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ON THE SPACE OF KAHLER POTENTIALS

WEIYONG HE

Abstract. We consider the geodesic equation for the generalized Kahler
potential with only mixed second derivatives bounded. We show that
given such two generalized Kahler potentials, there is a unique geodesic
segment such that for each point on the geodesic, the generalized Kahler
potential has uniformly bounded mixed second derivatives (in manifold
directions). This generalizes a fundamental theorem of Chen [6] on the
space of Kahler potentials.

1. Introduction

Let (M, [ω]) be a compact Kahler manifold of complex dimension n. The
space of Kahler potentials (in the class of [ω]) is given by

H = {φ ∈ C∞ : ωφ = ω +
√
−1∂∂̄φ > 0}.

Mabuchi [12] defined a natural metric on H by, for ψ1, ψ2 ∈ TφH,

〈ψ1, ψ2〉φ =

∫

M
ψ1ψ2ω

n
φ .

For any path φ(t) ∈ H, then the geodesic equation is given by

φtt − |∇φt|2ωφ
= 0.

For any interval I in R, denote U = I × S1. We use (z, w) to denote points
onM×U . The geodesic equation is equivalent to the homogeneous complex
Monge-Ampere equation (assuming for each w, φ defines a strictly positive
Kahler metric, see [13], [8])

(1.1) Ωn+1
φ = (φtt − |∇φt|2φ)

ωn
φ

ωn
= 0,

where Ωφ = π∗ω0 + ∂∂̄w,zφ, π : M × U → M is the projection onto M and
φ is regarded as a S1 invariant function on M × U .

In [8], Donaldson proposed a program which tight up the problems in
Kahler geometry regarding the canonical metrics with the geometric struc-
ture structure of H, in particular the geodesic equation plays an impor-
tant role. A fundamental result of Chen [6] asserts that for I = [0, 1] and
φ0, φ1 ∈ H, there exists a unique C1,1 solution of (1.1) in the sense that

‖φ‖C1 +max{|∂∂̄w,zφ|} ≤ C.

Chen’s result partially answered Donaldson’s conjecture [8] and proved that
H is a metric space with Mabuchi’s metric. It turns out to be important to
consider generalized Kahler potentials in various problems in Kahler geom-
etry. Fixing a background metric (M,ω), we are mainly interested in the
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space of the generalized C1,1 Kahler potentials as

H1,1 = {φ : ωφ ≥ 0, ‖φ‖C1 <∞, 0 ≤ n+∆φ <∞},
and the space of bounded Kahler potentials

H∞ = {φ : ωφ ≥ 0, ‖φ‖L∞ <∞},
where the positivity of ωφ = ω +

√
−1∂∂̄φ is understood in the sense of

currents. Recently Berndtsson [2] observed that for φ0, φ1 ∈ H∞, there
is a unique generalized solution of (1.1) which is uniformly bounded and
moreover φt is also uniformly bounded. Hence in this case the distance
function in H∞ is actually well-defined but it remains unclear that whether
H∞ is a metric space. The point is that it is not clear that the geodesic
minimizes the distance among all curves (which is equivalent to the triangle
inequality). In [6] the nondegeneracy of Kahler metrics on two end points
φ0, φ1 is crucial for triangle inequality; it is also important to notice that
the boundary estimate of φtt also depends on the nondegeneracy of two
end points (as well as smoothness). It is actually an interesting question
to understand the structure of H1,1 (and/or H∞) and its relation with the
metric completion of H, for example.

The main result is concerned with the regularity of the geodesic segment
when φ0, φ1 ∈ H1,1.

Theorem 1.1. For any φ0, φ1 ∈ H1,1, there exists a unique generalized
solution of (1.1) such that for each t ∈ [0, 1],

0 ≤ n+∆φ(t) ≤ C,

where C is a uniform constant depending only on n, ‖φi‖L∞ and sup∆φi,
i = 1, 2 and the geometry of (M,ω).

Remark 1.2. Theorem 1.1 answers a problem of X.-X. Chen [5].

