
A VARIATIONAL APPROACH TO THE YAU-TIAN-DONALDSON

CONJECTURE
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Abstract. We give a new proof of a uniform version of the Yau-Tian-Donaldson conjecture for

Fano manifolds with finite automorphism group, and of the semistable case of the conjecture. Our

approach does not involve the continuity method or Cheeger-Colding-Tian theory. Instead, the
proof is variational and uses pluripotential theory and certain non-Archimedean considerations.

Introduction

The goal of this note is to sketch a proof of the following version of the Yau-Tian-Donaldson
conjecture in the Fano case.

Theorem A. Let X be a Fano manifold with finite automorphism group. Then X admits a Kähler-
Einstein metric iff it is uniformly K-stable.

The notion of uniform K-stability used here was introduced in [BHJ15a, Der14], following ideas
originating in G. Székelyhidi’s thesis (see also [Szé15]). It requires the Donaldson-Futaki invariant
of any test configuration to be bounded below by a fixed positive multiple of a norm-like invariant1

detecting the non-triviality of a test configuration, see §1. This notion, which makes sense for
arbitrary polarized varieties, turns out to be equivalent to K-stability in the case of Fano manifolds,
in view of [CDS15] and the above result.

The main result in [CDS15] (see also [DS15, CSW15], and [Tia15]) is stronger than Theorem A
since it allows X to have nontrivial vector fields. It also uses K-(poly)stability instead of uniform
K-stability. However, our proof avoids many of the subtle points in the previous approaches. For
example, we do not use the continuity method, partial C0-estimates, Cheeger-Colding-Tian theory,
or the Kähler-Ricci flow.

Moreover, a variant of the proof of Theorem A gives the semistable version of the YTD conjecture:

Theorem B. Let X be a Fano manifold. Then X is K-semistable iff its greatest Ricci lower bound
R(X) is equal to 1.

This was previously deduced from [CDS15] in [Li13]. The right-hand condition means that, for
any ε > 0, c1(X) contains a Kähler metric ωε with Ricci(ωε) ≥ (1− ε)ωε. By [Szé11], this amounts
to the solvability of Aubin’s continuity method up to any time t < 1.

In order to describe our approach, recall that Kähler-Einstein metrics correspond to critical points
of either the Mabuchi K-energy functional M or the Ding functional D, both defined on the space H
of Kähler potentials and which satisfy D ≤M . If X is assumed to have finite automorphism group,
known results [Tia97, PSSW08] yield the equivalence between:

(i) X has a Kähler-Einstein metric;
(ii) the Ding functional D is coercive, i.e. D ≥ δJ − C on H for some δ, C > 0;
(iii) the Mabuchi functional M is coercive.

Date: February 20, 2016.
1One can show that the norm used is equivalent to the L1-norm of a test configuration.
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Here J ≥ 0 denotes the Aubin energy functional, a non-linear higher dimensional version of the
classical Dirichlet functional. Note that (iii)=⇒(i) can alternatively be established using a variational
argument [BBEGZ15], and that (i)=⇒(ii) was recently given a very elegant proof in [DR15], based
on new ideas that have had a strong influence on the strategy of proof of Theorem A proposed here.

Next, recall that a ray (φt)t≥0 in H corresponds to an S1-invariant metric Φ on the pull-back of
−KX to the product of X with the punctured unit disc D∗, the ray being called subgeodesic when Φ
is plurisubharmonic (psh for short). Denoting by F any of the functionals M,D or J , the asymptotic
behavior of F (φt) as t → +∞ is well-understood whenever the corresponding metric Φ extends to
a smooth metric on a test configuration (X ,L), i.e. a C∗-equivariant partial compactification of the
product of the polarized manifold (X,−KX) with C. Indeed, we then have

lim
t→+∞

F (φt)

t
= FNA(X ,L), (1)

where FNA is the corresponding non-Archimedean functional introduced in [BHJ15a]. For F = D,
this is a reformulation of a key technical step in [Berm15]. For F = M or J , this is established
in [BHJ15b], but closely related less precise formulations have appeared several times in the literature
over the last two decades.

