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Regularity of weak minimizers of the K-energy and

applications to properness and K-stability

Robert J. Berman, Tamás Darvas, Chinh H. Lu

Abstract

Let (X,ω) be a compact Kähler manifold and H the space of Kähler metrics
cohomologous to ω. If a cscK metric exists in H, we show that all finite energy
minimizers of the extended K-energy are smooth cscK metrics, partially confirm-
ing a conjecture of Y.A. Rubinstein and the second author. As an immediate
application, we obtain that existence of a cscK metric in H implies J-properness
of the K-energy, thus confirming one direction of a conjecture of Tian. Exploiting
this properness result we prove that an ample line bundle (L,X) admitting a cscK
metric in c1(L) is K-polystable.

1 Introduction and main results

We borrow notations and terminology from [BDL, Da2, DR] throughout this note. Let
(X, J, ω) be a compact connected Kähler manifold and let Hω = {v ∈ C∞(X), ωv :=
ω + i∂∂̄v > 0} denote the space of Kähler potentials. By Hodge theory, the level set

H := Hω ∩ AM−1(0)

is isomorphic to the space of Kähler metrics cohomologous to ω, and we always work
on the level of potentials unless specified otherwise (see (2) for the definition of the
Aubin–Mabuchi energy AM). The connected Lie group G := Aut0(X, J) has a natural
action on H given by pullback of metrics (see [DR, Section 5.2] for a precise description
on the level of potentials). We denote by (E1, d1) the metric completion of Hω with
respect to the L1-type Mabuchi path length metric d1, realized in the space E1 of finite
energy potentials [Da2] (see [Da1] for the corresponding picture for the L2-Mabuchi
metric, originally conjectured by Guedj [G]). The d1-distance to ω in H is comparable
to Aubin’s J-functional Jω.

Our first main result partially confirms a regularity conjecture of Y. Rubinstein and
the second author [DR, Conjecture 2.9] and also a less general conjecture of X.X. Chen
[Ch2, Conjecture 6.3]:

Theorem 1.1. Suppose (X,ω) is a cscK manifold. If u ∈ E1 minimizes the extended
K-energy K : E1 → (−∞,+∞], then u is a smooth cscK potential. In particular there
exists g ∈ G such that g∗ωu = ω.

The last claim follows from the uniqueness result of [BB]. Using the above result and
[DR, Theorem 2.10] we immediately obtain one direction of a conjecture of Tian from
the 90’s, relating properness of the K-energy to existence of cscK metrics [Ti1, Remark
5.2], [Ti3, Conjecture 7.12].
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Theorem 1.2. Suppose (X,ω) is a Kähler manifold. If there exists a cscK metric
cohomologous to ω, then for some C,D > 0 we have

K(u) ≥ C inf
g∈G

Jω(g.u)−D, u ∈ H. (1)

For the precise definition of the K-energy K, Jω and other related functionals we refer
to the next section. The proof of our theorems rely on the L1-Mabuchi geometry of H
explored in [Da1, Da2], the finite energy pluripotential theory of [BBEGZ, GZ1] and the
methods of [BB]. Realizing that the metric geometry of H and energy properness should
be related seems to have first appeared in [Ch2, Conjecture 6.1], but this work rather
proposed the use of the L2-Mabuchi metric on H.

As a consequence of Theorem 1.2 we obtain a result on K-polystability, originally
proved by Mabuchi [Ma2, Ma3] using a completely different argument. Slightly less gen-
eral or different flavor results were obtained by Stoppa, Stoppa-Székelyhidi, Székelyhidi
[Sto, StSz, Sz1] and others. We recall the relevant terminology in the last section of the
paper.

Theorem 1.3. Suppose L → X is a positive line bundle. If there exists a cscK metric
in the class c1(L), then (X,L) is K-polystable.

In case the group G is trivial it also follows directly from the properness result above
that (X,L) is uniformly K-stable (see [BBJ, BHJ] and references therein).

We end the introduction with a brief (but by no means complete) discussion about
further relations to previous results. Much work has been done on Tian’s properness
conjectures in the case when the Kähler class is anti-canonical ([Ti2, TZ, ZZ, PSSW,
BBEGZ, DR] to name only a few). To our knowledge, in the case of cscK metrics,
excluding perhaps the particular case of toric Kähler manifolds, very few partial results
exist.

Proving the reverse direction of Tian’s conjecture (that properness of the K-energy
implies existence of cscK metrics), seems to require further progress on the weak non-
linear theory of fourth order partial differential equations and seems to be out of reach
for the moment (see [DR, Theorem 2.10] for more details on what needs to be overcome).

Following the techniques of [BB, DR], it is likely that different versions of the above
properness theorem can be obtained assuming existence of extremal or soliton/edge type
cscK metrics, but also for different spaces of potentials, mimicking [DR, Theorem 2.1,
Theorem 2.11, Theorem 2.12]. We leave the discussion of these to the interested reader.

