metric ‖ · ‖i = hi and defining section si of the line bundle

[Di].
Assume ω ∈ c1(L) is a smooth Kähler form. We define

P(ω) =

{

ωφ := ω +

√
−1

2π
∂∂̄φ; φ ∈ L∞(X) ∩ C∞(X\D) such that ω +

√
−1

2π
∂∂̄φ ≥ 0

}

Around any point p ∈ X , we can find local coordinate {zi; i = 1, · · · , n}, such that D is defined
by

D = ∪rp
i=1αi{zi = 0}

where rp = ♯{i; p ∈ Di}.

Definition 1. We say that ω̂ ∈ P(ω) is a conic Kähler metric on (X,D), if around p, ω is
quasi-isometric to the metric

rp
∑

i=1

dzi ∧ dz̄i
|zi|2αi

+

n
∑

j=rp+1

dzj ∧ dz̄j

We will simply say that ω̂ is a conic metric if it’s clear what D is.

Geometrically, this means the Riemannian metric determined by ω has conic singularity along
each Di of conic angle 2π(1 − αi).

Remark 1. Construction of Kähler-Einstein metrics with conic singularites was proposed long
time ago by Tian, see [11] in which he used such metrics to prove inequalities of Chern numbers
in algebraic geometry.

One consequence of this definition is that globally the volume form has the form

ω̂n =
Ω

∏r

i=1 ‖si‖2αi

i

where Ω is a smooth volume form. For any volume form Ω, let Ric(Ω) denote the curvature of the
Hermitian metric on K−1

X determined by Ω. Then, by abuse of notation,

Ric(ω̂) = Ric(ω̂n) = Ric(Ω) +

√
−1

2π

r
∑

i=1

αi∂∂̄ log ‖si‖2i = Ric(Ω)−
r
∑

i=1

αic1([Di], hi) +

r
∑

i=1

αi{Di}

= Ric(Ω)− c1([D], h) + {D} (3)

where h = ⊗r
i=1h

αi

i and s = ⊗r
i=1s

αi

i are Hermitian metric and defining section of the R-line bundle
[D] = ⊗r

i=1[Di]
αi .

Here we used the Poincáre-Lelong identity:

√
−1

2π
∂∂̄ log ‖si‖2i = −c1([Di], hi) + {Di}
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where {Di} is the current of integration along the divisor Di.
The scalar curvature of ω̂ on its smooth locus X\D is

S(ω̂) = ĝij̄R̂ij̄ =
nRic(ω̂) ∧ ω̂n−1

ω̂n
=

n(Ric(Ω)− c1([D], h)) ∧ ω̂n−1

ω̂n

So if S(ω̂) is constant, then the constant only depends on cohomological classes by the identity:

nµ1 :=
n(c1(X)− c1([D])) ∧ [c1(L)]

n−1

c1(L)n
=

−n(KX +D) · Ln−1

Ln
= nµ− V ol(D)

V ol(X)
(4)

Here

nµ =
n c1(X) · c1(L)n−1

c1(L)n
=

−nKX · Ln−1

Ln

is the average scalar curvature for smooth Kähler form in c1(L). And

V ol(D) =

∫

D

c1(L)
n−1

(n− 1)!
=

D · Ln−1

(n− 1)!
, V ol(X) =

∫

X

c1(L)
n

n!
=

Ln

n!

Now assume C∗ acts on (X,L) and v is the generating holomorphic vector field. Recall that
the ordinary Futaki-Calabi invariant ([5], [2]) is defined by

F (c1(L))(v) = −
∫

X

θv(S(ω)− nµ)
ωn

n!

where θv satisfies
ιvω = ∂̄θv

Now assume ω̂∞ ∈ P(ω) is a conic metric and satisfies

S(ω̂∞) = nµ1 (5)

Assume D is preserved by the C∗ action. Let’s calculate the ordinary Futaki invariant using the
conic metric ω̂∞. Let θ̂v = θ̂(ω̂∞, v). Then near p ∈ D, v ∼∑rp

i=1 cizi∂zi + ṽ with ṽ = o(z1 · · · zrp)
holomorphic. θ̂v ∼∑rp

i=1 |zi|2(1−αi).
We then make use of the distributional identity (3) to get

F (c1(L))(v) = −
∫

X

θ̂v(nRic(ω̂∞)− nµω̂∞) ∧ ω̂n−1
∞
n!