Denoting by DF(X ,L) the Donaldson-Futaki invariant of a (normal, ample) test configuration
(X ,L), we have DF(X ,L) ≥ MNA(X ,L) ≥ DNA(X ,L). Uniform K-stability is defined as the
existence of δ > 0 such that DF ≥ δJNA, and turns out to be equivalent to MNA ≥ δJNA [BHJ15a].

Our approach to Theorem A consists in establishing the equivalence between (ii), (iii) above and

(ii’) DNA ≥ δJNA for some δ > 0;
(iii’) MNA ≥ δJNA for some δ > 0,

the implications (ii)=⇒(ii’) and (iii)=⇒(iii’) being immediate consequences of (1).
In a first purely algebro-geometric step, we establish (iii’)=⇒(ii’) (cf. Theorem 2.1 below), the

converse implication being trivial since MNA ≥ DNA. This is accomplished by using the Minimal
Model Program, very much in the same way as in [LX14].

The heart of our proof is the implication (ii’)=⇒(iii). Arguing by contradiction, we assume M is
not coercive. Using a compactness argument inspired by Darvas and He [DH14] (itself relying on the
energy-entropy compactness theorem in [BBEGZ15]), we produce a subgeodesic ray along which M
has slow growth. As in [DH14], this ray lies not in H, but in the space E1 of metrics of finite energy, a
space whose structure was recently clarified by Darvas [Dar14]. As in [DR15], to control the Mabuchi
functional along the ray, we also use a recent result by Berndtsson and the first author [BB14] (see
also [CLP14]) to the effect that M is convex along geodesic segments.

Since the Ding functional D is dominated by the Mabuchi functional, D also has slow growth along
the geodesic ray. If Φ happens to extend to a bounded metric on some test configuration (X ,L) of
(X,−KX), the slope of D at infinity is given by DNA(X ,L), and (ii’) yields a contradiction. In the
general case, we may assume that Φ extends to a psh metric on the pullback of −KX to X ×∆, but
the singularities along the central fiber may be quite complicated. Nevertheless, the slope of D at
infinity can be analyzed using the multiplier ideals of mΦ, m ∈ N; these give rise to a sequence of
test configurations to which we can apply the assumption (ii’) and derive a contradiction. This step
is quite subtle and involves some non-Archimedean analysis in the spirit of [BFJ08, BFJ12] in order
to calculate the slope at infinity of the Ding functional.

This note is rather brief. Details and further results will appear elsewhere. In particular, the
method can most likely be extended to treat the case of varieties with log terminal singularities.

Acknowledgment. We would like to thank Tamás Darvas, Ruadháı Dervan, Tomoyuki Hisamoto,
Julius Ross, Yanir Rubinstein, Song Sun, David Witt Nyström and, especially, Gábor Székelyhidi
for useful comments.
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1. Preliminaries

Let X be a Fano manifold of dimension n. Set L := −KX and V = (c1(L)n). We use additive
notation for metrics. Let H be the space of smooth, strictly psh metrics on L. Fix a reference metric
φ0 ∈ H.

1.1. Functionals on H. For details on the following, see for instance [BBGZ13, BBEGZ15]. The
(Monge-Ampère, or Aubin-Mabuchi) energy of φ is

E(φ) =
1

(n+ 1)V

n∑
j=0

∫
X

(φ− φ0)(ddcφ)j ∧ (ddcφ0)n−j .

The J-energy is

J(φ) = V −1

∫
(φ− φ0)(ddcφ0)n − E(φ) ≥ 0.

In the current Fano setting, the Ding functional is defined by D = L− E, where

L(φ) = −1

2
log

∫
e−2φ

with e−2φ symbolically denoting the volume form canonically attached to the metric φ, and the
Mabuchi functional becomes M = H − E∗, where

E∗(φ) = V −1

∫
(φ− φ0)(ddcφ)n − E(φ) ≥ 0

is the pluricomplex energy of the probability measure V −1(ddcφ)n, and H(φ) ≥ 0 is its entropy with
respect to the reference measure V −1(ddcφ0)n. We have C−1J ≤ E∗ ≤ CJ for some constant C > 0.