The K-stability results fit into a circle of ideas surrounding the seminal Yau–Tian–
Donaldson conjecture on a polarized manifold (X,L), saying that the first Chern class of
L contains a Kähler metric with constant scalar curvature if and only if (X,L) is stable
in an appropriate sense, inspired by Geometric Invariant Theory. In the formulation in-
troduced by Donaldson [Do1] the stability in question was formulated as K-polystability,
but in view of an example in [ACGT] there is now a widespread belief that the notion of
K-(poly)stability has to be strengthened (unless X is Fano and L is the anti-canonical
polarization). In case G is trivial uniform K-stability was introduced in the thesis of
Székelyhidy (see also [Sz1]) to provide such a stronger notion. In the light of the re-
cent variational approach to the Yau–Tian–Donaldson conjecture introduced in [BBJ]
it seems that the main analytical hurdle in proving that uniform K-stability conversely
implies the existence of a constant scalar curvature metric is the general form of the
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regularity conjecture, alluded to above. It would be interesting to investigate if the tech-
niques of this paper apply to other related notions of algebro-geometric stability as well,
like CM stability, recently investigated in [Ti4]. Finally, it seems likely that our proof of
K-polystability can be extended to the transcendental setting considered very recently
in [SD], but we will not go further into this here.

Acknowledgments. The first name author was supported by grants from the Swedish
Research Council, the European Research Council and the Knut and Alice Wallenberg
foundation. The second name author has been partially supported by BSF grant 2012236.
The first name author is grateful to Sébastien Boucksom and Mattias Jonsson for discus-
sions and for sharing the preprint [BHJ]. The second name author would like to thank
Y. Rubinstein and G. Tian for enlightening discussions on the topic of the paper.

2 The finite energy continuity method

Let us first recall some terminology. Given a positive closed (1,1)-form χ, the functional
Jχ : E1 → R is defined as follows:

Jχ(u) = AMχ(u)−
1

V

(

∫

X

χ ∧ ωn−1
)

AM(u),

where V =
∫

X
ωn, AM and AMχ is the Aubin-Mabuchi energy and its “χ-contracted”

version:

AM(u) =
1

(n+ 1)V

n
∑

j=0

∫

X

uωj
u ∧ ωn−j, AMγ(u) =

1

nV

n−1
∑

j=0

∫

X

uγ ∧ ωj
u ∧ ωn−1−j. (2)

Recall the definition of the I functional from [BBEGZ]:

I(u0, u1) =

∫

X

(u0 − u1)(ω
n
u1

− ωn
u0
), u0, u1 ∈ E1

ω.

This functional is non-negative and invariant under adding constants. An elementary
calculation gives the following useful estimates:

1

n(n+ 1)
I(u0, u1) ≤ Jωu0

(u1)− Jωu0
(u0) ≤ I(u0, u1), u0, u1 ∈ E1 ∩AM−1(0). (3)

The (extended) K-energy and its χ-twisted version K,Kχ : E1 → (−∞,∞] are defined
as follows:

K(u) := Ent(ωn, ωn
u) + S̄AM(u)− nAMRicω(u), Kχ(u) = K(u) + nJχ(u), (4)

where Ent(ωn, ωn
u) = V −1

∫

X
log(ωn

u/ω
n)ωn

u is the entropy of the measure ωn
u with respect

to ωn. The above formula for the K-energy was originally introduced by Chen–Tian
[Ch1]. The authors showed in [BDL] that this functional naturally extends to all Lp-
Mabuchi completions of Hω and the extension is dp-lsc (see [BBEGZ] for a different
approach, in the particular case of p = 1). For more information on the metric spaces
(Hω, dp) we refer to [Da1, Da2]. In this note we will only focus on the case p = 1.
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Let us introduce the E1-minimizer set of K:

M1 = {u ∈ E1 ∩ AM−1(0)| K(u) = inf
v∈E1

K(v)}.

Given that K is convex, it is standard to check that M1 is geodesically complete with
respect to the finite energy geodesics of E1. Finally, as follows from [BDL, Theorem
4.12], there exits a unique vχ ∈ M1 such that Jχ(vχ) = infv∈M1 Jχ(v). This fact will be
used below.

The following two propositions represent the main analytic ingredient of this note
and revolve around the finite energy continuity method for cscK metrics, whose smooth
version was recently explored in [CPZ].

Proposition 2.1. Assume that M1 is nonempty and u ∈ Hω. Then for any λ > 0,
there exists a unique minimizer vλ ∈ E1 ∩AM−1(0) of Kλωu and the curve [0,∞) ∋ λ →
vλ ∈ E1∩AM−1(0) is d1-continuous and d1-bounded with v0 = limλ→0 v

λ being the unique
minimizer of Jωu on M1. Additionally, for any w ∈ M1, λ ≥ 0 we have

I(vλ, u) ≤ n(n + 1)I(w, u). (5)

