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SÉBASTIEN BOUCKSOM, TOMOYUKI HISAMOTO, AND MATTIAS JONSSON

Abstract. The purpose of the present paper is to set up a formalism inspired from
non-Archimedean geometry to study K-stability. We first provide a detailed analysis of
Duistermaat-Heckman measures in the context of test configurations, characterizing in par-
ticular the trivial case. For any normal polarized variety (or, more generally, polarized pair
in the sense of the Minimal Model Program), we introduce and study the non-Archimedean
analogues of certain classical functionals in Kähler geometry. These functionals are defined
on the space of test configurations, and the Donaldson-Futaki invariant is in particular
interpreted as the non-Archimedean version of the Mabuchi functional, up to an explicit
error term. Finally, we study in detail the relation between uniform K-stability and sin-
gularities of pairs, reproving and strengthening Y. Odaka’s results in our formalism. This
provides various examples of uniformly K-stable varieties.

Contents

Introduction 1
1. Preliminary facts on filtrations and valuations 7
2. Test configurations 13
3. Donaldson-Futaki invariants and K-stability 19
4. Valuations and test configurations 23
5. Non-Archimedean metrics 27
6. Duistermaat-Heckman measures 29
7. Non-Archimedean functionals 39
8. K-stability and singularities of pairs 45
Appendix A. Asymptotic Riemann-Roch on a normal variety 53
Appendix B. The equivariant Riemann-Roch theorem for schemes 54
References 56

Introduction

Let (X,L) be a polarized complex manifold, i.e. a smooth complex projective variety X
endowed with an ample line bundle L. Assuming for simplicity that Aut(X,L) is discrete
(and hence finite), the Yau-Tian-Donaldson conjecture states that the first Chern class c1(L)
contains a constant scalar curvature Kähler metric (cscK metric for short) iff (X,L) satisfies
a certain algebro-geometric condition known as K-stability. Building on [Don01, AP06], it
was proved in [Sto09] that K-stability indeed follows from the existence of a cscK metric.
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When c1(X) is a multiple of c1(L), the converse was recently established ([CDS15a, CDS15b,
CDS15c], see also [Tia12]); in this case a cscK metric is the same as a Kähler-Einstein metric.

The notion of K-stability, introduced in [Tia97, Don02], is defined as the positivity of
the Donaldson-Futaki invariant DF(X ,L) of every non-trivial test configuration (X ,L) for
(X,L) (where, as pointed out in [LX14], triviality must be carefully defined). However,
G. Székelyhidi [Szé06, Szé14] proposed that a uniform notion of K-stability should be used
to formulate the Yau-Tian-Donaldson conjecture in the general case. In this uniform version,
DF(X ,L) is bounded below by a positive quantity measuring how far (X ,L) is from being
trivial.

The present paper proposes an algebro-geometric study of three topics naturally related
to uniform K-stability. First, we study in detail Duistermaat-Heckman measures in the
context of test configurations. These measures encode in particular the Lp-norms used in
Székelyhidi’s formulation of uniform K-stability. Second, we view test configurations for
(X,L) as non-Archimedean metrics on L, define non-Archimedean analogues of classical
functionals from Kähler geometry, and use this formalism to define a version of uniform
K-stability which we call J-uniform K-stability. Finally, we analyze the interaction between
singularities of pairs (in the sense of the Minimal Model Program) and uniform K-stability,
revisiting Y. Odaka’s work [Oda12, Oda13b, OSa12, OSu11].

Duistermaat-Heckman measures. Working, for the moment, over an arbitrary alge-
braically closed ground field, let (X,L) be a polarized Gm-scheme, i.e. a projective scheme
X with a Gm-action, together with a Gm-linearized ample line bundle L. The Duistermaat-
Heckman measure DH(X,L) is the probability measure on R describing the asymptotic dis-

tribution as m→∞ of the (scaled) weights of the Gm-action on H0(X,mL), counted with
multiplicity, i.e.

DH(X,L) = lim
m→∞

∑
λ∈Z

dimH0(X,mL)λ
dimH0(X,mL)

δλ/m,

with H0(X,mL) =
⊕

λ∈ZH
0(X,mL)λ the weight space decomposition.

When X is a variety (i.e. reduced and irreducible), Okounkov proved the existence of
DH(X,L), expressing it as a linear projection of the restriction of the Lebesgue measure of a
convex body of dimension n = dimX [Ok96]. As a result, DH(X,L) is then absolutely contin-
uous, its support is a line segment [λmin, λmax], and the Brunn-Minkowski inequality yields

the following log concavity property: λ 7→ DH(X,L)(x > λ)1/n is concave on (−∞, λmax).
Using the equivariant Riemann-Roch theorem for schemes due to Edidin and Graham, we

establish in §6 below the existence of the Duistermaat-Heckman measure DH(X,L) of an arbi-
trary polarized T -scheme (X,L), and show that it can be expressed as a convex combination
of the Duistermaat-Heckman measures of the top-dimensional irreducible components of X
(with their reduced structure).

Duistermaat-Heckman measures can be more generally defined for a polarized scheme
(X,L) without a Gm-action, by introducing certain Gm-equivariant degenerations. Recall
that a test configuration (X ,L) for (X,L) is a Gm-equivariant partial compactification of
(X,L)×Gm. It comes with a proper, flat, Gm-equivariant morphism π : X → A1, together
with a Q-line bundle L extending p∗1L on X × Gm. When (X ,L) is ample, i.e. L is π-
ample, the central fiber (X0,L0) is a polarized Gm-scheme, and we define the Duistermaat-
Heckman measure DH(X ,L) to be that of (X0,L0). In case (X,L) itself is given a Gm-action,
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its Duistermaat-Heckman measure coincides with that of the corresponding product test
configuration (X ,L).

As observed in [WN12], every ample test configuration (X ,L) for (X,L) defines a filtration
of the graded ring R(X,L) =

⊕
m∈NH

0(X,mL). In fact, this amounts to a classical con-
struction by Rees, and yields a one-to-one correspondence between ample test configurations
and finitely generated filtrations of R(X,L).

When X is a variety, the results of [BC11] may be applied to the filtration. Building on
this, our first main result may be summarized as follows.

Theorem A. Let (X,L) be a polarized variety defined over an arbitrary algebraically closed
field, and let DH(X ,L) be the Duistermaat-Heckman measure of an ample test configuration
(X ,L) for (X,L). Then:

(i) The support DH(X ,L) is a line segment [λmin, λmax], and the tail distribution λ 7→
DH(X ,L)(x > λ)1/n is log concave on (−∞, λmax). In particular, DH(X ,L) is the sum
of an absolutely continuous measure and a point mass at λmax.

(ii) The density of the absolutely continuous part of DH(X ,L) is piecewise polynomial.

(iii) If X is normal, then the normalization (X̃ , L̃) of (X ,L) satisfies DH
(X̃ ,L̃)

= DH(X ,L),

and DH(X ,L) is a Dirac mass iff (X̃ , L̃) is trivial.

As we shall see, (i) is in fact a direct consequence of the results of [BC11]. Assertion (ii)
generalizes a well-known property of Duistermaat-Heckman measures for smooth complex
polarized C∗-varieties (X,L) [DH82], and relies on a result of [ELMNP06].

For each p ∈ [1,∞], the Lp-norm ‖(X ,L)‖p of an ample test configuration (X ,L) is defined
as the Lp norm of λ − λ̄ with respect to DH(X ,L), with λ̄ the barycenter of this measure.

Then (iii) asserts in particular that ‖(X ,L)‖p = 0 iff (X̃ , L̃) is trivial.

Recall that (X,L) is K-stable iff DF(X ,L) ≥ 0 for all normal, ample test configurations,
with equality iff (X ,L) is trivial. Following Székelyhidi, we say that (X,L) is Lp-uniformly
K-stable if there exists δ > 0 such that DF(X ,L) ≥ δ‖(X ,L)‖p for all normal, ample test
configurations. The above result therefore shows that uniform K-stability indeed implies
K-stability (!). We show that Lp-uniform K-stability can only hold for p ≤ n

n−1 (cf. Propo-

sition 7.25). One of the points of the present paper is to introduce a different notion of
uniform K-stability, based on an analogy between functionals in Kähler geometry and their
non-Archimedean counterparts.

Non-Archimedean functionals and J-uniform K-stability. Assume that (X,L) is a
normal polarized variety. A test configuration for (X,L) then induces a non-Archimedean
metric on L, when the ground field is equipped with the trivial norm, see §5. In this
language, ample test configurations become (semi)positive metrics.

Several classical functionals on the space of Archimedean (Kähler) metrics now have
natural counterparts in the non-Archimedean setting. For example, the non-Archimedean
Monge-Ampère energy is

ENA(X ,L) =
(L̄n+1)

(n+ 1)V
=

∫
R
λDH(X ,L)(dλ),
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where V = (Ln), (X̄ , L̄) is the natural compactification of (X ,L) over P1 and DH(X ,L) is
the Duistermaat-Heckman measure of (X ,L). The non-Archimedean J-energy is

JNA(X ,L) = λmax − ENA(X ,L) = λmax −
∫
R
λDH(X ,L)(dλ),

with λmax the upper bound of the support of DH(X ,L).
Suppose we are also given a boundary B in the sense of the Minimal Model Program,

i.e. a Q-Weil divisor on X such that KX + B is Q-Cartier. We then say that ((X,B), L)
is a polarized pair, and define the non-Archimedean Ricci energy RNA

B (X ,L) in terms of
intersection numbers on a test configuration dominating (X ,L). The non-Archimedean
entropy HNA

B (X ,L) is defined in terms of the log discrepancies with respect to (X,B) of
certain divisorial valuations, and will be described in more detail below.

The non-Archimedean Mabuchi functional is now defined so as to satisfy the analogue of
the Chen-Tian formula (see [Che00] and also [BB14, Proposition 3.1])

MNA
B (X ,L) = HNA

B (X ,L) + S̄BE
NA(X ,L) +RNA

B (X ,L)

with
S̄B := −nV −1

(
(KX +B) · Ln−1

)
.

The whole point of these constructions is that MNA
B is essentially the same as the Donaldson-

Futaki invariant.1 We show more precisely that every normal, ample test configuration
(X ,L) satisfies

MNA
B (X ,L) = DFB(X ,L) + V −1 ((X0,red −X0) · Ln) , (0.1)

with DFB denoting the log Donaldson-Futaki invariant. Further, MNA
B is homogeneous with

respect to Gm-equivariant base change, a property which is particularly useful in relation
with semistable reduction, and fails for the Donaldson-Futaki invariant when the central
fiber is non-reduced.

We say that a polarized pair ((X,B), L) is J-uniformly K-stable if there exists δ > 0 such
that DFB(X ,L) ≥ δJNA(X ,L) for all normal, semiample test configurations. This condition
implies L1-uniform stability, because JNA(X ,L) ≥ 1

2‖(X ,L)‖1. Using the homogeneity

of MNA
B and a weak form of semistable reduction, we show that J-uniform K-stability is

equivalent to the apparently stronger condition MNA
B ≥ δJNA, which we interpret as a

counterpart to the coercivity of the K-energy in the Archimedean case.

The relation between the non-Archimedean functionals above and their classical coun-
terparts will be systematically studied in [BHJ15]. Let us indicate the main idea. Assume
(X,L) is a smooth polarized complex variety, and B = 0. Denote by H the space of Kähler
metrics on L and by HNA the space of non-Archimedean metrics. The general idea is that
HNA plays the role of the ’Tits boundary’ of the (infinite dimensional) symmetric space H.
Given an ample test configuration (X ,L) (viewed as an element of HNA) and a smooth ray
(φs)s∈(0,+∞) corresponding to a smooth S1-invariant metric on L, we shall prove in [BHJ15]
that

lim
s→+∞

F (φs)

s
= FNA(X ,L), (0.2)

1The interpretation of the Donaldson-Futaki invariant as a non-Archimedean Mabuchi functional has been
known to Shou-Wu Zhang for quite some time, cf. [PRS08, Remark 6].
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where F denotes the Monge-Ampère energy, J-energy, entropy, or Mabuchi energy functional
and FNA is the corresponding non-Archimedean functional defined above. In the case of the
Mabuchi energy, this result is closely related to [PT06, PT09, PRS08], but to the best of
our knowledge, the precise expression for the difference between the slope at infinity of M
and the Donaldson-Futaki invariant has not appeared so far in the literature.

Singularities of pairs and uniform K-stability. A key point in our approach to K-
stability is to relate the birational geometry of X and that of its test configurations using
the language of valuations.

More specifically, let (X,L) be a normal polarized variety, and (X ,L) a normal test
configuration. Every irreducible component E of X0 defines a divisorial valuation ordE on
the function field of X . Since the latter is canonically isomorphic to k(X × A1) ' k(X)(t),
we may consider the restriction r(ordE) of ordE to k(X), which is proved to be a divisorial
valuation as well when E is non-trivial, i.e. not the strict transform of the central fiber of
the trivial test configuration.

This correspondence between irreducible components of X0 and divisorial valuations on
X is analyzed in detail in §4. In particular, we prove that the Rees valuations of a closed
subscheme Z ⊂ X, i.e. the divisorial valuations associated to the normalized blow-up of X
along Z, coincide with the valuations induced on X by the normalization of the deformation
to the normal cone of Z.

Given a boundary B on X, we define the non-Archimedean entropy of a normal test
configuration (X ,L) as

HNA
B (X ,L) = V −1

∑
E

A(X,B)(r(ordE))(E · Ln),

the sum running over the non-trivial components of X0 and A(X,B)(v) denoting the log
discrepancy of a divisorial valuation v with respect the pair (X,B). Recall that the pair
(X,B) is log canonical (lc for short) if A(X,B)(v) ≥ 0 for all divisorial valuations on X,
and Kawamata log terminal (klt for short) if the inequality is everywhere strict. Our main
result here is a characterization of these singularity classes in terms of the non-Archimedean
entropy functional.

Theorem B. Let (X,L) be a normal polarized variety, and B an effective boundary on X.
Then (X,B) is lc (resp. klt) iff HNA

B (X ,L) ≥ 0 (resp. > 0) for every non-trivial normal,
ample test configuration (X ,L). In the klt case, there automatically exists δ > 0 such that
HNA
B (X ,L) ≥ δJNA(X ,L) for all (X ,L).

The strategy to prove the first two points is closely related to that of [Oda13b]. In fact,
we also provide a complete proof of the following mild generalization (in the normal case)
of the main result of loc.cit :

((X,B), L) K-semistable =⇒ (X,B) lc.

If (X,B) is not lc (resp. not klt), then known results from the Minimal Model Program
allow us to construct a closed subscheme Z whose Rees valuations have negative (resp. non-
positive) discrepancies; the normalization of the deformation to the normal cone of Z then
provides a test configuration (X ,L) with HNA

B (X ,L) < 0 (resp. ≤ 0). To prove uniformity
in the klt case, we exploit the the strict positivity of the global log canonical threshold
lct((X,B), L) of ((X,B), L).
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As a consequence, we are able to analyze J-uniform K-stability in the ‘log Kähler-Einstein
case’, i.e. when KX +B is numerically proportional to L.

Corollary C. Let (X,L) be a normal polarized variety, B an effective boundary, and assume
that KX +B ≡ λL with λ ∈ Q.

(i) If λ > 0, then ((X,B), L) is J-uniformly K-stable iff (X,B) is lc;
(ii) If λ = 0, then ((X,B), L) is J-uniformly K-stable iff (X,B) is klt;

(iii) If λ < 0 and lct((X,B), L) > n
n+1 |λ|, then ((X,B), L) is J-uniformly K-stable.

Relation to other works. Since we aim to give a systematic introduction to uniform
K-stability, and to set up some non-Archimedean terminology, we have tried to make the
exposition as self-contained as possible. This means that we reprove or mildly generalize
some already known results [Oda12, Oda13b, OSa12, Sun13, OSu11].

During the preparation of the present work, we were informed of R. Dervan’s independent
work [Der14a](see also [Der14b]), which has a substantial overlap with the present paper.
First, test configurations with trivial L2-norm were also characterized in [Der14a, Theorem
1.2]. Next, the minimum norm introduced in loc.cit turns out to coincide (up to a unim-
portant normalizing constant) with our non-Archimedean J-functional. As a result, uniform
K-stability with respect to the minimum norm as in [Der14a] is the same as our concept of
J-uniform K-stability. Finally, Corollary C above is to a large extent contained in [Der14a,
§3].

Structure of the paper. Section 1 gathers a number of preliminary facts on filtrations
and valuations, with a special emphasis on the Rees construction and the relation between
Rees valuations and integral closure.

Sections 2 and 3 give a fairly self-contained treatment of test configurations and Donaldson-
Futaki invariants. We discuss in particular some scheme theoretic aspects, and Proposi-
tion 3.7 provides an explicit expression for the difference between the Donaldson-Futaki
invariant of a test configuration and of its normalization.

The correspondence between irreducible components of the central fiber of a normal test
configurations and divisorial valuations on X is considered in Section 4. In particular,
Theorem 4.8 relates Rees valuations and the deformation to the normal cone.

In Section 5 we define a notion of non-Archimedean metric on L as an equivalence class
of test configurations. This is inspired by [BFJ12, BFJ15a].

Section 6 is dedicated to Duistermaat-Heckman measures. Existence is established in
Theorem 6.1, and Theorem A is a consequence of Proposition 6.15, Theorem 6.16 and
Theorem 6.19.

Section 7 introduces the non-Archimedean analogues of the usual energy functionals,
viewed as functionals on the space of non-Archimedean metrics. We define J-uniform K-
stability, and compare it to Lp-uniform K-stability in the sense of Székelyhidi.

Section 8 is concerned with the interaction between uniform K-stability and singularities.
Theorem 8.1 and Theorem 8.2 establish Theorem B as well as the generalization of [Oda13b]
mentioned above. Corollary C is a combination of Corollary 8.3, Corollary 8.4 and Propo-
sition 8.16.

Finally, Appendix A provides a proof of the two-term Riemann-Roch theorem on a nor-
mal variety, whose complete proof we could not locate in the literature, and Appendix B
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summarizes Edidin and Graham’s equivariant version of the Riemann-Roch theorem for
schemes.
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1. Preliminary facts on filtrations and valuations

We work over an algebraically closed field k, whose characteristic is arbitrary unless
otherwise specified, and write Gm for the multiplicative group over k and A1 = Spec k[t] for
the affine line.

All schemes are assumed to be separated and of finite type over k, and a variety is an
integral (i.e. reduced and irreducible) scheme. By an ideal on a scheme X we mean a
coherent ideal sheaf, whereas a fractional ideal is a coherent OX -submodule of the sheaf of
rational functions.

1.1. Norms and filtrations. Let V be a finite dimensional k-vector space. In this paper, a
filtration of V will mean a decreasing, left-continuous, separating and exhaustive R-indexed
filtration F •V . In other words, it is a family of subspaces (F λV )λ∈R of V such that

(i) F λV ⊂ F λ′V when λ ≥ λ′;
(ii) F λV =

⋂
λ′<λ F

λ′V ;

(iii) F λV = 0 for λ� 0;
(iv) F λV = V for λ� 0.

A Z-filtration is a filtration F •V such that F λV = F dλeV for λ ∈ R. Equivalently, it is a
family of subspaces (F λV )λ∈Z satisfying (i), (iii) and (iv) above.

With these conventions, filtrations are in one-to-one correspondence with non-Archimedean
norms on V compatible with the trivial absolute value on k, i.e. functions ‖ · ‖ : V → R+

such that

(i) ‖s+ s′‖ ≤ max {‖s‖, ‖s′‖} for all s, s′ ∈ V ;
(ii) ‖cs‖ = ‖s‖ for all s ∈ V and c ∈ k∗;
(iii) ‖s‖ = 0⇐⇒ s = 0.

The correspondence is given by

− log ‖s‖ = sup
{
λ ∈ R | s ∈ F λV

}
and F λV =

{
s ∈ V | ‖s‖ ≤ e−λ

}
.

The successive minima of the filtration F •V is the decreasing sequence

λmax = λ1 ≥ · · · ≥ λN = λmin

where N = dimV , defined by

λj = max
{
λ ∈ R | dimF λV ≥ j

}
.