= −
∫

X

θ̂v [(nRic(Ω)− nc1([D], h)− nµ1ω̂∞) + n{D} − (nµ− nµ1)ω̂∞] ∧ ω̂n−1
∞
n!

= −
∫

X

θ̂v(S(ω̂∞)− nµ1)
ω̂n
∞
n!

−
∫

X

{D}θ̂v
ω̂n−1
∞

(n− 1)!
+ (nµ− nµ1)

∫

X

θ̂v
ω̂n
∞
n!

= −
(
∫

D

θ̂v
ω̂n−1
∞

(n− 1)!
− V ol(D)

V ol(X)

∫

X

θ̂v
ω̂n
∞
n!

)

So we get

0 = F (c1(L))(v) +

(
∫

D

θ̂v
ω̂n−1
∞

(n− 1)!
− V ol(D)

V ol(X)

∫

X

θ̂v
ω̂n
∞
n!

)

Since the two integrals in the above formula is integration of (singular) equivariant forms, they
are independent of the chosen Kähler metric in P(ω) with at worst conic singularities. In particular,
we can choose the smooth Kähler metric ω, then we just discover the log-Futaki invariant defined
by Donaldson:
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Definition 2. [4]

F (c1(L), D)(v) = F (c1(L))(v) +

(
∫

D

θv
ωn−1

(n− 1)!
− V ol(D)

V ol(X)

∫

X

θv
ωn

n!

)

(6)

Remark 2. This differs from the formula in [4] by a sign. And we think of D as a cycle with real
coefficients, so if we replace D by (1 − β)△, we have the same formua as that in [4].

3 log-K-energy and Berman’s formulation

We can integrate the log-Futaki-invariant to get log-K-energy

νω,D(φ) = −
∫ 1

0

dt

∫

X

(S(ωt)− S)φ̇
ωn
t

n!
+

∫ 1

0

dt

∫

D

φ̇
ωn−1
t

(n− 1)!
− V ol(D)

V ol(X)

∫ 1

0

dt

∫

X

φ̇
ωn
t

n!

= νω(φ) +

∫ 1

0

∫

X

(
√
−1

2π
∂∂̄ log ‖s‖2 + c1([D], h)

)

φ̇
ωn−1
t

(n− 1)!
+

V ol(D)

V ol(X)
F 0
ω(φ)

= νω(φ) +
V ol(D)

V ol(X)
F 0
ω(φ) + J χD

ω (φ) +

∫

X

log ‖sD‖2
ωn
φ

n!
(7)

where χD = c1([D], h) is the Chern curvature form. The functionals F 0
ω(φ) and J χ

ω (φ) are defined
by:

F 0
ω(φ) = −

∫ 1

0

dt

∫

X

φ̇
ωn
φt

n!

J χ
ω (φ) =

∫ 1

0

dt

∫

X

φ̇χ ∧
ωn−1
φt

(n− 1)!

Let’s now focus on the Fano case as in the beginning of this paper. (2) is equivalent to the
following singular complex Monge-Ampère equation:

(ω + ∂∂̄φ)n = e−βφ Ω1

‖s‖2(1−β)
(8)

with Ω1 = ehωωn and s is a defining section of [Y ]. Note that the line bundle [Y ] = K−1
X has the

Hermitian metric ‖ · ‖ such that the curvature is ω.
We have D = (1 − β)Y . Since [Y ] = K−1

X , we can assume χD = (1 − β)ω, V ol((1 − β)D) =
n(1− β)V ol(X). Then (7) becomes

νω,D = νω(φ) + (1− β)
(

nF 0
ω(φ) + J ω

ω (φ)
)

+ (1− β)

∫

X

log ‖s‖2
ωn
φ

n!