Proof. First we show that the curve λ → vλ described in the statement exists. Fixing
λ > 0, observe that Kλωu = K + λ

n
Jωu ≥ K. Let uj ∈ E1 ∩ AM−1(0) be a minimizing

sequence of Kλωu . As M1 is nonempty it follows that K is bounded from below, giving
that Jωu(uj) ≥ 0 is uniformly bounded from above. As [ωu]dR = [ω]dR, [DR, Proposition
5.5] applies to give that d1(0, uj) is also uniformly bounded. Again using that K(uj) is
uniformly bounded we get that Ent(ωn, ωn

uj
) ≥ 0 is also uniformly bounded from above,

hence we can apply [BBEGZ, Theorem 2.17] (see [DR, Theorem 5.6] for an equivalent
formulation that fits our context most). By this last result, from uj we can extract a d1-
convergent subsequence, converging to vλ ∈ E1. By the d1-lower semi-continuity of Kλωu

([BDL, Theorem 1.2])we get that vλ is a E1-minimizer of Kλωu and by [BDL, Theorem
4.13] this minimizer is unique.

Now we argue (5). Let w ∈ M1 and λ > 0. As both vλ and w minimize a functional,
we can write the following:

K(w) +
λ

n
Jωu(v

λ) ≤ K(vλ) +
λ

n
Jωu(v

λ) = Kλωu(v
λ) ≤ Kλωu(w) = K(w) +

λ

n
Jωu(w),

hence Jωu(v
λ) ≤ Jωu(w). Subtracting Jωu(u) from both sides and using (3) we ultimately

get (5) for λ > 0.
We shift focus to the d1-continuity of the curve λ → vλ. By Jωu(v

λ) ≤ Jωu(w) and
[DR, Proposition 5.5] notice that d1(0, v

λ) is uniformly bounded for any λ > 0. We
know that {Kλωu(v

λ)}λ>0 is bounded from above. Since all terms except the first in
the expression of Kλωu(v

λ) from (4) are uniformly bounded by d1(0, v
λ) it follows that

Ent(ωn, ωn
vλ
) ≥ 0 is also uniformly bounded from above, ultimately giving that {vλ}λ>0

is relatively d1-compact (again by [BBEGZ, Theorem 2.17]).
We claim now that λ → vλ is d1-continuous for λ > 0. Indeed, assume that {λj}j

converges to λ > 0. As shown above, the sequence vλj is relatively d1-compact, hence
it suffices to prove that any limit of this sequence coincides with vλ. So, we can assume
that vλj → v and we will show that v = vλ. For any w ∈ E1 we have

Kλjωu(w) ≥ Kλjωu(v
λj) = K(vλj ) +

λj

n
Jωu(v

λj ).
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Letting j → +∞, we can use that K is d1-lsc and Jωu is d1-continuous, to obtain that
Kλωu(w) ≥ Kλωu(v). Uniqueness of minimizers of Kλωu [BDL, Theorem 4.13] now gives
that vλ = v, what we wanted to prove.

Finally, we focus on continuity at λ = 0. Using compactness of {vλ}λ>0, we can find
λj → 0 and v0 ∈ E1 such that d1(v

λj , v0) → 0. We will show that v0 is independent of
the choice of λj. By the joint lower semi-continuity of (h, λ) → Kλωu(h) it follows that
v0 ∈ M1. Let q ∈ M1 be arbitrary. Then we have that

K(q) ≤ K(vλj ) and Kλωu(v
λj ) ≤ Kλωu(q),

implying that λ
n
Jωu(v

λj) ≤ λ
n
Jωu(q), hence Jωu(v

λj ) ≤ Jωu(q). After taking λj → ∞, it
follows that Jωu(v

0) ≤ Jωu(q), hence v0 is the unique minimizer of Jωu on M1 (see the
comments preceding the theorem), finishing the proof.

Recall that for g ∈ G and ϕ ∈ Hω we denote g.ϕ the unique function inHω∩AM
−1(0)

such that ωg.ϕ = g.ωϕ (see [DR] on how this action extends to E1∩AM−1(0)). As detailed
in the next proposition, whose proof builds on the arguments of [BB], if a smooth cscK
metric exists then the minimizer of Jωu on M1 can be given more specifically:

Proposition 2.2. Assume that v ∈ Hω ∩ AM−1(0) is a cscK potential and u ∈ Hω.
Then for some g ∈ G we have:

inf
w∈M1

Jωu(w) = Jωu(g.v).

Proof. By changing the reference metric ω to øu, we can assume that u = 0. As a cscK
metric exists, the group G is reductive, hence there exists g ∈ G such that Jω(g.v) =
min{Jω(f.v) : f ∈ G}. This is indeed well known and can be seen from the fact that Jω

is equivalent with the growth of the d1-metric [DR, Proposition 5.5], and the Lie algebra
of G has a very specific decomposition (for details see for example Section 6 of [DR],
especially [DR, Proposition 6.2 and Proposition 6.9]).

We denote v1 = g.v ∈ Hω ∩AM−1(0) and let v0 ∈ M1 be the unique minimizer of Jω

on M1 (see comments before Propostion 2.1). We are done if we can show that v0 = v1.
For each λ ∈ (0, 1/2] let vλ be the unique E1-minimizer of Kλω. Then by Proposition
2.1 above, d1(v

λ, v0) → 0 as λ → 0. Let Fλ and G denote the differential of Kλω|Hω and
nJω|Hω respectively.