To prove Theorem 1.1, the new ingredient is the following a priori esti-
mates,

Theorem 1.3. Let φ0, φ1 ∈ H, and let f be a smooth function and let ǫ be
a positive constant. There is a unique smooth solution of the equation

(1.2) (φtt − |∇φt|2φ)
ωn
φ

ωn
= ǫef , φ(0, ·) = φ0, φ(1, ·) = φ1.

Moreover there is a uniform constant C depending only on n, ‖φi‖L∞ , sup∆φi,
sup f, sup ǫ, ‖∇f‖L∞ , inf ∆f and the geometry of (M,g) (the upper bound
of scalar curvature and the lower bound of the bisectional curvature) such
that for each t ∈ [0, 1],

‖φ‖C1 +∆φ ≤ C.

When φ0, φ1 ∈ H, Chen [6] proved the existence of the unique smooth

solution of (1.2) and moreover, there exists a uniform constant C̃,

‖φ‖C1 + φtt +∆φ ≤ C̃,

where C̃ does not depend on the lower bound of ǫ. Chen [6] obtained the
generalized solution of (1.1) with the the above uniform estimate by letting

ǫ → 0; however it is important to note that in his result, C̃ depends on the
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strictly positive lower bound of n+∆φ0 and n+∆φ1 in a crucial way. Hence
the only new ingredient in Theorem 1.3 is the estimate of ∆φ, independent
of the strictly lower bound of n+∆φ0, n+∆φ1.

To establish such an estimate in Theorem 1.3, we follow the similar strat-
egy of Yau’s C2 estimate [14] of complex Monge-Ampere equation but we
will deal with (1.2) directly. Our treatment here takes advantage of the
product structure of M × [0, 1] and hence one can separate the manifold di-
rection and t direction respectively. This actually makes possible to estimate
directly ∆φ instead of φtt+∆φ. A similar situation is already considered in
[7] (see Lemma 3.9, the Ricci curvature assumption there is only technical
and not essential) to deal with Donaldson’s equation [9]. We also note that
our computation works for general right hand side with slight modification;
for simplicity, we will choose the right hand side to be the special case of
ǫef and it is sufficient for geometric applications.

We should mention that the study of complex Monge-Ampere equation
(nondegenerate/degenerate) has a long history in Kahler geometry and in
complex analysis. It has been studied extensively and it is still very active
in various settings. Hence we will refer readers to, for example, [11] for more
references.

Acknowledgement: The problem considered here is motivated in part
by a question in a recent preprint [10] and the author would like to thank
Song Sun for numerous enlightening discussions and suggestions during the
preparation of these two papers. The author is grateful to Professor X.-
X. Chen for constant support and encouragements; our joint work [7] has
definite influence on the current work.

2. The a priori estimate

In this section we prove Theorem 1.3. Theorem 1.1 is a rather straight-
forward consequence of Theorem 1.3, where in particular the uniqueness of
generalized solution in the sense of Bedford-Taylor [1] will be used. For The-
orem 1.3, to solve the equation one needs to establish the a priori estimates
and use continuity method, and we refer to [6] for the details. In particular,
the C0 estimate is a standard maximum principle argument. The gradient
estimate was first proved in [6] by a blowing-up argument when φ0, φ1 ∈ H
and one considers the C2 estimates first. A more direct gradient estimate is
established in [3]. Hence we will only consider the only new ingredient – the
a priori estimate of ∆φ, independent of strictly positive bound of n +∆φi,
i = 1, 2.

Proof. We consider the equation

(2.1) (φtt − |∇φt|2φ) det(gij̄ + φij̄) = ǫef det(gij̄),

where we use the complex notation as follows,

|∇φ|2 = gkl̄φkφl̄ = φkφk̄, |∇φt|2φ = gij̄φ φtiφtj̄ ,∆h = gkl̄hkl̄,∆φh = gkl̄φ hkl̄.

We rewrite the equation as

(2.2) log(φtt − |∇φt|2φ) + log det(gij̄ + φij̄) = log ǫ+ f + log det(gij̄).
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The linearization of the left hand side of (2.2) is given by

Dh =∆φh+
htt + gil̄φg

kj̄
φ hkl̄φtiφtj̄

φtt − |∇φt|2φ

−
gij̄φ (htiφtj̄ + htj̄φti)

φtt − |∇φt|2φ
.

