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ABSTRACT We announce a proof of Calabi's conjectures
on the Ricci curvature of a compact Kahler manifold and then
apply it to prove some new results in algebraic geometry and
differential geometry. For example, we prove that the only
Kahler structure on a complex projective space is the standard
one.

Let M be a compact Kahler manifold with Kahler metric z gil
dziI dii. Let z Rii dz'I dii be the Ricci tensor of M. Then,
according to Chern (ref. 1), the (1,1) form V'2i/2ir z Ril dzI
A dii is closed and represents the first Chem class of M. Hence,
there is a natural obstruction for a tensor to be the Ricci tensor
of some Kahler metric. In refs. 2 and 3, Calabi asked whether
this is the only obstruction. Namely, given a closed (1,1) form
/-1/27r z Aij dzi A dVi, which represents the first Chem class

of M, can one find a Kahler metric z gij dziI dii such that z
A dzi @ dii is the Ricci tensor of this metric and that V/i/2
z gi dzi A dii determines the same cohomology class as

1/2 z gi- dz' A dii. Calabi (ref. 3) establishes the
uniqueness of such a metric z gii dz' 0 dii and proved the
existence under the assumption that R1j is close to Ri. The ex-
istence of z Rij dzI 0 dii, without any assumption onM or Rij,
is known as Calabi's conjecture.

Since x/7i/27r z R.j- dzi A dii = -V/i7/2ir a log det [gq
+ (a20p/aziaij)], the condition that V/T/2ir z Rij dzI A dii
is cohomologous to VC/I/2ir IRI dzi A dVi implies that we
can find a smooth function F on M so that

2i 6 log det (gij + (-
+ 2r blogdet (gi;)= / F [1]

The conjecture of Calabi is therefore equivalent to solving
[1] with F and gij given. Here o is required to be smooth so that
2r,j[gij + (a2ep/0z'bV)]dz10 dVi defines a metric tensor.
Adding F by a known constant, we see that it is sufficient to
solve the following equation

det (gij + aa
62

() det (g)-l = exp (F) [2]

where

exp (F) = Vol (M). [3]

In ref. 2, Calabi also conjectured the existence of Kahler
Einstein metric on a Kahler manifold whose first Chern class
is negative, zero, or positive and which does not admit any
holomorphic vector field. (A theorem of Nakano says that
negativity of the first Chern class implies the nonexistence of
holomorphic vector field.) Kahler Einstein metrics are the
Kahler metrics whose Ricci form is proportional to the Kahler
form. If the first Chern class is negative, then by definition we
can choose Kahler metric so that VCI/2 z g-. dz A dii rep-
resents-cl(M). If cl(M) is zero, we choose -/±i/2ir 2 gqjdzi

A dii to be arbitrary Kahler form. If cl(M) is positive, we
choose VCI/2 z gqj dz1 A dii to represent cl(M). In these
cases, the existence of Kahler Einstein metric is equivalent to
solving the following equation

det (gij + a2 det (gij)-l = exp (c'p+ F) [4]

where c = + 1, 0, or -1, and F is a smooth function defined on
M that satisfies [3] when c = 0.

In this note, we announce the following solution of Calabi's
conjecture.
THEOREM 1. Let M be a compact Kahler manifold with

Kifler metric I gi: dzi 0 dzi. Then when c > 0 eqs. 2 and 4
can be solved with a smooth (. In particular, any (1,1) form
on M that represents cl(M) can be realized as the Ricciform
of a unique Kdhler metric whose Kdhler class is that of V4/2
1 gijdzi A dz. If the first Chern class ofM is zero and negative,
then there exists a Kahler Einstein metric on M. In the latter
case, if we require the Ricci curvature to be -1, the metric is
unique, depending only on the complex structure of M.
We shall discuss Eq. 4 with c < 0 on a latter occasion. We

should mention that if the bisectional curvature of M is non-
negative, then T. Aubin (ref. 4) has solved eq. 2. However, the
class of such manifolds is rather restrictive. Very recently he
also announced (ref. 5) a solution of a special case of [4] when
c > 0.

Instead of giving details of how to prove Theorem 1, which
will appear elsewhere, we shall now give some applications of
Theorem 1. Some other applications will be published else-
where also.
THEOREM 2. There are compact simply-connected Kdhler

manifolds whose Ricci curvature is identically zero and whose
curvature tensor is not identically zero.

Proof: It is well known that for n > 1, every complex hy-
persurface of degree n + 2 in the complex projective space
Cp + is simply connected and has zero first Chern class.
Hence by Theorem 1, we can represent the zero (1,1) form as
the Ricci tensor of some Kahler metric.
THEOREM 3. There are compact simply-connected Kdhler

manifolds whose Ricci curvature is negative everywhere.
Proof: For n > 1, any complex hypersurface of CPn+ 1

with degree greater than n + 2 is simply connected and has
negative first Chern class. Using Theorem 1, we can find a
Kahler metric with negative Ricci curvature on them.
THEOREM 4. Let M be a Kahler surface with ample ca-

nonical bundle. Then 3c2(M) > cI(M)2 and the equality holds
if and only if M is covered biholomorphically by the ball in
C2.