By the same argument as in the proof of [BB, Theorem 4.4,Theorem 4.7] we can find
h ∈ C∞(X) such that

DhF0|v1 = −G(v1).

Again going back to the arguments in [BB, Theorem 4.4, Theorem 4.7], for small enough
λ this identity implies

|Fλ(v
1 + λh).w| ≤ Cλ2 sup |w|, ∀w ∈ C(X).

Given this last estimate and the explicit formula for Fλ going back to Mabuchi, we can
write

Fλ(v
1 + λh).w =

∫

X

wfλω
n, (6)
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where the density fλ = (Sω − Sωv1+λh
+ λTrωv1+λhω)ωn

v1+λh/ω
n ∈ C∞(X) satisfies fλ =

O(λ2). Let [0, 1] ∋ t → uλ
t ∈ E1 be the finite energy geodesic connecting uλ

0 := vλ with
uλ
1 := v1 + λh, λ ∈ [0, 1/2]. By Lemma 2.3 proved below, we can write:

d

dt

∣

∣

∣

t=1−
Kλω(u

λ
t ) ≤

∫

X

u̇λ
1fλω

n.

Since uλ
1 = v1+ λh is smooth and uλ

0 = vλ is uniformly d1-bounded (Proposition 2.1) we
have |u̇λ

1 | ≤ |vλ −C| for some C > 1 independent of λ ∈ [0, 1/2] [Da2], ultimately giving
the following sequence of estimates:

∫

X

|u̇λ
1 |ω

n ≤

∫

X

|vλ − C|ωn ≤ d1(v
λ, 0) + C,

where in the last inequality we have used [Da2, Theorem 3]. Again, since {vλ}λ∈[0,1/2] is
d1-bounded (Proposition 2.1), it follows that the right most quantity above is uniformly
bounded, and since fλ = O(λ2) we can write

d

dt

∣

∣

∣

t=1−
Kλω(u

λ
t ) ≤ O(λ2).

Recall that vλ is the unique E1-minimizer ofKλω, thus
d
dt

∣

∣

t=1−
Kλω(u

λ
t ) ≥

d
dt

∣

∣

t=0+
Kλω(u

λ
t ) ≥

0. Consequently, as both t → Jω(u
λ
t ) = AMω(u

λ
t ) and t → K(uλ

t ) are convex, we obtain
the following sequence of estimates

0 ≤ nλ
( d

dt

∣

∣

∣

t=1−
−

d

dt

∣

∣

∣

t=0+

)

AMω(u
λ
t ) ≤

( d

dt

∣

∣

∣

t=1−
−

d

dt

∣

∣

∣

t=0+

)

Kλω(u
λ
t ) ≤ O(λ2).

Using convexity of t → AMω(u
λ
t ) again, this last estimate gives

0 ≤ tAMω(u
λ
1) + (1− t)AMω(u

λ
0)− AMω(u

λ
t ) ≤ t(1− t)O(λ), t ∈ (0, 1).

Letting λ → 0, using the endpoint stability of finite energy geodesic segments [BDL,
Proposition 4.3] and the d1-continuity of AM [Da2, Lemma 4.15], we obtain that t →
AMω(ut) is linear along the finite energy geodesic [0, 1] ∋ t → ut ∈ E1 connecting v0 to
v1. By [BDL, Theorem 4.12] this implies that v0 = v1, what we desired to prove.

As promised in the above argument, we provide the following lemma, which general-
izes [BB, Lemma 3.5] to finite energy geodesics with one smooth endpoint:

Lemma 2.3. Given u1 ∈ E1 and u0 ∈ Hω let [0, 1] ∋ t → ut ∈ E1 be the finite energy
geodesic connecting u0, u1 and χ is a smooth closed and positive (1,1)-form. Then

lim
t→0+

Kχ(ut)−Kχ(u0)

t
≥

∫

X

(S̄χ − Sωu0
+ Trωu0χ)u̇0ω

n
u0
,

where S̄χ = nV −1
∫

X
(Ricω − χ) ∧ ωn−1.

Proof. For fixed t ∈ [0, 1] we need to show that

Kχ(ut)−Kχ(u0)

t
≥

∫

X

(S̄χ − Sωu0
+ Trωu0χ)u̇0ω

n
u0
. (7)
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By [BDL, Theorem 1.2] there exists uk
t ∈ Hω such that d1(u

k
t , ut) → 0 and Kχ(u

k
t ) →

Kχ(ut). Let [0, t] ∋ l → vkl ∈ E1 be the weak C11̄ geodesic connecting uk
0 := u0 with uk

t .
By [BB, Lemma 3.5] we can write:

Kχ(u
k
t )−Kχ(u0)

t
≥

∫

X

(S̄χ − Sωu0
+ Trωu0χ)v̇k0ω

n
u0
.