= νω(φ) + (1− β)(Iω − Jω) + (1− β)

∫

X

log ‖s‖2
ωn
φ

n!

=

∫

X

log
ωn
φ

Ω1
− β(Iω − Jω) + (1 − β)

∫

X

log ‖s‖2
ωn
φ

n!

We have used the well known formula for K-energy [12]:

νω(φ) =

∫

X

log
ωn
φ

Ω1
− (Iω − Jω)(φ)

where

Iω(φ) =

∫

X

φ(ωn − ωn
φ)/n!

5



Jω(φ) = F 0
ω(φ) +

∫

X

φ
ωn

n!

And it’s easy to verify that

nF 0
ω(φ) + J ω

ω (φ) = (Iω − Jω)(φ) = −
(
∫

X

φωn
φ + F 0

ω(φ)

)

From above formula, we see that, in Fano case, the log-K-energy coincides with Berman’s free
energy associated with (8) ([1])

νω,D =

∫

X

log
ωn
φ

Ω1/‖s‖2(1−β)

ωn
φ

n!
+ β

(
∫

X

φωn
φ + F 0

ω(φ)

)

4 Log-K-stability

We imitate the definition of K-stability to define log-K-stability. First we recall the definition of
test configuration [3] or special degeneration [14] of a polarized projective variety (X,L).

Definition 3. A test configuration of (X,L), consists of

1. a scheme X with a C∗-action;

2. a C∗-equivariant line bundle L → X

3. a flat C∗-equivariant map π : X → C, where C
∗ acts on C by multiplication in the standard

way;

such that any fibre Xt = π−1(t) for t 6= 0 is isomorphic to X and (X,L) is isomorphic to (Xt,L|Xt
).

Any test configuration can be equivariantly embedded into PN × C∗ where the C∗ action on
PN is given by a 1 parameter subgroup of SL(N + 1,C). If Y is any subvariety of X , the test
configuration of (X,L) also induces a test configuration (Y,L|Y) of (Y, L|Y ) .

Let dk, d̃k be the dimensions of H0(X,Lk), H0(Y, L| kY ), and wk, w̃k be the weights of C∗ action
on H0(X0,L| kX0

), H0(Y0,L| kY0
), respectively. Then we have expansions:

wk = a0k
n+1 + a1k

n +O(kn−1), dk = b0k
n + b1k

n−1 +O(kn−2)

w̃k = ã0k
n +O(kn−1), d̃k = b̃0k

n−1 +O(kn−2)

If the central fibre X0 is smooth, we can use equivariant differential forms to calculate the
coefficients by [3]. Let ω be a smooth Kähler form in c1(L), and θv = Lv −∇v, then

a0 = −
∫

X

θv
ωn

n!
; a1 = −1

2

∫

X

θvS(ω)
ωn

n!
(9)

b0 =

∫

X

ωn

n!
= V ol(X); b1 =

1

2

∫

X

S(ω)
ωn

n!
(10)

ã0 = −
∫

Y0

θv
ωn−1

(n− 1)!
; b̃0 =

∫

Y0

ωn−1

(n− 1)!
= V ol(Y0) (11)

Remark 3. To see the signs of coefficients and give an example, we consider the case where
X = P1, L = OP1(k). C∗ acts on P1 by multiplication: t · z = tz. A general D ∈ |L| consists
of k points. As t → 0, t · D → k{0}. D is the zero set of a general degree k homogeneous
polynomial Pk(z0, z1) and k{0} is the zero set of zk1 . C∗ acts on H0(P1,O(k)) by t · zi0zj1 = t−jzi0z

j
1

6



so that limt→0[t · Pk(z0, z1)] = [zk1 ], where [Pk] ∈ P(H0(P1,O(k))). Take the Fubini-Study metric