Proof: According to Theorem 1, we can find a Kahler
Einstein metric on M whose Ricci curvature is a negative
constant. By Chern's theorem (ref. 1), we can write 3c2(M) -
c2(M) as the integral of a function that depends only on the
curvature tensor of the above Einstein metric. This function can
be described as follows. Let le1,e2 = Jel, e3,e4 = Je3} be a uni-
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tary frame at a point p. Then the value of the function at p is
given by lh4r21R 1212 - 2(R11313 + R 1414)12 + 3(R11313 -R11414)2
+ 6(R1312 + R1412 + R1413)]. Since this function is non-negative,
we have established the inequality 3c2(M) > c2(M). Further-
more, the equality holds iff the function is zero identically. As
the Ricci curvature R1212 + R1313 + R1414 is a negative constant,
we see that in this case, the holomorphic sectional curvature of
M is a negative constant. Therefore, M is covered by the ball
holomorphically.

Remarks: (i) Under the assumption that M is a surface of
general type, Van de Ven (ref. 6) proved the inequality 8c2(M)
> cl(M). Recently D. Mumford informed us that F. Bogomolv
improved the inequality to 4c2(M) ' c2(M) while Y. Miyaoka
improved Bogomolov's argument to obtain 3c2(M) Ic2(M).
However, Miyaoka's argument does not give information for
the case 3c2(M) = c2(M). We believe our method can be gen-
eralized to cover the case of general type. This will be discussed
later.

(ii) Assuming the surface is Kahler Eistein, we knew the
inequality 3c2(M) > c2(M) about 4 years ago. However, it was
pointed out by D. Mumford that more than 20 years ago,
Guggenheimer (ref. 7) had already found the inequality, as-
suming the existence of Kahler Einstein metric.

(iii) We can generalize the above inequality to other in-
equalities for higher dimensional manifolds with ample ca-
nonical class. We can prove, for example, the inequality
(-1)nc-2c2(M)> (-1)nn/2(n + 1)cn(M), and the equality
holds only if M is covered by the ball holomorphically.
An important application of Theorem 4 is the following

resolution of a conjecture of Severi (ref. 8)
THEOREM 5. Every complex surface that is homotopic to

the complex projective plane Cp2 is biholomorphic to CP2.
Proof: Since the index of a four-dimensional (real) mani-

fold is invariant (up to sign) under homotopic equivalence, we
conclude that 'A[c2(M) - 2c2(M)] = +1. As c2(M) = 3, this
shows immediately that c2(M) > 0. By a theorem of Kodaira
(ref. 9) this implies that M is algebraic.

Let 0 be the structure sheaf of M. Then the exact se-
quence

1 --z 0@0 1 [51
induces the long exact sequence

H'(M,Z) -- Hl(M,O) - HI(M,O*) - H2(MZ) [6]
Since H1(M,Z) = 0 and H2(M,Z) = Z, we have H1(M,0) =

0 and H1(M,0*) is infinitely cyclic. Therefore, line bundles of
M are multiples of each other. AsM is algebraic, the canonical
line bundle of M is a multiple of some positive line bundle.
Therefore, the canonical line bundle is either negative or pos-
itive. In the previous case, Hirzebruch and Kodaira (ref. 9) al-
ready established that M is biholomorphic to CP2. In both cases,
they also established cI(M)2 = 9. Therefore, in the latter case
3c2(M) = c2(M) and we can apply Theorem 4 to conclude that
M is covered by the ball. AsM is simply connected, we conclude
that the latter case cannot happen and M is biholomorphic to
Cp2.

Remark: We can apply the remark in Theorem 4 to prove
that any Kahler manifold that is homeomorphic to CPn is bi-
holomorphic to CPn. One can also prove that Cp2 is the only

simply connected algebraic surface with positive definite index
form (see ref. 6).
THEOREM 6. Let N be a compact complex surface that is

covered by the ball in C2. Then any complex surface M that
is oriented homotopic to N is biholomorphic to N.

Proof: Since N is Kahler, the first Betti number of N, and
hence M, is even. According to a result of Y. Miyaoka (ref. 10),
our complex surface that is not covered by the K-3 surface is
Kahler. We claim that the first Chern class of M is negative.
To see this, we notice the obvious fact that every compact

holomorphic curve in a Kahler manifold is not homologous to
zero in that manifold. We use this to show that M admits no
rational curves or elliptic curves. In fact, it is well known that
topologically, M is a K(ir,1) whose fundamental group contains
no nontrivial abelian subgroup besides the integers. Hence to-
pologically, every continuous map from the rational curve or
the elliptic curve into M must be homotopic to a map whose
image is either a point or a circle. As a consequence, no non-
trivial holomorphic map from a rational curve or elliptic curve
into M is possible. According to the classification of complex
surfaces, we conclude that M must be an algebraic surface of
general type. On the other hand, for an algebraic surface of
general type that contains no rational curves, the first Chern
class is negative (see ref. 9).

Since M is oriented homotopic to N, the index of M is equal
to that of N. One concludes immediately cl(M) = c1(N) and
c2(M) = c2(N). Therefore, 3c2(M) = c1(M). Theorem 4 then
shows thatM is covered by the ball in C2. By Mostow's rigidity
theorem (ref. 11), M is in fact biholomorphic to N.
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