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VISCOSITY SOLUTIONS TO DEGENERATE COMPLEX

MONGE-AMPÈRE EQUATIONS

PHILIPPE EYSSIDIEUX, VINCENT GUEDJ, AHMED ZERIAHI

Abstract. Degenerate complex Monge-Ampère equations on compact
Kähler manifolds have been recently intensively studied using tools from
pluripotential theory. We develop an alternative approach based on
the concept of viscosity solutions and compare systematically viscosity
concepts with pluripotential theoretic ones.

This approach works only for a rather restricted type of degenerate
complex Monge-Ampère equations. Nevertheless, we prove that the local
potentials of the singular Kähler-Einstein metrics constructed previously
by the authors are continuous plurisubharmonic functions. They were
previously known to be locally bounded.

Another application is a lower order construction with a C0-estimate
of the solution to the Calabi conjecture which does not use Yau’s cele-
brated theorem.

Introduction

Pluripotential theory lies at the fundation of the approach to degenerate
complex Monge-Ampère equations on compact Kähler manifolds as devel-
oped in [Kol], [EGZ1, EGZ2], [TiZh], [Zha], [DP], [BEGZ], [BBGZ] and
many others. This method is global in nature, since it relies on some deli-
cate integrations by parts.

On the other hand, a standard PDE approach to second-order degenerate
elliptic equations is the method of viscosity solutions introduced in [Lio],
see [CIL] for a survey. This method is local in nature - and solves existence
and unicity problems for weak solutions very efficiently. Our main goal in
this article is to develop the viscosity approach for complex Monge-Ampère
equations on compact complex manifolds.

Whereas the viscosity theory for real Monge-Ampère equations has been
developed by P.L. Lions and others (see e.g.[IL]), the complex case hasn’t
been studied until very recently. There is a viscosity approach to the Dirich-
let problem for the complex Monge-Ampère equation on a smooth hypercon-
vex domain in a Stein manifold in [HL]. This recent article does not however
prove any new results for complex Monge-Ampère equations since this case
serves there as a motivation to develop a deep generalization of plurisub-
harmonic functions to Riemannian manifolds with some special geometric
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structure (e.g. exceptional holonomy group). To the best of our knowl-
edge, there is no reference on viscosity solutions to complex Monge-Ampère
equations on compact Kähler manifolds.

There has been some recent interest in adapting viscosity methods to solve
degenerate elliptic equations on compact or complete Riemannian manifolds
[AFS]. This theory can be applied to complex Monge-Ampère equations
only in very restricted cases since it requires the Riemann curvature tensor
to be nonnegative. Using [Mok], a compact Kähler manifold with a non-
negative Riemannian curvature tensor has an étale cover which is a product
of a symmetric space of compact type (e.g.: Pn(C), grassmannians) and a
compact complex torus. In particular, [AFS] does not allow in general to
construct a viscosity solution to the elliptic equation:

(DMA)ω,v (ω + ddcϕ)n = eϕv

where ω is a smooth Kähler form and v a smooth volume on a general n-
dimensional compact Kähler manifold X. A unique smooth solution has
been however known to exist for more than thirty years thanks to the cel-
ebrated work of Aubin and Yau, [Aub] [Yau]. This is a strong indication
that the viscosity method should work in this case to produce easily weak
solutions

In this article, we confirm this guess, define and study viscosity solutions
to degenerate complex Monge-Ampère equations. Our main technical result
is:

Theorem A. Let X be a compact complex manifold, ω a continuous closed
real (1,1)-form with C2 local potentials and v > 0 be a volume form with con-
tinuous density. Then the viscosity comparison principle holds for (DMA)ω,v.

The viscosity comparison principle (see below for details) differs substan-
tially from the pluripotential comparison principle of [BT2] which is the
main tool in [Kol], [GZ1], [EGZ1]. This technical statement is based on
the Alexandroff-Bakelmann-Pucci maximum principle. We need however to
modify the argument in [CIL] by a localization technique.

Although we need to assume v is positive in Theorem A, it is then easy
to let it degenerate to a non negative density in the process of constructing
weak solutions to degenerate complex Monge-Ampère equations. We obtain
this way the following:

Corollary B. Assume X is as above, v is merely semi-positive with
∫

X v >

0. If ω ≥ 0 and
∫

X ω
n > 0 , then there is a unique viscosity solution

ϕ ∈ C0(X) to (DMA)ω,v.
If X is a compact complex manifold in the Fujiki class, it cöıncides with

the unique locally bounded ω-psh function ϕ on X such that (ω+ddcϕ)nBT =
eϕv in the pluripotential sense [EGZ1].
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Recall that ϕ is ω-plurisubharmonic (ω-psh for short) if it is an u.s.c.
integrable function such that ω + ddcϕ ≥ 0 in the weak sense of currents.

It was shown in this context by Bedford and Taylor [BT2] that when ϕ is
bounded, there exists a unique positive Radon measure (ω + ddcϕ)nBT with
the following property: if ϕj are smooth, locally ω-psh and decreasing to
ϕ, then the smooth measures (ω + ddcϕj)

n weakly converge towards the
measure (ω + ddcϕ)nBT . If the measures (ω + ddcϕj)

n (locally) converge to
eϕv, we say that the equality (ω+ ddcϕ)nBT = eεv holds in the pluripotential
sense.

Combining pluripotential and viscosity techniques, we can push our re-
sults further and obtain the following:

Theorem C. Let X be a compact complex manifold in the Fujiki class. Let
v is be a semi-positive probability measure with Lp-density, p > 1, and fix
ω ≥ 0 a smooth closed real semipositive (1, 1)-form such that

∫

X ω
n = 1. The

unique locally bounded ω-psh function on X normalized by
∫

X ϕ = 0 such
that its Monge-Ampère measure satisfies (ω + ddcϕ)nBT = v is continuous.

This continuity statement was obtained in [EGZ1] under a regulariza-
tion statement for ω-psh functions that we were not able to obtain in full
generality. It could have been obtained using [AFS] in the cases covered by
this reference. However, for rational homogeneous spaces, the regularization
statement is easily proved by convolution [Dem2] and [AFS] does not give
anything new. A proof of the continuity when X is projective under mild
technical assumptions has been obtained in [DiZh].

We now describe the organization of the article. The first section is de-
voted to the local theory. It makes the connection between the complex
Monge-Ampère operator and the viscosity subsolutions of inhomogenous
complex Monge-Ampère equations. We have found no reference for these
basic facts.

In the second section, we introduce the viscosity comparison principle and
give a proof of the main theorem . The gain with respect to classical pluripo-
tential theory is that one can consider supersolutions to prove continuity of
pluripotential solutions for (ω + ddcϕ)n = eϕv.

In the third section we apply these ideas to show that the singular Kähler-
Einstein potentials constructed in [EGZ1] are globally continuous.

In the fourth and last section, we stress some advantages of our method:

• it gives an alternative proof of Kolodziej’s C0-Yau theorem which
does not depend on [Yau].

• it allows us to easily produce the unique negatively curved singular
Kähler-Einstein metric in the canonical class of a projective manifold
of general type, a result obtained first in [EGZ1] assuming [BCHM],
then in [BEGZ] by means of asymptotic Zariski decompositions.

Then, we establish further comparison principles: these could be useful when
studying similar problems were pluripotential tools do not apply. We end
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the article by some remarks on a possible interpretation of viscosity super-
solutions in terms of pluripotential theory using Berman’s plurisubharmonic
projection.

The idea of applying viscosity methods to the Kähler-Ricci flow was pro-
posed originally in a remark from the preprint [CasLaN]. We hope that the
technique developed here will have further applications. In a forthcoming
work it will be applied to the Kähler-Ricci flow.

1. Viscosity subsolutions to (ddcϕ)n = eεϕv.

The purpose of this section is to make the connection, in a purely local
situation, between the pluripotential theory of complex Monge-Ampère op-
erators, as founded by Bedford-Taylor [BT2], and the concept of viscosity
subsolutions developed by Lions et al. (see [IL, CIL]).

1.1. Viscosity subsolutions of (ddcϕ)n = v. Let M = M (n) be a (con-
nected) complex manifold of dimension n and v a semipositive measure with
continuous density. In this section B will denote the unit ball of Cn or its
image under a coordinate chart in M .

Definition 1.1. An upper semicontinuous function ϕ :M → R ∪ {−∞} is
said to be a viscosity subsolution of the Monge-Ampère equation

(DMA)v (ddcϕ)n = v

if it satisfies the following conditions

(1) ϕ|M 6≡ −∞.
(2) For every x0 ∈ M and any C2-function q defined on a neighborhood

of x0 such that ϕ− q has a local maximum at x0 then

(ddcq)nx0 ≥ vx0 .

We will also say that ϕ satisfies the differential inequality (ddcϕ)n ≥ v in
the viscosity sense on M .

Note that if v ≥ v′ then (ddcϕ)n ≥ v in the viscosity sense implies
(ddcϕ)n ≥ v′. This holds in particular if v′ = 0.

Another basic observation is that the class of subsolutions is stable under
taking maximum:

Lemma 1.2. If ϕ1, ϕ2 are subsolutions of (ddcϕ)n = v, so is sup(ϕ1, ϕ2).

The proof is straightforward and left to the reader. We now observe that
a function ϕ satisfies (ddcϕ)n ≥ 0 in the viscosity sense if and only if it is
plurisubharmonic:

Proposition 1.3. The viscosity subsolutions of (ddcϕ)n = 0 are precisely
the plurisubharmonic functions on M .
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Proof. The statement is local and we can assume M = B. Let ϕ be a
subsolution of (ddcϕ)n = 0. Let x0 ∈ B such that ϕ(x0) 6= −∞. Let
q ∈ C2(B) such that ϕ− q has a local maximum at x0. Then the hermitian
matrix Q = ddcqx0 satisfies det(Q) ≥ 0. For every hermitian semipositive
matrixH, we also have det(Q+H) ≥ 0 since, a fortiori for qH = q+H(x−x0),
ϕ− qH has a local maximum at x0 too.

It follows from Lemma 1.4 below that Q = ddcqx0 is actually semi-

positive. We infer that for every positive definite hermitian matrix (hij̄)

∆Hq(x0) := hij̄ ∂2q
∂zi∂z̄j

(x0) ≥ 0, i.e.: ϕ is a viscosity subsolution of ∆Hϕ = 0.

In appropriate complex coordinates this constant coefficient differential op-
erator is nothing but the Laplace operator. Hence, [Hör] prop 3.2.10’ p.
147 applies to the effect that ϕ is ∆H -subharmonic hence is in L1

loc(B) and
satisfies ∆Hϕ ≥ 0 in the sense of distributions. Let (wi) be any vector in

Cn. Consider a positive hermitian matrix (hij̄) degenerating to the rank

one matrix (wiw̄j). By continuity, we have wiw̄j ∂2ϕ
∂zi∂z̄j

≥ 0 in the sense of

distributions. Thus ϕ is plurisubharmonic.