From the point of view of the norm, they are indeed the analogues of the (logarithmic)
successive minima in Minkowski’s geometry of numbers.
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The graded pieces of a filtration F •V are defined as GrFλ V = F λV/F>λV with F>λV =⋃
λ′>λ F

λ′V . We then have

− d

dλ
dimF λV =

∑
λ∈R

(
dim GrFλ V

)
δλ =

N∑
j=1

δλj . (1.1)

in the sense of distributions.

Next let R :=
⊕

m∈NRm be a graded k-algebra with finite dimensional graded pieces Rm.
A filtration F •R of R is defined as the data of a filtration F •Rm for each m, satisfying

F λRm · F λ
′
Rm′ ⊂ F λ+λ′Rm+m′

for all λ, λ′ ∈ R and m,m′ ∈ N. The data of F •R is equivalent to the data of a non-
Archimedean submultiplicative norm ‖·‖ on R, i.e. a non-Archimedean norm ‖·‖m as above
on each Rm, satisfying

‖s · s′‖m+m′ ≤ ‖s‖m‖s′‖m′
for all s ∈ Rm, s′ ∈ Rm′ . We will use the following terminology.

Definition 1.1. We say that a Z-filtration F •R of a graded algebra R is finitely generated
if the bigraded algebra ⊕

(λ,m)∈Z×N

F λRm

is finitely generated over k.

The condition equivalently means that the graded k[t]-algebra⊕
m∈N

(⊕
λ∈Z

t−λF λRm

)
is finitely generated.

1.2. The Rees construction. We review here a classical construction due to Rees, which
yields a geometric interpretation of Z-filtrations.

Consider first a Z-filtration F •V of a k-vector space V . Then⊕
λ∈Z

t−λF λV

is a torsion free, finitely generated k[t]-module. It can thus be written as the space of
global sections of a unique vector bundle V on A1 = Spec k[t]. The grading provides a
Gm-linearization of V. We claim that we have Gm-equivariant isomorphisms

V|A1\{0} ' V ×
(
A1 \ {0}

)
(1.2)

with t−λF λV corresponding to the weight-λ part of V, and

V0 ' GrF• V =
⊕
λ∈Z

F λV/F λ+1V. (1.3)

Intuitively, V may be thought of as a way to degenerate the filtration to its graded object.
To see that (1.2) holds, consider the k-linear map π : H0(A1,V) → V sending

∑
λ t
−λvλ

to
∑

λ vλ. This map is surjective since F λV = V for λ � 0. If
∑

λ t
−λvλ lies in the
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kernel, then vλ = wλ+1 − wλ for all λ, where wλ = −
∑

µ≥λ vµ ∈ F λV . Conversely, any

element of the form
∑

λ t
−λ(wλ+1 − wλ), where wλ ∈ F λV , is in the kernel of π, and the

set of such elements is equal to (t− 1)H0(A1,V). Thus π induces an isomorphism between
V1 = H0(A1,V)/(t − 1)H0(A1,V) and V , which induces (1.2) using the Gm-action. The
proof of (1.3) is similar.

If we start conversely with a Gm-linearized vector bundle V on A1, we get a Z-filtration
on V := V1, by letting F λV be the image of the weight-λ part of H0(A1,V) under the
restriction map H0(A1,V) → V . Since t has weight −1 with respect to the Gm-action on
A1, multiplication by t induces an injection F λ+1V ⊂ F λV , so that this is indeed a decreasing
filtration. Further, t−λF λV can be identified with the weight-λ part of H0(A1,V). Using
the above facts, it is straightforward to deduce:

Proposition 1.2. The above constructions define an equivalence of categories between Z-
filtered, finite dimensional vector spaces and Gm-linearized vector bundles on A1.

Every filtered vector space admits a basis compatible with the filtration, and is thus
(non-canonically) isomorphic to its graded object. On the geometric side, this yields (com-
pare [Don05, Lemma 2]):

Corollary 1.3. Every Gm-linearized vector bundle V on A1 is Gm-equivariantly trivial, i.e.
Gm-isomorphic to V0 × A1 with V0 the fiber at 0.

For line bundles, the trivialization admits the following particularly simple description.

Corollary 1.4. Let L be a Gm-linearized line bundle on A1, and let λ ∈ Z be the weight of
the Gm-action on L0. For each non-zero v ∈ L1, setting s(t) := t−λ(t · v) defines a weight-λ
trivialization of L.

Proof. While this is a special case of the above construction, it can be directly checked as
follows. The section s′ ∈ H0(A1 \ {0},L) defined by s′(t) := t · v defines a rational section
of L. If we set µ := ord0(s′), then v0 := limz→0 z

−µs′(z) is a non-zero element of L0, which
satisfies

t · v0 = lim
z→0

z−µ ((tz) · v) = tµ lim
z→0

(tz)−µ ((tz) · v) = tµv0.

It follows that µ coincides with the weight λ of the Gm-action on L0. �

Remark 1.5. Much more generally, given a reductive algebraic group G, the equivariant
Serre problem asks whether every G-linearized vector bundle on an affine space An with a
linear action of G is necessarily G-equivariantly trivial. The famous Quillen-Suslin theorem
gives a positive answer when G is trivial, and this is more generally true whenever G is com-
mutative, i.e. the product of an algebraic torus with a finite abelian group, cf. [MMP96]. On
the other hand, the answer is negative for all non-commutative connected reductive groups,
and also for some (non-commutative) finite groups.

1.3. Valuations. Let K be a finitely generated field extension of k, with n := tr. degK/k,
so that K may be realized as the function field of a (normal, projective) n-dimensional
variety.

Since we only consider real-valued valuations, we simply call valuation v on K a group
homomorphism v : K∗ → (R,+) such that v(f + g) ≥ min {v(f), v(g)} and v|k∗ ≡ 0 [ZS].
It is convenient to set v(0) = +∞. The trivial valuation vtriv is defined by vtriv(f) = 0 for
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all f ∈ K∗. To each valuation v is attached the following list of invariants. The valuation
ring of v is Ov := {f ∈ K | v(f) ≥ 0}. This is a local ring with maximal ideal mv :=
{f ∈ K | v(f) > 0}, and the residue field of v is k(v) := Ov/mv. The transcendence degree
of v (over k) is tr.deg(v) := tr.deg k(v)/k. Finally, the value group of v is Γv := v(K∗) ⊂ R,
and the rational rank of v is rat. rk(v) := dimQ (Γv ⊗Q).

If k ⊂ K ′ ⊂ K is an intermediate field extension, v is a valuation on K and v′ is its
restriction to K ′, the Abhyankar-Zariski inequality states that

tr. deg(v) + rat. rk(v) ≤ tr. deg(v′) + rat. rk(v′) + tr.degK/K ′. (1.4)

Taking K ′ = k, we get tr.deg(v)+rat. rk(v) ≤ n, and we say that v is an Abhyankar valuation
if equality holds; such valuations can be geometrically characterized, see [KK05, ELS03,
JM12]. In particular, the trivial valuation is Abhyankar; it is the unique valuation with
transcendence degree n. We say that v is divisorial if rat. rk(v) = 1 and tr.deg(v) = n− 1.
By a theorem of Zariski, this is the case iff there exists a normal projective variety Y with
k(Y ) = K and a prime divisor F of Y such that v = c ordF for some c > 0. We then have
k(v) = k(F ) and Γv = cZ.

If X is a variety with k(X) = K, a valuation v is centered on X if there exists a scheme
point ξ ∈ X such that v ≥ 0 on the local ring OX,ξ and v > 0 on its maximal ideal. We
also say v is a valuation on X in this case. By the valuative criterion of separatedness, the
point ξ is unique, and is called the center of v on X. If X is proper, the valuative criterion
of properness guarantees that any v is centered on X. If a divisorial valuation v is centered
on X, then v = c ordF where F is a prime divisor on a normal variety Y with a proper
birational morphism µ : Y → X; the center of v on X is then the generic point of µ(F ).

For any valuation v centered on X, we can make sense of v(s) ∈ R+ for a (non-zero)
section s ∈ H0(X,L) of a line bundle L on X by trivializing L at the center ξ of v on X
and evaluating v on the local function corresponding to s in this trivialization. Since any
two such trivializations differ by a unit at ξ, v(s) is well-defined, and v(s) > 0 iff s(ξ) = 0.

Similarly, given an ideal a ⊂ OX we set

v(a) = inf{v(f) | f ∈ aξ}.
It is in fact enough to take the min over any finite set of generators of aξ. We also set
v(Z) := v(a), where Z is the closed subscheme defined by a.

Finally, for later use we record the following simple variant of [HS, Theorem 10.1.6].

Lemma 1.6. Assume that X = SpecA is affine. Let S be a finite set of valuations on X,
which is irredundant in the sense that for each v ∈ S there exists f ∈ A with v(f) < v′(f)
for all v′ ∈ S \ {v}. Then S is uniquely determined by the function hS(f) := minv∈S v(f).

Proof. Let S and T be two irredundant finite sets of valuations with hS = hT =: h. For
each v ∈ S, w ∈ T set Cv := {f ∈ A | h(f) = v(f)} and Dw := {f ∈ A | h(f) = w(f)}, and
observe that these sets are stable under finite products. For each v ∈ S, we claim that
there exists w ∈ T with Cv ⊂ Dw. Otherwise, for each w there exists fw ∈ Cv \ Dw, i.e.
v(fw) = h(fw) < w(fw). Setting f =

∏
w fw, we get for each w′ ∈ T

w′(f) =
∑
w∈T

w′(fw) >
∑
w∈S

h(fw) =
∑
w∈S

v(fw) = v(f) ≥ h(f),

and taking the min over w′ ∈ T yields a contradiction.
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We next claim that Cv ⊂ Dw implies that v = w. This will prove that S ⊂ T , and hence
S = T by symmetry. Note first that v(f) = h(f) = w(f) for each f ∈ Cv. Now choose
gv ∈ A with v(gv) < v′(gv) for all v′ 6= v in S, so that gv ∈ Cv ⊂ Dw. For each f ∈ A, we
then have v(gmv f) < v′(gmv f) for m� 1, and hence gmv f ∈ Cv ⊂ Dw. It follows that

mv(gv) + v(f) = v(gmv f) = w(gmv f) = mw(gv) + w(f) = mv(gv) + w(f),

and hence v(f) = w(f). �

1.4. Integral closure and Rees valuations. Let X be a scheme and Z ⊂ X a closed

subscheme with ideal a ⊂ OX . On the one hand, the normalized blow-up π : X̃ → X along
Z is the composition of the blow-up of Z in X with the normalization morphism. On the
other hand, the integral closure a of a is the set of elements f ∈ OX satisfying a monic
equation fd + a1f

d−1 + · · ·+ ad = 0 with aj ∈ aj .
The following well-known connection between normalized blow-ups and integral closures

shows in particular that a is a coherent ideal sheaf.

Lemma 1.7. Let Z ⊂ X be a closed subscheme, with ideal a ⊂ OX , and let π : X̃ → X be
the normalized blow-up along Z. Then D := π−1(Z) is an effective Cartier divisor with −D
π-ample, and we have for each m ∈ N:

(i) O
X̃

(−mD) is π-globally generated;

(ii) π∗OX̃(−mD) = am;

(iii) O
X̃

(−mD) = O
X̃
· am = O

X̃
· am;

In particular, π coincides with the normalized blow-up of a, and also with the (usual) blow-up
of am for any m� 1.

We recall the brief argument for the convenience of the reader.

Proof. Let µ : X ′ → X be the blow-up along Z, so that µ−1(Z) = D′ is a Cartier divisor
on X ′ with −D′ µ-very ample, and hence OX′(−mD′) µ-globally generated for all m ∈ N.

Denoting by ν : X̃ → X ′ the normalization morphism, we have ν∗D′ = D. Since ν is finite,
it follows that −D is π-ample and satisfies (i), which reads O

X̃
(−mD) = O

X̃
· am with

am := π∗OX̃(−mD).

It therefore remains to establish (ii). By normality of X̃, O
X̃

(−mD) is integrally closed,

hence so is am = π∗OX̃(−mD). As a ⊂ a1, we have am ⊂ am1 ⊂ am, and hence am ⊂ am.
The reverse inclusion requires more work; we reproduce the elegant geometric argument

of [Laz, II.11.1.7]. Fix m ≥ 1. As the statement is local over X, we may choose a system

of generators (f1, . . . , fp) for am. This defines a surjection O⊕pX → am, which induces, after
pull-back and twisting by −lD, a surjection

O
X̃

(−lD)⊕p → O
X̃

(−(m+ l)D) = am · O
X̃

(−lD)

for any l ≥ 1. Since −D is π-ample, Serre vanishing implies that the induced map

a⊕pl = π∗OX̃ (−lD)⊕p → a(m+l) = π∗OX̃ (−(m+ l)mD)

is also surjective for l � 1, i.e. am · al = am+l. But since am+l ⊃ am · al ⊃ am · al, am acts
on the finitely generated OX -module al by multiplication by am, and the usual determinant
trick therefore yields am ⊂ am. �
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Assume from now on that X is integral, i.e. a variety.

Definition 1.8. Let Z ⊂ X be a closed subscheme with ideal a, and let π : X̃ → X be
the normalized blow-up of Z, with D := π−1(Z). The Rees valuations of Z (or a) are the

divisorial valuations vE = ordE
ordE(D) , where E runs over the irreducible components of D.

Note that vE(Z) = vE(a) = vE(D) = 1 for all E. We now show that the present definition
of Rees valuations coincides with the standard one in valuation theory (see for instance [HS,
Chapter 5]). The next result is a slightly more precise version of [HS, Theorem 2.2.2, (3)].

Theorem 1.9. The set of Rees valuations of a is the unique finite set S of valuations such
that:

(i) am =
⋂
v∈S {f ∈ OX | v(f) ≥ m} for all m ∈ N;

(ii) S is minimal with respect to (i).

Proof of Theorem 1.9. For each finite set of valuations S, set hS(f) := minv∈S v(f). Using
that hS(fm) = mhS(f), it is straightforward to check that any two sets S, S′ satisfying (i)
have hS = hS′ . If S and S′ further satisfy (ii), then they are irredundant in the sense of
Lemma 1.6, which therefore proves that S = S′.

It remains to check that the set S of Rees valuations of Z satisfies (i) and (ii). The first
property is merely a reformulation of Lemma 1.7. Now pick an irreducible component E ofD.
It defines a fractional idealO

X̃
(E). Since−D is π-ample, O

X̃
(−mD) andO

X̃
(−mD)·O

X̃
(E)

both become π-globally generated for m � 1. Since O
X̃

(−mD) is strictly contained in

O
X̃

(−mD) · O
X̃

(E), it follows that am = π∗OX̃(−mD) is strictly contained in

π∗
(
O
X̃

(−mD) · O
X̃

(E)
)
⊂
⋂
E′ 6=E

{f ∈ OX | vE′(f) ≥ m} ,

which proves (ii). �

Example 1.10. The Rees valuations of an effective Weil divisor D =
∑m

i=1 aiDi on a

normal variety X are given by vi := 1
ai

ordDi, 1 ≤ i ≤ m.

We end this section on Rees valuations with the following result.

Proposition 1.11. Let π : Y → X be a projective birational morphism between normal
varieties, and assume that Y admits a Cartier divisor that is both π-exceptional and π-ample.
Then π is isomorphic to the blow-up of X along a closed subscheme Z of codimension at
least 2, and the divisorial valuations ordF defined by the π-exceptional prime divisors F on
Y coincide, up to scaling, with the Rees valuations of Z.

This is indeed a direct consequence of the following well-known facts.

Lemma 1.12. Let π : Y → X be a projective birational morphism between varieties with X
normal. If G is a π-exceptional, π-ample Cartier divisor, then:

(i) −G is effective;
(ii) suppG coincides with the exceptional locus of π;

(iii) for m divisible enough, π is isomorphic to the blow-up of the ideal am := π∗OY (mG),
whose zero locus has codimension at least 2.

Conversely, the blow-up of X along a closed subscheme of codimension at least 2 admits a
π-exceptional, π-ample Cartier divisor.
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Proof. Set am := π∗OY (mG), viewed as a fractional ideal on X. Since G is π-exceptional,
every rational function in π∗OY (mG) is regular in codimension 1, and am is thus an ideal
whose zero locus has codimension at least 2, by the normality of X.

If we choose m� 1 such that OY (mG) is π-globally generated, then we have OY (mG) =
OY · am ⊂ OY , which proves (i).

By assumption, suppG is contained in the exceptional locus E of π. Since X is normal,
π has connected fibers by Zariski’s main theorem, so E is the union of all projective curves
C ⊂ Y that are mapped to a point of X. Any such curve satisfies G · C > 0 by the relative
ampleness of G, and hence C ⊂ suppG since −G is effective. Thus suppG = E, proving (ii).

Finally, the relative ampleness of G, implies that the OX -algebra
⊕

m∈N am is finitely
generated, and its relative Proj over X is isomorphic to Y . The finite generation implies⊕

l∈N aml =
⊕

l∈N alm for all m divisible enough, and applying ProjX shows that X is
isomorphic to the blow-up of X along am. �

1.5. Boundaries and log discrepancies. Let X be a normal variety. In the Minimal
Model Program (MMP) terminology, a boundary B on X is a Q-Weil divisor (i.e. a codi-
mension one cycle with rational coefficients) such that KX +B is Q-Cartier. Alternatively,
one says that (X,B) is a pair to describe this condition, and KX + B is called the log
canonical divisor of this pair. In particular, 0 is a boundary iff X is Q-Gorenstein.

To any divisorial valuation v on X is associated its log discrepancy with respect to the
pair (X,B), denoted by A(X,B)(v) and defined as follows. For any normal birational model
µ : Y → X and prime divisor F of Y such that v = c ordF , we set

A(X,B)(v) := c
(
1 + ordF

(
KY/(X,B)

))
with KY/(X,B) := KY − µ∗(KX + B). This is well-defined (i.e. independent of the choice
of µ), by compatibility of canonical divisor classes under push-forward. By construction,
A(X,B) is homogeneous with respect to the natural action of R∗+ on divisorial valuations by
scaling, i.e. A(X,B)(c v) = cA(X,B)(v) for all c > 0.

As a real valued function on k(X)∗, c v converges pointwise to the trivial valuation vtriv

as c→ 0. It is thus natural to set A(X,B)(vtriv) := 0.

2. Test configurations

2.1. Terminology and notation. In what follows, (X,L) is a pair consisting of a proper
scheme X over k and a line bundle L on X. Given a scheme S over k, we denote by (XS , LS)
the base change to S, i.e. XS := X×kS and LS := p∗L, with p : X×kS → X the projection.

Most often, (X,L) will be polarized, i.e. L will be ample, but it is sometimes useful to
consider the general case. Similarly, it will be convenient to allow some flexibility in the
definition of test configurations; we shall use the following terminology.

Definition 2.1. A test configuration X for X consists of the following data:

(i) a flat and proper morphism of schemes π : X → A1;
(ii) a Gm-action on X lifting the canonical action on A1;

(iii) an isomorphism X1 ' X.

A test configuration (X ,L) for (X,L) comprises as additional data:

(iv) a Gm-linearized Q-line bundle L on X ;
(v) an isomorphism (X1,L1) ' (X,L) extending the one in (iii).
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We say that (X ,L) is ample, semiample, . . . (resp. normal, S1, . . . ) when L (resp. X ) has
this property. By Proposition 2.7 below, X is in fact automatically a variety (i.e. reduced
and irreducible) when X is.

By a Gm-linearized Q-line bundle L as in (iv), we mean that rL is an actual Gm-linearized
line bundle for some r ∈ Z>0 that is not part of the data. The isomorphism in (v) then
means (X , rL1) ' (X, rL).

We denote the central fiber of X by X0 := π−1(0). This is an effective Cartier divisor on
X by the flatness of π.

Remark 2.2. For each c ∈ Q, the Gm-linearization of the Q-line bundle L may be twisted
by tc, in the sense that the Gm-linearization of rL is twisted by the character trc with r
divisible enough. The resulting test configuration can be identified with (X ,L+ cX0),

Given two test configurations X , X ′ for X, the isomorphism X1 ' X ' X ′1 induces a
canonical isomorphism X \X0 ' X ′\X ′0, the unique Gm-equivariant isomorphism compatible
with the projections to A1 \ {0} and the identifications of X with the fibers over t = 1.

We say that X ′ dominates X if the above canonical isomorphism extends to a morphism
X ′ → X . When it is an isomorphism, we sometimes abuse notation slightly and write
X ′ = X (which is reasonable given that the isomorphism is canonical).