(2.3)

We compute

D(∆φ) =∆φ(∆φ) +
∆φtt + gil̄φg

kj̄
φ (∆φ)kl̄φtiφtj̄

φtt − |∇φt|2φ

−
gij̄φ ((∆φ)tiφtj̄ + (∆φ)tj̄φti)

φtt − |∇φt|2φ
.

(2.4)

A direct computation by differentiating (2.2), similar as in [14], gives

∆φ(∆φ) +
∆
(

φtt − |∇φt|2φ
)

φtt − |∇φt|2φ
=gij̄φ g

pq̄
φ φiq̄kφpj̄k̄ +

∣

∣

∣
∇(φtt − |∇φt|2φ)

∣

∣

∣

2

(

φtt − |∇φt|2φ
)2

+∆f + I,

(2.5)

where

I =
∑

i,j,k,l

(

gij̄φ Rij̄ll̄ −Rīill̄ + gij̄φ Rij̄kl̄φlk̄

)

.

Let the bisectional curvature of (M,g) satisfie, for some nonnegative num-
ber B

Rij̄kl̄ ≥ −B(gij̄gkl̄ + gil̄gkj̄)

One can estimate, for example see [14],

I =gij̄φ Rij̄kl̄(glk̄ + φlk̄)−R

=
∑

i,k

1 + φkk̄
1 + φīi

Rīikk̄ −R

≥−B(gīigkk̄ + gik̄gkī)
1 + φkk̄
1 + φīi

−R

=−B
∑

i,k

1 + φkk̄
1 + φīi

−B −R

=−
∑

i

B(n+∆φ)

1 + φīi
−B −R.

(2.6)
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We compute, by assuming gij̄ = δij , ∂gij̄ = 0 at the point P ,

∆(|∇φt|2φ) =gkl̄
∂2

∂zk∂zl̄

(

gij̄φ φtiφtj̄

)

=gkl̄∂k





∂gij̄φ
∂zl̄

φtiφtj̄ + gij̄φ ∂l̄φtiφtj̄ + gij̄φ φti∂l̄φtj̄





=gkl̄





∂2gij̄φ
∂zk∂zl̄

φtiφtj̄ + ∂l̄g
ij̄
φ ∂kφtiφtj̄ + ∂l̄g

ij̄
φ φtiφtkj̄





+ gkl̄
(

∂kg
ij̄
φ φtil̄φtj̄ + gij̄φ ∂kφtil̄φtj̄ + gij̄φ φtil̄φtkj̄

)

+ gkl̄
(

∂kg
ij̄
φ φti∂l̄φtj̄ + gij̄φ ∂kφti∂l̄φtj̄ + gij̄φ φti∂

2
k,l̄φtj̄

)

(2.7)

At the point P , we compute

∂kg
ij̄
φ = −giq̄φ g

pj̄
φ ∂k (gpq̄ + φpq̄) = −giq̄φ g

pj̄
φ φpq̄k

∂l̄g
ij̄
φ = −giq̄φ g

pj̄
φ ∂l̄ (gpq̄ + φpq̄) = −giq̄φ g

pj̄
φ φpq̄l̄

(2.8)

and hence we have

gkl̄∂2k,l̄

(

gij̄φ

)

=− gkl̄giq̄φ g
pj̄
φ ∂

2
k,l̄(gpq̄ + φpq̄)

+ gkl̄gis̄φ g
rq̄
φ g

pj̄
φ ∂k(grs̄ + φrs̄)∂l̄(gpq̄ + φpq̄)

+ gkl̄giq̄φ g
ps̄
φ g

rj̄
φ ∂k(grs̄ + φrs̄)∂l̄(gpq̄ + φpq̄)

=− gkl̄giq̄φ g
pj̄
φ ∂

2
k,l̄(gpq̄)

− giq̄φ g
pj̄
φ ∂

2
p,q̄

(

gkl̄∂2k,l̄φ
)

+ giq̄φ g
pj̄
φ ∂

2
p,q̄

(

gkl̄
)

φkl̄

+ gkl̄gis̄φ g
rq̄
φ g

pj̄
φ ∂k(grs̄ + φrs̄)∂l̄(gpq̄ + φpq̄)