All these functionals extend to the space E1 of metrics of finite energy, with H (and hence M)
possibly infinite valued.

1.2. Valuations, non-Archimedean metrics, and test configurations [BHJ15a]. A (real rank
1) valuation v on (the function field of) X is divisorial if v = c ordE , where c > 0 and E is a
prime divisor on a normal variety Y mapping birationally to X. The log discrepancy of v is then
AX(v) = c(1+ordE(KY/X)), whereKY/X is the relative canonical divisor. The projectionX×C→ X
takes divisorial valuations to divisorial (or trivial) valuations. Further, every divisorial valuation on
X has a unique preimage w on X × C that is C∗-invariant (under the action on the second factor)
satisfies v(τ) = 1, with τ denoting the coordinate on C; then AX×C(w) = AX(v) + 1.

A non-Archimedean metric on L will be viewed as a certain type of function ϕ on the Berkovich
analytification of X with respect to the trivial norm on C. In particular, ϕ restricts to a function on
the space of divisorial valuations on X, and is in fact uniquely determined by this restriction.

Every normal test configuration (X ,L) of (X,L) defines a non-Archimedean metric ϕ = ϕX ,L as
follows. Pick a normal variety Y with C∗-equivariant birational morphisms π : Y → X × C and
ρ : Y → X , and let p1 : X × C → X be the projection. Then ρ∗L − π∗p∗1L = OY(D) for a unique
Q-divisor D supported on the central fiber. We have ϕ(c ordE) = c ordE(D) for every irreducible
component E of the central fiber of Y. Varying Y determines ϕ completely.

Write HNA for the set of non-Archimedean metrics defined by normal (semi)ample test configu-
rations.

1.3. Non-Archimedean functionals. In [BHJ15a], natural non-Archimedean versions ENA, JNA,
and MNA of the basic functionals on H are introduced. They are defined as functionals HNA → R,
with

JNA(ϕ) = supϕ− ENA(ϕ)
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for all ϕ ∈ HNA. The functional MNA is closely related (but not equal) to the Donaldson-Futaki
invariant DF. More precisely, we have

MNA(X ,L) = DF(X ,L) + V −1 ((X0,red −X0) · Ln) ,

so that MNA(X ,L) ≤ DF(X ,L) with equality when X0 is reduced. Uniform K-stability is equivalent
to an estimate MNA ≥ δJNA on HNA.

In addition, let us introduce LNA and DNA := LNA − ENA by the formula

LNA(ϕ) = inf
v

(AX(v) + ϕ(v)),

where v ranges over divisorial valuations on X (compare [Berm15, Proposition 3.8]). We note that

DNA ≤MNA and DNA ≤ JNA.

We say that X is uniformly Ding-stable if DNA ≥ δJNA on HNA for some δ > 0. This trivially
implies uniform K-stability, and the converse is also true, as we shall see in Theorem 2.1.

2. From uniform K-stability to uniform Ding stability

As a first step towards the proof of Theorem A, we show:

Theorem 2.1. Let X be a smooth Fano manifold and δ ≥ 0. Then MNA ≥ δJNA holds on HNA iff
DNA ≥ δJNA on HNA

Proof. One direction is clear since MNA ≥ DNA. Conversely, suppose MNA ≥ δJNA on HNA. We
first observe that DNA and MNA coincide on any test configuration (X ,L) which is lc (in the sense
that the pair (X ,X0) has log canonical singularities) and such that L ≡ −KX (numerical equivalence).

In order to establish DNA(X ,L) ≥ δJNA(X ,L) for an arbitrary normal, semiample test configura-
tion, we may assume wlog that (X ,L) is semistable (and hence lc), since both sides are homogeneous
under finite base change. Following the procedure of [LX14], we then use the Minimal Model Pro-
gram to produce a continuous path (ϕt)t∈[0,T ] in HNA with ϕ0 = ϕ(X ,L), ϕT associated to an lc test

configuration (X ′,L′) with L′ ≡ −KX ′ , and such that t 7→ DNA(ϕt)/J
NA(ϕt) is non-increasing. We

will then get as desired
DNA(ϕ)

JNA(ϕ)
≥ DNA(ϕT )

JNA(ϕT )
=
MNA(ϕT )

JNA(ϕT )
≥ δ.