Conversely, assume ϕ is plurisubharmonic. Fix x0 ∈ B, q ∈ C2(B)) such
that ϕ − q has a local maximum at x0. Then, for every small enough ball
B′ ⊂ B centered at x0, we have

ϕ(x0)− q(x0) ≥
1

V (B′)

∫

B′

(ϕ− q) dV,

hence
1

V (B′)

∫

B′

q dV − q(x0) ≥
1

V (B′)

∫

B′

ϕdV − ϕ(x0) ≥ 0.

Letting the radius of B′ tend to 0, it follows since q is C2 that ∆qx0 ≥ 0.
Using complex ellipsöıds instead of balls1, we conclude that ∆Hq(x0) ≥ 0 for
every positive definite hermitian matrix. Thus ddcqx0 ≥ 0 and (ddcϕ)n ≥ 0
in the viscosity sense. �

The following lemma is easily proven by diagonalizing Q:

Lemma 1.4. Let Q be an hermitian matrix such that, for every semipositive
hermitian matrix H, det(Q+H) ≥ 0 then Q is semipositive.

Recall that when ϕ is plurisubharmonic and locally bounded, its Monge-
Ampère measure (ddcϕ)nBT is well defined [BT2] (as the unique limit of the
smooth measures (ddcϕj)

n, where ϕj is any sequence of smooth psh functions
decreasing to ϕ). Our next result makes the basic connection between this
pluripotential notion and its viscosity counterpart:

Proposition 1.5. Let ϕ be a locally bounded upper semi-continuous function
inM . It satisfies (ddcϕ)n ≥ v in the viscosity sense iff it is plurisubharmonic
and its Monge-Ampère measure satisfies (ddcϕ)nBT ≥ v in the pluripotential
sense.

1This amounts to a linear change of complex coordinates.
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Proof. We first recall the following classical formulation of the pluripotential
comparison principle for the complex Monge-Ampère operator, acting on
bounded plurisubharmonic functions [BT2]:

Lemma 1.6. Let u,w ∈ PSH ∩ L∞(B).
If u ≥ w near ∂B and (ddcu)nBT ≤ (ddcw)nBT then u ≥ w.

Assume ϕ ∈ PSH ∩ L∞(B) satisfies (ddcϕ)nBT ≥ v. Consider q a C2

function such that ϕ − q achieves a local maximum at x0 and ϕ(x0) =
q(x0). Since ϕ satisfies (ddcϕ)n ≥ 0 in the viscosity sense, (ddcq)nx0 ≥ 0 and

ddcqx0 ≥ 0 by lemma 1.4. Assume (ddcq)nx0 < vx0 . Let q
ε := q+ ε‖x− x0‖

2.
Choosing ε > 0 small enough, we have 0 < (ddcqεx0)

n < vx0 . Since v has
continuous density, we can chose a small ball B′ containing x0 of radius

r > 0 such that q̄ε = qε − ε r
2

2 ≥ ϕ near ∂B′ and (ddcq̄ε)nBT ≤ (ddcϕ)nBT .
The comparison principle (Lemma 1.6) yields q̄ε ≥ ϕ on B′. But this fails
at x0. Hence (ddcq)nx0 ≥ vx0 and ϕ is a viscosity subsolution.

Conversely assume ϕ is a viscosity subsolution. Fix x0 ∈ B such that
ϕ(x0) 6= −∞ and q ∈ C2 such that ϕ− q has a local maximum at x0. Then
the hermitian matrix Q = ddcqx0 satisfies det(Q) ≥ vx0 .

Recall that the classical trick (due to Krylov) of considering the complex
Monge-Ampère equation as a Bellmann equation relies on the following:

Lemma 1.7. [Gav] Let Q be a n× n non negative hermitian matrix, then

det(Q)1/n = inf{tr(HQ) |H ∈ H+
n and det(H) = n−n},

where H+
n denotes the set of positive hermitian n× n matrices.

Applying this to our situation, it follows that for every positive definite

hermitian matrix (hij̄) with det(h) = n−n, ∆Hq(x0) := hij̄
∂2q

∂zi∂z̄j
(x0) ≥

v1/n(x0), i.e. ϕ is a viscosity subsolution of the linear equation ∆Hϕ ≥ v1/n.
This is a constant coefficient linear partial differential equation. Assume

v1/n is Cα with α > 0 and choose a C2 solution of ∆Hϕ = v1/n in a neigh-
borhood of x0. Then u = ϕ − f satisfies ∆Hu ≥ 0 in the viscosity sense.
Once again, [Hör] prop 3.2.10’ p. 147 applies to the effect that u is ∆H -

subharmonic hence ∆Hϕ ≥ v1/n in the sense of positive Radon measures.
Using convolution to regularize ϕ and setting ϕε = ϕ ∗ ρε we see that

∆Hϕε ≥ (v1/n)ε. Another application of the above lemma yields

(ddcϕε)
n ≥ ((v1/n)ε)

n.

Here ϕ̃k = ϕ1/k is a decreasing sequence of smooth functions converging
to ϕ. Continuity of (ddcϕ)nBT with respect to such a sequence [BT2] yields
(ddcϕ)nBT ≥ v.

This settles the case when v > 0 and v is Hölder continuous. In case
v > 0 is merely continuous we observe that v = sup{w|w ∈ C∞, v ≥ w >
0}. Taking into account the fact that any subsolution of (ddcϕ)n = v is a
subsolution of (ddcϕ)n = w provided v ≥ w we conclude (ddcϕ)nBT ≥ v.



VISCOSITY SOLUTIONS TO DEGENERATE CMAE 7

In the general case, we observe that ψε(z) = ϕ(z)+ε‖z‖2 satisfies (ddcψε)
n ≥

v + εnλ in the viscosity sense with λ the euclidean volume form. Hence

(ddcψε)
n
BT ≥ v.

From which we conclude that (ddcϕ)nBT ≥ v. �

Remark 1.8. The basic idea of the proof is closely related to the method in
[BT1] and is the topic treated in [Wik]. The next section contains a more
powerful version of this argument. However, it uses sup-convolution which
is not a conventional tool in pluripotential theory and we felt that keeping
this version would improve the exposition.

We now relax the assumption that ϕ being bounded and connect viscosity
subsolutions to pluripotential subsolutions through the following:

Theorem 1.9. Assume v = (ddcρ)nBT for some bounded plurisubharmonic
function ρ. Let ϕ be an upper semicontinuous function such that ϕ 6≡ −∞
on any connected component. The following are equivalent:

i) ϕ satisfies (ddcϕ)n ≥ v in the viscosity sense;
ii) ϕ is plurisubharmonic and for all c > 0, (ddc sup[ϕ, ρ− c])nBT ≥ v.

Observe that these properties are local and that the semi-positive mea-
sure v can always be written locally as v = (ddcρ)nBT for some bounded
plurisubharmonic function ρ [Kol].

Proof. Assume first that ϕ is a viscosity subsolution of (ddcρ)n = v. Since
ρ− c is also a subsolution, it follows from Lemma 1.2 that sup(ϕ, ρ − c) is
a subsolution, hence Proposition 1.5 yields (ddc sup(ϕ, ρ − c))nBT ≥ v.

Conversely, fix x0 ∈M and assume i) holds. If ϕ is locally bounded near
x0, Proposition 1.5 implies that ϕ is a viscosity subsolution near x0.

Assume ϕ(x0) 6= −∞ but ϕ is not locally bounded near x0. Fix q ∈ C2

such that q ≥ ϕ near x0 and q(x0) = ϕ(x0). Then for c > 0 big enough we
have q ≥ ϕc = sup(ϕ, ρ − c) and q(x0) = ϕc(x0), hence (ddcq)nx0 ≥ vx0 by
Proposition 1.5 again.

Finally if ϕ(x0) = −∞ there are no q to be tested against the differential
inequality, hence it holds for every test function q. �

Condition ii) might seem a bit cumbersome. The point is that the Monge-
Ampère operator can not be defined on the whole space of plurisubharmonic
functions. The above arguments actually work in any class of plurisubhar-
monic functions in which the Monge-Ampère operator is continuous by de-
creasing limits of locally bounded functions and the comparison principle
holds. These are precisely the finite energy classes studied in [Ceg2, GZ2].

When ϕ belongs to its domain of definition, condition ii) is equivalent to
(ddcϕ)nBT ≥ v in the pluripotential sense. To be more precise, we have:

Corollary 1.10. Let Ω ⊂ Cn be a hyperconvex domain. Then ϕ ∈ E(Ω),
see [Ceg3] for the notation, satisfies (ddcϕ)n ≥ v in the viscosity sense iff
its Monge-Ampère measure (ddcϕ)nBT satisfies (ddcϕ)nBT ≥ v.
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We do not want to recall the definition of the class E(Ω). Suffices to
say that when n = 2, a psh function ϕ belongs to this class if and only if
∇ϕ ∈ L2

loc [Blo].

1.2. Viscosity subsolutions to (ddcϕ)n = eεϕv. Let ε > 0 be a real
number. Say that an u.s.c. function ϕ is a viscosity subsolution of (ddcϕ)n =
eεϕv if ϕ is not identically −∞ and for all x0 ∈ M , for all q ∈ C2(M) of
x0 such that ϕ− q has a local maximum at x0 and ϕ(x0) = q(x0), one has

(ddcq(x0))
n ≥ eεq(x0)v(x0) .

Proposition 1.11. Let ϕ :M → R be a bounded u.s.c. function. It satisfies
(ddcϕ)n ≥ eεϕv in the viscosity sense if and only if it (is plurisubharmonic
and it) does in the pluripotential sense.

Proof. When ϕ is continuous, so is the density of ṽ = eεϕv and Proposition
1.5 above can be applied. When ϕ is not assumed to be continuous, the
issue is more subtle.

We can assume without loss of generality that ε = 1 and M = Ω is a do-
main in Cn. Assume ϕ is a viscosity subsolution. It follows from Proposition
1.3 that ϕ is psh. Set v = fβn, where f > 0 is the continuous density of the
volume form v w.r.t. the euclidean volume form on Cn. We approximate ϕ
by its sup-convolution:

ϕδ(x) := sup
y

{

ϕ(y)−
1

2δ2
|x− y|2

}

, x ∈ Ωδ,

for δ > 0 small enough, where Ωδ := {x ∈ Ω; dist(x, ∂Ω) > Aδ} and A > 0
is a large constant so that A2 > 2oscΩϕ.

This family of semi-convex functions decreases towards ϕ as δ decreases
to zero. Furthermore, by [Ish], ϕδ satisfies the following inequality in the
sense of viscosity on Ωδ

(ddcϕδ)n ≥ eϕ
δ

fδβn, with fδ(x) = inf{f(y) /|y − x| ≤ Aδ}.

It follows from Proposition 1.3 that ϕδ is psh 2. Since ϕδ is continuous, we
can invoke Proposition 1.5 and get that

(ddcϕδ)n ≥ eϕ
δ

fδ βn ≥ eϕfδ βn

holds in the pluripotential sense. Since the complex Monge-Ampère operator
is continuous along decreasing sequences of bounded psh functions, and since
fδ increases towards f , we finally obtain (ddcϕ)n ≥ eϕv in the pluripotential
sense.