By the next lemma, after perhaps passing to a subsequence, we can apply the dominated
convergence theorem on the right hand side and obtain (7).

Lemma 2.4. Suppose uj
1, u1 ∈ E1 satisfies d1(u

j
1, u1) → 0 and u0 ∈ Hω. Let [0, 1] ∋ t →

ut, u
j
t ∈ E1 be the finite energy geodesics connecting u0, u

j
1 and u0, u1 respectively. Then

there exists f ∈ L1(ωn
u0
) and a jk → ∞ such that |u̇jk

0 | ≤ f and u̇jk
0 → u̇0 a.e. as k → ∞.

Proof. If [0, 1] ∋ t → vt ∈ E1 is an arbitrary finite energy geodesic, we observe that
t → vt+ tα+(1− t)β is the finite energy geodesic connecting v0+β and v1+α, α, β ∈ R.
Hence after possibility adding a constant, we can assume that u0 − 1 ≥ u1, u

j
1, without

loss of generality. We first show that

d1(u0, u1) =

∫

X

−u̇0ω
n
u0
. (8)

Indeed, let ũj
1 ∈ Hω be a sequence decreasing to u1 with ũj

1 ≥ u0. By [Da2, Theorem
1] we have d1(u0, ũ

j
1) =

∫

X
− ˙̃u0ω

n
u0
, where t → ũj

t is the weak C11̄ geodesic connecting

u0, ũ
j
1, which is decreasing in t. As ũ0 = u0 and uj

t ց ut, (8) follows from the monotone
convergence theorem.

By [BDL, Proposition 2.6] there exists jk → ∞, vjk1 ∈ E1 increasing and wjk
1 ∈ E1

decreasing such that vjk1 ≤ ujk
1 ≤ wjk

1 ≤ u0 and d1(u1, v
jk
1 ), d1(u1, w

jk
1 ) → 0. Let [0, 1] ∋

t → vjkt , wjk
t ∈ E1 be the finite energy geodesics connecting u0, v

jk
1 and u0, w

jk
1 respectively.

By the comparison principle for finite energy geodesic segments we ultimately get v̇jk0 ≤
u̇jk
0 ≤ ẇjk

0 ≤ 0. We claim that for the monotone limits v̇0 := limk v̇
jk
0 and ẇ0 := limk ẇ

jk
0

we have v̇0 = ẇ0 = u̇0 a.e., with this showing that u̇jk
0 → u̇0 a.e. as k → ∞. Indeed,

by (8) we have d1(u0, w
jk
1 ) =

∫

X
−ẇjk

0 ωn
u0

and d1(u0, v
jk
1 ) =

∫

X
−v̇jk0 ωn

u0
. Applying the

monotone/dominated convergence theorems, we can write d1(u0, u1) =
∫

X
−v̇0ω

n
u0

=
∫

X
−ẇ0ω

n
u0
. Since v̇0 ≤ u̇0 ≤ ẇ0, it follows that v̇0 = ẇ0 = u̇0 a.e. with respect to ωn

uo
, as

we claimed.
Finally, as v̇j10 ≤ u̇jk

0 ≤ 0, using (8) we conclude that the function f = |v̇j10 | satisfies
the requirements in the statement.

Remark 2.5. One could approximate ut by a decreasing sequence along with convergence
of the K-energy by using the Ricci flow technique [GZ2, DL]. But the approximation as
above is enough for our purpose.

Remark 2.6. Propositions 2.1, 2.2 together imply that whenever a cscK potential u ∈
Hω ∩ AM−1(0) exists, then every “finite energy continuity path” [0,∞) ∋ λ → vλ ∈
E1∩AM−1(0) d1-converges to g.u for some g ∈ G, with the crucial uniform estimate (5).
Though we will not need it in this work, it is worth noting that (using the implicit function
theorem and additional estimates) in [CPZ, Theorem 1.1] it is shown that vλ ∈ Hω for
small enough λ, and in fact vλ →C∞ g.u.

In the proof of Theorem 1.1 we will need one last auxiliary result:
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Lemma 2.7. Suppose Hω ∩ AM−1(0) contains a cscK potential. If u ∈ Hω ∩ AM−1(0)
and gj ∈ G such that d1(gj.u, h) → 0 for some h ∈ E1 as j → ∞, then there exists g ∈ G
such that g.u = h.