More precisely, we run an MMP with scaling by H := rL−KX , r � 1, as in [LX14, § 5.1]. This yields
a sequence of rational numbers 1 =: λ0 > · · · > λk > λk+1 := 1

r+1 , a sequence of C∗-equivariant
divisorial contractions and flips

X =: X 0 99K X 1 99K · · · 99K X k

and, for each j, an affine path of lc, semiample test configurations (X j ,Ljλ), λ ∈ [λj+1, λj ], such that

KX j + Ljλ =
rλ

(r + 1)λ− 1
(KX j + Lj), (2)

with Lj the push-forward of L to X j . Reparametrizing by et = rλ
(r+1)λ−1 then yields the desired path

(ϕt) in HNA. Indeed using (2) we prove that

d

dt

(
DNA(ϕt)− JNA(ϕt)

)
= DNA(ϕt)− JNA(ϕt) ≤ 0

and
d

dt
JNA(ϕt) = JNA(ϕt)−MNA(ϕt).

It follows that(
d

dt
DNA(ϕt)

)
JNA(ϕt)−DNA(ϕt)

(
d

dt
JNA(ϕt)

)
=
(
DNA(ϕt)− JNA(ϕt)

)
MNA(ϕt) ≤ 0,
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since MNA ≥ δJNA ≥ 0 by assumption, and we conclude as desired that DNA/JNA is non-increasing
along the path (ϕt). �

Remark 2.2. The path (ϕt) can be seen as a non-Archimedean version of the Kähler-Ricci flow.

Remark 2.3. The condition MNA ≥ 0 is equivalent to K-semistability, cf. [BHJ15a]. The case δ = 0
of Theorem 2.1 therefore says that K-semistability is also equivalent to Ding semistability, thereby
showing that the main result of [Fuj15] is also valid assuming only X to be K-semistable.

3. From uniform Ding stability to coercivity of the K-energy

Suppose DNA ≥ δJNA on HNA, where δ ∈ ]0, 1[, and pick δ′ ∈ ]0, δ[. We shall show that
M ≥ δ′J−C onH for some constant C > 0. As explained in the introduction, this proves Theorem A.

Arguing by contradiction, we assume there exists a sequence (φj)
∞
1 in H such that

M(φj) ≤ δ′J(φj)− j.
Since M and J are translation invariant, we may assume that φj is normalized so that sup(φj−φ0) =

0. The inequality M ≥ −nJ , which always holds, then implies J(φj) ≥ j
n+δ′ → +∞, and hence

E(φj) ≤ −J(φj)→ −∞.

3.1. Step 1: construction of a geodesic ray in E1. We largely follow Darvas and He [DH14].
Denote by d1 the distance introduced by Darvas [Dar14] on the space E1 of finite energy, so that d1

defines the topology of convergence in energy.
For each j we let (φj,t)0≤t≤Tj be the geodesic segment connecting φ0 to φj , parametrized so

that Tj = −E(φj). By [BBGZ13, Proposition 6.2] and [Dar13, Theorem 1] we have E(φj,t) = −t
and sup(φj,t − φ0) = 0, respectively. Thus J(φj,t) ≤ sup(φj,t − φ0) − E(φj,t) = t. In particular,
J(φj) ≤ Tj , so M(φj) ≤ δ′Tj − j < δ′Tj for all j. By [BB14], M is convex along geodesic segments,
so M(φj,t) ≤ t