ωFS =
√
−1
2π ∂∂̄ log(1 + |z|2) =

√
−1
2π

dz∧dz̄
(1+|z|2)2 , then θv = ∂ log(1+|z|2)

∂ log |z|2 = |z|2
1+|z|2 . So

−a0 =

∫

P1

θvωFS =

∫ +∞

0

r2

(1 + r2)3
2rdr =

1

2

−a1 =
1

2

∫

P1

S(ωFS)θvωFS =

∫

P1

θvωFS =
1

2

While

wk = −(1 + · · ·+ k) = −1

2
k2 − 1

2
k

which gives exactly a0 = a1 = − 1
2 .

Comparing (6), (9)-(11), we can define the algebraic log-Futaki invariant of the given test
configuration to be

F (X ,Y,L) =
2(a1b0 − a0b1)

b0
+ (−ã0 +

b̃0
b0
a0)

=
(2a1 − ã0)b0 − a0(2b1 − b̃0)

b0
(12)

Definition 4. (X,Y, L) is log-K-stable along the test configuration (X ,L) if F (X ,Y,L) ≤ 0, and
equality holds if and only if (X ,Y,L) is a product configuration.

(X,Y, L) is semi-log-K-stable along (X ,L) if F (X ,Y,L) ≤ 0. Otherwise, it’s unstable.
(X,Y, L) is log-K-stable (semi-log-K-stable) if, for any integer r > 0, (X,Y, Lr) is log-K-stable

(semi-log-K-stable) along any test configuration of (X,Y, Lr).

Remark 4. When Y is empty, then definition of log-K-stability becomes the definition of K-
stability. ([14], [3])

Remark 5. In applications, we sometimes meet the following situation. Let λ(t) : C∗ → SL(N +
1,C) be a 1 parameter subgroup. As t → ∞, λ(t) will move X,Y ⊂ PN to the limit scheme X0, Y0.
Then stability condition is equivalent to the other opposite sign condition F (X0, Y0, v) ≥ 0. This
is of course related to the above definition by transformation t → t−1.

Example 1 (Orbifold). Assume X is smooth. Y =
∑r

i=1(1− 1
ni
)Di is a normal crossing divisor,

where ni > 0 are integers. The conic Kähler metric on (X,Y ) is just the orbifold Kähler metric on
the orbifold (X,Y ). Orbifold behaves similarly as smooth variety, but in the calculation, we need
to use orbifold canonical bundle Korb = KX + Y . For example, think L as an orbifold line bundle
on X, then the orbifold Riemann-Roch says that

dimH0
orb((X,Y ), L) =

Ln

n!
kn +

1

2

−(KX + Y ) · Ln

(n− 1)!
kn−1 +O(kn−2)

= b0k
n +

1

2
(2b1 − b̃0)k

n−1 +O(kn−2)

For the C
∗-weight of H0

orb((X,Y ), L), we have expansion:

worb
k = aorb0 kn+1 + aorb1 kn +O(kn−1)

By orbifold equivariant Riemann-Roch, we have the formula:

aorb0 =

∫

X

θ̂v
ω̂n

n!
=

∫

X

θv
ωn

n!
= a0

7



aorb1 =

∫

X

θ̂vS(ω̂)
ω̂n

n!

To calculate the second coefficient aorb1 , we choose an orbifold metric ω̂, then by (9):

a1 = −1

2

∫

X

θ̂vn Ric(ω̂) ∧ ω̂n−1

n!

= −1

2

∫

X

θ̂vn(Ric(Ω)− c1([D], h) + {D}) ∧ ω̂n−1

n!

= −1

2

∫

X

θ̂vS(ω̂)
ω̂n

n!
− 1

2

∫

D

θ̂v
ω̂n−1

(n− 1)!