Proof. Let v ∈ Hω ∩ AM−1(0) be a cscK potential . By [DR, Propositions 6.2 and 6.9]
there exists kj ∈ Isom0(X,ωv) and a Hamiltonian vector field Xj ∈ isom(X,ωv) such
that gj = kjexpIJXj. It is clear from the definition of the action of G on the level of
potentials that kj.v = v. Thus we can write

d1(v, gj.u) = d1(v, kjexpI(JXj).u) = d1(k
−1
j v, expI(JXj).u) = d1(v, expI(JXj).u)

= d1(expI(−JXj)v, u) ≥ d1(expI(−JXj)v, v)− d1(v, u),

giving that d1(expI(−JXj)v, v) is bounded independently of j. As G = Aut0(X, J) is
reductive, the curve [0,∞) ∋ t → expI(−tJXj).v ∈ Hω ∩ AM−1(0) is a d1-geodesic ray
(see [DR, Section 7.1]), hence ‖Xj‖ has to be uniformly bounded in isom(X,ωv). By
compactness, after possibly relabeling the sequences, we can choose X∞ ∈ isom(X,ωv)
and k ∈ Isom0(X,ωv) such that kj → k and Xj → X∞ smoothly, hence also gj =
kjexpI(JXj) → g := kexpI(JX∞) smoothly. In particular this implies d1(gj.u, g.u) → 0,
hence g.u = h by the non-degeneracy of d1.

Proof of Theorem 1.1. Let v ∈ M1. We have to show that v = g.u for some g ∈ G. By
[Da2] there exists vj ∈ Hω ∩ AM−1(0) with d1(vj , v) → 0.

For the moment fix λ > 0. As u realizes the minimum of K, by Proposition 2.1 Kλωvj

admits a unique minimum vλj ∈ E1∩AM−1(0) satisfying I(vλj , vj) ≤ n(n+1)I(vj, v). As
I satisfies the quasi-triangle inequality (see [BBEGZ, Theorem 1.8]), it follows that for
some C := C(X,ω) > 0 we have in fact

I(vλj , v) ≤ CI(vj , v). (9)

Now we use that u ∈ Hω ∩AM−1(0) is a cscK potential. Fixing j, Proposition 2.2 gives
that the potentials vλj d1-converge to v0 = gj.u for some gj ∈ G. Hence, letting λ → 0 in
(9) we can conclude

I(gj .u, v) ≤ CI(vj , v).

Letting j → ∞ in the above estimate we obtain I(gj .u, v) → 0, which by [BBEGZ,
Proposition 2.3] is equivalent to ‖gj.u− v‖L1(X) → 0 and AM(gj .u) → AM(v). By [Da2,
Proposition 5.9] this is further equivalent to d1(gj .u, v) → 0. Finally, by Lemma 2.7
there exists g ∈ G such that g.u = v, finishing the proof.

3 K-polystability as a consequence of properness

Let us first fix some terminology. Let L → X be an ample line bundle over a Kähler
manifold (X,ω) such that c1(L) = [ω]. A test configuration (L,X , π, ρ) for (X,L)
consists of a scheme X with a C∗-equivariant flat surjective morphism π : X → C

and a relatively ample line bundle L → X with a C
∗-action τ → ρτ on L such that

(X1,L|X1
) = (X, kL) for some k > 1. Without loss of generality we can assume that

k = 1, by treating L as a Q-line bundle. Following the findings of [LX] we will always
assume that X is normal which automatically makes the projection π flat.
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Given any test configuration (L,X , π, ρ), after raising L to a sufficiently high power,
it is possible to find an equivariant embedding into (CPN ,C), such that L becomes the
pullback of the relative O(1)-hyperplane bundle (see [Do1, Th, PS1]). This automatically
allows to fix a a semi-positive smooth “background” metric h on L, that is positive
on every Xτ slice and is S1-invariant. For the restrictions we introduce the notation
hτ = h|Xτ , τ ∈ C.

Any other positive metric h̃ on L can be uniquely represented by a potential uh̃,X ∈
PSH(X ,Θ(h)) using the identification

h̃ = he−uh̃,X

.

Additionally, one can associate to h̃ another potential uh̃,C∗

∈ PSH(C∗ ×X, pr∗2ω) using
the identification

ρ∗τ h̃
∣

∣

X1
= h1e

−uh̃,C∗

τ , τ ∈ C
∗. (10)

By analyzing the action of ρ restricted to global sections of Lr, r ≥ 1 on X0, we can
associate to (X ,L, π, ρ) the Donalson–Futaki invariant DF (X ,L). For details we refer
to [Sz2, Th]. We say that (X,L) is K-polystable if for any test configuration (X ,L, π, ρ)
we have DF (X ,L) ≥ 0 with DF (X ,L) = 0 if and only if X is a product.

Let us fix φ ∈ PSH(X,Θ(h1)). According to Phong–Sturm [PS1, PS2] (see also [Be1,
Section 2.4]), to (X ,L, π, ρ) one can also associate a bounded geodesic ray [0,∞) ∋ t →
φt ∈ PSH(X,Θ(h1))∩L∞ (with φ0 = φ) by first constructing a metric h̃ := he−φX

on L,
using the following upper envelope:

φX = sup{v ∈ PSH(X |∆,Θ(h)), vτ ≤ ρ∗τ−1φ, |τ | = 1}.