A pull-back of a test configuration (X ,L) for (X,L) is a test configuration (X ′,L′) where
X ′ dominates X and L′ is the pull-back of L.

Suppose X is normal. We then define the normalization (X̃ , L̃) of a test configuration

(X ,L) to be the pull-back under the normalization ν : X̃ → X . Note that (X̃ , L̃) is
(semi)ample if (X ,L) is, since ν is finite.

2.2. Examples.

Example 2.3. Every Gm-action on X induces a diagonal Gm-action on XA1, and hence
a test configuration X . Similarly, a Gm-linearization of rL for some r ≥ 1 induces a test
configuration (X ,L) for (X,L).

Such test configurations are called product test configurations. A product test configura-
tion is trivial if the Gm-action on X is trivial. By Remark 2.2, (X ,L) is trivial iff

(X ,L+ cX0) = (XA1 , LA1) for some c ∈ Q.

Example 2.4. Assume L is ample and fix r ≥ 1 such that rL is very ample. Consider the
corresponding closed embedding X ↪→ P := PV ∗ with V := H0(X, rL). Every 1-parameter
subgroup λ : Gm → GL(V ) induces an ample test configuration (Xλ,Lλ) for (X,L). By
definition, Xλ is the schematic closure (i.e. the ‘flat limit’) in P × A1 of the image of the
closed embedding X × Gm ↪→ P × Gm mapping (x, t) to (λ(t)x, t). Note that λ is trivial
iff (Xλ,Lλ) is, while (Xλ,Lλ) is a product iff λ preserves X. The flat limit uniquely exists
(e.g. from [Har, Proposition 9.8]). By Proposition 2.7 below, the schematic closure is simply
given by the Zariski closure when X is a variety.

Conversely, every ample test configuration (X ,L) may be obtained as above. Indeed, for
each r ≥ 1 such that rL is a relatively ample line bundle, V := π∗O(rL) is torsion free by
flatness of π. It is therefore Gm-equivariantly isomorphic to A1×V for a certain Gm-action
λ : Gm → GL(V ) (see Corollary 1.3). We then get a Gm-equivariant embedding X ↪→ P×A1,
and hence (X ,L) = (Xλ,Lλ).
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Example 2.5. The deformation to the normal cone of a closed subscheme Z ⊂ X is the
blow-up ρ : X → XA1 along Z × {0}. Thus X is a test configuration dominating XA1.
By [Ful, Chapter 5], its central fiber splits as X0 = E + F , where E = ρ−1(Z × {0}) is the
exceptional divisor and F is the strict transform of X × {0}, which is isomorphic to the
blow-up of X along Z.

Example 2.6. More generally we can blow up any Gm-invariant ideal a on X×A1 supported
on the central fiber. We discuss this point in §2.6.

2.3. Scheme theoretic features. Recall that a scheme Z satisfies Serre’s condition Sk iff

depthOZ,ξ ≥ min{codim ξ, k} for every point ξ ∈ Z.

In particular, Z is S1 iff it has no embedded points. While we will not use it, one can show
that Z is S2 iff it has no embedded points and satisfies the Riemann extension property
across closed subsets of codimension at least 2.

On the other hand, Z is regular in codimension k (Rk for short) iff OZ,ξ is regular for every
ξ ∈ X of codimension at most k. Equivalently Z is Rk iff its singular locus has codimension
greater than k. Note that Z is R0 iff it is generically reduced.

Serre’s criterion states that Z is normal iff it is R1 and S2. Similarly, Z is reduced iff it
is R0 and S1 (in other words, iff Z is generically reduced and without embedded points).

Proposition 2.7. Let X be a test configuration for X.

(i) X is reduced (resp. irreducible, resp. a variety) iff so is X.
(ii) X is S2 iff X0 has no embedded point and X is S2.

(iii) If X is R1 and X0 is generically reduced (that is, ‘without multiple components’),
then X is R1.

(iv) If X is normal and X0 is reduced, then X is normal.

Proof. The isomorphism X \X0 ' X×Gm shows that X \X0 is irreducible (resp. Rk, Sk) iff
X is. On the other hand, the flatness of π implies that X0 is a Cartier divisor and that every
associated (i.e. generic or embedded) point of X belongs to X \ X0 (cf. [Har, Proposition
III.9.7]).

As a first consequence, X \ X0 ' X ×Gm is dense in X , so that X is irreducible iff X is.
Since X0 is a Cartier divisor, we also have

depthOX0,ξ = depthOX ,ξ − 1

for each ξ ∈ X0, so that X is Sk iff X is Sk and X0 is Sk−1.
It remains to show that X0 being generically reduced and X being R1 imply that X is

R1. But every codimension one point ξ ∈ X either lies the open subset X \ X0 ' X ×Gm,
in which case X is regular at ξ, or is a generic point of the Cartier divisor X0. In the latter
case, the closed point of SpecOX ,ξ is a reduced Cartier divisor; hence OX ,ξ is regular. �

2.4. Compactifications. For some purposes it is convenient to compactify test configura-
tions. The following notion provides a canonical way of doing so.

Definition 2.8. The compactification X̄ of a test configuration X for X is defined by gluing
together X and XP1\{0} along their respective open subsets X \ X0 and XA1\{0}, which are
identified using the canonical Gm-equivariant isomorphism X \ X0 ' XA1\{0}.
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The compactification comes with a Gm-equivariant flat morphism X̄ → P1, still denoted
by π. By construction, π−1(P1\{0}) is Gm-equivariantly isomorphic to XP1\{0} over P1\{0}.

Similarly, a test configuration (X ,L) for (X,L) admits a compactification (X̄ , L̄), where
L̄ is a Gm-linearized Q-line bundle on X̄ . Note that L̄ is relatively (semi)ample iff L is.

Example 2.9. When X is the product test configuration defined by a Gm-action on X, the
compactification X̄ → P1 may be alternatively described as the locally trivial fiber bundle
with typical fiber X associated to the principal Gm-bundle A2 \ {0} → P1, i.e.

X̄ =
(
(A2 \ {0})×X

)
/Gm

with Gm acting diagonally. Note in particular that X̄ is not itself a product in general. For
instance, the Gm-action t · [x : y] = [tdx : y] on X = P1 gives rise to the Hirzebruch surface
X̄ ' P (OP1 ⊕OP1(d)).

2.5. Test configurations and filtrations. By the reverse Rees construction of §1.2, every
test configuration (X ,L) for (X,L) induces a Z-filtration of the graded algebra

R(X, rL) =
⊕
m∈N

H0(X,mrL)

for r divisible enough. More precisely, for each r such that rL is a line bundle, we define
a filtration on R(X, rL) by letting F λH0(X,mrL) be the (injective) image of the weight-λ
part H0(X , rmL)λ of H0(X ,mrL) under the restriction map

H0(X ,mrL)→ H0(X ,mrL)t=1 = H0(X,mrL).

Alternatively, we have

F λH0(X,mrL) =
{
s ∈ H0(X,mrL) | t−λs̄ ∈ H0(X ,mrL)

}
(2.1)

where s̄ ∈ H0(X \ X0,mrL) denotes the Gm-invariant section defined by s ∈ H0(X,mrL).

Remark 2.10. When (X ,L) is a normal test configuration, the previous construction ex-
tends to an R-filtration on R(X,L). Indeed, (2.1) shows that a section s ∈ H0(X,mrL)
belongs to F λH0(X,mrL) iff sk ∈ F kλH0(X, kmrL) for some k, and we may thus set for
each λ ∈ R

F λH0(X,mL) :=
{
s ∈ H0(X,mL) | t−drλesr ∈ H0(X ,mrL) for r divisible enough

}
.

This shows that the compatibility with the point of view of [WN12].

Proposition 2.11. Assume L is ample. Then the above construction sets up a one-to-
one correspondence between ample test configurations for (X,L) and finitely generated Z-
filtrations of R(X, rL) for r divisible enough.

Proof. When (X ,L) is an ample test configuration, the Z-filtration it defines on R(X, rL)
is finitely generated in the sense of Definition 1.1, since⊕

m∈N

(⊕
λ∈Z

t−λF λH0(X,mrL)

)
= R(X , rL)
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is finitely generated over k[t]. Conversely, let F • be a finitely generated Z-filtration of
R(X, rL) for some r. Replacing r with a multiple, we may assume that the graded k[t]-
algebra ⊕

m∈N

(⊕
λ∈Z

t−λF λH0(X,mrL)

)
is generated in degree m = 1, and taking the Proj over A1 defines an ample test configuration
for (X, rL), hence also one for (X,L). Using §1.2, it is straightforward to see that the two
constructions are inverse to each other. �

For later use, we note:

Lemma 2.12. Let (X ,L) be an ample test configuration. For each m divisible enough, the
successive minima of the induced Z-filtration F •H0(X,mL) coincide with the Gm-weights of
H0(X0,mL0).

Proof. By construction, the successive minima of F •H0(X,mL) coincide with the Gm-
weights of H0(X ,mL). By ampleness, the restriction map H0(X ,mL) → H0(X0,mL0)
is surjective for m � 1, and it follows that H0(X ,mL) and H0(X0,mL0) have the same
Gm-weights. �

Still assuming L is ample, let (X ,L) be merely semiample. The Z-filtration it defines on
R(X, rL) is still finitely generated, as⊕

m∈N

(⊕
λ∈Z

t−λF λH0(X,mrL)

)
= R(X , rL)

is finitely generated over k[t].

Definition 2.13. The ample model of a semiample test configuration (X ,L) is defined
as the unique ample test configuration (Xamp,Lamp) corresponding to the finitely generated
Z-filtration defined by (X ,L) on R(X, rL) for r divisible enough.

Ample models admit the following alternative characterization.

Proposition 2.14. The ample model (Xamp,Lamp) of a semiample test configuration (X ,L)
is the unique ample test configuration such that:

(i) (X ,L) is a pull-back of (Xamp,Lamp);
(ii) the canonical morphism µ : X → Xamp satisfies µ∗OX = OXamp.

Note that (ii) implies that Xamp is normal whenever X is.

Proof. Choose r ≥ 1 such that rL is a globally generated line bundle. By Corollary 1.3, the
vector bundle π∗O(rL) is Gm-equivariantly trivial over A1, and we thus get an induced Gm-
equivariant morphism f : X → PNA1 over A1 for some N with the property that f∗O(1) = rL.
The Stein factorization of f thus yields an ample test configuration (X ′,L′) satisfying (i)
and (ii). By the projection formula, these properties guarantee that (X ,L) and (X ′,L′)
induce the same Z-filtration on R(X, rL), and hence (X ′,L′) = (Xamp,Lamp) by Proposition
2.11. �
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2.6. Flag ideals. In this section, X is normal. Let us briefly discuss (a small variant of)
the flag ideal point of view of [Oda12, Oda13b]. We will use the following terminology.

Definition 2.15. A determination of a test configuration X for X is a normal test config-
uration X ′ dominating both X and XA1.

Note that a determination always exists: just pick X ′ to be the normalization of the graph
of the canonical birational map X 99K XA1 .

Similarly, a determination of a test configuration (X ,L) for (X,L) is a normal test con-
figuration (X ′,L′) such that X ′ is a determination of X and L′ is the pull-back of L under
the morphism X ′ → X (i.e. (X ′,L′) is a pull-back of (X ,L)). In this case, denoting by
ρ : X ′ → XA1 the canonical morphism, we have L′ = ρ∗LA1 + D for a unique Q-Cartier
divisor D supported on X ′0, by the normality of X ′.

Definition 2.16. For each m such that mL is a line bundle, we define the flag ideal of
(X ,mL) as the Gm-invariant, integrally closed fractional ideal

a(m) := ρ∗OX ′(mD).

By Lemma 2.17 below, a(m) is indeed independent of the choice of a determination. In
particular, a(m) is also the flag ideal of (X ′,mL′) for every pull-back (X ′,L′) of (X ,L).

Since a(m) is a Gm-invariant fractional ideal on XA1 that is trivial outside the central
fiber, it is of the form

a(m) =
∑
λ∈Z

t−λa
(m)
λ (2.2)

where a
(m)
λ ⊂ OX is a non-increasing sequence of integrally closed ideals on X with a

(m)
λ = 0

for λ� 0 and a
(m)
λ = OX for λ� 0 (see Proposition 2.18 below for the choice of sign).

Lemma 2.17. The flag ideal a(m) is independent of the choice of a determination (X ′,L′).

Proof. Let (X ′′,L′′) be another determination of (X ,L) (and recall that X ′ and X ′′ are
normal, by definition). Since any two determinations of (X ,L) are dominated by a third
one, we may assume that X ′′ dominates X ′. Denoting by µ′ : X ′′ → X ′ the corresponding
morphism, the fractional ideal attached to (X ′′′,L′′) is then given by

(ρ ◦ µ′)∗OX ′′(mµ′∗D)

By the projection formula we have

µ′∗OX ′′(mµ′∗D) = OX ′(mD)⊗ µ′∗OX ′′ ,
and we get the desired result since µ′∗OX ′′ = OX ′ by normality of X ′. �

Proposition 2.18. Let (X ,L) be a semiample test configuration for (X,L), for each m with

mL a line bundle, let F •H0(X,mL) be the corresponding Z-filtration and a(m) be the flag

ideal of (X ,mL). Then, for m sufficiently divisible and all λ ∈ Z, the sheaf O(mL) ⊗ a
(m)
λ

is globally generated, and

F λH0(X,mL) = H0
(
X,O(mL)⊗ a

(m)
λ

)
In particular, the successive minima of F •H0(X,mL) (see §1) are exactly the λ ∈ Z with

a
(m)
λ 6= a

(m)
λ+1, with the largest one being λ

(m)
max = max

{
λ ∈ Z | a(m)

λ 6= 0
}

.
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Proof. Let (X ′,L′) be a determination of (X ,L), i.e. a pull-back such that X ′ is normal and
dominates XA1 . By normality of X , the morphism µ : X ′ → X satisfies µ∗OX ′ = OX . By
the projection formula, we (X ′,L′) and (X ,L) define the same Z-filtration of R(X, rL) for

r divisible enough. Since a(m) is also the flag ideal of (X ′,mL′), we may assume to begin
with that X dominates XA1 . Denoting by ρ : X → XA1 the canonical morphism, we then
have L = ρ∗LA1 +D and

a(m) = ρ∗OX (mD),

and hence

ρ∗O(mL) = O(mLA1)⊗ a(m)

by the projection formula. As a consequence, H0(XA1 ,O(mLA1) ⊗ t−λa(m)
λ ) is isomorphic

to the weight-λ part of H0(X ,mL), and the first point follows.
When mL is globally generated on X , so is ρ∗O(mL) on XA1 . Decomposing into weight

spaces thus shows that O(mL)⊗a
(m)
λ is globally generated on X for all λ ∈ Z. We therefore

have a
(m)
λ 6= a

(m)
λ+1 iff F λH0(X,mL) 6= F λ+1H0(X,mL), hence the second point. �

3. Donaldson-Futaki invariants and K-stability

In this section, (X,L) is a polarized scheme over k. Our goal is to provide an elementary,
self-contained treatment of Donaldson-Futaki invariants. To this end, we use, as in [Don05,
p.470], the compactified test configurations introduced in §2.4.

3.1. Donaldson-Futaki invariants. Write Nm = h0(X,mL) for m ≥ 1. The Donaldson-
Futaki invariant of an ample test configuration (X ,L) for (X,L) describes the subdominant
term in the asymptotic expansion of wm/mNm as m → ∞, where wm ∈ Z is the weight of
the Gm-action on detH0(X0,mL0).

Lemma 3.1. Let (X ,L) be an ample test configuration for (X,L), with compactification
π : (X̄ , L̄)→ P1. For every m divisible enough, we have

wm = χ(X̄ ,mL̄)−Nm,

where χ stands for the Euler characteristic. In particular, wm is a polynomial of m of degree
at most n+ 1, for m sufficiently divisible.

Proof. By flatness of π, the direct image sheaf π∗O(mL̄), being torsion free, is a vector bundle
on P1 of rankNm = h0(mL). As L̄ is π-ample, the restriction map π∗O(mL̄)→ H0(X0,mL0)
is surjective for m divisible enough. This shows that wm is also the weight of the Gm-action
on the fiber at 0 of the line bundle detπ∗O(mL̄), and hence

wm = deg detπ∗O(mL̄) = deg π∗O(mL̄),

since π∗O(mL̄) is Gm-equivariantly trivial away from 0 by construction of the compactifi-
cation. By the usual Riemann-Roch theorem on P1, we infer

χ(P1, π∗O(mL̄)) = wm +Nm.

Using relative ampleness again, Serre vanishing implies Rpπ∗O(mL) = 0 for p > 0 and m
divisible enough. As a result, the relevant Leray spectral sequence degenerates; hence

Hq(X̄ ,mL̄) ' Hq(P1, π∗O(mL̄))
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for all q ∈ N and all m divisible enough. This yields in particular

χ(X̄ ,mL̄) = χ(P1, π∗O(mL̄)),

which proves that wm = χ(X̄ ,mL̄)−Nm.
Now, for m sufficiently divisible, m 7→ χ(X̄ ,mL̄) is a polynomial of degree at most m+ 1,

by a version of the Hilbert-Serre theorem usually attributed to Snapper (cf. [Kle66, §1]).
Similarly, m 7→ χ(X,mL) is a polynomial of degree at most m. This completes the proof
since Nm = χ(X,mL) for m� 0 by the ampleness of L. �

Lemma 3.1 yields an asymptotic expansion

wm
mNm

= F0 +m−1F1 +m−2F2 + . . . (3.1)

with Fi = Fi(X ,L) ∈ Q satisfying the following obvious ‘scaling property’:

Lemma 3.2. For c ∈ Q we have F0(X ,L + cX0) = F0(X ,L) + c and Fi(X ,L + cX0) =
Fi(X ,L), for i ≥ 1.

Definition 3.3. The Donaldson-Futaki invariant of an ample test configuration (X ,L) is

DF(X ,L) := −2F1(X ,L).

The factor 2 in the definition is here just for convenience, while the sign is chosen so that
K-semistability will correspond to DF ≥ 0.

Using Lemma 3.1, we easily obtain an intersection theoretic formula for Donaldson-Futaki
invariants (see [Wan12] and [LX14, Example 3]).

Proposition 3.4. For each ample test configuration (X ,L) for (X,L), we have

F0(X ,L) =

(
L̄n+1

)
(n+ 1)(Ln)

. (3.2)

If X (and hence X) is further normal, then

DF(X ,L) = V −1
(
KX̄/P1 · L̄n

)
+ S̄F0(X ,L). (3.3)

with V := (Ln) and

S̄ := −n(KX · Ln−1)

(Ln)
.

Here KX and KX̄/P1 = KX̄ −π∗KP1 are understood as Weil divisor classes on the normal

varieties X and X̄ , respectively.

Remark 3.5. Arithmetically, the expression for F0 corresponds to the (normalized, loga-
rithmic) height of (X,L)×k k(t) with respect to the model (X̄ , L̄)→ P1, cf. [Wan12].

Remark 3.6. When X is smooth and k = C, S̄ coincides with the mean value of the scalar
curvature S(ω) of any Kähler form ω ∈ c1(L) (hence the chosen notation).

Proof of Proposition 3.4. The usual asymptotic Riemann-Roch theorem [Kle66, §1] yields

Nm =
mn

n!
V +O(mn−1)
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and

χ(X̄ ,mL̄) =
mn+1

(n+ 1)!

(
L̄n+1

)
+O(mn),

from which the formula for F0(X ,L) follows immediately. When X (and hence X and X̄ )
is normal, the two-term asymptotic Riemann-Roch theorem on a normal variety (cf. Theo-
rem A.1 in the appendix) yields

Nm = V
mn

n!

[
1 +

S̄

2
m−1 +O

(
m−2

)]
,

and

wm = −Nm +
(L̄n+1)

(n+ 1)!
mn+1 − (KX̄ · L̄n)

2n!
mn +O

(
mn−1

)
=

(L̄n+1)

(n+ 1)!
mn+1 −

(KX̄/P1 · L̄n)

2n!
mn +O

(
mn−1

)
,

using that (π∗KP1 · L̄n) = −2V since degKP1 = −2. The formula for DF(X ,L) now follows
from a straightforward computation. �

3.2. Behavior under normalization. The following result describes the behavior of the
Donaldson-Futaki invariant under normalization, and can be viewed as an effective version
of [RT07, Proposition 5.1] and [ADVLN11, Corollary 3.9].