= aorb1 − 1

2

∫

D

θv
ωn−1

(n− 1!
= aorb1 +

1

2
ã0

So

aorb1 =
1

2
(2a1 − ã0) (13)

Comparing (12), we see that the log-Futaki invariant recovers the orbifold Futaki invariant, and
similarly log-K-stability recovers orbifold K-stability. Orbifold Futaki and orbifold K-stability were
studied by Ross-Thomas [9].

Example 2. X = P1, L = K−1
P1 = OP1(2), Y =

∑r

i=1 αipi. For any i ∈ {1, · · · , r}, we choose the
coordinate z on P1, such that z(pi) = 0. Then consider the holomorphic vector field v = z∂z. v
generates the 1 parameter subgroup λ(t) : λ(t) · z = t · z. As t → ∞, λ(t) degenerate (X,Y ) into

the pair (P1, αi{0}+
∑

j 6=i αj{∞}). We take θv = −|z|−2+|z|2
|z|−2+1+|z|2 . Then it’s easy to get the log-Futaki

invariant of the degeneration determined by λ:

F (P1,

r
∑

i=1

αipi,OP1(2))(λ) =
∑

j 6=i

αj − αi

If (P1,
∑r

i=1 αipi) is log-K-stable, by Remark 5, we have

∑

j 6=i

αj − αi > 0 (14)

Equivalently, if we let t → 0, we get αi −
∑

j 6=i αj < 0 from log-K-stability.
Let’s consider the problem of constructing singular Riemannian metric g of constant scalar

curvature on P1 which has conic angle 2π(1 − αi) at pi and is smooth elsewhere. Assume pi 6= ∞
for any i = 1, . . . , r. Under conformal coordinate z of C ⊂ P1, g = e2u|dz|2. u is a smooth function
in the punctured complex plane C − {p1, . . . , pr} so that near each pi, u(z) = −2αi log |z − pi|+a
continuous function, where αi ∈ (0, 1) and u = −2 log |z|+ a continuous function near infinity.
We call such function is of conic type. The condition of constant scalar curvature corresponds to
the following Liouville equations.

1. ∆u = −e2u

2. ∆u = 0

3. ∆u = e2u

which correspond to scalar curvature=1, 0, -1 case respectively.
For such equations, we have the following nice theorem due to Troyanov, McOwen, Thurston,

Luo-Tian.
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Theorem 3 (See [7] and the reference there). 1. For equation 1, it has a solution of conic type
if and only if

(a)
∑r

i=1 αi < 2, and

(b)
∑

j 6=i αj − αi > 0, for all i = 1, . . . , n.

2. For equation 2, it has a solution of conic type if and only if (a):
∑r

i=1 αi = 2.

In this case, (a) implies the condition: (b)
∑

j 6=i αj − αi > 0, for all i = 1, . . . , r.

3. For equation 3, it has a solution of conic type if and only if (a):
∑r

i=1 αi > 2.

Again in this case, (a) implies the condition: (b)
∑

j 6=i αj − αi > 0, for all i = 1, . . . , r.
Moreover, the above solutions are all unique.

Note that deg(−(KP1 +
∑r

i=1 αipi)) = 2−∑r

i=1 αi, so by (4), conditions (a) in above theorem
correspond to the cohomological conditions for the scalar curvature to be positive, zero, negative re-
spectively. While the condition (b) is the same as (14). So by the above theorem, if (P1,

∑r

i=1 αipi)
is log-K-stable, then there is a conic metric on (P1,

∑r

i=1 αipi) with constant curvature whose sign
is the same as that of 2−∑i αi.

This example clearly suggests

Conjecture 3 (Logarithmic version of Tian-Yau-Donaldson conjecture). There is a constant scalar
curvature conic Kähler metric on (X,Y ) if and only if (X,Y ) is log-K-stable.