The envelope φX is seen to be S1-invariant, and one can introduce φt = φh̃,C∗

e−t/2 ∈
PSH(X,ω) ∩ L∞(X) for any t ∈ [0,∞). As argued in [PS1, PS2], this last curve t → φt

is indeed a weak C11̄-geodesic ray. In general, t → φt is not normalized, i.e., AM(φt)
is not identically zero (as this depends on the C

∗-action). As follows from the proof
of [Be1, Proposition 2.7] (see specifically the argument that gives (2.16),(2.17)), there
exists C := C(φ,L,X , h) > 0 such that

he−C ≤ he−φX

≤ heC . (11)

We give now the proof of Theorem 1.3 that will be a combination of finite energy
techniques of this paper with the more algebro-geometric ideas of [Be1]:

Proof of Theorem 1.3. Let (X ,L, π, ρ) be a test configuration equivariantly embedded
into CP

N ×C with a C
∗-action C

∗ ∋ τ → ρτ ∈ GL(N +1,C). By possibly composing ρτ
with an inner automorphism, we can and assume that the S1-invarant background metric
is just the restriction of the relative Fubini-Study metric hFS on O(1) → (CPN ,C). For
the background Kähler metric on X we choose ω := Θ(hFS

1 ).
We will prove that DF (X ,L) ≥ 0 with DF (X ,L) = 0 if and only if (X ,L, π, ρ) is a

product test configuration.
We will be relying on the following formula relating the Donaldson-Futaki invariant

to the asymptotics of the K-energy [PT, PRS, Ti4, BHJ, SD]:

K(uhFS,C∗

τ ) = −(DF (X ,L)− a(X ,L)) log |τ |2 +O(1), τ ∈ C
∗, (12)
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where a(X ,L) ≥ 0, and a(X ,L) = 0 precisely when the central fiber X0 is reduced
(recall the notation introduced in (10) above). From Theorem 1.2 it follows that K is
bounded from below, hence DF (X ,L)− a(X ,L) ≥ 0, giving that DF (X ,L) ≥ 0.

Now assume that DF (X ,L) = 0. To finish the proof we will argue that (X ,L, π, ρ)
is a product test configuration. Let φ ∈ Hω ∩ AM−1(0) be a cscK potential (recall that
Θ(h1) = ω by choice) and let [0,∞) ∋ t → φt ∈ E1 be the associated C11̄-geodesic ray
with φ0 = φ.

First notice that (1) gives infg∈G J(g.(uhFS,C∗

e−t/2 −AM(uhFS ,C∗

e−t/2 ))) < C ′. Pulling back the

estimates of (11) by ρτ , we immediately obtain uhFS,C∗

e−t/2 −C ≤ φt ≤ uhFS ,C∗

e−t/2 +C. Putting
these last two facts together, and possibly increasing C ′, we arrive at:

inf
g∈G

J(g.(φt −AM(φt))) < C ′.

Given that φ0 is a cscK potential, Lemma 3.1 below implies that the normalized ray t →
φt − AM(φt) is induced by t → expI(tJV ), where V is a real holomorphic Hamiltonian
Killing field of (X, J, ω). By Lemma 3.2 it is possible to find a lift Ṽ to L → X such
that

expI(tJṼ )∗hFS
1 e−u0 = hFS

1 e−ut .

Since DF (X ,L) = 0, (12) gives that a(X ,L) = 0, hence X0 is reduced. Consequently,
we can apply Proposition 3.3 to conclude that X is isomorphic to X × C, finishing the
proof.

Lemma 3.1. Suppose (X,ω) is a Kähler manifold. Let u0 ∈ Hω ∩ AM−1(0) be a cscK
potential and a finite energy geodesic ray [0,∞) ∋ t → ut ∈ E1 ∩ AM−1(0) emanating
from u0. If there exists C > 0 such that

inf
g∈G

J(g.ut) < C, t ∈ [0,∞),

then there exists a real holomorphic Hamiltonian vector field V ∈ isom(X,ωu0
) such that

ut = expI(tJV ).u0, where t → expI(tJV ) is the flow of JV .

Proof. Let gk ∈ G such that J(gk.uk) < C. As u0 is a cscK potential there exists
hk ∈ Isom0(X,ωu0

) and a Hamiltonian vector field Vk ∈ isom(X,ωu0
) such that gk =

hkexpI(−JVk) (see [DR, Propositions 6.2 and 6.9]). As the growth of the J functional
is the same as that of the d1 metric [DR, Proposition 5.5], and G acts by d1-isometries
on E1 ∩AM−1(0) [DR, Lemma 5.9], by possibly increasing the constant C we can write:

C > d1(u0, gk.uk) = d1(g
−1
k u0, uk) = d1(exp(JVk).u0, uk). (13)

We can assume without loss of generality that t → ut has unit d1-speed, i.e., d1(u0, ut) =
t. Using the above inequality, the triangle inequality gives the following double estimate:

k − C ≤ d1(u0, expI(JVk).u0) ≤ k + C.

The analytic expression of expI(JVk).u0 (see [DR, Lemma 5.8]) implies that in fact
1/D ≤ ‖JVk/k‖ ≤ D for some D > 1. As the space of holomorphic Hamiltonian Killing
fields of (X,ωu0

, J) is finite dimensional, it follows that there exists a nonzero Killing
field V such that Vkj/kj → V for some kj → ∞.