We now treat the other implication. Let ϕ be a psh function satisfying
the inequality

(ddcϕ)n ≥ eϕv,

2This argument implies that a sup convolution of a psh function is psh. This in turn
is easily deduced from the change of variables y = x− y′ in the definition of ϕδ(x).
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in the pluripotential sense on Ω. We want to prove that ϕ satisfies the above
differential inequality in the sense of viscosity on Ω. If ϕ were continuous
then we could use Proposition 1.5. But since ϕ is not necessarily continuous
we first approximate f using regularization by convolution ϕδ := ϕ ⋆ χδ on
Ωδ. Lemma 1.12 below yields the following pointwise inequality in Ωδ:

(1) (ddcϕδ)
n ≥ eϕδfδβn, with fδ(x) := inf{f(y); |y − x| ≤ δ}.

Let x0 ∈ Ω, q be a quadratic polynomial such that ϕ(x0) = q(x0) and
ϕ ≤ q on a neighbourhood of x0, say on a ball 2B, where B := B(x0, r) ⋐ Ω.
Since ϕ is psh on Ω, it satisfies (ddcϕ)n ≥ 0 in the viscosity sense on Ω by
Proposition 1.5, hence Lemma 1.4 yields ddcq(x0) ≥ 0. Replacing q by
q(x) + ε|x − x0|

2 and taking r > 0 small enough, we can assume that q is

psh on the ball 2B. We want to prove that (ddcq(x0))
n ≥ eϕ(x0)f(x0)βn.

Fix ε > 0 and set

qε(x) := q(x) + 2ε(|x − x0|
2 − r2) + εr2.

Observe that since ϕ ≤ q on 2B, we obtain
- if x ∈ ∂B, ϕδ(x)− qε(x) = ϕδ(x)− q(x)− εr2,
- If x = x0, ϕδ(x0)− qε(x0) = ϕδ(x0)− q(x0) + εr2.

Now ϕδ(x0) − q(x0) → ϕ(x0) − q(x0) = 0 as δ → 0, so that for δ small
enough, the function ϕδ(x)− qε(x) takes it maximum on B̄ at some interior
point xδ ∈ B and this maximum satisfies the inequality

(2) lim
δ→0

max
B̄

(ϕδ − qε) = lim
δ→0

(ϕδ(xδ)− qε(xδ)) ≥ εr2.

We claim that xδ → x0. Indeed

ϕδ(xδ)− qε(xδ) = ϕδ(xδ)− q(xδ)− 2ε(|xδ − x0|
2 − r2)− εr2

= o(1) − 2ε|xδ − x0|
2 + εr2.

If x′0 is a limit point of the family (xδ) in B̄, then maxB̄(ϕδ − qε) converges
to −2ε|x′0 − x0|

2 + εr2. By the inequality (2), this limit is ≥ εr2. Therefore
−2ε|x′0 − x0|

2 ≥ 0, hence x′0 = x0 as claimed.
From the above properties we conclude that ddcϕδ(xδ) ≤ ddcqε(xδ), hence

by inequality (1) for δ > 0 small enough we get

(ddcqε(xδ))
n ≥ eϕδ(xδ)fδβn = eϕδ(xδ)−qε(xδ)eq

ε(xδ)fδ(xδ)βn

Now observe that ϕδ − qε = (ϕδ − q) + (q − qε) and by Dini’s lemma
lim supδ→0 maxB̄(ϕδ − q) = maxB̄(ϕ− q) = 0. Therefore

limδ→0(ϕδ(xδ)−q
ε(xδ)) ≥ limδ→0 min

B̄
(q−qε) = min

B̄
(−2ε|x−x0|

2+εr2) = −εr2.

Since qε converges in C2−norm to the function q we infer

(ddcqε(x0))
n ≥ eq(x0)−2εr2f(x0)βn.

In the same way, as ε → 0 we obtain the required inequality (ddcq(x0))
n ≥

eϕ(x0)f(x0)βn, since q(x0) = ϕ(x0). �
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Lemma 1.12. Let u be a bounded plurisubharmonic function in a domain
Ω ⊂ Cn and v = fβn a continuous volume form with continuous density
f ≥ 0. Assume that ϕ satisfies

(⋆) (ddcϕ)nBT ≥ eϕfβn,

in the pluripotentiel sense in Ω. Then for δ > 0 small enough, the usual
regularization by convolution ϕδ := ϕ ⋆ χδ satisfies

(ddcϕδ)
n
BT ≥ eϕδfδβn, with fδ(x) := inf{|f(y)|; |y − x| ≤ δ,

pointwise in Ωδ.

Proof. This follows at least formally from the concavity of the function
A 7−→ (detA)1/n on the convex cone of non negative hermitian matrices.
However here A will be a non negative hermitian matrix with Radon mea-
sure coefficients. In this context, Bedford and Taylor [BT1] defined an op-
erator Φ on all plurisuharmonic functions on Ω ⊂ Cn extending the nth root
of the determinant of the Levi form for smooth psh functions u. Namely
let u ∈ PSH(Ω) and let ddcu =

∑

i,j(ujk̄ + σjk̄)dzi ∧ dz̄j be the Lebesgue

decomposition of the positive current ddcu on Ω, where (ujk̄) is a hermitian

positive matrix whose coefficients are L1-loc functions on Ω and σjk̄ are sin-
gular measures on Ω. Using a general construction of Goffman and Serrin,
they show that the following definition makes sense

Φ(u) :=
(

det(ujk̄)
)1/n

,

as an absolutely continuous measure with L1
loc density with respect to the

Lebesgue measure on Ω.
It is easy to see that Φ is concave and positively homogenous. This implies

Φ(u ⋆ χδ) ≥ Φ(u) ⋆ χδ.

in Ωδ. We infer from (⋆) that

Φ(u ⋆ χδ) ≥ gδβn,

where g := f1/n exp(ϕ/n) and gδ := g ⋆ χδ on Ωδ. The convexity of the
exponential function now yields

gδ(x) ≥ inf
|y−x|≤δ

f1/n(y)

∫

exp(u(x− y)/n)χδ(y)dy

≥ f
1/n
δ (x) exp(uδ(x)/n),

which implies that (ddcu ⋆ χδ)
n ≥ fδ exp(uδ), as claimed. �

2. The viscosity comparison principle for (ω + ddcϕ)n = eεϕv

We now set the basic frame for the viscosity approach to the equation

(DMAεv) (ω + ddcϕ)n = eεϕv,
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where ω is a closed smooth real (1, 1)-form on a n-dimensional connected
complex manifoldX, v is a volume form with nonnegative continuous density
and ε ∈ R+. Here the emphasis is on global properties.

The global comparison principle lies at the heart of the viscosity approach.
Once it is established, Perron’s method can be applied to produce viscosity
solutions. Our main goal in this section is to establish the global comparison
principle for (DMAεv). We generally assume X is compact (and ε > 0): the
structure of (DMAεv) allows us to avoid any restrictive curvature assumption
on X (unlike e.g. in [AFS]).

2.1. Definitions for the compact case. To fit in with the viscosity point
of view, we rewrite the Monge-Ampère equation as

(DMAεv) eεϕv − (ω + ddcϕ)n = 0

Let x ∈ X. If κ ∈ Λ1,1TxX we define κn+ to be κn if κ ≥ 0 and 0 otherwise.
For a technical reason, we will also consider a slight variant of (DMAεv),

(DMAεv)+ eεϕv − (ω + ddcϕ)n+ = 0

We let PSH(X,ω) denote the set of all ω-plurisubharmonic (ω-psh for
short) functions on X: these are integrable upper semi-continuous functions
ϕ : X → R ∪ {−∞} such that ddcϕ ≥ −ω in the sense of currents.

Lemma 2.1. Let Ω ⊂ X be an open subset and z : Ω → Cn be a holomorphic
coordinate chart. Let h be a smooth local potential for ω defined on Ω. Then
(DMAεv) reduces in these z-coordinates to the scalar equation

(DMAεv|z) eεuW − det(uzz̄) = 0

where u = (ϕ+h)|Ω◦z
−1, z∗v = eεh|Ω◦z

−1

Wdλ and λ is the Lebesgue measure
on z(Ω).

On the other hand, (DMAεv)+ reduces to the scalar equation:

(DMAεv|z)+ eεuW − det(uzz̄)+ = 0

The proof is straightforward. Note in particular that conditions (1.2) p.
27 (ie.: degenerate ellipticity) (2.11) p. 32 (properness), (2.18) p. 34 in [IL]
are satisfied by (DMAεv|z)+. If v > 0 and ε > 0, (2.17) p.33 is also satisfied,

so that we can apply the tools exposed in [IL, CIL].

2.1.1. Subsolutions. If ϕ
(2)
x is the 2-jet at x ∈ X of a C2 real valued function

ϕ we set

F+(ϕ
(2)
x ) = F ε+,v(ϕx) = eεϕ(x)vx − (ωx + ddcϕx)

n
+.

Recall the following definition from [IL].
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Definition 2.2. A subsolution of (DMAεv)+ is an upper semi-continuous
function ϕ : X → R ∪ {−∞} such that ϕ 6≡ −∞ and the following property
is satisfied: if x0 ∈ X and q ∈ C2, defined in a neighborhood of x0, is such
that ϕ(x0) = q(x0) and

ϕ− q has a local maximum at x0,

then F+(q
(2)
x0 ) ≤ 0.

Actually, this concept of a subsolution seems to be a bit too weak. It is
not the same concept for ǫ = 0 as in section 1 and does not behave well if
v = 0 since any usc function is then a viscosity subsolution of (ddcϕ)n+ = 0.
It behaves well however if v > 0. We introduce it nevertheless in order to
be able to use the reference [IL].

We now introduce what we believe to be the right definition, which leads

to a slightly stronger statement. If ϕ
(2)
x is the 2-jet at x ∈ X of a C2 real

valued function ϕ we set

F (ϕ(2)
x ) = F εv (ϕx) =

{

eεϕ(x)vx − (ωx + ddcϕx)
n if ω + ddcϕx ≥ 0

+∞ otherwise.

Recall the following definition from [CIL]:

Definition 2.3. A subsolution of (DMAεv) is an upper semi-continuous
function ϕ : X → R ∪ {−∞} such that ϕ 6≡ −∞ and the following property
is satisfied: if x0 ∈ X and q ∈ C2, defined in a neighborhood of x0, is such
that ϕ(x0) = q(x0) and

ϕ− q has a local maximum at x0,

then F (q
(2)
x0 ) ≤ 0.

Remark 2.4. The function F εv is lower semicontinuous and satisfies con-
ditions (0.1) and (0.2) in [CIL].

Note that it is easy to compare subsolutions of (DMAεv) and (DMAεv)+:

Lemma 2.5. Every subsolution ϕ of (DMAεv) is a subsolution of (DMAεv)+,
it is ω-plurisubharmonic.

A locally bounded usc function is ω-psh and satisfies (ω+ddcϕ)nBT ≥ eǫϕv
iff it is a (viscosity) subsolution of (DMAεv) .

If v > 0 subsolutions of (DMAεv)+ are subsolutions of (DMAεv).

Proof. Immediate consequence of the definitions, Theorem 1.9 and Propo-
sition 1.11. One just has to choose a local potential ρ such that ddcρ = ω
and set ϕ′ = ϕ+ ρ, v′ = e−ερv to apply the local results of section 1.