5 Toric Fano case

5.1 Log-Futaki invariant for 1psg on toric Fano variety

For a reflexive lattice polytope △ in Rn = Λ ⊗Z R, we have a Fano toric manifold (C∗)n ⊂ X△
with a (C∗)n action. In the following, we will sometimes just write X for X△ for simplicity.

Let (S1)n ⊂ (C∗)n be the standard real maximal torus. Let {zi} be the standard coordinates
of the dense orbit (C∗)n, and xi = log |zi|2. We have

Lemma 1. Any (S1)n invariant Kähler metric ω on X has a potential u = u(x) on (C∗)n, i.e.

ω =
√
−1
2π ∂∂̄u. u is a proper convex function on Rn, and satisfies the momentum map condition:

Du(Rn) = △

Also,
(∂∂̄u)n/n!

dz1
z1

∧ dz̄1
z̄1

· · · ∧ dzn
zn

∧ dz̄n
z̄n

= det

(

∂2u

∂xi∂xj

)

(15)

Let {pα; α = 1, · · · , N} be all the lattice points of △. Each pα corresponds to a holomorphic
section sα ∈ H0(X△,K−1

X△
). We can embed X△ into PN using {sα}. Define u to be the potential

on (C∗)n for the pull back of Fubini-Study metric (i.e.
√
−1
2π ∂∂̄u = ωFS):

u = log

(

N
∑

α=1

e<pα,x>

)

+ C (16)

C is some constant determined by normalization condition:

∫

Rn

e−udx = V ol(△) =
1

n!

∫

X△

ωn =
c1(X△)n

n!

9



By the above normalization of u, it’s easy to see that

ehω =
| · |2FS

| · |2ωn

=
e−u

ωn/(dz1
z1

∧ dz̄1
z̄1

· · · ∧ dzn
zn

∧ dz̄n)
z̄n

So
hω = − log det(uij)− u (17)

Now let’s calculate the log-Futaki invariant for any 1-parameter subgroup in (C∗)n. Each 1-
parameter subgroup in (C∗)n is determined by some λ ∈ Rn such that the generating holomorphic
vector field is

vλ =

n
∑

i=1

λizi
∂

∂zi

A general Calabi-Yau hypersurface Y ∈ | −KX | is a hyperplane section given by the equation:

s :=

N
∑

α=1

b(pα)z
pα = 0

By abuse of notation, we denote λ(t) to be the 1 parameter subgroup generated by vλ, then

λ(t) · s =
N
∑

α=1

b(pα)t
−〈pα,λ〉zpα (18)

Let
W (λ) = maxp∈△〈p, λ〉

Then Hλ = {p ∈ Rn, 〈p, λ〉 = W (λ)} is a supporting plane of △, and

Fλ := {p ∈ △; 〈p, λ〉 = W (λ)} = Hλ ∩△

is a face of △.

We have limt→0[s] =
[

s0 :=
∑

pα∈Fλ
b(pα)z

pα

]

, and by (18), the C∗-weight of s0 is −W (λ).

Proposition 2. Let F (K−1
X , βY )(λ) denote the Futaki invariant of the test configuration associated

with the 1 parameter subgroup generated by vλ. We have

F (K−1
X , βY )(λ) = − (β〈Pc, λ〉+ (1− β)W (λ)) V ol(△) (19)

Proof. We will use the algebraic definition of log-Futaki invariant (12) to do the calculation.
Note that (X,Y,K−1

X ) degenerates to (X,Y0,K
−1
X ) under λ.

Y0 is a hyperplane section ofX , and s0 ∈ H0(X,K−1
X ) is the defining section, i.e. Y0 = {s0 = 0}.