+ gkl̄giq̄φ g
ps̄
φ g

rj̄
φ ∂k(grs̄ + φrs̄)∂l̄(gpq̄ + φpq̄)

=gkl̄giq̄φ g
pj̄
φ Rpq̄kl̄ − giq̄φ g

pj̄
φ (∆φ)pq̄ + giq̄φ g

pj̄
φ Rkl̄pq̄φkl̄

+ gkl̄gis̄φ g
rq̄
φ g

pj̄
φ

(

φrs̄kφpq̄l̄ + φpq̄kφrs̄l̄
)

(2.9)

By (2.7), (2.8) and(2.9), we compute,

∆(|∇φt|2φ) =gkl̄giq̄φ g
pj̄
φ Rpq̄kl̄φtiφtj̄ − giq̄φ g

pj̄
φ (∆φ)pq̄φtiφtj̄

+ giq̄φ g
pj̄
φ Rkl̄pq̄φlk̄φtiφtj̄

+ gkl̄gis̄φ g
rq̄
φ g

pj̄
φ

(

φrs̄kφpq̄l̄ + φpq̄kφrs̄l̄
)

φtiφtj̄

− gkl̄giq̄φ g
pj̄
φ φpq̄l̄(φtikφtj̄ + φtiφtkj̄)

− gkl̄giq̄φ g
pj̄
φ φpq̄k(φtil̄φtj̄ + φtiφtj̄l̄)

+ gij̄φ (∆φ)tiφtj̄ + gij̄φ φti(∆φ)tj̄

+ gkl̄gij̄φ (φtil̄φtj̄k + φtikφtj̄l̄)

(2.10)
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Hence we compute, by (2.4), (2.5) and (2.10),

D(∆φ) =∆f + gij̄φ g
pq̄
φ φiq̄kφpj̄k̄ +

∣

∣

∣∇(φtt − |∇φt|2φ)
∣

∣

∣

2

(

φtt − |∇φt|2φ
)2

+ I +
II + III

φtt − |∇φt|2φ

(2.11)

where

II = gkl̄giq̄φ g
pj̄
φ Rpq̄kl̄φtiφtj̄ + giq̄φ g

pj̄
φ Rkl̄pq̄φlk̄φtiφtj̄

and

III =gkl̄gis̄φ g
rq̄
φ g

pj̄
φ

(

φrs̄kφpq̄l̄ + φpq̄kφrs̄l̄
)

φtiφtj̄

− gkl̄giq̄φ g
pj̄
φ φpq̄l̄(φtikφtj̄ + φtiφtkj̄)

− gkl̄giq̄φ g
pj̄
φ φpq̄k(φtil̄φtj̄ + φtiφtj̄l̄)

+ gkl̄gij̄φ (φtil̄φtj̄k + φtikφtj̄l̄).

(2.12)

Note that as an Hermitian matrix, (φtiφtj̄) is nonnegative definite and
hence we can then estimate, where we choose a coordinate at the point such
that gij̄ = δij , φij̄ = φīiδij ,

II =giq̄φ g
pj̄
φ Rpq̄kl̄(glk̄ + φlk̄)φtiφtj̄

≥−B(gpq̄gkl̄ + gpl̄gkq̄)g
iq̄
φ g

pj̄
φ (glk̄ + φlk̄)φtiφtj̄

=−B(n+∆φ)
∑

i

φtiφt̄i
(1 + φīi)

2
−B|∇φt|2φ

>− 2B(n+∆φ)
∑

i

φtiφt̄i
(1 + φīi)

2
.

(2.13)

where we use the observation for each i,

n+∆φ > 1 + φīi, (n +∆φ)−1 < (1 + φīi)
−1.

and hence we can estimate

|∇φt|2φ
n+∆φ

=
∑

i

φtiφt̄i
1 + φīi

(n+∆φ)−1 <
∑

i

φtiφt̄i
(1 + φīi)

2
.