�

Actually, the discussion after Theorem 1.9 fits well in the theory devel-
opped in [BEGZ] and we get the:
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Corollary 2.6. Let X be a compact Kähler manifold and ω a smooth
closed real (1, 1) form whose cohomology class [ω] is big. Let ϕ be any
ω-plurisubharmonic function. Then ϕ satisfies (ω + ddcϕ)n ≥ eεϕv in the
vicosity sense iff 〈(ω + ddcϕ)n〉 ≥ eεϕv, where 〈(ω + ddcϕ)n〉 is the non-
pluripolar (pluripotential) Monge-Ampère measure of ϕ.

2.1.2. (Super)solutions.

Definition 2.7. A supersolution of (DMAεv) is a supersolution of (DMAεv)+,
that is, a lower semicontinuous function ϕ : X → R ∪ {+∞} such that
ϕ 6≡ +∞ and the following property is satisfied: if x0 ∈ X and q ∈
C2, defined in a neighborhood of x0, is such that ϕ(x0) = q(x0) and ϕ −

q has a local minimum at x0, then F+(q
(2)
x0 ) ≥ 0.

Definition 2.8. A viscosity solution of (DMAεv) is a function that is both a
sub-and a supersolution. In particular, viscosity solutions are automatically
continuous.

A pluripotential solution of (DMAεv) is an usc function ϕ ∈ L∞∩PSH(X,ω)
such that (ω + ddcϕ)nBT = eεϕv.

Classical sub/supersolutions are C2 viscosity sub/supersolutions.

2.2. The local comparison principle.

Definition 2.9.

1) The local (viscosity) comparison principle for (DMAεv) is said to hold
if the following holds true: let Ω ⊂ X be an open subset such that Ω̄ is
biholomorphic to a bounded smooth strongly pseudoconvex domain in Cn; let
u (resp. u) be a bounded subsolution (resp.supersolution) of (DMAεv) in Ω
satisfying

lim sup
z→∂Ω

[u(z)− u(z)] ≤ 0

Then u ≤ u.

2) The global (viscosity) comparison principle for (DMAεv) is said to hold
if X is compact and the following holds true: let u (resp. u) be a bounded
subsolution (resp. supersolution) of (DMAεv) in X. Then u ≤ u.

We set the same definition with (DMAεv)+ in place of (DMAεv). Observe
that (DMAεv)+ may have extra subsolutions, thus the comparison principle
for (DMAεv)+ implies the comparison principle for (DMAεv).

The local viscosity comparison principle does not hold for (DMA0
0)+.

Indeed every usc function is a subsolution, the condition to be tested is
actually empty. It is not clear whether it holds for (DMA0

0) since it is
actually a statement which differs substantially from the (pluripotential)
comparison principle for the complex Monge-Ampère equation of [BT2].

Proposition 2.10. The local viscosity comparison principle for (DMAεv)
holds if ε > 0 and v > 0.
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Proof. The proposition actually follows from [AFS], corollary 4.8. We in-
clude for the reader’s convenience a proof which is an adaptation of argu-
ments in [CIL].

We may assume without loss of generality that ε = 1. Let u be a bounded
subsolution and u be a bounded supersolution of (DMAεv) in some smoothly
bounded strongly pseudoconvex open set Ω, such that u ≤ u on ∂Ω. Re-
placing first u, u by u− δ, u+ δ, we can assume that the inequality is strict
and holds in a small neighborhood of ∂Ω.

As in the proof of Proposition 1.11, we regularize u and u using their
sup/inf convolutions. Since u, u are bounded, multiplying by a small con-
stant, we can assume that for α > 0 small enough and x ∈ Ωα , we have

uα(x) := sup
y∈Ω

{

u(y)−
1

2α2
|y − x|2

}

= sup
|y−x|≤α

{

u(y)−
1

2α2
|y − x|2

}

,

and

uα(x) := inf
y∈Ωα

{

u(y) +
1

2α2
|y − x|2

}

= inf
|y−x|≤α

{

u(y) +
1

2α2
|y − x|2

}

.

Then for α > 0 small enough uα(x) ≤ uα(x) near the boundary of Ωα.
Observe that, if we set Mα := supΩα

[uα − uα], then

lim inf
α→0+

Mα ≥ sup
Ω

[u− u].

Arguing by contradiction, assume that supΩ[u − u] > 0. Then for α > 0
small enough, the supremumMα is > 0 and then it is attained at some point
xα ∈ Ωα.

The function uα is semi-convex and uα is semi-concave. In particular they
are twice differentiable almost everywhere on Ωα by a theorem of Alexandrov
[Ale] (see also [CIL]) in the following sense:

Definition 2.11. A real valued function u defined an open set Ω ⊂ Cn is
twice differentiable at almost every point z0 ∈ Ω if and only if for every
point z0 ∈ Ω outside a Borel set of Lebesgue measure 0 in Ω, there exists
a quadratic form Qz0u on R2n, whose polar symetric bilinear form will be
denoted by D2u(z0), such that for any ξ ∈ R2n with |ξ| << 1, we have

(3) u(z0 + ξ) = u(z0) +Du(z0) · ξ + (1/2)D2u(z0) · (ξ, ξ) + o(|ξ|2).

We first deduce a contradiction under the unrealistic assumption that
they are twice differentiable at the point xα. Then by the classical maximum
principle we have

D2uα(xα) ≤ D2uα(xα),

in the sense of quadratic forms on R2n. Applying this inequality for vectors
of the form (Z,Z) and (iZ, iZ) and adding we get the same inequality for
Levi forms on Cn, i.e.:

0 ≤ ddcuα(xα) ≤ ddcuα(xα),
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where the first inequality follows from the fact that uα is plurisubharmonic
on Ωα since u is. From this inequality between non negative hermitian forms
on Cn, it follows that the same inequality holds between their determinants
i.e.:

(ddcuα)n(xα) ≤ (ddcuα)
n(xα).

We know that
(ddcuα)

n(xα) ≤ euα(xα)fα(xα)βn,

where fα increases pointwise towards f , with v = fβn, and

(ddcuα)n(xα) ≥ eu
α(xα)fα(xα)βn,

where fα decreases towards f pointwise. Therefore we have for α small
enough,

(4) eu
α(xα)fα(xα) ≤ euα(xα)fα(xα).

From this inequality we deduce immediately that

sup
Ω

[u− u] ≤ limα→0Mα ≤ 0 = lim
α→0

log
fα(xα)

fα(xα)
,

which contradicts our assumption that supΩ[u− u] > 0.

When uα, uα are not twice differentiable at point xα for a fixed α > 0
small enough, we prove that the inequality (4) is still valid by approximating
xα by a sequence of points where the functions are twice differentiable and
not far from attaining their maximum at that points. For each k ∈ N∗, the
semiconvex function uα − uα − (1/2k)|x − xα|

2 attains a strict maximum
at xα. By Jensen’s lemma ([Jen], see also [CIL] Lemma A.3 p. 60), there
exists a sequence (pk)k≥1 of vectors converging to 0 in Rn and a sequence
of points (yk) converging to xα in Ωα such that the functions uα and uα are
twice differentiable at yk and, if we set qk(x) = (1/2k)|x− xα|

2+ < pk, x >,
the function uα − uα − qk attains its maximum on Ωα at the point yk.

Applying the classical maximum principle for fixed α at each point yk we
get

D2uα(yk) ≤ D2uα(yk) + (1/k)In,

in the sense of quadratic forms on R2n. As before we obtain the following
inequalities between Levi forms

(5) 0 ≤ ddcuα(yk) ≤ ddcuα(yk) + (1/k)ddc|x|2,

in the sense of positive hermitian forms on Cn, where the first inequality
follows from the fact that uα is plurisubharmonic on Ωα. The inequality (5)
between positive hermitian forms implies the same inequality between their
determinants, so that

(6) (ddcuα(yk))
n ≤ (ddcuα(yk) + (1/k)ddc|x|2)n

Recall that uα − (1/2α2)|x|2 is concave on Ωα, hence:

D2uα(yk) ≤ (1/2α2)In,
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in the sense of quadratic forms on R2n. Therefore:

(7) ddcuα(yk) ≤ (1/2α2)ddc|x|2.

From (5) and (7), it follows that, α being fixed :

(8) (ddcuα(yk) + (1/k)ddc|x|2)n = (ddcuα(yk))
n +O(1/k).

We know by definition of subsolutions and supersolutions that

(9) (ddcuα(yk))
n ≥ eu

α(yk)fα(yk)βn, (ddcuα(yk))
n ≤ euα(yk)fα(yk)βn.

Therefore from the inequalities (6), (8) and (9), it follows that for any k ≥ 1
we have

eu
α(yk)fα(yk) ≤ euα(yk)fα(yk) +O(1/k),

which implies the inequality (4) as k → +∞. The same argument as above
then gives a contradiction. �

2.3. The global viscosity comparison principle. The global compar-
ison principle can be deduced from [AFS] when X carries a Kähler met-
ric with positive sectional curvature. This global curvature assumption is
very strong: as explained in the introduction [Mok] reduces us to a situ-
ation where one can regularize ω-psh functions with no loss of positivity
[Dem2], so that the viscosity approach is not needed to achieve continuity
(see [EGZ1]). On the other hand [AFS] considers very general degener-
ate elliptic equations whereas we are considering a rather restricted class of
complex Monge-Ampère equations.

In the general case, neither [AFS] nor [HL] allows to establish a global
comparison principle even in the simplest case that we now consider:

Proposition 2.12. The global comparison principle holds when the coho-
mology class of ω is Kähler and v is continuous and positive.

Proof. We can assume without loss of generality that ε = 1.
Assume first v > 0 and smooth. By [Aub, Yau], there is ϕY ∈ C2(M) a

classical solution of (DMA1
v). If u is a subsolution then u ≤ ϕY , as follows

from Lemma 2.13 below. Similarly, if u is a supersolution u ≥ ϕ. If v > 0 is
merely continuous, fix δ > 0. Then, if u is a subsolution of (DMA1

v), u− δ
is a subsolution of (DMA1

eδv
). Similarly, if u is a supersolution of (DMA1

v),

u + δ is a supersolution of (DMA1
e−δv

). Choose v∗ a smooth volume form

such that e−δv < v∗ < eδv. Then u − δ is a subsolution of (DMA1
v∗) and

u+ δ a supersolution. Hence, u− δ ≤ u+ δ. Letting δ → 0, we conclude the
proof. �

Lemma 2.13. Assume v > 0. Let u be a bounded subsolution of (DMAεv)
on X. If u is a C2 supersolution on X, then u ≤ u.

Note in particular that if (DMAεv) has a classical solution then it domi-
nates (resp. minorates) every subsolution (resp. supersolution), hence the
global viscosity principle holds.
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Proof. If u is classical, the fact that u ≤ u is a trivial consequence of the
definition of subsolution at a maximum of u − u. Indeed let x0 ∈ X such
that u(x0) − u(x0) = maxX(u − u) = m. Use q = u+m as a test function
in the definition of u being a viscosity subsolution to deduce:

(ω + ddcu)nx0 ≥ eu(x0)+mv.