Tj
M(φj) ≤ δ′t for t ≤ Tj . Since M ≥ H − nJ , this yields H(φj,t) ≤ (δ′ + n)t for

t ≤ Tj , so for fixed T > 0 and t ≤ T , the metrics φj,t lie in the set

KT := {φ ∈ E1 | sup(φ− φ0) = 0 and H(φ) ≤ (δ′ + n)T},
which is a compact subset of the metric space (E1, d1) by [BBEGZ15]. By the geodesic property, we
also have

d1(φj,t, φj,s) = d1(φj,1, φ0)|t− s| ≤ C(J(φj,1) + 1)|t− s| ≤ 2C|t− s|,
which shows that t 7→ φj,t restrict to uniformly Lipschitz continuous maps [0, T ]→ KT . Combining
Ascoli’s Theorem with a diagonal argument we may assume, after passing to a subsequence, that
φj,t converges to a geodesic ray (φt)t≥0 in E1, uniformly for each compact time interval. Note in
particular that E(φt) = −t for all t.

The geodesic ray (φt) defines an S1-invariant metric Φ on p∗1L over X×D∗, such that the restriction
of Φ to X × {τ} is equal to φlog |τ |−1 . We claim that Φ is psh. To see this, note that the geodesic

segment (φj,t) defines an S1-invariant psh metric Φj on p∗1L over X × Aj , where Aj = {e−Tj <
|τ | < 1} ⊂ C. The locally uniform convergence of φj,t to φt implies that Φj converges to Φ locally
uniformly in the L1-topology; hence Φ is psh.

Now M is lsc on KT , so M(φt) ≤ lim infjM(φj,t) ≤ δ′t. Hence D(φt) ≤M(φt) ≤ δ′t for t ≥ 0.

3.2. Step 2: Approximation by test configurations. Since sup(φt−φ0) = 0 for all t, Φ extends
to a psh metric on p∗1L over X×D. It has zero Lelong numbers at all points on X×D∗ since φt ∈ E1

for all t. The generic Lelong number along X × {0} is also zero. As a consequence, the multiplier
ideals J (mΦ) are cosupported on proper subvarieties of the central fiber X × {0}, and they are of
course C∗-invariant.

We claim that there exists m0 large enough such that the sheaf O((m + m0)p∗1L) ⊗ J (mΦ) is
generated by its global sections on X × D for each m ≥ 1. More precisely, given a very ample line
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bundle H on X, it is enough to choose m0 such that A := m0L−KX−(n+1)H is ample on X. Indeed,
as first observed in [DEL00, Corollary 1.5], this is a consequence of the Nadel vanishing theorem and
the Castelnuovo-Mumford criterion for global generation. More precisely, since D is Stein, it is enough
to show that O((m + m0)p∗1L) ⊗ J (mΦ) is p2-globally generated, with p2 : X × D → D denoting
the second projection. By the relative version of the Castelnuovo-Mumford criterion, this will be the
case as soon as

Rj(p2)∗ (O((m+m0)p∗1L− jp∗1H)⊗ J (mΦ)) = 0

for all j ≥ 1, which is a consequence of Nadel’s vanishing (compare [BFJ12, Theorem B.8]).
Denote by µm : Xm → X×C the normalized blow-up of X×C along J (mΦ), with exceptional divi-

sor Em, and set Lm := µ∗mp
∗
1L− 1

m+m0
Em. Then (Xm,Lm) is a normal, semiample test configuration

for (X,L), inducing a non-Archimedean metric ϕm ∈ HNA with supϕm = 0, given by

ϕm(v) = 1
m+m0

v(J (mΦ))

for each C∗-invariant divisorial valuation v on X × C.
For each m ≥ 1, pick any S1-invariant smooth psh metric Ψm on the Q-line bundle Lm. By the

results of [Berm15, BHJ15b] mentioned in the introduction, the corresponding subgeodesic ray (φm,t)
satisfies

lim
t→+∞

1
tL(φm,t) = LNA(ϕm) and lim

t→+∞
1
tE(φm,t) = ENA(ϕm) = −JNA(ϕm).