It then follows from (2.11), using (2.6) and (2.13)

D(∆φ) ≥∆f + gij̄φ g
pq̄
φ φiq̄kφpj̄k̄ +

III

φtt − |∇φt|2φ

−B
∑

i

n+∆φ

1 + φīi
−B −R

− 2B
(n+∆φ)

φtt − |∇φt|2φ

∑

i

φtiφt̄i
(1 + φīi)

2

(2.14)
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A direct computation gives, for h > 0,

D(log h) =
Dh

h
−
gkl̄φ hkhl̄

h2
−

(

ht − gil̄φφtihl̄

)(

ht − gkj̄φ φtj̄hk

)

h2(φtt − |∇φt|2φ)
(2.15)

We also have

Dφ = (n+ 1)− gij̄φ gij̄ −
gil̄φg

kj̄
φ gkl̄φtiφtj̄

φtt − |∇φt|2φ

= (n+ 1)−
∑

i

1

1 + φīi
− 1

φtt − |∇φt|2φ

∑

i

φtiφt̄i
(1 + φīi)

2

(2.16)

Take h = n+∆φ, and let

A =

(

ht − gil̄φφtihl̄

)(

ht − gkj̄φ φtj̄hk

)

h2(φtt − |∇φt|2φ)
Then we compute, using (2.15) and (2.16)

D(log h− Cφ) =
D(∆φ)

n+∆φ
−
gkl̄φ hkhl̄

h2
−A− (n+ 1)C

+
∑

i

C

1 + φīi
+

C

φtt − |∇φt|2φ

∑

i

φtiφt̄i
(1 + φīi)

2

(2.17)

Applying (2.14), it follows from (2.17) that

D(log h− Cφ) ≥∆f −B −R

n+∆φ
+
gij̄φ g

pq̄
φ φiq̄kφpj̄k̄

n+∆φ
−
gkl̄φ hkhl̄

h2

+
∑

i

C −B

1 + φīi
− (n+ 1)C

+
(C − 2B)

∑

i
φtiφt̄i

(1+φīi)
2

φtt − |∇φt|2φ

+
III(n +∆φ)−1

φtt − |∇φt|2φ
−A

(2.18)

We have the estimate (see [14] (2.15) for example),

gij̄φ g
pq̄
φ φiq̄kφpj̄k̄ ≥ (n+∆φ)−1gkl̄φ (∆φ)k(∆φ)l̄.

We also have the estimate

(2.19) III ≥ A(φtt − |∇φt|2φ).
It is a straightforward computation to establish (2.19) and we will derive
this in (2.21). Hence if we choose C sufficiently large (but finite number)
such that

C − 2B −R+ inf ∆f ≥ 1, C − 2B ≥ 1,

we have the estimate

D(log h− Cφ) ≥
∑

i

1

1 + φīi
− (n + 1)C.
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Observe that

D(t2) = 2(φtt − |∇φt|2φ)−1.

Hence we have

D(log h− Cφ+ t2) >
∑

i

(1 + φīi)
−1 + (φtt − |∇φt|2φ)−1 − (n + 1)C.

Now following [14] (2.19, 2.20) for example, we can get that

∑

i

(1 + φīi)
−1 + (φtt − |∇φt|2φ)−1 ≥ (n +∆φ+ φtt − |∇φt|2φ)1/nǫ−1/ne

−f

n

Either log h − Cφ + t2 obtain its maximum interior at some point P , then
at P ,

D(log h− Cφ+ t2) ≤ 0,

it then follows that

(n+∆φ)(P ) < C exp(f/n)ǫ1/n;

for some uniformly bounded constant C = C(B,n, inf ∆f). Clearly in this
case

(2.20) n+∆φ < C0 exp(f/n)ǫ
1/n,

where C0 = C0(‖φ‖L∞ , B, n, inf ∆f). Or log h−Cφ+t2 obtains its maximum
on boundary, then we also have

n+∆φ ≤ C,

where C depends on ‖φ‖L∞ , sup∆φ0 and sup∆φ1.
�

Now we establish (2.19). We need to show that,

(2.21) III(n +∆φ) ≥
(

(∆φ)t − gil̄φφti(∆φ)l̄

)(

(∆φ)t − gkj̄φ φtj̄(∆φ)k

)