On the other hand, u being a classical supersolution, we have

(ω + ddcu)nx0 ≤ eu(x0)v.

Hence m ≤ 0. �

The above remarks have only academic interest since we use existence of a
classical solution to deduce a comparison principle whose main consequence
is existence of a viscosity solution (cf. infra). We need to establish a honest
global comparison principle that will allow us to produce solutions without
invoking [Aub, Yau]. We now come to this result:

Theorem 2.14. The global viscosity comparison principle for (DMAεv)
holds, provided ω is a closed real (1, 1)-form, v > 0, ε > 0 and X is compact
3.

Since v > 0, the subsolutions of (DMAεv)+ are those of (DMAεv) hence
this could be stated as the global viscosity comparison principle for (DMAεv)+.

Proof. As above, we assume ε = 1. Let u∗ be a bounded supersolution
and u∗ be a bounded subsolution. We choose C > 0 such that both are
≤ C/1000 in L∞-norm. Since u∗−u∗ is uppersemicontinuous on the compact
manifold M , it follows that its maximum is achieved at some point x̂1 ∈M .
Choose complex coordinates (z1, . . . , zn) near x̂1 defining a biholomorphism
identifying an open neighborhood of x̂1 to the complex ball B(0, 4) of radius
4 sending x̂1 to zero.

Using a partition of unity, construct a riemannian metric on M which

coincides with the flat Kähler metric
∑

k

√
−1
2 dzk ∧ dz̄k on the ball of center

0 and radius 3. For (x, y) ∈ M × M define d(x, y) to be the riemannian
distance function. The continuous function d2 is of class C2 near the diagonal
and > 0 outside the diagonal ∆ ⊂M2.

Next, construct a smooth non negative function ϕ1 on M ×M by the
following formula:

ϕ1(x, y) = χ(x, y).

n
∑

i=1

|zi(x)− zi(y)|2n,

where χ smooth non negative cut off function with 1 ≥ χ ≥ 0, χ ≡ 1 on
B(0, 2)2 χ = 0 near ∂B(0, 3)2.

Finally, consider a second smooth function on M ×M with ϕ2|B(0,1)2 <
−1, ϕ2|M2−B(0,2)2 > 3C.

3We do NOT assume that X is Kähler. However, this statement seems to be useless
outside the Fujiki class.
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Choose 1 ≫ η > 0 such that −η is a regular value of both ϕ2 and ϕ2|∆.
We perform convolution of (ξ, ξ′) 7→ max(ξ, ξ′) by a smooth semipositive

function ρ such that BR2(0, η) = {ρ > 0} and get a smooth function on R2

maxη such that:

• maxη(ξ, ξ
′) = max(ξ, ξ′) if |ξ − ξ′| ≥ η,

• maxη(ξ, ξ
′) > max(ξ, ξ′) if |ξ − ξ′| < η.

We define ϕ3 ∈ C∞(M2,R) to be ϕ3 = maxη(ϕ1, ϕ2). Observe that:

• ϕ3 ≥ 0,
• ϕ−1

3 (0) = ∆ ∩ {ϕ2 ≤ −η},
• ϕ3|M2−B(0,2)2 > 3C.

We define hω ∈ C2(B(0, 4),R) to be a local potential smooth up to the
boundary for ω and extend it smoothly to M . We may without losing
generality assume that ‖h̄ω‖∞ < C/10. In particular ddchω = ω and w∗ =
u∗ + hω is a viscosity subsolution of

(ddcϕ)n = eϕW in B(0, 4)

with W positive and continuous. On the other hand w∗ = u∗ + hω is a
viscosity supersolution of the same equation.

Now fix α > 0. Consider (xα, yα) ∈M2 such that:

Mα = sup
(x,y)∈B(0,4)

2

w∗(x)− w∗(y)− ϕ3(x, y)−
1

2
αd2(x, y)

= w∗(xα)− w∗(yα)− ϕ3(xα, yα)−
1

2
αd2(xα, yα).

The sup is achieved since we are maximizing an usc function. We also
have, taking into account that φ3(x̂1, x̂1) = 0:

2C + C/5 ≥Mα ≥ w∗(x̂1)− w∗(x̂1) ≥ 0.

By construction, we see that (xα, yα) ∈ B(0, 2)2.

Using [CIL, Proposition 3.7], we deduce the:

Lemma 2.15. We have lim
α→∞

αd2(xα, yα) = 0. Every limit point (x̂, ŷ) of

(xα, yα) satisfies x̂ = ŷ, x̂ ∈ ∆ ∩ {ϕ2 ≤ −η} and

w∗(x̂)− w∗(x̂) = u∗(x̂)− u∗(x̂)

= max
x∈B(0,4)

w∗(x)− w∗(x)− ϕ3(x, x)

= max
x∈M2

u∗(x)− u∗(x)− ϕ3(x, x)

= u∗(x̂1)− u∗(x̂1)

= w∗(x̂1)− w∗(x̂1)

lim inf
α→+∞

w∗(xα)− w∗(yα) ≥ w∗(x̂1)− w∗(x̂1)
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Next, we use [CIL, Theorem 3.2] with u1 = w∗, u2 = −w∗, ϕ = 1
2αd

2 +
ϕ3. For α ≫ 1, everything is localized to B(0, 2) hence d reduces to the
euclidean distance function. Using the usual formula for the first and second
derivatives of its square, we get the following:

Lemma 2.16. ∀ε > 0, we can find (p∗,X∗), (p∗,X∗) ∈ Cn×Sym2
R(C

n) s.t.

(1) (p∗,X∗) ∈ J2+w∗(xα),
(2) (−p∗,−X∗) ∈ J2−w∗(yα),
(3) The block diagonal matrix with entries (X∗,−X∗) satisfies:

−(ε−1 + ‖A‖)I ≤

(

X∗ 0
0 −X∗

)

≤ A+ εA2,

where A = D2ϕ(xα, yα), i.e.

A = α

(

I −I
−I I

)

+D2ϕ3(xα, yα)

and ‖A‖ is the spectral radius of A (maximum of the absolute values
for the eigenvalues of this symmetric matrix).

By construction, the Taylor series of ϕ3 at any point in ∆ ∩ {ϕ2 < −η}
vanishes up to order 2n. By transversality, ∆ ∩ {ϕ2 < −η} is dense in
∆∩{ϕ2 ≤ −η}, and this Taylor series vanishes up to order 2n on ∆∩{ϕ2 ≤
−η}. In particular,

D2ϕ3(xα, yα) = O(d(xα, yα)
2n) = o(α−n).

This implies ‖A‖ ≃ α. We chose α−1 = ε and deduce

−(2α)I ≤

(

X∗ 0
0 −X∗

)

≤ 3α

(

I −I
−I I

)

+ o(α−n)

Looking at the upper and lower diagonal terms we deduce that the eigen-
values of X∗,X∗ are O(α). Evaluating the inequality on vectors of the form
(Z,Z) we deduce from the ≤ that the eigenvalues of X∗ −X∗ are o(α−n).

Fix X ∈ Sym2
R(C

n) and denote by X1,1 its (1, 1)-part. It is a hermitian

matrix. Obviously the eigenvalues of X1,1
∗ ,X∗1,1 are O(α) and those of

X1,1
∗ − X∗1,1 are o(α−n). Since (p∗,X∗) ∈ J2+w∗(xα) we deduce from the

definition of viscosity solutions that X1,1
∗ is positive definite and that the

product of its n eigenvalues is ≥ c > 0 uniformly in α. In particular its
smallest eigenvalue is ≥ cα−n+1. The relation X1,1

∗ + o(α−n) ≤ X∗1,1 forces

X∗1,1 > 0 and det(X∗1,1)/det(X1,1
∗ ) ≥ 1 + o(α−1).

Now, since (p∗,X∗) ∈ J2+w∗(xα) and (−p∗,−X∗) ∈ J2−w∗(yα) we get by
definition of viscosity solutions:

det(X∗1,1)

det(X1,1
∗ )

≤
ew

∗(yα)W (yα)

ew∗(xα)W (xα)

Upon passing to the superior limit as α→ +∞, we get 1 ≤ elim supw∗(yα)−w∗(xα).
Taking lemma 2.15 into account w∗(x̂) ≥ w∗(x̂) thus u∗(x̂) ≥ u∗(x̂). �
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Remark 2.17. The miracle with the complex Monge Ampère equation we
are studying is that the equation does not depend on the gradient in complex
coordinates. In fact, it takes the form F (X) − f(x) = 0. The localisation
technique would fail without this structural feature.

2.4. Perron’s method. Once the global comparison principle holds, one
easily constructs continuous (viscosity=pluripotential) solutions by Perron’s
method as we now explain.

Theorem 2.18. Assume the global comparison principle holds for (DMA1
v)

and that (DMA1
v) has a bounded subsolution u and a bounded supersolution

u. Then,

ϕ = sup{w |u ≤ w ≤ u and w is a viscosity subsolution of (DMA1
v)}

is the unique viscosity solution of (DMA1
v).

In particular, it is a continuous ω-plurisubharmonic function. Moreover
ϕ is also a solution of (DMA1

v) in the pluripotential sense.

Proof. See [CIL] p. 22-24, with a grain of salt. Indeed, lemma 4.2 there
implies that the upper enveloppe ϕ of the subsolutions of (DMA1

v) is a
subsolution of (DMA1

v) since F is lsc. Hence ϕ is a subsolution of (DMA1
v)+.

The trick is now to consider its lsc enveloppe ϕ∗. We are going to show
that it is a supersolution of (DMA1

v): otherwise we find x0 ∈ X and q a C2

function such that ϕ∗−q has zero as a local minimum at x0 and F+(q
(2)
x ) < 0.

This forces vx0 > 0.
Then proceeding as in loc.cit. p.24 we can construct a subsolution U such

that U(x1) > ϕ(x1) for some x1 ∈ X.
This contradiction leads to the conclusion that ϕ∗ is a supersolution and,

by the viscosity comparison principle, that ϕ∗ ≥ ϕ. Since ϕ = ϕ∗ ≥ ϕ∗ it
follows that ϕ = ϕ∗ = ϕ∗ is a continuous viscosity solution.

For the reader’s convenience, we briefly summarize the construction of
U . Let (z1, .., zn) be a coordinate system centered at x0 giving a local
isomorphism with the complex unit ball and assume v > 0 on this complex
ball neighborhood. Then, for γ, δ, r > 0 small enough qγ,δ = q + δ − γ‖z‖2

satisfies F+(q
(2)
γ,δ) < 0 for ‖z(x)‖ ≤ r.

Chose δ = (γr2)/8, r > 0 small enough. Since ϕ∗(x) − q(x) ≥ 0 for
‖z(x)‖ ≤ r we have ϕ(x) ≥ ϕ∗(x) > qγ,δ(x) if r/2 ≤ ‖z(x)‖ ≤ r. It follows
that U defined by

U(x) = max(ϕ(x), qδ,γ(x))

if ‖z(x)‖ ≤ r and U(x) = ϕ(x) otherwise is a subsolution of (DMA1
v)+ and

in fact of (DMA1
v) since we may assume that v > 0 on the relevant part of

X. Chose a sequence (xn) converging to x0 so that ϕ(xn) → ϕ∗(x0). Then
qγ,δ(xn) → ϕ∗(x0) + δ. Hence, for n≫ 0, U(xn) = qγ,δ(xn) > ϕ(xn).