The psh metric Φm on p∗1L overX×C induced by Ψm has analytic singularities of type J (mΦ)1/(m+m0).
As a consequence of Demailly’s local regularization theorem [Dem92, Proposition 3.1], Φm is there-
fore less singular than Φ. More precisely, for each r < 1, we can find a constant Cr,m > 0 such that
Φm ≥ Φ− Cm,r over X × Dr. By monotonicity of E, the corresponding subgeodesic rays satisfy

E(φm,t) ≥ E(φt)− Cm,r = −t− Cm,r
for t > − log r, and we infer

ENA(ϕm) = lim
t→∞

1
tE(φm,t) ≥ −1. (3)

3.3. Step 3: asymptotics of L along the geodesic ray. We now relate the slope at infinity of
L(φt) to the asymptotics of the non-Archimedean functional LNA(ϕm) as m → ∞. We shall prove
that

lim
m→+∞

LNA(ϕm) = lim
t→+∞

1
tL(φt). (4)

Theorem 3.1. Let (φt) be a subgeodesic ray in E1 normalized by sup(φt − φ0) = 0, and let Φ be the
corresponding S1-invariant psh metric on the pull-back of −KX to X × D. Then:

lim
t→+∞

1
tL(φt) = inf

w
(AX×C(w)− 1− w(Φ)) , (5)

where w ranges over C∗-invariant divisorial valuations on X ×C such that w(τ) = 1, and AX×C(w)
is the log discrepancy of such a valuation.

Here w(Φ) is to be interpreted as a generic Lelong number on a suitable blowup, see [BFJ08].
Let us deduce (4) from Theorem 3.1. By [BHJ15a], the projection map X × C → X induces a

bijection between C∗-invariant divisorial valuations w on X × C satisfying w(τ) = 1 and divisorial
(or trivial) valuations v on X, and we have AX×C(w) = AX(v) + 1. As a result, we get

LNA(ϕm) = inf
v

(AX(v) + ϕm(v)) = inf
w

(AX×C(w)− 1− 1
m+m0

w(J (mΦ))),

and we are left showing that

inf
w

(AX×C(w)− w(Φ)) = lim
m→∞

inf
w

(AX×C(w)− 1
m+m0

w(J (mΦ))).
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But this follows formally from the inequalities

w(J (mΦ)) ≤ mw(Φ) ≤ w(J (mΦ)) +AX×C(w).

Proof of Theorem 3.1. Since the metric Φ is psh on X × D, the function l(τ) := L(φlog |τ |−1) is
subharmonic on ∆ [Bern09], and its Lelong number ν at the origin coincides with the negative of the
left hand side of (5). We must therefore show that ν is equal to s := supw(w(Φ) + 1−AX×C(w)).

As in the proof of [Berm15, Proposition 3.8] we use that ν is the infimum of all c ≥ 0 such that∫
U

e−2(l(τ)+(1−c) log |τ |)idτ ∧ dτ̄ =

∫
X×U

e−2(Φ+(1−c) log |τ |)idτ ∧ dτ̄ < +∞, (6)

for some small neighborhood U ⊂ D of the origin. Near each point of X×{0} we have e−2Φidτ ∧dτ̄ =
e−2ϕdV , with ϕ psh and dV a smooth volume form. Setting p := bcc and r = c− p ∈ [0, 1[ we get

e−2(Φ+(1−c) log |τ |)idτ ∧ dτ̄ = |τ |2pe−2(ϕ+(1−r) log |τ |)dV.

Since τp is holomorphic, it follows from [BFJ08, Theorem 5.5] that∫
X×U

e−2(Φ+(1−c) log |τ |)idτ ∧ dτ̄ < +∞ =⇒ sup
w

w(Φ) + (1− r)w(τ)

pw(τ) +AX×C(w)
≤ 1,

where w ranges over all divisorial valuations on X × C. By homogeneity and by the S1-invariance
of Φ, it suffices to consider w that are C∗-invariant and normalized by w(τ) = 1. We then get
w(Φ) + 1 ≤ p+ r +AX×C(w) = c+AX×C(w), and hence s ≤ ν.

Conversely, [BFJ08, Theorem 5.5] shows that

sup
w

w(Φ) + (1− r)
p+AX×C(w)

< 1 =⇒
∫
X×U

e−2(Φ+(1−c) log |τ |)idτ ∧ dτ̄ < +∞.