Proposition 3.7. Assume that X is normal. Let (X ,L) be an ample test configuration for

(X,L), and let (X̃ , L̃) be its normalization, with morphism ν : X̃ → X . Then

DF(X ,L) = DF(X̃ , L̃) + 2V −1
∑
E

lE (E · Ln) ,

where E ranges over the irreducible components of X0 contained in the singular locus of X
and lE ∈ N∗ is the length of

(
ν∗OX̃

)
/OX at the generic point of E.

In particular, DF(X ,L) ≥ DF(X̃ , L̃), with equality iff X is regular in codimension 1.

Proof. For ease of notation, we denote by (Y,M) = (X̃ , L̃) the normalization (X ,L). The
normalization ν : Y → X extends to ν : Ȳ → X̄ . Denoting by wm and w̃m the Gm-weights
of detH0(X0,mL0) and detH0(Y0,mM0), Lemma 3.1 yields

w̃m − wm = χ(Ȳ,mM̄)− χ(X̄ ,mL̄) = χ(Ȳ,mν∗L̄)− χ(X̄ ,mL̄). (3.4)

Since ν is finite, we have Rqν∗OȲ = 0 for all q ≥ 1, and the Leray spectral sequence gives

χ(Ȳ,mν∗L̄) = χ
(
X̄ ,O(mL̄)⊗ ν∗OȲ

)
.

By normality of X \ X0 ' X × Gm, the sheaf F :=
(
ν∗OȲ

)
/OX̄ is supported on X0, and

may thus also be written as F = ν∗(OY/OX ) = ν∗(OX̃ /OX ).
The additivity of the Euler characteristic in exact sequences further yields

χ
(
X̄ ,O(mL̄)⊗ ν∗OȲ

)
= χ

(
X̄ ,mL̄

)
+ χ

(
X̄ ,O(mL̄)⊗F

)
.
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Since X is normal, Z := suppF is contained in X0. Set d := dimZ, denote by Zi the
d-dimensional irreducible components of Z, and let li be the length of F at the generic point
of Zi. By [Kle66, §2], we have

χ
(
X̄ ,O(mL̄)⊗F

)
=
md

d!

∑
i

li(L̄d · Zi) +O
(
md−1

)
=
mn

n!

∑
E

lE (E · Ln) +O(mn−1)

in the notation of the proposition. Since Nm = mn

n! V +O(mn−1), (3.4) gives

F1(X̃ , L̃) = F1(X ,L) + V −1
∑
E

lE (E · Ln) ,

and hence the desired formula in view of Definition 3.3. The ampleness of L on X0 further
gives

∑
E lE (E · Ln) ≥ 0, with equality iff X is regular at each generic point of X0, i.e. iff

X is R1. �

3.3. K-stability. As noted in [LX14, §3.1], a normal polarized variety (X,L) may admit a

non-trivial test configuration (X ,L) whose normalization (X̃ , L̃) trivial. By Proposition 3.7,
such test configurations have to satisfy DF(X ,L) = 0. Taking this into account, we arrive
at the following precise definition of K-stability.

Definition 3.8. A normal polarized variety (X,L) is K-semistable if DF(X ,L) ≥ 0 for
every normal, ample test configuration (X ,L), and K-stable if equality holds iff (X ,L) is
trivial, i.e. (X ,L+ cX0) = (XA1 , LA1) for some c ∈ Q.

Thanks to Proposition 3.7, K-semistability implies DF(X ,L) ≥ 0 for all (not necessarily
normal) ample test configurations.

3.4. The log case. Now assume that X is normal and let B be a boundary on X (see §1.5).
We then introduce a log version of the ‘mean scalar cuvature’ S̄ by setting

S̄B := −nV −1
(
(KX +B) · Ln−1

)
.

The intersection theoretic formula for DF suggests the following generalization for pairs.

Definition 3.9. Let B be a boundary on X. For each normal test configuration (X ,L) for
(X,L), we define the B-twisted Donaldson-Futaki invariant of (X ,L) as

DFB(X ,L) := V −1
((
KX̄/P1 + B̄

)
· L̄n

)
+ S̄BF0(X ,L),

where B̄ is the Q-Weil divisor of X obtained by taking the component-wise Zariski closure
in X̄ of the Q-Weil divisor BGm on XGm ↪→ X̄ , and is F0(X ,L) as in Proposition 3.4.

We emphasize that the Q-Weil divisor KX̄/P1 + B̄ may not be Q-Cartier in general.

Definition 3.10. Given a boundary B on X, we say that the polarized pair ((X,B), L)
is K-semistable if DFB(X ,L) ≥ 0 for all normal, ample test configurations (X ,L), and
K-stable if equality holds only when (X ,L+ cX0) = (XA1 , LA1) for some c ∈ Q.
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Remark 3.11. Assume that B is effective and non-zero, and set VB := (B · Ln−1) > 0.
Then S̄B = S̄ − nV −1VB, and hence

DFB(X ,L) = DF(X ,L) + (S̄ − S̄B)
(
F0(X ,L)− F ′0

)
with

F ′0 :=
(B̄ · L̄n)

nVB
.

This shows the compatibility of the above definitions with those appearing in [Don12, LS14].

4. Valuations and test configurations

In what follows, X denotes a normal variety of dimension n, with function field K = k(X).
The function field of XA1 is then given by K(t). We shall relate valuations on K and K(t)
from both an algebraic and geometric point of view.

4.1. Restriction and Gauss extension. First consider a valuation w on K(t). We denote
by r(w) its restriction to K.

Lemma 4.1. If w is an Abhyankhar valuation, then so is r(w). If w is divisorial, then r(w)
is either divisorial or trivial.

Proof. The first assertion follows from Abhyankar’s inequality (1.4). Indeed, if w is Ab-
hyankhar, then tr. deg(w)+rat. rk(w) = n+1, so (1.4) gives tr.deg(r(w))+rat. rk(r(w)) ≥ n.
As the opposite inequality always holds, we must have tr. deg(r(w)) + rat. rk(r(w)) = n, i.e.
r(w) is Abhyankar.

We also have tr. deg(r(w)) ≤ tr.deg(w), so if w is divisorial, then tr.deg(r(w)) = n or
tr. deg(r(w)) = n− 1, corresponding to r(w) being trivial or divisorial, respectively. �

The restriction map r is far from injective, but we can construct a natural one-sided inverse
by exploiting the k∗-action (or Gm-action) on K(t) = k(XA1) defined by (a ·f)(t) = f(a−1t)
for a ∈ k∗ and f ∈ K(t). In terms of the Laurent polynomial expansion

f =
∑
λ∈Z

fλt
λ (4.1)

with fλ ∈ K, the k∗-action on K(t) reads

a · f =
∑
λ∈Z

a−λfλt
λ. (4.2)

Lemma 4.2. A valuation w on K(t) is k∗-invariant iff

w(f) = min
λ∈Z

(r(w)(fλ) + λw(t)) . (4.3)

for all f ∈ K(t) with Laurent polynomial expansion (4.1). In particular, r(w) is trivial iff
w is the multiple of the t-adic valuation.

Proof. In view of (4.2), it is clear that (4.3) implies k∗-invariance. Conversely let w be a
k∗-invariant valuation on K(t). The valuation property of w shows that

w(f) ≥ min
λ∈Λ

(r(w)(fλ) + λw(t))
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Set Λ := {λ ∈ Z | fλ 6= 0} and pick distinct elements aµ ∈ k∗, µ ∈ Λ (recall that k is alge-

braically closed, and hence infinite). The Vandermonde matrix (aλµ)λ,µ∈Λ is then invertible,

and each term fλt
λ with λ ∈ Λ may thus be expressed as k-linear combination of (aµ ·f)µ∈Λ.

Using the valuation property of w again, we get for each λ ∈ Λ

r(w)(fλ) + λw(t) = w
(
fλt

λ
)
≥ min

µ∈Λ
w(aµ · f) = w(f),

where the right-hand equality holds by k∗-invariance of w. The result follows. �

Definition 4.3. The Gauss extension of a valuation v on K is the valuation G(v) on K(t)
defined by

G(v)(f) = min
λ∈Z

(v(fλ) + λ)

for all f with Laurent polynomial expansion (4.1).

Note that r(G(v)) = v for all valuations v on K, while a valuation w on K(t) satisfies
w = G(r(w)) iff it is k∗-invariant and w(t) = 1, by Lemma 4.2. Further, the Gauss extension
of v is the smallest extension w with w(t) = 1.

4.2. Geometric interpretation. We now relate the previous algebraic considerations to
test configurations. For each test configuration X for X, the canonical birational map
X 99K XA1 yields an isomorphism k(X ) ' K(t). When X is normal, every irreducible
component E of X0 therefore defines a divisorial valuation ordE on K(t).

Definition 4.4. Let X be a normal test configuration for X. For each component E of X0,
we set vE := b−1

E r(ordE) with bE = ordE(X0) = ordE(t). We say that E is non-trivial if it
is not the strict transform of X × {0}.

Since E is preserved under the Gm-action on X , ordE is k∗-invariant, and we infer from
Lemma 4.1 and Lemma 4.2:

Lemma 4.5. For each component E of X0, we have ordE = bEG(vE), i.e.

ordE(f) = bE min
λ

(vE(fλ) + λ) .

in terms of the Laurent polynomial expansion (4.1). Further, E is non-trivial iff vE is
nontrivial, and hence a divisorial valuation on X.

By construction, divisorial valuations on X of the form vE have a value group Γv = v(K∗)
contained in Q. Thus they are of the form vE = c ordF with c ∈ Q>0 and F a prime divisor
on a normal variety Y mapping birationally to X. Conversely, we prove:

Theorem 4.6. A divisorial valuation v on X is of the form v = vE for a non-trivial
component E of a normal test configuration iff Γv is contained in Q. In this case, we may
recover bE as the denominator of the generator of Γv.

Lemma 4.7. A divisorial valuation w on K(t) satisfying w(t) > 0 is k∗-invariant iff w =
c ordE with c > 0 and E an irreducible component of the central fiber X0 of a normal test
configuration X of X.
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Proof. If E is an irreducible component of X0, then ordE(t) > 0, and the Gm-invariance
of E easily implies that ordE is k∗-invariant. Conversely, let w be a k∗-invariant divisorial
valuation on K(t) satisfying w(t) > 0. The center ξ on X × A1 is then Gm-invariant and
contained in X × {0}. If we let Y1 be the test configuration obtained by blowing-up the
closure of ξ in X ×A1, then the center ξ1 of w on Y1 is again Gm-invariant by k∗-invariance
of w, and the blow-up Y2 of the closure of ξ1 is thus a test configuration. Continuing this
way, we get a tower of test configurations

X × A1 ← Y1 ← Y2 ← · · · ← Yi ← . . .

Since w is divisorial, a result of Zariski (cf. [KM98, Lemma 2.45]) guarantees that the closure
of the center ξi of w on Yi has codimension 1 for i � 1. We then have w = c ordE with E
the closure of the center of w on the normalization X of Yi. �

Proof of Theorem 4.6. Let E be a non-trivial irreducible component of X0 for a normal test
configuration X of X. Since the value group of ordE on k(X ) = K(t) is Z, the value group
of vE on k(X) = K is of the form c

bE
Z for some positive integer c. Lemma 4.5 yields

Z = cZ + bEZ, so that c and bE are coprime.
Conversely, let v be a divisorial valuation on X with Γv = c

bZ for some coprime positive
integers b, c. Then w := bG(v) is a k∗-invariant divisorial valuation on K(t) with value group
cZ + bZ = Z. By Lemma 4.7, we may thus find a normal test configuration X for X and
a non-trivial component E of X0 such that ordE = w. We then have bE = w(t) = b, and
hence v = vE . �

4.3. Rees valuations and deformation to the normal cone. Our goal in this section
is to relate the Rees valuations of a closed subscheme Z ⊂ X to the valuations associated
to the normalization of the deformation to the normal cone of Z, see Example 2.5.

Theorem 4.8. Let Z ⊂ X be a closed subcheme, X the deformation to the normal cone of

Z, and X̃ its normalization, so that µ : X̃ → XA1 is the normalized blow-up of Z×{0}. Then
the Rees valuations of Z coincide with the valuations vE, where E runs over the non-trivial

irreducible components of X̃0.

If we denote by E0 the strict transform of X × {0} in X , one can show that X \ E0 is
isomorphic to the Spec over X of the extended Rees algebra OX [t−1a, t], where a is the ideal
of Z, cf. [Ful, pp.87–88]. We thus see that Theorem 4.8 is equivalent to the well-known fact
that the Rees valuations of a coincide with the restrictions to X of the Rees valuations of
the principal ideal (t) of the extended Rees algebra (see for instance [HS, Exercise 10.5]).
We nevertheless provide a proof for the benefit of the reader.

Lemma 4.9. Let b =
∑

λ∈N bλt
λ be a Gm-invariant ideal of X × A1, and let

b =
∑
λ∈N

(b)λt
λ

be its integral closure. For each λ we then have bλ ⊂ (b)λ, with equality for λ = 0.

Proof. Each f ∈ bλ satisfies a monic equation fd +
∑d

j=1 bjf
d−j = 0 with bj ∈ bjλ. Then

(tλf)d +
d∑
j=1

(tλjbj)(t
λf)d−j = 0
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with tλjbj ∈ (tλbλ)j ⊂ bj . It follows that tλf ∈ b, which proves the first assertion.

Conversely, we may choose l� 1 such that the Gm-invariant ideal c := bl satisfies b·c = b·c
(cf. proof of Lemma 1.7). Write c =

∑
λ≥λ0 cλt

λ with cλ0 6= 0. Then (b)0 · cλ0tλ0 is contained

in the weight λ0 part of b · c, which is equal to (b0 · cλ0)tλ0 . We thus have (b)0 · cλ0 ⊂ b0 · cλ0 ,
and hence (b)0 ⊂ b0 by the determinant trick. �

Proof of Theorem 4.8. Let a be the ideal defining Z. By Theorem 1.9, we are to check that:

(i) am =
⋂
E {f ∈ OX | vE(f) ≥ m} for all m ∈ N;

(ii) no E can be omitted in (i).

Set D := µ−1(Z × {0}). Since ordE is k∗-invariant, Lemma 4.2 yields

ordE(D) = ordE(a + (t)) = min{r(ordE)(a), bE}.

We claim that we have in fact ordE(D) = bE . As recalled in Example 2.5, the blow-up
ρ : X → X ×A1 along Z ×{0} satisfies X0 = µ−1(Z ×{0}) +F , with F the strict transform

of X × {0}. Denoting by ν : X̃ → X the normalization morphism, we infer X̃0 = D + ν∗F ,

and hence bE = ordE(X̃0) = ordE(D).
This shows in particular that the valuations b−1

E ordE are the Rees valuations of a + (t).

We also get that vE(a) = b−1
E r(ordE)(a) ≥ 1, and hence am ⊂

⋂
E {f ∈ OX | vE(f) ≥ m}.

Conversely, assume f ∈ OX satisfies vE(f) ≥ m for all E. Since the b−1
E ordE are the Rees

valuations of a + (t), applying Theorem 1.9 on X × A1 yields f ∈ (a + (t))m. Since am is
the weight 0 part of (a + (t))m, Lemma 4.9 yields f ∈ am, and we have thus established (i).

Finally, let S be any finite set of k∗-invariant valuations w on K(t) such that

am =
⋂
w∈S
{f ∈ OX | r(w)(f) ≥ m}

for all m ∈ N. We claim that we then have

(a + (t))m =
⋂
w∈S
{f ∈ OX | w(f) ≥ m}

for all m ≥ N. This will prove (ii), by the minimality of the set of Rees valuations of a+ (t).
So assume that f ∈ OX satisfies w(f) ≥ m for all w ∈ S. In terms of the Laurent expansion

(4.1), we get r(w)(fλ) + λ ≥ m for all λ, w, and hence fλ ∈ am−λ by assumption. By

Lemma 4.9, we conclude as desired that f ∈ (a + (t))m. �

Corollary 4.10. Let (X,L) be a polarized scheme and Z ⊂ X a closed subscheme. Then
there exists a normal, ample test configuration (X ,L) such that the Rees valuations of Z are
exactly the divisorial valuations vE on X associated to the non-trivial irreducible components
of X0.

Proof. Let µ : X → X × A1 be the normalized blow-up of Z × {0}, so that X is the
normalization of the deformation to the normal cone of Z. As recalled in Lemma 1.7,
D := µ−1(Z) is a Cartier divisor with −D ample. We may thus choose 0 < c� 1 such that
L := µ∗LA1 − cD is ample, and (X ,L) is then a normal, ample test configuration. The rest
follows from Theorem 4.8. �
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4.4. Log discrepancies. In this section we assume that k has characteristic 0

Proposition 4.11. Let B be a boundary on X. For every component E of X0, the log
discrepancies of vE and ordE (with respect to (X,B) and (XA1 , BA1), respectively) are then
related by

A(XA1 ,BA1 ) (ordE) = bE
(
1 +A(X,B)(vE)

)
Recall that A(X,B)(vtriv) is defined to be 0.

Proof. If E is the strict transform of X × {0}, then A(X,B)(vE) = A(X,B)(vtriv) = 0, while
A(XA1 ,BA1 )(ordE) = bE = 1.

Assume now that E is non-trivial. Since vE is a divisorial valuation on X, we may find a
proper birational morphism µ : X ′ → X with X ′ smooth and a smooth irreducible divisor
F ⊂ X ′ such that vE = c ordF for some rational c > 0. By Lemma 4.5, the divisorial
valuation ordE is monomial on X ′A1 with respect to the SNC divisor X ′ × {0} + FA1 , with
weights ordE(X ′ × {0}) = bE and ordE(FA1) = bEvE(F ) = bEc. It follows (see e.g. [JM12,
Prop. 5.1]) that

A(XA1 ,BA1 )(ordE) = bEA(XA1 ,BA1 )

(
ordX×{0}

)
+ bEcA(XA1 ,BA1 )

(
ordFA1

)
= bE + bEcA(X,B) (ordF ) = bE

(
1 +A(X,B)(vE)

)
,

which completes the proof. �

5. Non-Archimedean metrics

Let X be a proper scheme and L a line bundle on X. Motivated by Berkovich space
considerations (see §5.3 below) we introduce the following notion.

Definition 5.1. Two test configurations (X1,L1), (X2,L2) for (X,L) are equivalent if there
exists a test configuration (X3,L3) that is a pull-back of both (X1,L1) and (X2,L2).

An equivalence class is called a non-Archimedean metric on L, and is denoted by φ. We
denote by φtriv the equivalence class of (XA1 , LA1).

Definition 5.2. Assume L is ample. Then a non-Archimedean metric φ on L is called
semipositive if some (or, equivalently, any) representative (X ,L) of φ is semiample.

We denote by HNA(L) the set of all non-Archimedean semipositive metrics on L, i.e. the
quotient of the set of semiample test configurations by the above equivalence relation.

We also write HNA when no confusion is possible. The notation mimics H = H(L) for
the space of smooth positive (Archimedean) metrics on L when working over C.

Lemma 5.3. Assume that X is normal. Then every metric φ ∈ HNA(L) is represented by
a unique normal, ample test configuration (X ,L). Every normal representative of φ is a
pull-back of (X ,L).

Proof. We first prove uniqueness. Let (Xi,Li), i = 1, 2, be equivalent normal, ample test
configurations, so that there exists (X3,L3) as in Definition 5.1. For i = 1, 2, the birational
morphism µi : X3 → Xi satisfies (µi)∗OX3 = OXi , by normality of Xi. Using the projection
formula, we get

R(X1,mL1) ' R(X2,mL2)
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for any m ≥ 1 such that mL1 and mL2 are both line bundles. By taking the Proj over A1,
it follows that (X1,L1) = (X2,L2).

Now pick a normal representative (X ,L) of φ. By Proposition 2.14, its ample model
(Xamp,Lamp) is a normal, ample representative, and (X ,L) is a pull-back of (Xamp,Lamp).
This proves the existence part, as well as the final assertion. �

5.1. Intersection numbers. Various operations on test configurations descend to non-
Archimedean metrics. As a first example, we have intersection numbers.

Every finite set of test configurations Xi for X is dominated by some test configuration
X . Given finitely many non-Archimedean metrics φi on line bundles Li, we may thus find
representatives (Xi,Li) with Xi = X independent of i.