It remains to be seen that ϕ is also a solution of (DMA1
v) in the pluripo-

tential sense. It follows from the previous argument in pluripotential theory.
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In fact, since ϕ is a viscosity subsolution, we know that (ω + ddcϕ)nBT ≥
eǫϕv by Proposition 1.11. Now argue by contradiction. Namely choose
B ⊂ X a ball on which (ω + ddcϕ)nBT 6= eǫϕv. Solve a Dirichlet problem to

get a continuous psh function ψ on B̄ with (ω+ ddcψ)nBT 6= eǫψv and ψ = ϕ
on ∂B. The Bedford Taylor comparison principle gives ψ ≥ ϕ and ψ 6= ϕ
by hypothesis. Also ψ is a viscosity subsolution. For t > 0 small enough
ϕ0 = max(ϕ,ψ− t) is another viscosity subsolution with ϕ0 > f on an open
subset. This is contradiction to the definition of ϕ as an envelope. �

In situations where the global comparison principle is not available, one
can always use the following substitute (this natural idea is used in the
recent work [HL]).

Proposition 2.19. Assume that (DMA1
v) has a bounded subsolution u and

a classical supersolution u. Then,

ϕ = sup{w |u ≤ w ≤ u and w is a subsolution of (DMA1
v)}

is the unique maximal viscosity subsolution of (DMA1
v).

In particular, it is a bounded ω-plurisubharmonic function.

Remark 2.20. Assume X is a complex projective manifold such that KX

is ample. Let ω > 0 be a Kähler representative of [KX ] and v a volume
form with Ric(v) = −ω. Then the Monge-Ampère equation (ω + ddcϕ)n =
eϕv satisfies all the hypotheses of Theorem 2.18 and has a unique viscosity
solution ϕ. On the other hand, the Aubin-Yau theorem [Aub, Yau] implies
that it has a unique smooth solution ϕKE (and ω+ ddcϕKE is the canonical
Kähler-Einstein metric on X). Uniqueness of the viscosity solution implies
ϕ = ϕKE hence the potential of the canonical KE metric on X is the envelope
of the (viscosity=pluripotential ) subsolutions to (ω + ddcϕ)n = eϕv.

In the global case when ε = 0, i.e. for (ω + ddcϕ)n = v on a compact
Kähler manifold, classical strict sub/supersolutions do not exist and using
directly the Perron method seems doomed to failure.

3. Regularity of potentials of singular K-E metrics

In this section we apply the viscosity approach to show that the canoni-
cal singular Kähler-Einstein metrics constructed in [EGZ1] have continuous
potentials.

3.1. Manifolds of general type. Assume X is compact Kähler and v is
a continuous volume form with semi-positive density. Fix β a Kähler form
on X. We consider the following condition on (the cohomology class of) ω:

(†) ∃η > 0 ∃ψ ∈ L∞ ∩ PSH(X,ω), (ω + ddcψ)n ≥ ηβn.

When X is a compact Kähler manifold, ω is a semipositive (1, 1)-form
with

∫

X ω
n > 0 then (X,ω) satisfies (†), as follows from [EGZ1, BEGZ].

However the latter articles rely on [Aub, Yau] and we will show in the proof
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of Theorem 3.3 how to check (†) directly, thus providing a new approach to
the “continuous Aubin-Yau theorem”.

Note that the inequality can be interpreted in the pluripotential or vis-
cosity sense since these agree by Theorem 1.9.

Lemma 3.1. Assume (†) is satisfied and v has positive density.
If c >> 0 is large enough, then ψ− c is a subsolution of (DMA1

v) and the
constant function ϕ = c is a supersolution of (DMA1

v).

Proof. Existence of ψ is needed for the subsolution whereas the supersolution
exists under the condition that ∃C > 0 such that ωn ≤ C.v, which follows
here from our assumption that v has positive density. �

Corollary 3.2. When (†) is satisfied and v is positive, (DMA1
v) has a

unique viscosity solution ϕ, which is also the unique solution in the pluripo-
tential sense.

Proof. Indeed the global comparison principle holds and Theorem 2.18 en-
ables to conclude. �

We are now ready to establish that the (pluripotential) solutions of some
Monge-Ampère equations constructed in [EGZ1] are continuous:

Theorem 3.3. Assume X is a compact Kähler manifold, ω is a semipositive
(1, 1)-form with

∫

X ω
n > 0 and v is a semi-positive continuous probability

measure on X. Then (†) is satisfied and there exists a unique continuous
ω-plurisubharmonic function ϕ which is the viscosity (equivalently pluripo-
tential) solution to the degenerate complex Monge-Ampère equation

(ω + ddcϕ)n = eϕv

Corollary 3.4. The function ϕP ∈ L∞ ∩ PSH(X,ω) such that

(ω + ddcϕP )
n = eϕP v

in the pluripotential sense constructed in [EGZ1] Theorem 4.1 is a viscosity
solution, hence it is continuous.

Proof. Observe that (†) is obviously satisfied when the cohomology class of
ω is Kähler. If moreover v has positive density, the result is an immediate
consequence of Corollary 3.2 together with the unicity statement [EGZ1]
proposition 4.3.

We treat the general case by approximation. We first still assume that
v is positive but the cohomology class {ω} is now merely semi-positive and
big (i.e.

∫

X ω
n > 0). This is a situation considered in [EGZ1] where it is

shown that (†) holds, however we would like to make clear that the proof is
independent of [Yau] so we (re)produce the argument. By the above there
exists, for each 0 < ε ≤ 1, a unique continuous (ω + εβ)-psh function uε
such that

(ω + εβ + ddcuε)
n = euεv.
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We first observe that (uε) is relatively compact in L1(X). By [GZ1], this
is equivalent to checking that supX uε is bounded, as εց 0+. Note that

esupX uε ≥

∫

X ω
n

v(X)
=

∫

X
ωn

hence supX uε is uniformly bounded from below. Set wε := uε − supX uε.
This is a relatively compact family of (ω + β)-psh functions, hence there
exists C > 0 such that for all 0 < ε ≤ 1,

∫

X wε dv ≥ −C [GZ1]. It follows
from the concavity of the logarithm that

log

∫

X
(ω + β)n ≥ sup

X
uε + log

∫

X
(ewε dv) ≥ sup

X
uε − C.

Thus (supX uε) is bounded as claimed.
We now assert that (uε) is decreasing as ε decreases to 0+. Indeed as-

sume that 0 < ε′ ≤ ε and fix δ > 0. Note that uε′ , uε are both (ω + εβ)-
plurisubharmonic. It follows from the (pluripotential) comparison principle
that

∫

(uε′≥uε+δ)
(ω + εβ + ddcuε′)

n ≤

∫

(uε′≥uε+δ)
(ω + εβ + ddcuε)

n.

Since

(ω + εβ + ddcuε′)
n ≥ (ω + ε′β + ddcuε′)

n ≥ eδ(ω + εβ + ddcuε)
n

on the set (uε′ ≥ uε + δ), this shows that the latter set has zero Lebesgue
measure. As δ > 0 was arbitrary, we infer uε′ ≤ uε.

We let u = limε→0 uε denote the decreasing limit of the functions uε.
By construction this is an ω-psh function. It follows from Proposition 1.2,
Theorem 2.1 and Proposition 3.1 in [EGZ1] that u is bounded and (pluripo-
tential) solution of the Monge-Ampère equation

(ω + ddcu)n = eu v.

This shows that (†) is satisfied hence we can use Corollary 3.2 to conclude
that u is actually continuous and that it is a viscosity solution.

It remains to relax the positivity assumption made on v. From now on {ω}
is semi-positive and big and v is a probability measure with semi-positive
continuous density. We can solve

(ω + ddcϕε)
n = eϕε [v + εβn]

where ϕε are continuous ω-psh functions and 0 < ε ≤ 1. Observe that

esupX ϕε ≥

∫

X ω
n

1 +
∫

X β
n

hence supX ϕε is bounded below.
It follows again from the concavity of the logarithm that Mε := supX ϕε

is also bounded from above. Indeed set ψε := ϕε −Mε. This is a relatively
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compact family of non-positive ω-psh functions [GZ1], thus there exists C >
0 such that

∫

X ψε(v + βn) ≥ −C. Now

log

(
∫

eψε
v + εβn

∫

X v + εβn

)

≥

∫

ψε
v + εβn

∫

X v + εβn
≥

∫

ψε(v + βn) ≥ −C

yields

log

∫

X
ωn ≥Mε + log

[

1 + ε

∫

X
βn

]

− C

so that (Mε) is uniformly bounded.
We infer that (ϕε) is relatively compact in L1(X). It follows from Propo-

sition 2.6 and Proposition 3.1 in [EGZ1] that (ϕε) is actually uniformly
bounded, as ε decreases to zero.

Lemma 2.3 in [EGZ1], together with the uniform bound on (ϕε) yields,
for any 0 < δ << 1,

Capω(ϕε − ϕε′ < −2δ) ≤
C

δn

∫

(ϕε−ϕε′<−δ)
(ω + ddcϕε)

n

≤
C

δn+1

∫

X
|ϕε − ϕε′ |(ω + ddcϕε)

n

≤
C ′

δn+1

∫

X
|ϕε − ϕε′ |(v + βn)

Using Proposition 2.6 in [EGZ1] again and optimizing the value of δ yields
the following variant of Proposition 3.3, [EGZ1],

||ϕε − ϕε′ ||L∞ ≤ C (||ϕε − ϕε′ ||L1)
1

n+2 .

Thus, if (ǫn) is a sequence decreasing to zero as n goes to +∞ such that
(ϕεn)n converges in L1, (ϕεn) is actually a Cauchy sequence of continuous
functions, hence it uniformly converges, to the unique continuous pluripo-
tential solution ϕ of (DMA1

v). From this, it follows that (ϕε) has a unique
cluster value in L1 when ǫ decreases to 0 hence converges in L1. The pre-
ceding argument yields uniform convergence.

Theorem 2.18 insures that the ϕ is also a viscosity subsolution. Remark
6.3 p. 35 in [CIL] actually enables one to conclude that ϕ is indeed a viscosity
solution. �

Corollary 3.5. If Xcan is a canonical model of a general type projective
manifold then the canonical singular KE metric on Xcan of [EGZ1] has
continuous potentials.

Proof. This is a straightforward consequence of the above theorem, working
in a log resolution of Xcan, where ω = c1(KX , h) is the pull-back of the
Fubini-Study form from Xcan and v = v(h) has continuous semi-positive
density, since Xcan has canonical singularities. �
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3.2. Continuous Ricci flat metrics. We now turn to the study of the
degenerate equations (DMA0

v)

(ω + ddcϕ)n = v

on a given compact Kähler manifold X. Here v is a continuous volume form
with semipositive density and ω is a smooth semipositive closed real (1, 1)
form on X. We assume that v is normalized so that

v(X) =

∫

X
ωn.