Since c, and hence p is bounded above, say by ν + 1, and AX×C(w) ≥ 1, the left-hand condition is
equivalent to the existence of ε > 0 such that w(Φ) ≤ (1− ε)AX×C(w)− 1 + c for all w.

Given ρ > 0, we must therefore show that there exists ε > 0 such that

w(Φ) ≤ (1− ε)AX×C(w) + 1 + s+ ρ

for all w as above. Arguing by contradiction, we get a sequence wj of C∗-invariant divisorial valuations
with wj(τ) = 1 such that

wj(Φ) ≥ (1− 1
j )AX×C(wj)− 1 + s+ ρ.

Let W be the subset of the Berkovich analytification (X × C)an consisting of semivaluations w that
are C∗-invariant and satisfy w(τ) = 1, see [Berk90]. Then W is compact and even sequentially
compact [Poi13], so after passing to a subsequence we may assume that wj → w∞ ∈W .

For each m ≥ 1, the multiplier ideal sheaf J (mΦ) satisfies

1
mwj(J (mΦ)) ≥ wj(Φ)− 1

mAX×C(wj) ≥ (1− 1
j −

1
m )AX×C(wj)− 1 + s+ ρ

for all j ≥ 1. Since w → w(J (mΦ)) is continuous and w → AX×C(w) is lsc on W , this implies

1
mw∞(J (mΦ)) ≥ (1− 1

m )AX×C(w∞)− 1 + s+ ρ

for all m ≥ 1. In particular, AX×C(w∞) <∞.
On the other hand we have, by definition of s,

1
mw(J (mΦ)) ≤ w(Φ) ≤ AX×C(w)− 1 + s

for all divisorial valuations w in W . By density, the inequality 1
mw(J (mΦ)) ≤ AX×C(w) − 1 + s is

also valid for all quasimonomial valuations w ∈ W , and hence for all w ∈ W by approximation via
retraction to dual complexes [BFJ12, JM12]. Comparing these inequalities we infer

AX×C(w∞)− 1 + s ≥ (1− 1
m )AX×C(w∞)− 1 + s+ ρ,



8 ROBERT BERMAN, SÉBASTIEN BOUCKSOM, AND MATTIAS JONSSON

and we reach a contradiction by letting m→∞. �

3.4. Step 4: concluding the proof of Theorem A. By (4) we have

lim
m→∞

LNA(ϕm) = lim
t→∞

1
tL(φt) = lim

t→∞
1
t (D(φt) + E(φt)) ≤ −1 + δ′.

On the other hand, our assumption of uniform Ding stability yields

LNA(ϕm)− ENA(ϕm) = DNA(ϕm) ≥ δJNA(ϕm) = −δENA(ϕm),

and hence
LNA(ϕm) ≥ (1− δ)ENA(ϕm) ≥ −1 + δ

by (3), which contradicts δ′ < δ.

3.5. The semistable case. In this section we briefly sketch the proof of Theorem B. The solvability
of the twisted Kähler-Einstein equation

Ricci(ω) = (1− γ)ω + γω0 (7)

with γ ∈ ]0, 1[ is implied by the coercivity of the twisted Mabuchi K-energy

Mγ := H − (1− γ)E∗ = M + γE∗.

By Theorem 2.1, K-semistability implies DNA ≥ 0 on HNA. Arguing as in Steps 2, 3 and 4 above, we
infer from this that limt→+∞D(φt)/t ≥ 0 for each subgeodesic ray (φt) in E1. Since Mγ ≥ D+ γE∗,
this implies

lim
t→+∞

Mγφt)

t
≥ γ lim

t→+∞

E∗(φt)

t
.

Since E∗ and J are comparable up to multiplicative constants, we obtain an estimate

lim
t→+∞

Mγφt)

t
≥ δ lim

t→+∞

J(φt)

t

for some uniform constant δ > 0. Arguing as in Step 1 above, using the geodesic convexity of Mγ

established in [BB14], we deduce from this the desired coercivity estimate Mγ ≥ δ′J − C, which
proves the solvability of (7).
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