Definition 5.4. Let φi be a non-Archimedean metric on Li for 0 ≤ i ≤ n. We define the
intersection number of the φi as

(φ0 · . . . · φn) := (L̄0 · . . . · L̄n), (5.1)

where (Xi,Li) is any representative of φi with Xi = X independent of i, and where (X̄ , L̄i)
is the compactification of (X ,Li).

By the projection formula, the right hand side of (5.1) is independent of the choice of
representatives. Note that the intersection number (φ0 · . . . ·φn) may be negative even when
the φi are semipositive, since L̄i is only relatively semiample with respect to X̄ → P1.

Lemma 5.5. Assume that X is normal. Let L2, . . . , Ln be ample line bundles on X with Li
ample for i > 1. Let φ be a non-Archimedean metrics on OX , and φi ∈ HNA(Li) semipositive
non-Archimedean metrics on Li for 2 ≤ i ≤ n. Then

(φ · φ · φ2 · . . . · φn) ≤ 0.

Proof. Choose normal representatives (X ,L), (X ,Li) with the same test configuration X
for X, so that L = D is a Q-Cartier divisor supported on X0. Then the claim amounts
to (D ·D · L2 · . . . · Ln) ≤ 0, which follows from a standard Hodge index argument (see for
instance [BFJ12, Proof of Theorem 4.3], and also [YZ13a, YZ13b]). �

5.2. Translation and scaling. The space of test configurations admits two natural oper-
ations. First, there is a translation action of Q, with c ∈ Q sending (X ,L) to (X ,L+ cX0).
This clearly induces an action on non-Archimedean metrics, denoted by φ 7→ φ+ c.

Second, we can define a scaling action of the semigroup N∗ of positive integers d, mapping
(X ,L) to its base change by t 7→ td. Again, this action descends to an action on non-
Archimedean metrics, denoted by φ 7→ φd.

Note that φtriv is fixed under the scaling action.

Lemma 5.6. For non-Archimedean metrics φ0, . . . , φn as in Definition 5.4, we have

((φ0)d · . . . · (φn)d) = d(φ0 · . . . · φn)

and

((φ0 + c) · φ1 · . . . · φn) = (φ0 · . . . · φn) + c(L1 · . . . · Ln)

for all d ∈ N∗ and c ∈ Q.
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Proof. The first equality again follows from the projection formula. By flatness, we have

(X0 · L̄1 · . . . · L̄n) = (L1 · . . . · Ln),

which implies the second equality. �

Both the translation and scaling action preserve the subset HNA(L) of semipositive met-
rics, for L ample. For later use, we record the following obvious fact.

Lemma 5.7. Suppose X is normal, let φ ∈ HNA(L), and let (X ,L) be its normal, ample
representative. Then the normal, ample representative of φd is the test configuration (Xd,Ld)
with Xd the normalization of the base change of X by t 7→ td and Ld the pull-back of L by
the induced finite morphism Xd → X .

5.3. Berkovich space interpretation. Let us now briefly explain the term “non-Archime-
dean metric”. See [BJ15] for more details.

Equip the base field k with the trivial norm | · |0, i.e. |a|0 = 1 for a ∈ k∗. Also equip the
field K := k((t)) of Laurent series with the non-Archimedean norm in which |t| = e−1.

To any proper scheme X over k is then associated a Berkovich analytification Xan, a
compact Hausdorff space equipped with a structure sheaf [Berk90, Berk93]. Similarly, any
line bundle L on X has an analytification Lan. The valued field extension K/k further gives
rise to analytifications Xan

K and Lan
K , together with a natural morphism Xan

K → Xan under
which Lan pulls pack to Lan

K . The Gauss extension in §4 gives a section Xan → Xan
K , whose

image exactly consists of the Gm-invariant points.
After the base change k[t] → k[[t]], any test configuration (X ,L) defines a normal model

of (XK , LK) over the valuation ring k[[t]] of K = k((t)). When X (and hence X) is normal,
this further induces a continuous metric on Lan

K , i.e. a function on the total space satisfying
certain natural conditions. Using the Gauss extension, we obtain a metric also on Lan.

Replacing a normal test configuration (X ,L) by a pullback does not change the induced
metric on Lan, and one may in fact show that two normal test configurations induce the same
metric iff they are equivalent in the Definition 5.1. This justifies the name non-Archimedean
metric for an equivalence class of test configurations. Further, in the analysis of [BFJ12,
BFJ15a], semipositive metrics play the role of Kähler metrics in complex geometry.

However, we abuse terminology a little since there are non-Archimedean metrics on Lan

that do not come from test configurations. For example, any filtration on R(X,L) defines
a metric on Lan. For many purposes [BFJ12, BFJ15a] it is crucial to work with a more
flexible notion of metrics.

6. Duistermaat-Heckman measures

6.1. The Duistermaat-Heckman measure of a polarized T -scheme. Let T ' Gr
m be

a torus, with character lattice M = Hom(T,Gm) ' Zr. Every finite dimensional T -module
V admits a weight decomposition V =

⊕
λ∈M Vλ, where t ∈ T acts on Vλ by multiplication

by λ(t). The weight measure of V is the probability measure µV on MR defined by

µV :=
1

dimV

∑
λ∈M

(dimVλ)δλ,

As a straightforward consequence of the equivariant Riemann-Roch theorem for schemes,
due to Edidin and Graham [EG97] and discussed in Appendix B, we prove:
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Theorem 6.1. Let (X,L) be a polarized T -scheme, i.e. a projective T -scheme with an ample
T -linearized line bundle L. Then the rescaled weight measures

µm := (1/m)∗µH0(X,mL)

have uniformly bounded support, and converge weakly to a probability measure DH(X,L) on

MR as m → ∞. Further, for each polynomial function P on MR,
∫
MR

P (λ)µm(dλ) admits

a full asymptotic expansion in m.

We call DH(X,L) the Duistermaat-Heckman measure of the polarized T -scheme (X,L).

Remark 6.2. In order to explain the terminology, consider the case where X is a smooth
complex variety, and choose a maximal compact torus Tc ' (S1)r of T and a Tc-invariant
smooth metric φ on L with strictly positive curvature ω = ddcφ. We then get a moment
map µ : X → MR for the Tc-action on the symplectic manifold (X,ω). The Duistermaat-
Heckman measure as originally defined in [DH82] is µ∗(ω

n), but this is known to coincide
(up to normalization of the mass) with DH(X,L) as defined above (see for instance [WN12,
Theorem 9.1] and [BWN14, Proposition 4.1]).

Proof of Theorem 6.1. Since L is ample, R(X,L) is finitely generated. It easily follows that
the weights of H0(X,mL) grow at most linearly with m, which proves the first assertion.
Since µm has both uniformly bounded support and fixed total mass, it will converge in the
weak topology iff

∫
R P dµm converges for each polynomial function. We are in fact going to

show that
∫
R P dµm admits a full asymptotic expansion for each homogeneous polynomial

P ∈ SdM∗, which will conclude the proof of the Theorem.
Let π : X → Spec k be the structure morphism. Since the higher cohomology of mL

vanishes for m� 1, (B.1) of Appendix B yields∑
λ∈M

dimH0(X,mL)λ
λd

d!
=
(
π∗

(
emc

T
1 (L) · τT (OX)

))
d

=
md+n

(d+ n)!
π∗

(
cT1 (L)d+n · [X]T

)
+ l.o.t.,

where [X]T ∈ CHT
n (X) is the T -equivariant fundamental class of X and the equality takes

place in CHd
T (Spec k)Q ' SdMQ. Since

dimH0(X,mL) =
mn

n!
(Ln) +O(mn−1)

is itself a polynomial of degree n, we conclude that∫
MR

P (λ)µm(dλ) =

∑
λ∈M dimH0(X,mL)λ(P · λd)

md dimH0(X,mL)

admits a full asymptotic expansion, with dominant term∫
MR

P (λ) DH(X,L)(dλ) =

(
d+ n

n

)−1P · π∗
(
cT1 (L)d+n · [X]T

)
(Ln)

. (6.1)

�

Using this last identity, we next show that the study of Duistermaat-Heckman measures
reduces to the case of polarized (normal) varieties.
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Proposition 6.3. Let (X,L) be a polarized T -scheme of dimension n. Let Xi be its n-
dimensional irreducible components (with reduced scheme structure) and set Li := L|Xi.
Then

DH(X,L) =
∑
i

ciDH(Xi,Li)

where ci = mi(L
n
i )/(Ln) and mi is the multiplicity of Xi in X, i.e. the length of OX at the

generic point of Xi (and hence
∑

i ci = 1).

If X is a variety with normalization morphism ν : X̃ → X, then

DH(X,L) = DH
(X̃,ν∗L)

.

Proof. Recall that X and Xred have isomorphic equivariant Chow (co)homology. We may
thus view [XT ] as an element of CHT

n (Xred). Since T is connected, each Xi is T -stable, hence
defines a class [Xi]T ∈ CHT

n (Xred), and we then have

[X]T =
∑
i

mi[Xi]T .

The first assertion is now a direct consequence of (6.1), which similarly implies the second
assertion thanks to the projection formula

ν∗

(
cT1 (ν∗L)d+n · [X̃]

)
= cT1 (L)d+n · ν∗[X̃] = cT1 (L)d+n · [X].

�

Relying on [Ok96], we prove:

Proposition 6.4. Let (X,L) be a polarized T -variety of dimension n. The support of
DH(X,L) is then given by the closed convex hull P in MR of the set⋃

m≥1

{
λ

m
| H0(X,mL)λ 6= 0

}
and is a rational polytope. In particular, DH(X,L) is a Dirac mass iff the T -action on X is

trivial. Further, DH(X,L) = f dλ with f ∈ C0(P ) such that f1/(n−dimP ) is concave.

Proof. Since R(X,L) is a finitely generated domain,

Γ :=
{

(m,λ) ∈ N×M | H0(X,mL)λ 6= 0
}

is a finitely generated sub-semigroup of N ×M (cf. [Bri87, Proposition 2.1]); hence P is a
rational polytope. In [Ok96], Okounkov constructs a convex body2 ∆ ⊂ Rn and a linear map
p : Rn →MR such that p(∆) = P and p∗µ = DH(X,L), with µ the Lebesgue measure on ∆,
normalized to mass 1. In particular, supp DH(X,L) = P , so DH(X,L) is a Dirac mass iff the

T -action on H0(X,mL) has only one weight for all m divisible enough. By the ampleness
of L, this implies that the T -action on X = ProjR(X,L) is trivial.

The last assertion is a consequence of the Brunn-Minkowski inequality. �

2The convex body ∆ is the Okounkov body of (X,L) with respect to a suitable valuation of maximal
rational rank, cf. [Bou14].
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Remark 6.5. Okounkov also mentions on [Ok96, p.1] that the density f is piecewise poly-
nomial on P , but while this is a classical result of Duistermaat and Heckman when X is a
smooth complex variety, we were not able to locate a proof in the general case. In particular,
the proof of [BP90, Proposition 3.4] is unfortunately incomplete. The results of §6.3 below
imply piecewise polynomiality when T ' Gm has rank 1.

6.2. The limit measure of a filtration. Let (X,L) be a polarized variety of dimension
n, and set R = R(X,L). In this section, we review and complement the study in [BC11] of
a natural measure on R associated to a general R-filtration F •R on R.

Recall that the volume of a graded subalgebra S ⊂ R is defined as

vol(S) := lim sup
m→∞

n!

mn
dimSm ∈ R≥0. (6.2)

The following result is proved using Okounkov bodies [LM09, KK12] (see also the first
author’s appendix in [Szé14]).

Lemma 6.6. Let S ⊂ R be a graded subalgebra containing an ample series, i.e.

(i) Sm 6= 0 for all m� 1;
(ii) there exists Q-divisors A and E, ample and effective respectively, such that L = A+E

and H0(X,mA) ⊂ Sm ⊂ H0(X,mL) for all m divisible enough.

Then vol(S) > 0, and the limsup in (6.2) is a limit. For each m � 1, let am ⊂ OX be
the base ideal of Sm, i.e. the image of the evaluation map Sm ⊗ OX(−mL) → OX , and let
µm : Xm → X be the normalized blow-up of X along am, so that OXm · am = OXm(−Fm)
with Fm an effective Cartier divisor. Then we also have

vol(S) = lim
m→∞

(
µ∗mL− 1

mFm
)n
.

Now let F •R be a filtration of the graded ring R, as defined in §1.1. We denote by

λ(m)
max = λ

(m)
1 ≥ · · · ≥ λ(m)

Nm
= λ

(m)
min

the successive minima of F •H0(X,mL). As R is an integral domain, the sequence (λ
(m)
max)m∈N

is superadditive in the sense that λ
(m+m′)
max ≥ λ(m)

max + λ
(m′)
max , and this implies that

λmax = λmax(F •R) := lim
m→∞

λ
(m)
max

m
= sup

m≥1

λ
(m)
max

m
∈ (−∞,+∞].

By definition, we have λmax < +∞ iff there exists C > 0 such that F λH0(X,mL) = 0 for
any λ,m such that λ ≥ Cm, and we then say that F •R has linear growth.

Remark 6.7. In contrast, there always exists C > 0 such that F λH0(X,mL) = H0(X,mL)
for any λ,m such that λ ≤ −Cm. This is a simple consequence of the finite generation of
R, cf. [BC11, Lemma 1.5].

For each λ ∈ R, we define a graded subalgebra of R by setting

R(λ) :=
⊕
m∈N

FmλH0(X,mL).

The main result of [BC11] may be summarized as follows.

Theorem 6.8. Let F •R be a filtration with linear growth.
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(i) For each λ < λmax, R(λ) contains an ample series.

(ii) The function λ 7→ vol
(
R(λ)

)1/n
is concave on (−∞, λmax), and vanishes on (λmax,+∞).

(iii) If we introduce for each m the probability measure on R

νm :=
1

Nm

∑
j

δ
m−1λ

(m)
j

= − d

dλ

dimFmλH0(X,mL)

Nm
, (6.3)

then νm has uniformly bounded support and converges weakly as m → ∞ to the
probability measure

ν := − d

dλ
V −1 vol

(
R(λ)

)
.

We call ν the limit measure of the filtration F •R. The log concavity property of vol
(
R(λ)

)
immediately yields:

Lemma 6.9. The support of the limit measure ν is given by supp ν = [λmin, λmax] with

λmin := inf
{
λ ∈ R | vol

(
R(λ)

)
< V

}
.

Further, ν is absolutely continuous with respect to the Lebesgue measure, except perhaps for
a Dirac mass at λmax.

More precisely, the mass of ν on {λmax} is equal to limλ→(λmax)− vol
(
R(λ)

)
.

Remark 6.10. While we trivially have λmin ≥ lim supm→∞ k
−1λ

(m)
min, the inequality can be

strict in general, but it will be an equality for the filtrations considered in §6.3 and §6.4.

6.3. Finitely generated filtrations. Let (X,L) be a polarized variety. We shall show
that the limit measure of a finitely generated Z-filtration of R = R(X,L) is well behaved.
Recall from §2.5 that we can associate an ample test configuration to such a filtration.

Theorem 6.11. Let F •R be a finitely generated Z-filtration of R = R(X,L), with limit
measure ν and associated ample test configuration (X ,L). Then:

(i) F •R has linear growth;
(ii) the density on (−∞, λmax) is a piecewise polynomial function, of degree at most n−1;

(iii) the barycenter of ν is equal to∫
R
λ ν(dλ) =

(
L̄n+1

)
(n+ 1)(Ln)

,

with (X̄ , L̄) the compactification of (X ,L).

Proof. The following argument is inspired by the proof of [ELMNP06, Proposition 4.13].3

For each τ = (m,λ) ∈ N×Z, let aτ be the base ideal of F λH0(X,mL), i.e. the image of the
evaluation map F λH0(X,mL) ⊗ OX(−mL) → OX . Let µτ : Xτ → X be the normalized
blow-up of aτ , which is also the normalized blow-up of its integral closure aτ . We have

OXτ · aτ = OXτ · aτ = OXτ (−Fτ )

3While the base field in loc.cit. is C, the results we use are valid over an arbitrary algebraically closed
field.
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with Fτ a Cartier divisor, and we set

Vτ :=
(
µ∗τL− 1

mFτ
)n
.

Since R(λ) contains an ample series for λ ∈ (−∞, λmax), Lemma 6.6 yields

vol
(
R(λ)

)
= lim

m→∞
V(m,dmλe).

Now, we use the finite generation of F •R, which implies that the N×Z-graded OX -algebra⊕
τ∈N×Z aτ is finitely generated. By [ELMNP06, Proposition 4.7], we may thus find a

positive integer d and finitely many vectors ei = (mi, λi) ∈ N × Z, 1 ≤ i ≤ r, with the
following properties:

(i) e1 = (0,−1), er = (0, 1), and the slopes ai := λi/mi are strictly increasing with i;
(ii) Every τ ∈ N×Z may be written as τ = piei + pi+1ei+1 with i, pi, pi+1 ∈ N uniquely

determined, and the integral closures of adτ and apidei · a
pi+1

dei+1
coincide.

Choose a projective birational morphism µ : X ′ → X with X ′ normal and dominating the
blow-up of each adei , so that there is a Cartier divisor Ei with OX′ · adei = OX′(−Ei). For
all τ = (m,λ) ∈ N× Z written as in (ii) as τ = piei + pi+1ei+1, we get

OX′ · apidei · a
pi+1

dei+1
= OX′(−(piEi + pi+1Ei+1)),

and the universal property of normalized blow-ups therefore shows that µ factors through
the normalized blow-up of apidei · a

pi+1

dei+1
. By Lemma 1.7, the latter is also the normalized

blow-up of

apidei · a
pi+1

dei+1
= adτ ,

so we infer that

adτ · OX′ = OX′ (−(piEi + pi+1Ei+1)) ,

with piEi + pi+1Ei+1 the pull-back of Fdτ . As a result, we get

Vdτ =
(
µ∗L− 1

dm (piEi + pi+1Ei+1)
)n
.

Now pick λ ∈ (0, λmax), so that λ ∈ [ai, ai+1) for some i. We infer from the previous
discussion that

vol
(
R(λ)

)
= lim

m→∞
V(m,dmλe) = (µ∗L− (fi(λ)Ei + fi+1(λ)Ei+1))n

for some affine functions fi, fi+1, and we conclude as desired that vol
(
R(λ)

)
is a piecewise

polynomial function of λ ∈ (−∞, λmax), of degree at most n.
Finally we prove (iii). By Lemma 2.12, the successive minima of F •H0(X,mL) coincide

with the Gm-weights of H0(X0,mL0), for all m divisible enough. In particular, the Gm-
weight wm of detH0(X0,mL0), equals the sum of the Gm-weights of H0(X0,mL0). By
Theorem 6.8 we then have ∫

R
λ ν(dλ) = lim

m→∞

wm
mNm

,

and the result thus follows from Proposition 3.4. �

Remark 6.12. For a finitely generated Z-filtration F •R, the graded subalgebra R(λ) is
finitely generated for each λ ∈ Q [ELMNP06, Lemma 4.8]. In particular, vol

(
R(λ)

)
∈ Q for

all λ ∈ Q ∩ (−∞, λmax).
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6.4. The filtration defined by a divisorial valuation. Any valuation v on X defines a
filtration F •vR on R by setting

F λv H
0(X,mL) :=

{
s ∈ H0(X,mL) | v(s) ≥ λ

}
.

The corresponding norm on R is thus given by ‖s‖m = e−v(s) for all s ∈ H0(X,mL). As
a special case of [BKMS14, Proposition 2.12], F •vR has linear growth for any divisorial
valuation v. The following result will be needed later on.

Lemma 6.13. Let v be a divisorial valuation on X, and let ν be the limit measure of F •vR.
Then supp ν = [0, λmax]. In other words, we have

lim
m→∞

dim
{
s ∈ H0(X,mL) | v(s) ≥ λm

}
Nm

< 1

for any λ > 0.

The equivalence between the two statements follows from Lemma 6.9 above.

Proof. Let Z ⊂ X be the closure of the center cX(v) of v on X, and w a Rees valuation of

Z. Since the center of w on X belongs to Z = cX(v), the general version of Izumi’s theorem
in [HS01] yields a constant C > 0 such that v(f) ≤ Cw(f) for all f ∈ OX,cX(w).