This is an obvious necessary condition in order to solve the equation

(ω + ddcϕ)n = v

on X. Bounded solutions to such equations have been provided in [EGZ1]
when v has Lp-density, p > 1, by adapting the arguments of [Kol]. Our aim
here is to show that these are actually continuous. We treat here the case
of continuous densities, as this is required in the viscosity context, and refer
the reader to section 4.2 for more general cases.

Theorem 3.6. The pluripotential solutions to (DMA0
v) are viscosity solu-

tions, hence they are continuous.

The plan is to combine the viscosity approach for the family of equations
(ω + ddcϕ)n = eεϕv, together with the pluripotential tools developed in
[Kol, Ceg2, GZ1, EGZ1, EGZ2].

Proof. For ε > 0 we let ϕε denote the unique viscosity (or equivalently
pluripotential) ω-psh continuous solution of the equation

(ω + ddcϕε)
n = eεϕεv.

SetMε := supX ϕε and ψε := ϕε−Mε. The latter form a relatively compact
family of ω-psh functions [GZ1], hence there exists C > 0 such that

∫

X
ψεdv =

∫

X
(ϕε −Mε)dv ≥ −C, for all ε > 0.

Observe that Mε ≥ 0 since v(X) =
∫

X ω
n =: V . The concavity of the

logarithm yields

0 = log

(
∫

X
eεϕε

dv

V

)

≥
1

V

∫

εϕεdv

therefore

0 ≥

∫

ϕεdv ≥ −C + VMε

i.e. (Mε) is uniformly bounded. We infer that (ϕε) is relatively compact in
L1 and the Monge-Ampère measures (ω + ddcϕε)

n have uniformly bounded
densities in L∞. Once again Proposition 2.6 and (a variant of) Proposition
3.3 in [EGZ1] show that this family of continuous ω-psh functions is uni-
formly Cauchy hence converges to a continuous pluripotential solution of
(DMA0

v).
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This pluripotential solution is also a viscosity solution by [CIL] Remark
6.3.

It is well-known that the solutions of (DMA0
v) are unique, up to an addi-

tive constant. It is natural to wonder which solution is reached by the the
family ϕε. Observe that

∫

X e
εϕεdv =

∫

X dv =
∫

X ω
n thus

0 =

∫

X

eεϕε − 1

ε
dv =

∫

X
ϕεdv + o(1)

hence the limit ϕ of ϕε as ε decreases to zero is the unique solution of
(DMA0

v) that is normalized by
∫

X ϕdv = 0. �

Note that the way we have produced solutions (by approximation through
the non flat case) is independent of [Aub, Yau].

Corollary 3.7. Let X be a compact Q-Calabi-Yau Kähler space. Then
the Ricci-flat singular metrics constructed in [EGZ1], Theorem 7.5, have
continuous potentials.

4. Concluding remarks

4.1. The continuous Calabi conjecture. The combination of viscosity
methods and pluripotential techniques yields a soft approach to solving de-
generate complex Monge-Ampère equations of the form

(ω + ddcϕ)n = eεϕv

when ε ≥ 0.
Recall that here X is a compact Kähler n-dimensional manifold, v is a

semi-positive volume form with continuous density and ω is smooth closed
real (1, 1)-form whose cohomology class is semi-positive and big (i.e. {ω}n >
0).

Altogether this provides an alternative and independent approach to Yau’s
solution of the Calabi conjecture [Yau]: we have only used upper enve-
lope constructions (both in the viscosity and pluripotential sense), a global
(viscosity) comparison principle and Kolodziej’s pluripotential techniques
[Kol, EGZ1].

It applies to degenerate equations but yields solutions that are merely
continuous (Yau’s work yields smooth solutions, assuming the cohomology
class {ω} is Kähler and the measure v is both positive and smooth).

Note that a third (variational) approach has been studied recently in
[BBGZ]. It applies to even more degenerate situations, providing solutions
with less regularity (that belong to the so called class of finite energy).

4.2. More continuous solutions. Let X be a compact Kähler manifold,
v = fdV0 a non negative measure which is absolutely continuous with respect
to some volume form dV0 on X, and ω a smooth semi-positive closed real
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(1, 1)-form on X with positive volume. We assume v is normalized so that

v(X) =

∫

X
ωn,

where n = dimCX.
When ω is Kähler, Kolodziej has shown in [Kol] that there exists a unique

continuous ω-plurisubharmonic function ϕ such that

(ω + ddcϕ)n = v and

∫

X
ϕdV0 = 0,

as soon as the density f is “good enough” (i.e. belongs to some Orlicz class,
e.g. Lp, p > 1, is good enough).

This result has been extended to the case where ω is merely semi-positive
in [EGZ1], but for the continuity statement which now follows from the
viscosity point of view developed in the present article: it suffices to ap-
proximate the density f by smooth positive densities fε (using normalized
convolutions) and to show, as in the proof of Theorems 3.3, 3.6 that the cor-
responding continuous solutions form a Cauchy family of continuous func-
tions. We leave the details to the reader.

4.3. The case of a big class. Our approach applies equally well to a
slightly more degenerate situation. We still assume here that (X,ωX) is a
compact Kähler manifold of dimension n, but v = fdV0 is merely assumed
to have density f ≥ 0 in L∞ and moreover the smooth real closed (1, 1)-
form ω is no longer assumed to be semi-positive: we simply assume that
its cohomology class α := [ω] ∈ H1,1(X,R) is big, i.e. contains a Kähler
current.

It follows from the work of Demailly [Dem2] that one can find a Kähler
current in α with analytic singularities: there exists an ω-psh function ψ0

which is smooth in a Zariski open set Ωα and has logarithmic singularities of
analytic type along X \Ωα = {ψ0 = −∞}, such that T0 = ω+ddcψ0 ≥ ε0ωX
dominates the Kähler form ε0ωX , ε0 > 0.

We refer the reader to [BEGZ] for more preliminary material on this
situation. Our aim here is to show that one can solve (DMA1

v) in a rather
elementary way by observing that the (unique) solution is the upper envelope
of subsolutions. We let

F := {ϕ ∈ PSH(X,ω) ∩ L∞
loc(Ωα) / (ω + ddcϕ)n ≥ eϕv in Ωα}

denote the set of all (pluripotential) subsolutions to (DMA1
v) (which only

makes sense in Ωα).
Observe that F is not empty: since T n0 dominates a volume form and v

has density in L∞, the function ψ0 − C belongs to F for C large enough.
We assume for simplicity C = 0 (so that ψ0 ∈ F) and set

F0 := {ϕ ∈ F /ϕ ≥ ψ0}.

Proposition 4.1. The class F0 is uniformly bounded on X.
It is compact (for the L1-topology) and convex.
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Proof. We first show that F0 is uniformly bounded from above (by definition
it is bounded from below by ψ0). We can assume without loss of generality
that v is normalized so that v(X) = 1. Fix ψ ∈ F0. It follows from the
convexity of the exponential that

exp

(
∫

ψdv

)

≤

∫

eψdv ≤

∫

(ω + ddcψ)n ≤ V ol(α).

All integrals here are computed on the Zariski open set Ωα. We refer the
reader to [BEGZ] for the definition of the volume of a big class.

We infer

sup
X
ψ ≤

∫

ψdv + Cv ≤ log V ol(α) + Cv,

where Cv is a uniform constant that only depends on the fact that all ω-psh
functions are integrable with respect to v (see [GZ1]). This shows that F0

is uniformly bounded from above by a constant that only depends on v and
V ol(α).

We now check that F0 is compact for the L1-topology. Fix ψj ∈ FN
0 . We

can extract a subsequence that converges in L1 and almost everywhere to
a function ψ ∈ PSH(X,ω). Since ψ ≥ ψ0, it has a well defined Monge-
Ampère measure in Ωα and we need to check that (ω + ddcψ)n ≥ eψv.

Set ψ′
j := (supl≥j ψl)

∗. These are functions in F0 which decrease to ψ. It
follows from a classical inequality due to Demailly that

(ω + ddcψ′
j)
n ≥ einfl≥j ψlv

Letting j → +∞ shows that ψ ∈ F0, as claimed.
The convexity of F0 can be shown along the same lines. We won’t need

it here so we let reader check that this easily follows from the inequalities
obtained in [Din]. �

It follows that

ψ := sup{ϕ/ϕ ∈ F0},

the upper envelope of pluripotential subsolutions to (DMA1
v), is a well de-

fined ω-psh function which is locally bounded in Ωα.

Theorem 4.2. The function ψ is a pluripotential solution to (DMA1
v).

Proof. In the sequel we shall say (for short) that an ω-psh function ϕ is
bounded iff it is locally bounded in the Zariski open set Ωα.

By Choquet’s lemma, we can find a sequence ψj ∈ F0 of bounded ω-psh
(pluripotential) subsolutions such that

ψ =

(

lim
j→+∞

ψj

)∗
.

Observe that the family of bounded pluripotential subsolutions is sta-
ble under taking maximum: assume w1, w2 are two such subsolutions and
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set Wc := max(w1 + c, w2), then the (pluripotential and local) comparison
principle yields

(ω + ddcWc)
n ≥ 1{w1+c>w2}(ω + ddcw1)

n + 1{w1+c<w2}(ω + ddcw2)
n

≥ 1{w1+c 6=w2}e
Wcv

Now for all but countably many c’s, the sets (w1 + c = w2) have zero v-
measure, thus by continuity of the Monge-Ampère operator under decreasing
sequences, we infer

(ω + ddcmax[w1, w2])
n ≥ emax[w1,w2]v.

This shows that we can assume the ψj’s form an increasing sequence of
subsolutions. Finally we use a local balayage procedure to show that ψ is
indeed a pluripotential solution to (DMA1

v). Fix B an arbitrary small “ball”
in X (image of a euclidean ball under a local biholomorphism) and let ψ′

j

denote the solution of the local Dirichlet problem

(ω + ddcψ′
j)
n = eψ

′
jv in B and ψ′

j ≡ ψj on ∂B.

We extend ψ′
j to X by setting ψ′

j ≡ ψj in X \B.
That such a problem indeed has a solution follows from an adaptation

of the corresponding “flat” Dirichlet problem of Bedford and Taylor [BT1,
BT2], as was considered by Cegrell [Ceg1].

Note that the ψ′
j are still subsolutions. It follows from the (pluripoten-

tial) comparison principle that ψ′
j ≥ ψj and ψ

′
j+1 ≥ ψ′

j. Thus the increasing

limit of the ψ′
js equals again ψ. Since the Monge-Ampère operator is contin-

uous under increasing sequences [BT2], this shows that ψ is a pluripotential
solution of (DMA1

v) in B, hence in all of X, as B was arbitrary. �

Remark 4.3. The situation considered above covers in particular the con-
struction of a Kähler-Einstein current on a variety V with ample canonical
bundle KV and canonical singularities, since the canonical volume form be-
comes, after passing to a desingularisation X, a volume form v = fdV0 with
density f ∈ L∞.

The more general case of log-terminal singularities yields density f ∈ Lp,
p > 1. One can treat this case by an easy approximation argument: setting
fj = min(f, j) ∈ L∞, one first solves (ω + ddcϕj)

n = eϕjfjdV0 and observe
(by using the comparison principle) that the ϕ′

js form a decreasing sequence

which converges to the unique solution of (ω + ddcϕ)n = eϕfdV0.
Once again the problem (DMA0

v) can be reached by first solving (DMAεv),
ε > 0, and then letting ε decrease to zero.