Then

H0(Y0,K
−1
X | kY0

) ∼= H0(X,K−k
X )/(s0 ⊗H0(X,K

−(k−1)
X ))

So
w̃k = wk − (wk−1 −W (λ)dk−1)

Plugging the expansions, we get

ã0 = (n+ 1)a0 +W (λ)b0

Note that b̃0 = nb0 = nV ol(△), we have

−ã0 +
b̃0
b0
a0 = −a0 −W (λ)b0

10



where

−a0 =

∫

X

θv
ωn

n!
=

∫

Rn

∑

i

λiui det(uij)dx =

∫

△

∑

i

λiyidy = V ol(△)〈Pc, λ〉

By (17), the ordinary Futaki invariant is given by

F (c1(X))(vλ) =

∫

X

v(hω)
ωn

n!
= −

∫

Rn

n
∑

i=1

λi

∂u

∂xi

det(uij)dx

= −
∫

△

∑

i

λiyidy = −V ol(△)〈Pc, λ〉

Substituting these into (12), we get

F (K−1
X , βY )(λ) = −V ol(△)〈Pc, λ〉+ (1− β)(V ol(△)〈Pc, λ〉 −W (λ)V ol(△))

= −(β〈Pc, λ〉+ (1 − β)W (λ))V ol(△)

Proof of Theorem 1. Note that for any Pλ ∈ Fλ ⊂ ∂△, W (λ) = 〈Pλ, λ〉. By Theorem 2, we have

F (K−1
X , βY )(λ) =

(

β

1− β

1−R(X)

R(X)
〈Q, λ〉 −W (λ)

)

(1− β)V ol(△)

= 〈Qβ − Pλ, λ〉

where Qβ = β
1−β

1−R(X)
R(X) Q.

Note that λ is a outward normal vector of Hλ. By convexity of △, it’s easy to see that (see the
picture after Example 2)

• β < R(X): Qβ ∈ △◦. For any λ ∈ R
n, 〈Qβ − Pλ, λ〉 < 0.

• β = R(X): Qβ = Q ∈ ∂△. For any λ ∈ Rn, 〈Qβ − Pλ, λ〉 ≤ 0. Equality holds if and only if
〈Q, λ〉 = W (λ), i.e. Hλ is a supporting plane of △ at point Q.

• β > R(X): Qβ /∈ △. There exists λ ∈ Rn such that 〈Qβ − Pλ, λ〉 > 0

5.2 Example

1. X△ = BlpP
2. See the picture in Introduction. Pc =

1
4 (

1
3 ,

1
3 ), Q = −6Pc ∈ ∂△, so R(X) = 6

7 .

If we take λ = 〈−1,−1〉, then W (λ) = 1. So by (19)

F (K−1
X , βY )(λ) =

2

3
β − 4(1− β)

So F (K−1
X , βY )(λ) ≤ 0 if and only if β ≤ 6

7 , and equality holds exactly when β = 6
7 .

2. X△ = Blp,qP
2, Pc =

2
7 (− 1

3 ,− 1
3 ), Q = − 21

4 Pc ∈ ∂△, so R(X△) = 21
25 .

If we take λ1 = 〈1, 1〉, then W (λ1) = 1. By (19),

F (K−1
X , βY )(λ1) =

2

3
β − 7

2
(1 − β)

F (K−1
X , βY )(λ1) ≤ 0 if and only if β ≤ 21

25 .

This is essentially the same as Donaldson’s calculation in [4].
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If we take λ3 = 〈−1, 2〉, then W (λ3) = 〈−1, 2〉 · 〈−1, 1〉 = 3. By (19)

F (K−1
X , βY )(λ3) =

1

3
β − 21

2
(1− β)

So F (K−1
X , βY )(λ3) ≤ 0 if and only if β ≤ 63

65 which means that (X, βY ) is log-K-stable along
λ3 when β ≤ 21

25 < 63
65 .

❅
❅
❅
❅❅�

��

s

s

Pc

Q 21

25

✟✟
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H3
P3❆

❆❆❑
λ3

❄
λ2

P2
r

r��✒
λ1

P1
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25
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