Let µ : X ′ → X be the normalized blow-up of Z and set E := µ−1(Z). By definition,
the Rees valuations of Z are given up to scaling by vanishing order along the irreducible
components of E. Given λ > 0, we infer that

{v ≥ λm} ⊂ µ∗OX′(−mδE)

for all 0 < δ � 1 and all m ≥ 1. It follows that{
s ∈ H0(X,mL) | v(s) ≥ ελm

}
↪→ H0

(
X ′,m (µ∗L− δE)

)
,

so that vol
(
R(λ)

)
≤ (µ∗L − δE)n. But since −E is µ-ample, µ∗L − δE is ample on X ′ for

0 < δ � 1, so that

d

dλ
(µ∗L− δE)n = −n

(
E · (µ∗L− δE)n−1

)
< 0.

It follows that

vol
(
R(λ)

)
≤ (µ∗L− δE)n < (µ∗L)n = V

for 0 < δ � 1, hence the result. �

Remark 6.14. At least in characteristic zero, the continuity of the volume function shows
that vol

(
R(λ)

)
→ 0 as λ → λmax from below, so that ν has no atom at λmax, and is thus

absolutely continuous on R (cf. [BKMS14, Proposition 2.25]).
On the other hand, F •R is not finitely generated in general. Indeed, well-known examples

of irrational volume show that vol
(
R(1)

)
can sometimes be irrational (compare Remark 6.12).
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6.5. The Duistermaat-Heckman measure of a non-Archimedean metric. In this
section, L is ample. For any semiample test configuration (X ,L) of (X,L), define the
Duistermaat-Heckman measure DH(X ,L) as the limit measure of the finitely generated filtra-
tion on R = R(X,L) induced by (X ,L). The terminology is justified by the second assertion
in the following result:

Proposition 6.15. The measure DH(X ,L) only depends on the non-Archimedean metric φ ∈
HNA(L) defined by (X ,L). Further, if (X ,L) is ample, then DH(X ,L) equals the Duistermaat-
Heckman measure of the polarized Gm-scheme (X0,L0).

This allows us to define the Duistermaat-Heckman measure DHφ of any metric φ ∈
HNA(L). Let us write down some of its main properties.

Theorem 6.16. Let φ ∈ HNA(L) be a semipositive non-Archimedean metric on L.

(i) The measure DHφ equals the Duistermaat-Heckman measure of the polarized Gm-
scheme (X0,L0), for any ample representative (X ,L) of φ.

(ii) The measure DHφ has piecewise polynomial density on (−∞, λmax).
(iii) The barycenter of DHφ is equal to∫

R
λDHφ(dλ) =

(φn+1)

(n+ 1)(Ln)
.

(iv) For c ∈ Q and d ∈ N∗, DHφ+c and DHφd are the pushforwards of DHφ by λ 7→ λ+ c
and λ 7→ dλ, respectively.

Proof of Proposition 6.15. First assume that (X ,L) is ample. By Lemma 2.12, the successive
minima of F •H0(X,mL) coincide with the weights of the Gm-action on H0(X0,mL0) for m
sufficiently divisible. This implies the second assertion of the proposition.

To prove the first assertion, it suffices to prove that DH(X ,L) = DH(X ′,L′), whenever (X ,L)
is semiample and (X ′,L′) is a pullback of (X ,L) via µ : X ′ → X .

Let F •R (resp. F
′•R) be the filtration defined by (X ,L) (resp. (X ′,L′)), and let ν (resp.

ν ′) be the corresponding limit measure. Replacing replacing L with L+ cX0 translates the
two measures by c, so we may assume ν and ν ′ are supported in R+. We claim that

F λH0(X,mL) ⊂ F ′λH0(X,mL) (6.4)

for all λ. Indeed, since X and X ′ are reduced by Proposition 2.7, OX injects into µ∗OX ′ , and
the projection formula thus yields a Gm-equivariant inclusion H0(X ,mL) ↪→ H0(X ′,mL′).
In particular, we get an inclusion of the weight-λ parts, and the claim follows by restricting
to H0(X,mL). As a consequence of (6.4), we get

ν ′{x > λ} ≥ ν{x > λ} (6.5)

for all λ ∈ R, thanks to Theorem 6.8.
On the other hand, we claim that ν and ν ′ have the same barycenter λ̄. Granted this

claim, we get ∫
R+

ν{x > λ}dλ =

∫
R+

λ dν = λ̄ =

∫
R+

λ dν ′ =

∫
R+

ν ′{x > λ}dλ (6.6)

since ν and ν ′ are supported in R+. Since λ 7→ ν ′{x > λ} and λ 7→ ν{x > λ} are right-
continuous, it follows from (6.5) and (6.6) that ν ′{x > λ} = ν{x > λ} for all λ ∈ R+, and
hence ν = ν ′, completing the proof.
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It remains to prove the claim. Let (Xamp,Lamp) and (X ′amp,L′amp) be the ample models
of (X ,L) and (X ′,L′), respectively; see Proposition 2.14. Then (X ,L) and (Xamp,Lamp)
define the same filtration on R, and hence the same limit measure ν. By Theorem 6.11, the
barycenter λ̄ of ν satisfies (n+1)(Ln)λ̄ = (L̄n+1

amp) = (L̄n+1). Similarly, the barycenter λ̄′ of ν ′

satisfies (n+1)(Ln)λ̄′ = (L̄n+1). Since L̄′ = µ∗L̄ with µ birational, we get (L̄n+1) = (L̄′n+1),
which completes the proof of the claim. �

Proof of Theorem 6.16. The assertion (i) is immediate from Proposition 6.15. Taking any
ample representative (X ,L) of φ, Theorem 6.11 implies (ii) and (iii). The first point of
(iv) follows from the fact that the Gm-weights of H0(X0,m(L + cX0)|X0) are obtained by
translating those of H0(X0,mL0) by mc (cf. Remark 2.2). Similarly, denoting by (X ′,L′) the
base change of (X ,L) by t 7→ td, then (X ′0,L′0) ' (X0,L0), but with the Gm-action composed
with t 7→ td. As a result, the Gm-weights of H0(X ′0,mL′0) are obtained by multiplying those
of H0(X0,mL0) by d, and the second point follows.

�

6.6. Test configurations with zero norm. The Lp-norm of a test configuration was
introduced in [Don05, p.458], at least for p an even integer. As in [His12, Definition 4.11],
we introduce more systematically:

Definition 6.17. Let φ ∈ HNA(L) be a semipositive non-Archimedean metric, with asso-
ciated Duistermaat-Heckman measure ν = DHφ. For each p ∈ [1,∞], the Lp-norm ‖φ‖p is
defined as the Lp(ν)-norm of λ− λ̄, with λ̄ :=

∫
R λ dν the barycenter of ν.

The invariance properties of the Duistermaat-Heckman measures imply:

Lemma 6.18. Let φ ∈ HNA(L) be a semipositive non-Archimedean metric. Then we have
‖φ+ c‖p = ‖φ‖p for all c ∈ Q, and ‖φd‖p = d‖φ‖p for all d ∈ N∗.

The main result of this section is the following characterization of non-Archimedean met-
rics with trivial norm. It implies Theorem A in the introduction.

Theorem 6.19. Assume X is normal and L ample. Let φ ∈ HNA(L) be a semipositive
non-Archimedean metric on L. Then the following are equivalent:

(i) the Duistermaat-Heckman measure DHφ is a Dirac mass;
(ii) for some (or, equivalently, any) p ∈ [1,∞], ‖φ‖p = 0;
(iii) the normal ample representative of φ is a trivial test configuration.

Remark 6.20. For p = 2, the equivalence between (ii) and (iii) was independently estab-
lished in [Der14a, Theorem 4.7].

The proof of Theorem 6.19 relies on the following precise description of the support of
the Duistermaat-Heckman measure.

Theorem 6.21. Let (X ,L) be a normal, semiample test configuration dominating XA1,
and write L = ρ∗LA1 + D with ρ : X → XA1 the canonical morphism. Then the support
[λmin, λmax] of its Duistermaat-Heckman measure satisfies

λmin = min
E

b−1
E ordE(D) and λmax = max

E
b−1
E ordE(D) = ordE0(D),

where E runs over the irreducible components of X0, bE := ordE(X0) = ordE(t), and E0 is
the strict transform of X × {0} (which has bE0 = 1).
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Proof of Theorem 6.19. The equivalence between (i) and (ii) holds by the definition of the
norm (Definition 6.17). Further, (iii) trivially implies (i), so we only need to show that (i)
implies (iii). To this end, let (X ,L) be a normal representative of φ dominating XA1 via
ρ : X → XA1 . Since DH(X ,L) is a Dirac mass, Theorem 6.21 shows that D is proportional to
X0. Hence L = ρ∗(LA1 + cX ×{0}) for some c ∈ Q, which proves as desired that the normal
ample representative of (X ,L) is trivial. �

We now prepare for the proof of Theorem 6.21.

Lemma 6.22. In the notation of Theorem 6.21, the induced filtration of R satisfies for all
m divisible enough and all λ ∈ Z

F λH0(X,mL) =
⋂
E

{
s ∈ H0(X,mL) | vE(s) +mb−1

E ordE(D) ≥ λ
}

where E runs over the irreducible components of X0.

According to Lemma 4.5, vE is a divisorial valuation on X for E 6= E0, while vE0 is the
trivial valuation (so that vE0(s) is either 0 for s 6= 0, or +∞ for s = 0).

Proof. Pick any m such that mL is a line bundle. By (2.1), a section s ∈ H0(X,mL) is
in F λ(X ,L)H

0(X,mL) iff s̄t−λ ∈ H0(X ,mL), with s̄ the Gm-invariant rational section of mL
induced by s. By normality of X , this amounts in turn to ordE

(
s̄t−λ

)
≥ 0 for all E, i.e.

ordE(s̄) ≥ λbE for all E. The result follows since mL = ρ∗(mLA1) +mD implies that

ordE(s̄) = r(ordE)(s) +m ordE(D) = bEvE(s) +m ordE(D).

�

Lemma 6.23. In the notation of Theorem 6.21, the filtration F •H0(X,mL) satisfies

λ
(m)
min

m
= min

E
b−1
E ordE(D) and

λ
(m)
max

m
= ordE0(D) = max

E
b−1
E ordE(D)

for all m divisible enough.

Proof. Set c := minE b
−1
E ordE(D), and pick m divisible enough (so that mc is in particular

an integer). The condition vE(s) + m ordE(D) ≥ mcbE automatically holds for all s ∈
H0(X,mL), since vE(s) ≥ 0. By Lemma 6.22, we thus have FmcH0(X,mL) = H0(X,mL),

and hence mc ≤ λ(m)
min.

We may assume mL is globally generated, so for every E we may find a section

s ∈ H0(X,mL) = F λ
(m)
minH0(X,mL)

that does not vanish at the center of vE on X, i.e. vE(s) = 0. By Lemma 6.22, it follows

that m ordE(D) ≥ λ(m)
minbE . Since this holds for every E, we conclude that mc ≥ λ(m)

min.
We next use that mL = ρ∗(mLA1) +mD is globally generated. This implies in particular

that OX (mD) is ρ-globally generated, which reads

OX (mD) = ρ∗OX (mD) · OX
as fractional ideals. But we trivially have ρ∗OX (mD) ⊂ OXA1

(mρ∗D), and we infer

D ≤ ρ∗ρ∗D.
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Now ρ∗D = ordE0(D)X×{0}, hence ρ∗ρ∗D = ordE0 X ′0, which yields ordE(D) ≤ ordE0(D)bE ,

hence ordE0(D) = maxE b
−1
E ordE(D).

Since ρ∗O(mD) is the flag ideal a(m) of Definition 2.16, we also see that

mmax
E

b−1
E ordE(D) = min {λ ∈ Z | mD ≤ λX0}

= min
{
λ ∈ Z | t−λ ∈ a(m)

}
= max

{
λ ∈ Z | a(m)

λ 6= 0
}
,

and we conclude thanks to Proposition 2.18. �

Proof of Theorem 6.21. In view of Lemma 6.9, the description of the supremum of the sup-
port of ν = DH(X ,L) follows directly from Lemma 6.23.

We now turn to the infimum. The subtle point of the argument is that it is not a priori
obvious that the stationary value

λ
(m)
min

m
= min

E
b−1
E ordE(D)

given by Lemma 6.23, which is of course the infimum of the support of ν(m) as in (6.3),

should also be the infimum of the support of their weak limit ν = limm ν
(m). What is

trivially true is the inequality

min
E

b−1
E ordE(D) = inf supp ν(m) ≤ inf supp ν.

Now pick λ > minE b
−1
E ordE(D). According to Lemma 6.9, it remains to show that

lim
m→∞

dimFmλH0(X,mL)

Nm
< 1. (6.7)

Note that ε := λbE−ordE(D) > 0 for at least one component E. By Lemma 6.22, it follows
that

FmλH0(X,mL) ⊂
{
s ∈ H0(X,mL) | vE(s) ≥ mε

}
. (6.8)

By Lemma 4.5, vE is either the trivial valuation or a divisorial valuation. In the former
case, the right-hand side of (6.8) consists of the zero section only, while in the latter case we
get (6.7) thanks to Lemma 6.13. �

7. Non-Archimedean functionals

The aim of this section is to introduce non-Archimedean analogues of several classical
functionals in Kähler geometry. Using these, we formulate and study a uniform notion of
K-stability. Througout this section, (X,L) is a normal polarized variety. Write V = (Ln)
and HNA = HNA(L).

Definition 7.1. A functional F on HNA is homogeneous if F (φd) = dF (φ) for all φ ∈ HNA

and d ∈ N∗, and translation invariant if F (φ+ c) = F (φ) for all φ ∈ HNA and c ∈ Q.

For example, Lemma 6.18 shows that the Lp-norm is homogeneous and translation in-
variant. In the next few sections we shall define several more functionals on HNA(L), all
modeled upon classical functionals on the space of Kähler metrics.
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7.1. The non-Archimedean Monge-Ampère energy.

Definition 7.2. The non-Archimedean Monge-Ampère energy functional ENA : HNA → R
is defined by

ENA(φ) :=

(
φn+1

)
(n+ 1)V

.

Note that E(φtriv) = 0 since (φn+1
triv ) = (Ln+1

P1 ) = 0. Lemma 5.6 and Theorem 6.16 imply:

Lemma 7.3. The functional ENA is homogeneous and satisfies

ENA(φ+ c) = ENA(φ) + c (7.1)

for all φ ∈ HNA and c ∈ Q. We further have

ENA(φ) =

∫
R
λDHφ(dλ).

Lemma 7.4. For each φ ∈ HNA we have

ENA(φ) =
1

(n+ 1)V

n∑
j=0

(
(φ− φtriv) · φj · φn−jtriv

)
.

Further, for j = 0, . . . , n− 1, we have the inequality(
(φ− φtriv) · φj · φn−jtriv

)
≥
(

(φ− φtriv) · φj+1 · φn−j−1
triv

)
. (7.2)

Proof. Since (φn+1
triv ) = 0, we get

(n+ 1)V ENA(φ) = (φn+1)− (φn+1
triv ) =

n∑
j=0

(
(φ− φtriv) · φj · φn−jtriv

)
.

The inequality (7.2) is now a consequence of Lemma 5.5. �

7.2. The non-Archimedean I and J-functionals.

Definition 7.5. The non-Archimedean I and J-functionals on HNA are defined by

INA(φ) := V −1 (φ · φntriv)− V −1 ((φ− φtriv) · φn)

and

JNA(φ) := V −1(φ · φntriv)− ENA(φ).

Remark 7.6. In our notation, the expression for the minimum norm ‖(X ,L)‖m given
in [Der14a, Remark 3.19] reads

‖(X ,L)‖m =
1

n+ 1
(φn+1)− ((φ− φtriv) · φn) ,

i.e. ‖(X ,L)‖m = V JNA(φ), where φ ∈ HNA(L) is the metric induced by (X ,L).

Lemma 7.7. For each φ ∈ HNA, we have

V −1(φ · φntriv) = λmax(F •φR) = sup supp DHφ
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Proof. Choose a normal, semiample test configuration (X ,L) representing φ and such that
X dominates XA1 . Denote by ρ : X → XA1 the canonical morphism, so that L = ρ∗LA1 +D
for a unique Q-Cartier divisor D supported on X0. Then

(φ · φntriv) = ((φ− φtriv) · φntriv) =
(
D · ρ∗LnA1

)
= (ρ∗D · LnA1) = V ordE0(D)

with E0 the strict transform ofX×{0} on X . Theorem 6.21 yields the desired conclusion. �

Proposition 7.8. The non-Archimedean functionals INA and JNA are non-negative, trans-
lation invariant, homogeneous, and satisfy

1
nJ

NA ≤ INA − JNA ≤ nJNA.

We further have

JNA(φ) = sup supp DHφ −
∫
R
λDHφ(dλ)

for all φ ∈ HNA.

Proof. Translation invariance and homogeneity follow directly from Lemma 5.6, while non-
negativity is a consequence of (7.2). The latter also shows that

V −1 ((φ− φtriv) · φntriv) + nV −1 ((φ− φtriv) · φn) ≤ (n+ 1)ENA(φ)

≤ nV −1 ((φ− φtriv) · φntriv) + V −1 ((φ− φtriv) · φn) .

This implies

n
(
INA(φ)− JNA(φ)

)
= n

(
ENA(φ)− V −1 ((φ− φtriv) · φn)

)
≥ V −1 ((φ− φtriv) · φntriv)− ENA(φ) = JNA(φ),

and similarly for the other inequality.
The final assertion is a consequence of Lemma 7.3 and Lemma 7.7. �

Corollary 7.9. For all φ ∈ HNA we have JNA(φ) ≥ 1
2‖φ‖1, and JNA(φ) = 0 iff φ = φtriv +c

for some c ∈ Q.

This result was also obtained by Dervan, see [Der14a, Theorem 1.2].

Proof. With λ̄ :=
∫
R λDHφ(dλ), Proposition 7.8 and Definition 6.17 yield

JNA(φ) ≥
∫
{λ>λ̄}

(λ− λ̄)DHφ(dλ) =
1

2

∫
|λ− λ̄|DHφ(dλ) =

1

2
‖φ‖1.

The last point of the corollary now follows from Theorem 6.19. �

7.3. The non-Archimedean Mabuchi functional. We assume from now on that the
base field k has characteristic 0. Let B be a boundary on X. In view of Definition 7.2, we
may rewrite the Donaldson-Futaki invariant with respect to the pair (X,B) of a normal test
configuration (X ,L) (see §3.4) as

DFB(X ,L) = V −1
((
KX̄/P1 + B̄

)
· L̄n

)
+ S̄BE

NA(X ,L), (7.3)

with B̄ the (component-wise) Zariski closure of B ×Gm in X̄ .
Since canonical divisor classes are compatible under push-forward, the projection formula

shows that DFB is invariant under pull-back, hence descends to a functional DFB : HNA →
R. While it is straightforward to see that DFB is translation invariant, it is, however, not
homegenous, and we therefore introduce an ‘error term’ to recover this property.
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Definition 7.10. The non-Archimedean Mabuchi functional of the polarized pair ((X,B), L)
is the functional MNA

B : HNA(L)→ R defined, for φ ∈ HNA(L) by

MNA
B (φ) := DFB(φ) + V −1

(
(X0,red −X0) · L̄n

)
for each normal, semiample test configuration (X ,L) representing φ.

It is clear that MNA
B ≤ DFB on HNA. We can make this more precise as follows.

Definition 7.11. A non-Archimedean metric φ ∈ HNA is reduced if the central fiber X0 of
its unique normal ample representative (X ,L) is reduced.

Proposition 7.12. We have MNA
B (φ) ≤ DFB(φ) for φ ∈ HNA, with equality iff φ is reduced.

Proposition 7.13. The non-Archimedean Mabuchi functional MNA
B : HNA(L) → R is

translation invariant and homogeneous.

Proof. Translation invariance is straightforward to verify. As for homogeneity, it is enough
to prove it for

(X ,L) 7→
((
KX̄/P1 + (X0,red −X0)

)
· L̄n

)
.

As in [LX14, §4], this, in turn, is a consequence of the pull-back formula for log canonical
divisors. More precisely, let (Xd,Ld) be the normalized base change of (X ,L) as in Lemma
5.7, and denote by fd : P1 → P1 and gd : X̄d → X̄ the induced finite morphisms, which both
have degree d. The pull-back formula for log canonical divisors (see for instance [BdFF12,
Lemma 3.3]) yields

KX̄d + (Xd,0)red + (Xd,∞)red = g∗d (KX̄ + X0,red + X∞,red) .

and

KP1 + [0] + [∞] = f∗d (KP1 + [0] + [∞]),

The fibers over ∞ being reduced, it follows that

KX̄d/P1 +
(
(Xd,0)red −Xd,0

)
= g∗d

(
KX̄/P1 + (X0,red −X0)

)
.