10



Let us introduce the smooth geodesic segments

[0, k] ∋ t → uk
t = expI

(

t
JVk

k

)

.u0 ∈ Hω ∩ AM−1(0).

By [BDL, Proposition 5.1] the function t → d1(u
k
t , ut) is convex, hence (13) gives that

d1(u
k
t , ut) ≤ Ct/k, t ∈ [0, k]. This implies that for fixed t we have d1(u

k
t , ut) → 0. But

examining convergence in the expressions defining expI(tJVkj/kj).u0 we conclude that

u
kj
t → expI(tJV ).u0 smoothly, ultimately giving ut = expI(tJV ).u0.

In case the Kähler class is integral, we have the following addendum to the previous
lemma:

Lemma 3.2. Suppose (L, h) → X is a hermitian line bundle with ω := Θ(h) > 0.
Let φ0 ∈ Hω, a real holomorphic Hamiltonian vector field V ∈ isom(X, J, ωu0

), and
[0,∞) ∋ t → φt ∈ E1 a geodesic ray. If the “normalization” of t → φt is induced by V ,
i.e., φt −AM(φt) = expI(tJV ).(φ0 −AM(φ0)), then it is possible to find a lift Ṽ of V to
the line bundle L → X such that expI(tJṼ )∗he−φ0 = he−φt .

This is essentially well-known, but as we could not find an adequate reference we
include a proof here.

Proof. It is shown in [Do1, Lemma 12] that it is possible to lift V to a vector field Ṽ on
L → X . Below we recall the construction of Ṽ and show that one of the lifts satisfies
the required properties.

By computing the curvature of both sides and using the ddc lemma, we see that for
any lift there exists a smooth function f : [0,∞) → R such that

expI(tJṼ )∗he−φ0 = he−φt+f(t). (14)

We will show that for the right choice of Ṽ we have f(t) ≡ 0. In fact, as it will be
clarified below, it all depends on how we choose the Hamiltonian potential of V .

Suppose v ∈ C∞(X) such that iV ωφ0
= dv. After perhaps adjusting v by a constant,

one can compute that (see [Ma1], [Sz2, Example 4.26])

φt(x)− φ0(x) = 2

∫ t

0

v(expI(lJV )x)dl.

Let us fix x0 ∈ Crit(v), i.e., dv(x0) = 0. This gives V (x0) = 0, hence by the above

φt(x0) = φ0(x0) + 2tv(x0). (15)

We now recall the main elements of [Be2, Lemma 13] and its proof. For this, it will
be more convenient to use the complex notation for holomorphic vector fields. To avoid
confusion, recall that V C = V − iJV and V = Re V := (V C + V C)/2.

Let (z1, . . . , zn) be coordinates on X in a neighborhood U of x0. Let s be a non-
vanishing section of L on U and we introduce e−φ(z) := he−φ0(s, s̄)(z). Let WC be the
generator of the natural C∗-action along the fibres of L. In local holomorphic coordinates
(z1, . . . , zn, w) of L → X on U we have WC = w ∂

∂w
and V C = V j ∂

∂zj
= −2iφjk̄vk̄

∂
∂zj

(note

the missing factor in the corresponding formula in the proof of [Be2, Lemma 13]), where
we have used that V is Hamiltonian (in holomorphic coordinates iV jφjk̄ = 2vk̄).

11



If V C

hor is the horizontal lift of V C with respect to the connection of the metric he−φ0

on L, then one can compute that V C

hor = V C + ∂φ(V C)WC. An elementary calculation
gives that

Ṽ C = V C

hor + 2ivWC = V C +WC(∂φ(V C) + 2iv)

is a holomorphic lift of V to L → X . By this last formula, at the critical point x0

we actually have JṼ C(x0) = −2v(x0)w
∂
∂w

. This immediately gives that the flow of

JṼ = Re JṼ C satisfies expI(tJṼ )(x0, w) = (x0, e
−v(x0)tw), ultimately implying

expI(tJṼ )∗he−φ0(x0)(x0) = he−φ0(x0)−2tv(x0)(x0). (16)

A comparison of (14), (15) and (16) gives that f(t) ≡ 0, finishing the proof.

The proof of Theorem 1.3 is now completed by invoking the following result from
[Be1]:

Proposition 3.3. Let X be a Kähler manifold with positive line bundle L → X and
a normal test configuration (X ,L, π, ρ) with S1-invariant smooth background metric h,
and reduced central fiber X0. Given φ ∈ HΘ(h1), suppose that the associated geodesic ray

t → φt is induced by a vector field Ṽ of L → X, i.e., expI(tJṼ )∗h1e
−φ0 = h1e

−φt. Then
X is isomorphic to X × C.

Although formulated in a slightly different context of Fano varieties in [Be1], the
proof of the previous proposition follows word for word from the proof of Proposition
3.3 in [Be1], thanks to the lifting property established in the previous lemma (which
generalizes formula (3.9) in [Be1]).
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