4.4. More comparison principles. Let again B ⊂ Cn denote the open
unit ball and let B′ = (1 + η)B with η > 0 be a slightly larger open ball.
Let u, u′ ∈ PSH(B′) be plurisubharmonic functions. By convolution with
an adequate non negative kernel of the form ρǫ(z) = ǫ−2nρ1(

z
ǫ ) we construct

(uǫ)η>ǫ>0 a family of smooth plurisubharmonic functions decreasing to u as
ǫ decreases to 0.
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Lemma 4.4.

∀z ∈ B u(z) + u′(z) = lim
n→∞

sup{u′(x) + u1/j(x)|j ≥ n, |x− z| ≤ 1/n}

Proof. Indeed, we have, if 2/n < η:

u(z) + u′(z) ≤ sup{u′(z) + u1/j(z)|j ≥ n}

≤ sup{u′(x) + u1/j(x)|j ≥ n, |x− z| ≤ 1/n}

≤ sup{u′(x) + u(x)| |x− z| ≤ 2/n}.

Since u+ u′ is upper semicontinuous, we have:

u(z) + u′(z) = (u+ u′)∗(z) = lim
n→∞

sup{u+ u′(x)| |x− z| ≤ 2/n}.

�

Lemma 4.5. Let ϕ a bounded psh function on B and v a continuous non
negative volume form such that e−ϕ(ddcϕ)n ≥ v in the viscosity sense.

Let ψ be a bounded psh function and w a continuous positive volume form,
both defined on B′ such that (ddcψ)n ≥ w.

Then ∃C, c > 0 depending only on ‖ψ‖L∞ , ‖ϕ‖L∞ such that for every
ǫ ∈ [0, 1] Φ = ϕ+ ǫψ satisfies:

e−Φ(ddcΦ)n ≥ (1− ǫ)ne−Cǫv + cǫnw

in the viscosity sense in B.

Proof. We may assume ǫ > 0 and w to be smooth. Let us begin by the case
when ψ is of class C2. Let x0 ∈ B and q ∈ C2 such that q(x0) = Φ(x0) and
Φ− q has a local maximum at x0. Then, ϕ− (q− ǫψ) has a local maximum
at x0.

We deduce:

ddc(q − ǫψ)x0 ≥ 0

e−q(x0)+ǫψ(x0)(ddc(q − ǫψ))x0)
n ≥ vx0 .

Using the inequality (ddcq)nx0 ≥ (ddc(q− ǫψ))x0)
n+ ǫn(ddcψ)n, we conclude.

We now treat the general case. Since ψ is defined on B′ we can construct
by the above classical mollification a sequence of C2 psh functions (ψ1/k)
converging to ψ as k goes to +∞.

We know from the proof of Proposition 1.5 that (ddcψk)
n ≥ ((w1/n)1/k)

n =
wk in both the pluripotential and viscosity sense.

We conclude from the previous case that Φk = ϕ+ ǫψk satisfies

cǫnwk + (1− ǫ)ne−Cǫv ≤ e−Φk(ddcΦk)
n

in the viscosity sense. Since wk > 0, there is no difference between subsolu-
tion of DMA and of DMA+ hence, we have:

cǫnwk + (1− ǫ)ne−Cǫv − e−Φk(ddcΦk)
n
+ ≤ 0

in the viscosity sense.
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By Lemma 6.1 p. 34 and remark 6.3 p. 35 in [CIL], we conclude that

Φ̄ = lim sup
n→∞

sup{Φj(x)|j ≥ n, |x− z| ≤ 1/n}

satisfies the limit inequation

e−Φ̄(ddcΦ̄)n+ ≥ (1− ǫ)ne−Cǫv + cǫnw

in the viscosity sense4. Now Lemma 4.4 implies that Φ̄ = Φ. Since w > 0,
the proof is complete. �

Theorem 4.6. Let X be a compact Kähler manifold and ω ≥ 0 be a semi-
kähler smooth form.

Then, the global viscosity comparison principle holds for (DMA1
v) for any

non negative continuous probability measure v.

Proof. This is a variant of the argument sketched in [IL] sect. V.3 p. 56.
Let u be a supersolution and u be a subsolution. Perturb the supersolution

u setting uδ = u + δ. This uδ is a supersolution to (DMA1
w̃) for every

continuous volume form w̃ such that w̃ ≥ e−δv.
Choose w > 0 a continuous positive probability measure. Assuming

w.l.o.g. that
∫

X ω
n = 1, we can construct ψ a continuous quasiplurisub-

harmonic functions such that, in the vicosity sense

(ω + ddcψ)n = w.

Perturb the subsolution u setting

uǫ = (1− ǫ)u+ ǫψ.

By Lemma 4.5, uǫ satisfies, in the viscosity sense

e−(1+ǫ)u(ω + ddcu)n ≥

(

1− ǫ

1 + ǫ

)n

e−Cǫv + c

(

ǫ

1 + ǫ

)n

w

This in turn implies that uǫ satisfies, in the viscosity sense:

e−u(ω + ddcu)n ≥ e−ǫ‖u‖∞
[(

1− ǫ

1 + ǫ

)n

e−Cǫv + c

(

ǫ

1 + ǫ

)n

w

]

.

Hence uǫ satisifies, in the viscosity sense:

e−u(ω + ddcu)n ≥ w̃

whenever w̃ ≤ e−ǫ‖u‖∞((1−ǫ1+ǫ)
ne−Cǫv + c( ǫ

1+ǫ)
nw).

Choosing 1 ≫ δ ≫ ǫ > 0, we find a continuous volume form w̃ > 0
such that uδ is a supersolution and uǫ is a viscosity subsolution of e−u(ω +
ddcu)n = w̃. Using the viscosity comparison principle for w̃, we conclude
that uδ ≥ uǫ. Letting δ → 0, we infer u ≥ u. �

4Here we use the fact that DMA+ is a continuous equation
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This comparison principle has been inserted here for completeness. It
could have been used instead of the pluripotential-theoretic arguments to
establish existence of a viscosity solution in the case v ≥ 0 of Theorem 3.3.
This could be useful in dealing with similar problems where pluripotential
tools are less efficient.

4.5. Viscosity supersolutions of (ddcϕ)n = v. Assume Ω is an euclidean
ball. Given ϕ a bounded function, its plurisubharmonic projection

P (ϕ)(x) = PΩ(ϕ)(x) := (sup{ψ(x) /ψ psh on Ω and ψ ≤ ϕ})∗ ,

is the greatest psh function that lies below ϕ on Ω. If ϕ is upper semi-
continuous on Ω there is no need of upper regularization and the upper
enveloppe is ≤ ϕ on Ω.

Lemma 4.7.

1) Let ψ be a bounded plurisubharmonic function satisfying (ddcψ)nBT ≤
v on Ω. Then its lower semi-continuous regularization ψ∗ is a viscosity
supersolution of the equation (ddcϕ)n = v on Ω.

2) Let ϕ be a continuous viscosity supersolution of the equation (ddcϕ)n =
v on Ω. Then ψ := P (ϕ) is a continuous plurisubharmonic viscosity super-
solution of the equation (ddcψ)n = v on Ω.

3) Let ϕ be a C2-smooth viscosity supersolution of (ddcϕ)n = v in Ω. Its
plurisubharmonic projection P (ϕ) satisfies (ddcP (ϕ))nBT ≤ v.

Proof. 1. We use the same idea as in the proof of Proposition 1.5. Assume
ψ ∈ PSH ∩ L∞(Ω) satisfies (ddcψ)nBT ≤ v in the pluripotential sense on Ω.
Consider q a C2 function such that ψ∗(x0) = q(x0) and ψ∗ − q achieves a
local minimum at x0. We want to prove that (ddcq(x0))

n
+ ≤ v(x0). Assume

that (ddcq(x0))
n
+ > vx0 . Then ddcq(x0) ≥ 0 and (ddcq(x0))

n > vx0 > 0
which implies that ddcq(x0) > 0. Let qε := q − 2ε(‖x − x0‖

2 − r2) − εr2.
Since v has continuous density, we can choose ε > 0 small enough and a
small ball B(x0, r) containing x0 of radius r > 0 such that ddcqε > 0 in
B(x0, r) and (ddcqε)n > v on the ball B(x0, r). Thus we have qε = q −
εr2 < ψ∗ ≤ ψ near ∂B(x0, r) while (ddcqε)nBT ≥ v ≥ (ddcψ)nBT on B(x0, r).
The comparison principle (Lemma 1.6) yields qε ≤ ψ on B(x0, r) hence
qε(x0) = lim infx→x0 q

ε(x) ≤ lim infx→x0 ψ(x) = ψ∗(x0) i.e. q(x0) + εr2 ≤
ψ∗(x0) = q(x0), which is a contradiction.

2. Set ψ := P (ϕ), fix a point x0 ∈ Ω and consider a super test function
q for ψ at x0 i.e. q is a C2 function on a small ball B(x0, r) ⊂ Ω such that
ψ(x0) = q(x0) and ψ− q attains its minimum at x0. We want to prove that
(ddcq(x0))

n
+ ≤ v(x0). Since ψ ≤ ϕ, there are two cases:

- if ψ(x0) = ϕ(x0) then q is also a super test function for ϕ at x0 and then
(ddcq(x0))

n
+ ≤ v(x0) since ϕ is a supersolution of the same equation,

- if ψ(x0) < ϕ(x0), by continuity of ϕ there exists a ball B(x0, s) 0 < s < r
such that ψ = P (ϕ) < ϕ on the ball B(x0, s) and then (ddcψ)n = 0 on
B(x0, s) since (ddcP (ϕ))n is supported on the set {P (ϕ) = ϕ}. Therefore
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ψ is a continuous psh function satisfying the inequality (ddcψ)n = 0 ≤ v
in the sense of pluripotential theory on the ball B(x0, s). Assume that
(ddcq(x0))

n
+ > v(x0). Then by definition, ddcq(x0) > 0 and (ddcq(x0))

n >
v(x0). Taking s > 0 small enough and ε > 0 small enough we can assume
that qε := q−ε(|x−x0|

2−s2) is psh on B(x0, s) and (ddcqε)n > v ≥ (ddcψ)n

on the ball B(x0, s) while qε = q ≤ ψ on ∂B(x0, s). By the pluripotential
comparison principle for the complex Monge-Ampère operator, it follows
that qε ≤ ψ on B(x0, s), thus q(x0) + εs2 ≤ ψ(x0), which is a contradiction.

3. It is classical (see [BT1], [Berm], [Dem1]) that under these hypotheses,
P (ϕ) is a C1,1-smooth function, its Monge-Ampère measure (ddcP (ϕ))nBT is
concentrated on the set where P (ϕ) = ϕ, and satisfies

(ddcP (ϕ))nBT = 1{P (ϕ)=ϕ}(dd
cϕ)n.

The conclusion follows from the definition of viscosity supersolutions. �

We do not know whether part 3 of the lemma is valid for less regular
supersolutions.
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