Since gd has degree d, we get as desired((
KX̄d/P1 +

(
(Xd,0)red −Xd,0

))
· L̄nd

)
= d

((
KX̄/P1 + (X0,red −X0))

)
· L̄n

)
by the projection formula. �

The homogeneity property of MNA
B will turn out to be particularly useful in conjunction

with the following weak form of semistable reduction.

Proposition 7.14. For every φ ∈ HNA, φd is reduced for all d divisible enough. For such
d we have MNA

B (φ) = d−1 DFB(φd).

Proof. Let (X ,L) be the normal ample representative of φ, so that the normal ample repre-
sentative of φd is given by (Xd,Ld) as in Lemma 5.7. The result follows from the well-known
elementary fact (compare for instance [KKMS, pp.100–101]) that the central fiber of the
normalized base change Xd of X by t 7→ td becomes reduced as soon as d is divisible by all
coefficients of X0. �
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7.4. Entropy and Ricci energy.

Definition 7.15. Given a boundary B on X, we define

(i) the non-Archimedean entropy functional HNA
B : HNA → R by setting

HNA
B (φ) := V −1

∑
E

A(X,B)(vE)bE(E · Ln),

where E runs over the non-trivial irreducible components of the central fiber of any
normal representative (X ,L), bE := ordE(X0), vE = b−1

E r(ordE), and A(X,B)(vE) is
the log discrepancy of vE with respect to the pair (X,B);

(ii) the non-Archimedean Ricci energy RNA
B : HNA → R by

RNA
B (φ) := V −1 (ψtriv · φn)

with ψtriv the trivial non-Archimedean metric on KX +B.

More concretely, we have

RNA
B (φ) = V −1

(
p∗(KX +B) · L̄n

)
for any representative (X ,L) dominating XA1 , with p : X̄ → X the induced morphism.

We have the following non-Archimedean analogue of the Chen-Tian formula.

Proposition 7.16. For each boundary B, we have

MNA
B = HNA

B + S̄BE
NA +RNA

B on HNA(L).

Corollary 7.17. The functionals HNA
B and RNA

B are translation invariant and homogeneous.

Proof. It is straightforward to see that the Ricci energy functional is translation invariant
and homogeneous. These properties hold also for the Mabuchi functional and the Monge-
Ampère energy functionals, so we conclude using Proposition 7.16 that they must hold for
the entropy functional. (One may also verify this directly.) �

Proof of Proposition 7.16. Let (X ,L) be a representative of φ ∈ HNA dominating XA1 , and
let ρ : X̄ → XP1 be the corresponding morphism. For each non-trivial component E of X0,
set AE := A(XA1 ,BA1 )(ordE). This satisfies

AE = A(X,B)(vE) + ordE(X0) (7.4)

by Proposition 4.11. Since B̄ is the the strict transform of BP1 on X̄ and the non-trivial
components of X0 are exactly the ρ-exceptional prime divisors, we have

KX̄ + B̄ = ρ∗
(
KXP1

+BP1

)
+
∑
E

(AE − 1)E,

Combining this with (7.4) and denoting as above by p : X̄ → X the composition of ρ with
the projection XP1 → X, we get((

KX̄/P1 + B̄
)
· Ln

)
= (p∗ (KX +B)) · Ln) +

∑
E

(
A(X,B)(vE) + ordE(X0)− 1

)
(E · Ln)

= V RNA
B (φ) + V HNA

B (φ) + ((X0 −X0,red) · Ln) .

The result follows in view of (7.3). �
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Remark 7.18. In the terminology of [Oda12], HNA
B (φ) +V −1 ((X0 −X0,red) · Ln) coincides

(up to a multiplicative constant) with the ‘discrepancy term’ of the Donaldson-Futaki invari-
ant, while S̄B E

NA(φ) +RNA
B (φ) corresponds to the ‘canonical divisor part’.

In the Kähler-Einstein case, i.e. when KX + B is numerically proportional to L, the
formula for MNA

B takes the following alternative form.

Lemma 7.19. Assume that KX +B ≡ λL for some λ ∈ Q. Then

MNA
B = HNA

B + λ
(
INA − JNA

)
.

Proof. The trivial non-Archimedean metric ψtriv on KX + B corresponds λφtriv, with φtriv

the trivial metric on L, and hence

RNA(φ) = V −1(ψtriv · φn) = λV −1 (φtriv · φn) .

Since S̄B = −nλ, we infer

S̄BE
NA(φ) +RNA(φ) = λV −1

[
− n

n+ 1
(φn+1) + (φtriv · φn)

]
= λV −1

[
1

n+ 1
(φn+1)− ((φ− φtriv) · φn)

]
= λ

[
ENA(φ)− V −1 ((φ− φtriv) · φn)

]
= λ

(
INA(φ)− JNA(φ)

)
.

�

7.5. Uniform K-stability.

Definition 7.20. A norm N on HNA is a non-negative, homogeneous and translation in-
variant functional N : HNA → R+ such that N(φ) = 0 iff φ = φtriv + c for some c ∈ Q.

Given a boundary B on X, we say that the polarized pair ((X,B), L) is uniformly K-stable
with respect to the norm N if there exists δ > 0 such that MNA

B ≥ δN on HNA.

The two cases we shall actually deal with are N = JNA and N = ‖ · ‖p. We shall then
speak of J-uniform K-stability and Lp-uniform K-stability, respectively.

Remark 7.21. By Remark 7.6, Dervan’s notion of uniform K-stability with respect to the
minimum norm introduced in [Der14a] is equivalent to J-uniform K-stability.

In order to relate this with the usual notion of K-stability involving Donaldson-Futaki
invariants (see Definition 3.8), we prove:

Lemma 7.22. For any polarized pair ((X,B), L), any norm N on HNA, and any δ > 0,
the following assertions are equivalent:

(i) MNA
B ≥ δN on HNA(L);

(ii) DFB ≥ δN on HNA(L).

In particular, the (trivial) implication (i)=⇒(ii) and the condition imposed on N show
that uniform K-stability with respect to N indeed implies K-stability.

Proof. The implication (i)=⇒(ii) is trivial since MNA
B ≤ DFB. For the reverse implication,

let φ ∈ HNA. By Proposition 7.12 we can pick d ≥ 1 such that MNA
B (φd) = DFB(φd). By

assumption, DFB(φd) ≥ δN(φd), so we conclude using the homogeneity of MNA
B and N . �
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The same argument yields:

Lemma 7.23. A polarized pair ((X,B), L) is K-stable iff MNA
B (φ) > 0 for every φ ∈ HNA(L)

such that φ− φtriv is nonconstant.

By Corollary 7.9, we have:

Corollary 7.24. J-uniform K-stability implies L1-uniform K-stability.

The next result confirms G. Székelyhidi’s expectation that p = n/n − 1 is a threshold
value for Lp-uniform K-stability. (cf. [Szé06, §3.1.1]).

Proposition 7.25. A polarized pair ((X,B), L) cannot be Lp-uniformly K-stable unless
p ≤ n

n−1 . More precisely, there exists a sequence φε ∈ HNA(L), parametrized by 0 < ε � 1

rational, such that MNA
B (φε) ∼ εn, ‖φε‖p ∼ ε1+n

p for each p ≥ 1, and JNA(φε) = O
(
εn+1

)
.

Proof. Let x ∈ X \ suppB be a regular closed point, and µ : X → XA1 be the blow-up of
(x, 0) (i.e. the deformation to the normal cone), with exceptional divisor E. For each rational
ε > 0 small enough, Lε := µ∗LA1−εE is relatively ample, hence defines a normal, ample test
configuration (X ,Lε) for (X,L), with associated non-Archimedean metric φε ∈ HNA(L).

Lemma 6.22 gives the following description of the filtration F •εR attached to (X ,Lε):
Fmλε H0(X,mL) =

{
s ∈ H0(X,mL) | vE(s) ≥ m(λ+ ε)

}
for λ ≤ 0, and Fmλε H0(X,mL) = 0 fir λ > 0 otherwise. If we denote by F the exceptional
divisor of the blow-up µ : X ′ → X at x, then vE = ordF , and the Duistermaat-Heckman
measure DHε is thus given by

DHε(x > λ) = V −1 (µ∗L− (λ+ ε)F )n = 1− V −1(λ+ ε)n

for λ ∈ (−ε, 0), DHε(x > λ) = 1 for λ ≤ −ε, and DHε(x > λ) = 0 for λ > 0. Hence

DHε = nV −11[−ε,0](λ+ ε)n−1dλ+ (1− V −1εn)δ0.

We first see from this that

JNA(φε) = −ENA(φe) = −
∫
R
λDHε(dλ) = − n

V

∫ 0

−ε
λ(λ+ ε)n−1 dλ = O(εn+1),

and

‖φε‖pp =

∫
R

∣∣λ− ENA(φε)
∣∣p DHε(λ)

= nV −1

∫ 0

−ε

∣∣λ+O
(
εn+1

)∣∣p (λ+ ε)n−1dλ+ (1− V −1εn)O
(
εp(n+1)

)
= εp+n

[
nV −1

∫ 1

0
|t+O (εn)|p (1− t)n−1dt+O

(
εn(p−1)

)
+ o(1)

]
= εp+n(c+ o(1))

for some c > 0. Finally, the estimate for MNA
B (φε) is a special case of Proposition 8.12

below. �

8. K-stability and singularities of pairs

In this section, the base field k is assumed to have characteristic 0.
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8.1. Odaka-type results for pairs. Let B be an effective boundary on X. Recall that
the pair (X,B) is lc (log canonical) if A(X,B)(v) ≥ 0 for all divisorial valuations v on X,
while (X,B) is klt (Kawamata log terminal) if A(X,B)(v) > 0 for all such v.

Theorem 8.1. Let (X,L) be a normal polarized variety, and B an effective boundary on
X. Then

(X,B) lc⇐⇒ HNA
B ≥ 0 on HNA

and

((X,B), L) K-semistable =⇒ (X,B) lc.

The proof of this result, given in §8.3, follows rather closely the line of argument of [Oda13b].
The second implication is also observed in [OSu11, Theorem 6.1].

Theorem 8.2. Let (X,L) be a normal polarized variety and B an effective boundary on X.
Then the following assertions are equivalent:

(i) (X,B) is klt;
(ii) there exists δ > 0 such that HNA

B ≥ δJNA on HNA;
(iii) HNA

B (φ) > 0 for every φ ∈ HNA that is not a translate of φtriv.

We prove this in §8.4. The proof of (iii)=⇒(i) is similar to that of [Oda13b, Theorem 1.3]
(which deals with the Fano case), while that of (i)=⇒(ii) relies on an Izumi-type estimate
(Theorem 8.13). As we shall see, (ii) holds with δ equal to the global log canonical threshold
of ((X,B), L) (cf. Proposition 8.15 below).

The above results have the following consequences in the ‘log Kähler-Einstein case’, i.e.
when KX +B ≡ λL for some λ ∈ R. First, we have a uniform version of [OSu11, Theorem
4.1, (i)]. Closely related results were independently obtained in [Der14a, §3.4].

Corollary 8.3. Let (X,L) be a normal polarized variety, B an effective boundary on X,
and assume that KX +B ≡ λL with λ > 0. The following are then equivalent:

(i) (X,B) is lc;
(ii) ((X,B), L) is J-uniformly K-stable, with MNA

B ≥ λ
nJ

NA on HNA;
(iii) ((X,B), L) is K-semistable.

Next, in the log Calabi-Yau case we get a uniform version of [OSu11, Theorem 4.1, (ii)]:

Corollary 8.4. Let (X,L) be normal polarized variety, B an effective boundary on X, and
assume that KX + B ≡ 0. Then ((X,B), L) is K-semistable iff (X,B) is lc. Further, the
following assertions are equivalent:

(i) (X,B) is klt;
(ii) ((X,B), L) is J-uniformly K-stable;

(iii) ((X,B), L) is K-stable.

Remark 8.5. By [Oda12, Corollary 3.3], there exist polarized K-stable Calabi-Yau orbifolds
(which have log terminal singularities) (X,L) that are not asymptotically Chow (or, equiv-
alently, Hilbert) semistable. In view of Corollary 8.4, it follows that J-uniform K-stability
does not imply asymptotic Chow stability in general.

Finally, in the log Fano case we obtain:



UNIFORM K-STABILITY 47

Corollary 8.6. Let (X,L) be normal polarized variety, B an effective boundary on X, and
assume that KX +B ≡ −λL with λ > 0. If ((X,B), L) is K-semistable, then HNA

B ≥ λ
nJ

NA

on HNA; in particular, (X,B) is klt.

A partial result in the reverse direction can be found in Proposition 8.16. See also [OSu11,
Theorem 6.1] and [Der14a, Theorem 3.39] for closely related results. Corollaries 8.3, 8.4
and 8.6 are proved in §8.5.

8.2. Lc and klt blow-ups. The following result, due to Y. Odaka and C. Xu, deals with
lc blow-ups. The proof is based on an ingeneous application of the MMP.

Theorem 8.7. [OX12, Theorem 1.1] Let B be an effective boundary on X with coefficients
at most 1. Then there exists a unique projective birational morphism µ : X ′ → X such that
the strict transform B′ of B on Y satisfies:

(i) the exceptional locus of µ is a (reduced) divisor E;
(ii) (X ′, E +B′) is lc and KX′ + E +B′ is µ-ample.

Corollary 8.8. Let B be an effective boundary on X, and assume that (X,B) is not lc. Then
there exists a closed subscheme Z ⊂ X whose Rees valuations v all satisfy A(X,B)(v) < 0.

Proof. If B has a component F with coefficient greater than 1, then A(X,B)(ordF ) < 0, and
Z := F has the desired property, since ordF is its unique Rees valuation (cf. Example 1.10).

If not, Theorem 8.7 applies. Denoting by Ai := A(X,B)(ordEi) the log discrepancies of the
component Ei of E, we have

KX′ + E +B′ = π∗(KX +B) +
∑
i

AiEi, (8.1)

which proves that
∑

iAiEi is µ-ample, and hence Ai < 0 by the negativity lemma (or
Lemma 1.12). Proposition 1.11 now yields the desired subscheme. �

We next prove an analogous result for klt pairs, using a well-known and easy consequence
of the MMP as in [BCHM].

Proposition 8.9. Let B be an effective boundary, and assume that (X,B) is not klt. Then
there exists a closed subscheme Z ⊂ X whose Rees valuations v all satisfy A(X,B)(v) ≤ 0.

Proof. If B has a component F with coefficient at least 1, then A(X,B)(ordF ) ≤ 0, and we
may again take Z = F .

Assume now that B has coefficients less than 1. Let π : X ′ → X be a log resolution
of (X,B), which means X ′ is smooth, the exceptional locus E of µ is a (reduced) divisor,
and E + B′ has SNC support, with B′ the strict transform of B. If we denote by Ai :=
A(X,B)(ordEi) the log discrepancies of the component Ei of E, then (8.1) holds, and hence

KX′ + (1− ε)E +B′ = π∗(KX +B) +
∑
i

(Ai − ε)Ei (8.2)

for any 0 < ε < 1. If we pick ε smaller than minAi>0Ai, the Q-divisor D :=
∑

i(Ai − ε)Fi
is then π-big (since the generic fiber of π is a point), and is π-numerically equivalent to the
log canonical divisor of the klt pair (X ′, (1− ε)E +B′) by (8.2).
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Picking any m0 ≥ 1 such that m0D is a Cartier divisor, [BCHM, Theorem 1.2] shows that
the OX -algebra of relative sections

R(X ′/X,m0D) :=
⊕
m∈N

µ∗OX′(mm0D)

is finitely generated. Its relative Proj over X yields a projective birational morphism µ :
Y → X with Y normal, such that the induced birational map φ : X ′ 99K Y is surjective
in codimension one (i.e. φ−1 does not contract any divisor) and φ∗D =

∑
i(Ai − ε)φ∗Ei is

µ-ample.
Since D is π-exceptional and φ is surjective in codimension 1, φ∗D is also µ-exceptional.

By Lemma 1.12, −φ∗D is effective, its support coincides the exceptional locus of µ. If follows
that the µ-exceptional prime divisors are exactly the strict transforms of those Ei’s with
Ai − ε < 0, i.e. Ai ≤ 0 by definition of ε. As before, we conclude by Proposition 1.11. �

8.3. Estimates near the trivial valuation and proof of Theorem 8.1.

Definition 8.10. Let (X ,L) be a test configuration representing a metric φ ∈ HNA. For
each irreducible component E of X0, let ZE ⊂ X be the closure of the center of vE on X,
and set rE := codimX ZE. Then the canonical birational map X 99K XA1 maps E onto
ZE × {0}. Let FE be the generic fiber and define the local degree degE(φ) of φ at E as

degE(φ) := (FE · LrE ).

Since L is semiample on E ⊂ X0, we have degE(φ) ≥ 0, and degE(φ) > 0 iff E is not
contracted on the ample model of (X ,L). The significance of these invariants is illustrated
by the following estimate, whose proof is straightforward.

Lemma 8.11. With the above notation, assume that X dominates XA1 via ρ. Given 0 ≤
j ≤ n and line bundles M1, . . . ,Mn−j on X, we have, for 0 < ε� 1 rational.(

E · (ρ∗LA1 + εD)j · ρ∗
(
M1,A1 · . . . ·Mn−j,A1

))
=

{
εrE

[
degE(φ)

(
j
rE

) (
ZE · Lj−rE ·M1 · . . . ·Mn−j

)]
+O

(
εrE+1

)
for j ≥ rE

0 for j < rE .

Proposition 8.12. Pick φ ∈ HNA that is not a translate of φtriv, and let (X ,L) be its unique
normal ample representative. Set r := minE rE, with rE = codimX ZE and E running over
all non-trivial components of the ample model (X ,L) of φ (and hence r ≥ 1).

Let further B be a boundary on X. Then φε := εφ+ (1− ε)φtriv satisfies

JNA(φε) = O
(
εr+1

)
, RNA

B (φε) = O
(
εr+1

)
,

and

MNA
B (φε) = HNA

B (φε) +O
(
εr+1

)
= εr

[
V −1

∑
rE=r

degE(φ)bE
(
ZE · Ln−r

)
A(X,B)(vE)

]
+O

(
εr+1

)
.

Proof. Let (X ′,L′) be a determination of (X ,L), and write L′ = ρ∗LA1 + D. Note that
(X ′, ρ∗LA1 + εD) is a representative of φε. By translation invariance of JNA and MNA, we
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may assume sup(φ− φtriv) = 0. Then sup(φε− φtriv) = 0, and hence JNA(φε) = −ENA(φε).
Now, by Lemma 7.4 we have

(n+ 1)V ENA(φε) =

n∑
j=0

(
εD · (ρ∗LA1 + εD)j · ρ∗Ln−jA1

)
.

Since we have normalized D by sup(φ − φtriv) = ordE0(D) = 0 for the strict transform E0

of X × {0} on X ′, Lemma 8.11 implies ENA(φε) = O(εr+1), and hence JNA(φε) = O(εr+1).
Similarly,

V RNA
B (φε) =

(
ρ∗KXP1/P1 · L̄n

)
=
(
ρ∗KXP1/P1 · L̄n

)
−
(
ρ∗KXP1/P1 · LnP1

)
=

n−1∑
j=0

(
εD · (ρ∗LA1 + εD)j · ρ∗Ln−j−1

A1 · ρ∗KXP1/P1

)
= O(εr+1).

The expression for MNA
B now follows from the Chen-Tian formula and Lemma 8.11 applied

to
HNA
B (φε) = V −1

∑
E

A(X,B)(vE)bE (E · (ρ∗LA1 + εD)n)

where E runs over the non-trivial components of X ′0. �

Proof of Theorem 8.1. If (X,B) is lc, the definition of HNA
B shows that it is non-negative

on HNA.
Now assume that (X,B) is not lc. By Corollary 8.8, there exists a closed subscheme

Z ⊂ X whose Rees valuations v all satisfy A(X,B)(v) < 0.
By Corollary 4.10, we can then find a normal, ample test configuration (X ,L) such that

{vE | E a non-trivial component of X0} coincides up to scaling with the Rees valuations of
Z, and hence AX(vE) < 0 for all E.