,

where III is given by (2.12). We rewrite

III = A1 +A2,

where we set

A1 =g
kl̄gis̄φ g

rq̄
φ g

pj̄
φ φpq̄kφrs̄l̄φtiφtj̄ + gkl̄gij̄φ φtil̄φtj̄k

− gkl̄giq̄φ g
pj̄
φ φpq̄l̄φtiφtkj̄ − gkl̄giq̄φ g

pj̄
φ φpq̄kφtil̄φtj̄

and

A2 =g
kl̄gis̄φ g

rq̄
φ g

pj̄
φ φrs̄kφpq̄l̄φtiφtj̄ + gkl̄gij̄φ φtikφtj̄l̄

− gkl̄giq̄φ g
pj̄
φ φpq̄l̄φtikφtj̄ − gkl̄giq̄φ g

pj̄
φ φpq̄kφtiφtj̄l̄
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We can estimate

A1 =
∑

r,k

1

1 + φrr̄







(

∑

i

φtiφrīk̄
1 + φīi

)





∑

j

φtj̄φjr̄k̄
1 + φrr̄



+ φtrk̄φtr̄k







−
∑

r,k

1

1 + φrr̄



φtr̄k
∑

i

φtiφrīk̄
1 + φīi

+ φtrk̄
∑

j

φtj̄φjr̄k

1 + φjj̄





=
∑

r,k

1

1 + φrr̄
(Mrk − φtrk̄)(Mrk − φtr̄k)

≥
∑

r

1

1 + φrr̄
(Mrr − φtrr̄)(Mrr − φtrr̄)

where we denote Mrk as the matrix (of complex number),

Mrk =
∑

i

φtiφrīk̄
1 + φīi

, Mrk =
∑

j

φtj̄φjr̄k

1 + φjj̄

In particular A1 ≥ 0 and it follows similarly that A2 ≥ 0. Moreover, we can
estimate

A1(n+∆φ) ≥
(

∑

r

1

1 + φrr̄
(Mrr − φtrr̄)(Mrr − φtrr̄)

)(

∑

r

(1 + φrr̄)

)

≥
(

∑

r

(Mrr − φtrr̄)

)(

∑

r

(Mrr − φtr̄r)

)

=

(

∑

i

φti(∆φ)̄i
1 + φīi

−∆φt

)





∑

j

φtj̄(∆φ)j

1 + φjj̄
−∆φt





=
(

(∆φ)t − gil̄φφti(∆φ)l̄

)(

(∆φ)t − gkj̄φ φtj̄(∆φ)k

)

.

It completes the proof of (2.21).

Remark 2.1. If the righthand side is a positive function F , then a slight
modification can get that

D(log(n+∆φ)−Cφ+ t2) > ∆(logF )

n+∆φ
+F−1/n(n+∆φ+φtt−|∇φt|2φ)−C1,

where C1 = C1(n,B).

3. Discussions

To prove Theorem 1.1, we assume φ0, φ1 ∈ H1,1. Then there exists a
unique generalized solution φ(t) of (1.1) with uniformly bounded ‖φ‖L∞ ,
|φt| and |∇φ|. We choose a sequence of functions φki ∈ H, which converges
to φi in C1,α and such that ∆φki ≤ C. By Theorem 1.3, there exists a
sequence of solutions φk(t) of

(φtt − |∇φt|2φ)ωn
φ(ω

n)−1 =
1

k
ef , φk(0) = φk0 , φ

k(1) = φk1 .
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By passing to a subsequence, φk(t) → φ(t) in Cα by the uniqueness of
the generalized solution. Moreover by Theorem 1.3, ∆φk ≤ C, where C is
independent of the strictly positive lower bound of n+∆φki , i = 1, 2. Hence
let k → ∞, we can get that ∆φ(t) ≤ C.

As mentioned in the introduction, the problem considered here is moti-
vated by the questions in [10],

Question 3.1. Is H1,1 (or H∞) a metric space? If the answer is affirmative,
does H1,1 (or H∞) have nonpositive curvature in the sense of Alexanderov
as H does (see [4])? What is the relation between H1,1 (or H∞) and the
metric completion of H?

However, our estimates do not give any information on φtt when φi ∈ H1,1;
our results seem not to be able to answer the above question directly even
though we believe it would be an interesting problem.
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