If we denote by φ ∈ HNA the non-Archimedean metric defined by (X ,L), then we directly
get HNA

B (φ) < 0, which proves the last asserion of the theorem.
On the other hand, Proposition 8.12 implies that φε := εφ+(1−ε)φtriv satisfiesMNA

B (φε) <
0 for 0 < ε� 1, which shows that ((X,B), L) cannot be K-semistable. �

8.4. The global log canonical threshold and proof of Theorem 8.2. Let B be a (not
necessarily effective) boundary on X. Recall that the pair (X,B) is sub-klt if A(X,B)(v) > 0
for all v (while klt also requires B ≥ 0).

The main interest of this notion is that if µ : X ′ → X is a proper birational morphism
(e.g. a log resolution) and B′ is the unique Q-Weil divisor such that µ∗(KX +B) = KX′+B′

and µ∗B
′ = B, then A(X,B) = A(X′,B′) shows that (X ′, B′) is also sub-klt, but B′ is not

effective in general even when B is.
The log canonical threshold of an effective Q-Cartier divisor D with respect to (X,B) is

defined as
lct(X,B)(D) := sup {t ≥ 0 | (X,B + tD) is klt} ,

and is positive since being klt is an open condition. Since (X,B+tD) is klt iff A(X,B+tD)(v) =
A(X,B)(v)− tv(D) > 0 for all divisorial valuations v on X, we have

lct(X,B)(D) = inf
v

A(X,B)(v)

v(D)
.
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Similarly, given an ideal a and c ∈ Q+, we set

lct(X,B)(a
c) := inf

v

A(X,B)(v)

v(ac)
,

with v(ac) := cv(a).
The main ingredient in the proof of (i)=⇒(ii) of Theorem 8.2 is the following.

Theorem 8.13. If ((X,B), L) is a polarized sub-klt pair, then

inf
D

lct(X,B)(D) = inf
a,c

lct(X,B)(a
c), (8.3)

where the left-hand infimum is taken over all effective Q-Cartier divisors D Q-linearly equiv-
alent to L, and the right-hand one is over all non-zero ideals a ⊂ OX and all c ∈ Q+ such
that L⊗ ac is nef. Further, these two infima are strictly positive.

Here we say that L⊗ ac is nef if µ∗L− cE is nef on the normalized blow-up µ : X ′ → X
of a, with E the effective Cartier divisor such that a · OX′ = OX′(−E).

Definition 8.14. The global log canonical threshold lct((X,B), L) of a polarized sub-klt
pair ((X,B), L) is the common value of the two infima in Theorem 8.13.

Proof of Theorem 8.13. Let us first prove that the two infima coincide. Let D be an effective
Q-Cartier divisor Q-linearly equivalent to L. Pick m ≥ 1 such that mD is Cartier, and set
a := OX(−mD) and c := 1/m. Then v(ac) = v(D) for all v, and L⊗ac is nef since L− cmD
is even numerically trivial. Hence inf lct(X,B)(D) ≤ inf lct(X,B)(a

c).
Conversely, assume that L⊗ ac is nef, and let µ : X ′ → X be the normalized blow-up of

X along a and E the effective Cartier divisor on X ′ such that OX′(−E) = a · OX′ , so that
µ∗L− cE is nef. Since −E is µ-ample, we can find 0 < c′ � 1 such that µ∗L− c′E is ample.
Setting cε := (1− ε)c+ εc′, we then have µ∗L− cεE is ample for all 0 < ε < 1.

Let also B′ the unique Q-Weil divisor on X ′ such that µ∗(KX + B) = KX′ + B′ and
µ∗B

′ = B, so that (X ′, B′) is a pair with A(X,B) = A(X′,B′).
If we choose a log resolution π : X ′′ → X ′ of (X ′, B′ + E) and let F =

∑
i Fi be the sum

of all π-exceptional primes and of the strict transform of B′red + Ered, then

lct(X,B)(a
cε) = lct(X′,B′)(cεE) = min

i

A(X′,B′)(ordFi)

ordFi(cεD)

Given 0 < ε < 1, pick m� 1 such that

(i) mcε ∈ N;
(ii) m(µ∗L− cεE) is very ample;

(iii) m ≥ lct(X,B)(a
cε).

Let H ∈ |m(µ∗L− cεE)| be a general element, and set D := µ∗(cεE +m−1H), so that D is
Q-linearly equivalent to L and µ∗D = cεE +m−1H.

By Bertini’s theorem, π is also a log resolution of (X ′, B′ + E +H), and hence

lct(X,B)(D) = lct(X′,B′)(cεE +m−1H) = min

{
A(X′,B′)(v)

v(cεE +m−1H)

∣∣∣∣ v = vi or v = ordH

}
.

But H, being general, doesn’t contain the center of ordDi on X ′ and is not contained in
suppE, i.e. ordDi(H) = 0 and ordH(E) = 0, and (iii) above shows that

lct(X,B)(D) = min
{

lct(X,B)(a
cε),m

}
= min

(X,B)
(acε).
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Since we have lct(X,B)(a
cε) = c

cε
lct(X,B)(a

c) with cε/c arbitrarily close to 1, we conclude

that the two infima in (8.3) are indeed equal.

We next show that the left-hand infimum in (8.3) is strictly positive, in two steps.

Step 1. We first treat the case where X is smooth and B = 0. By Skoda’s theorem (see for
instance [JM12, Proposition 5.10]), we then have

v(D) ≤ ordp(D)AX(v)

for every effective Q-Cartier divisor D on X, every divisorial valuation v, and every closed
point p in the closure of the center of v on X. It is thus enough to show that ordp(D) is
uniformly bounded when D ∼Q L.

Let µ : X ′ → X be the blow-up at p, with exceptional divisor E. Since L is ample, there
exists ε > 0 independent of p such that Lε := µ∗L− εE is ample, by Seshadri’s theorem.

Since D is effective, we have µ∗D ≥ ordp(D)E, and hence

(Ln) =
(
µ∗L · Ln−1

ε

)
≥ ordp(D)(E · Ln−1

ε ) = εn−1 ordp(D),

which yields the desired bound on ordp(D).
Step 2. Suppose now that (X,B) is a sub-klt pair. Pick a log resolution µ : X ′ → X, and
let B′ be the unique Q-divisor such that µ∗(KX +B) = KX′ +B′ and µ∗B

′ = B, so that

A(X,B)(v) = A(X′,B′)(v) = AX′(v)− v(B′)

for all divisorial valuations v. Since (X,B) is sub-klt, B′ has coefficients less than 1, so that
there exists 0 < ε� 1 such that B′ ≤ (1− ε)B′red. Since B′red is a reduced SNC divisor, the
pair (X ′, B′red) is lc, and hence v(B′) ≤ AX′(v) for all divisorial valuations v. It follows that
v(B) ≤ (1− ε)AX′(v), i.e.

εAX′(v) ≤ A(X,B)(v)

for all v. Pick any very ample effective divisor H on X ′ such that L′ := µ∗L+H is ample.
For each effective Q-Cartier divisor D ∼Q L, D′ := µ∗D+H is an effective Q-Cartier divisor
on X ′ with D′ ∼Q L

′. By Step 1, we conclude, as desired, that

v(D) ≤ v(D′) ≤ CAX′(v) ≤ Cε−1A(X,B)(v).

�

Proposition 8.15. For each polarized sub-klt pair ((X,B), L), we have

HNA ≥ δINA ≥ δ

n
JNA

on HNA with δ := lct((X,B), L) > 0.

Proof. Pick φ ∈ HNA, and let (X ,L) be a representative such that the canonical birational
map ρ : X 99K XA1 is a morphism, so that L = ρ∗LA1 +D.

Choose m ≥ 1 such that mL is a globally generated line bundle, and let

ρ∗O(mD) = a(m) =
∑
λ∈Z

a
(m)
λ t−λ

be the corresponding flag ideal. By Proposition 2.18, O(mL) ⊗ a
(m)
λ is globally generated

on X for all λ ∈ Z. In particular, L⊗ (a
(m)
λ )1/m is nef, and hence

v(a
(m)
λ ) ≤ mδ−1A(X,B)(v)
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whenever a
(m)
λ is non-zero.

Now let E be a non-trivial component of X0. By Lemma 4.5, we have

ordE(a(m)) = min
λ

(
vE(a

(m)
λ )− λbE

)
with bE = ordE(X0), and hence

ordE(a(m)) ≤ mδ−1A(X,B)(vE)− bE max
{
λ ∈ Z | a(m)

λ 6= 0
}

By Lemma ??, we have

max
{
λ ∈ Z | a(m)

λ 6= 0
}

= λ(m)
max,

which is bounded above by

mλmax(F •φR) = m(φ · φntriv),

by Lemma 7.7. We have thus proved that

m−1 ordE(a(m)) ≤ δ−1A(X,B)(vE)− bEV −1(φ · φntriv). (8.4)

But since mD is ρ-globally generated, we have OX (mD) = OX · a(m), and hence

m−1 ordE(a(m)) = − ordE(D).

Using (8.4) and
∑

E bE(E · Ln) = (X0 · Ln) = V , we infer

−V −1((φ− φtriv) · φn) = −V −1 (D · Ln) ≤ δ−1HNA(φ)− V −1(φ · φntriv)

and the result follows by the definition of INA and by Proposition 7.8. �

Proof of Theorem 8.2. The implication (i)=⇒(ii) follows from Proposition 8.15, whereas
(ii)=⇒(iii) is trivial. Now assume that (iii) holds. If (X,B) is not klt, Proposition 8.9 yields
a closed subscheme Z ⊂ X with A(X,B)(v) ≤ 0 for all Rees valuations v of Z. By Corol-
lary 4.10, we can thus find a normal, ample test configuration (X ,L) such that A(X,B)(vE) ≤
0 for each non-trivial component E of X0. The corresponding non-Archimedean metric
φ ∈ HNA therefore satisfies HNA

B (φ) ≤ 0, which contradicts (iii). �

8.5. The Kähler-Einstein case.

Proof of Corollary 8.3. The implication (iii)=⇒(i) follows from Theorem 8.1, and (ii)=⇒(iii)
is trivial. Now assume (i), so that HNA

B ≥ 0 on HNA by Theorem 8.1. By Lemma 7.19, we

have MNA
B = HNA

B +λ
(
INA − JNA

)
, while INA−JNA ≥ 1

nJ
NA by Proposition 7.8. We thus

get MNA
B ≥ λ

nJ
NA, which proves (iii). �

Proof of Corollary 8.4. If KX + B is numerically trivial, then Lemma 7.19 gives MNA
B =

HNA
B . The result is thus a direct consequence of Theorem 8.1 and Theorem 8.2. �

Proof of Corollary 8.6. Since KX +B ≡ −λL, Lemma 7.19 becomes

MNA
B = HNA

B − λ
(
INA − JNA

)
(8.5)

We thus get HNA
B ≥ λ

(
INA − JNA

)
, and hence HNA

B ≥ λ
nJ

NA by Proposition 7.8. By
Theorem 8.2, this implies that (X,B) is klt. �

The following result gives a slightly more precise version of the computations of [OSa12,
Theorem 1.4] and [Der14a, Theorem 3.24].
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Proposition 8.16. Let B be an effective boundary on X such that (X,B) is klt and (KX +
B) ≡ −λL with λ > 0. Assume also that ε := lct((X,B), L)− n

n+1λ > 0. Then we have

MNA
B ≥ εINA ≥ (n+ 1)

n
εJNA.

In particular, the polarized pair ((X,B), L) is J-uniformly K-stable.

Proof. By Proposition 8.15 we have HNA ≥
(

n
n+1λ+ ε

)
INA, and hence

MNA
B ≥ εINA + λ

(
JNA − 1

n+ 1
INA

)
.

The result follows since we have

1

n+ 1
INA ≤ JNA ≤ n

n+ 1
INA

by Proposition 7.8. �

Appendix A. Asymptotic Riemann-Roch on a normal variety

The following result is of course well-known, but we provide a proof for lack of suitable
reference. In particular, the sketch provided in [Oda13a, Lemma 3.5] assumes that the line
bundle in question is ample, which is not enough for the application to the intersection
theoretic formula for the Donaldson-Futaki invariant.

Theorem A.1. If Z is a proper normal variety over an algebraically closed field k of di-
mension d, and L is a line bundle on Z, then

χ(Z,mL) = (Ld)
md

d!
− (KZ · Ld−1)

md−1

2(d− 1)!
+O

(
md−2

)
.

A proof in characteristic 0. When Z is smooth, the result follows from the Riemann-Roch
formula, which reads

χ(Z,mL) =

∫ (
1 + c1(mL) + · · ·+ c1(mL)d

d!

)(
1 +

c1(Z)

2
+ . . .

)
.

Assume now that Z is normal, pick a resolution of singularities µ : Z ′ → Z and set L′ := µ∗L.
The Leray spectral sequence and the projection formula imply that

χ(Z ′,mL′) =
∑
j

(−1)jχ
(
Z,O(mL)⊗Rjµ∗O

)
.

Since Z is normal, µ is an isomorphism over an open subset with complement of codimension
at least 2. As a result, for each j ≥ 1 the support of the coherent sheaf Rjµ∗O has
codimension at least 2, and hence χ

(
Z,O(mL)⊗Rjµ∗O

)
= O

(
md−2

)
(cf. [Kle66, §1]). We

thus get

χ(Z,mL) = χ(Z ′,mL′) +O(md−2)

= (L′d)
md

d!
− (KZ′ · L′d−1)

md−1

2(d− 1)!
+O

(
md−2

)
and the projection formula yields the desired result, since µ∗KZ′ = KZ as cycle classes. �
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The general case. By Chow’s lemma, there exists a birational morphism Z ′ → Z with Z ′

projective and normal. By the same argument as above, it is enough to prove the result for
Z ′, and we may thus assume that Z is projective to begin with.

We argue by induction on d. The case d = 0 being clear. Now assume d ≥ 1 and let H
be a very ample line bundle on Z such that L+H is also very ample. By the Bertini type
theorem for normality of [Fle77, Satz 5.2], general elements B ∈ |H| and A ∈ |L + H| are
also normal, with L = A−B. The short exact sequence

0→ OZ((m+ 1)L−A)→ OZ(mL)→ OB(mL)→ 0

shows that

χ(Z, (m+ 1)L−A) = χ(Z,mL)− χ(B,mL).

We similarly find

χ(Z, (m+ 1)L) = χ(Z, (m+ 1)L−A) + χ(A, (m+ 1)L),

and hence

χ(Z, (m+ 1)L)− χ(Z,mL) = χ(A, (m+ 1)L)− χ(B,mL).

Since A and B are normal Cartier divisors on X, the adjunction formulae KA = (KZ +
A)|A and KB = (KZ + B)|B hold, as they are equalities between Weil divisor classes on a
normal variety that hold outside a closed subset of codimension at least 2. By the induction
hypothesis, we thus get

χ(Z, (m+ 1)L)− χ(Z,mL)

= (Ld−1 ·A)

(
md−1

(d− 1)!
+

md−2

(d− 2)!

)
−
(

(KZ +A) ·A · Ld−2
) md−2

2(d− 2)!

−(Ld−1 ·B)
md−1

(d− 1)!
+
(

(KZ +B) ·B · Ld−2
) md−2

2(d− 2)!
+O(md−3).

= (Ld)
md−1

(d− 1)!
+
[
(Ld)− 1

2(KZ · Ld−1)
] md−2

(d− 2)!
+O(md−3),

= P (m+ 1)− P (m) +O(md−3)

with

P (m) := (Ld)
md

d!
− (KZ · Ld−1)

md−1

2(d− 1)!
.

The result follows. �

Appendix B. The equivariant Riemann-Roch theorem for schemes

We summarize the general equivariant Riemann-Roch theorem for schemes, which extends
to the equivariant setting the results of [Ful, Chap. 18], and is due to Edidin-Graham [EG98,
EG00].

Let G be a linear algebraic group, and X be a scheme with a G-action. The Grothendieck
group K0

G(X) of virtual G-linearized vector bundles forms a commutative ring with respect
to tensor products, and is functorial under pull-back. On the other hand, the Grothendieck
group KG

0 (X) of virtual G-linearized coherent sheaves on X is K0
G(X)-module with respect
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to tensor products, and every proper G-equivariant morphism f : X → Y induces a push-
forward homomorphism f! : KG

0 (X)→ KG
0 (Y ) defined by

f![F ] :=
∑
q∈N

(−1)q[Rqf∗F ].

Note that K0
G(Spec k) = KG

0 (Spec k) identifies with the representation ring R(G), so that
all the above groups are in particular R(G)-modules.

Equivariant Chow homology and cohomology groups are constructed in [EG98], building
on an idea of Totaro. The G-equivariant Chow cohomology ring

CH•G(X) =
⊕
d∈N

CHd
G(X)

can have CHd
G(X) 6= 0 for infinitely many d ∈ N, and we set

ĈH
•
G(X) =

∏
d∈N

CHd
G(X).

The G-equivariant first Chern class defines a morphism cG1 : PicG(X) → CH1
G(X), which

is an isomorphism when X is smooth [EG98, Corollary 1]. In particular, we have natural
isomorphisms

Hom(G,Gm) ' PicG(Spec k) ' CH1
G(Spec k).

The G-equivariant Chern character is a ring homomorphism

chG : K0
G(X)→ ĈH

•
G(X)Q,

functorial with respect to pull-back and such that

chG(L) = ec
G
1 (L) =

(
cG1 (L)d

d!

)
d∈N

for a G-linearized line bundle L.

On the other hand, the G-equivariant Chow homology group

CHG
• (X) =

⊕
p∈Z

CHG
p (X)

is a CH•G(X)-module, with CHd
G(X) · CHG

p (X) ⊂ CHp−d(X). While CHG
p (X) = 0 for

p > dimX, it is in general non-zero for infinitely many (negative) p in general, and we set
again

ĈH
G

• (X) =
∏
p∈Z

CHG
p (X),

a ĈH
•
G(X)-module.

When X is smooth and pure dimensional, the action of CHd
G(X) on [X] ∈ CHG

dimX(X)
defines a ‘Poincaré duality’ isomorphism

CHd
G(X) ' CHG

dimX−d(X).



56 SÉBASTIEN BOUCKSOM, TOMOYUKI HISAMOTO, AND MATTIAS JONSSON

Via the Chern character, both KG
0 (X) and CHG

• (X)Q become K0
G(X)-modules, and the

general Riemann-Roch theorem of [EG00, Theorem 3.1] constructs a K0
G(X)-module homo-

morphism

τG : KG
0 (X)→ ĈH

G

• (X)Q :=
∏
p∈N

CHG
p (X)Q,

functorial with respect to push-forward under proper morphisms, and normalized by τ(1) = 1
on K0

G(Spec k), so that τG = chG on R(G).
When X is proper, the equivariant Euler characteristic of a G-linearized coherent sheaf

F on X is defined as

χG(X,F) := chG(π![F ]) ∈ ĈH
•
G(Spec k).

with π : X → Spec k the structure morphism. The equivariant Riemann-Roch formula then
reads

χG(X,E ⊗F) = π∗
(
chG(E) · τG(F)

)
for every G-linearized coherent sheaf F and vector bundle E on X.

When G = T is an algebraic torus, the equivariant Euler characteristic admits a more
explicit description. Let M := Hom(T,Gm) be character lattice, with the first Chern class
isomorphism M ' PicT (Spec k) ' CH1

T (Spec k). By [EG97, Lemma 2], it induces a graded
ring isomorphism

Ŝ
•
M :=

∏
d∈N

SdM ' ĈH
•
T (Spec k)

On the other hand, the representation ring R(T ) identifies with the ring of Laurent polyno-
mials Z[M ], a T -module V being sent to

∑
λ∈M (dimVλ)λ. Under these identifications, the

Chern character

chT : R(T )→ ĈH
•
T (Spec k)Q

corresponds to the ring homomorphism Z[M ] → Ŝ
•
MQ mapping λ ∈ M to eλ =

(
λd

d!

)
d∈N

.

Viewed as an element of Ŝ
•
MQ, the equivariant Euler characteristic of a T -linearized coherent

sheaf F on a proper scheme X can thus be described as

χT (X,F) =
∑
λ∈M

dimX∑
q=0

(−1)q dimHq(X,F)λ

 eλ. (B.1)
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