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Abstract. We show that degenerate complex Monge-Ampère equations in
a big cohomology class of a compact Kähler manifold can be solved using a
variational method independent of Yau’s theorem. Our formulation yields in
particular a natural pluricomplex analogue of the classical logarithmic energy
of a measure. We also investigate Kähler-Einstein equations on Fano mani-
folds. Using continuous geodesics in the closure of the space of Kähler metrics
and Berndtsson’s positivity of direct images we extend Ding-Tian’s variational
characterization and Bando-Mabuchi’s uniqueness result to singular Kähler-
Einstein metrics. Finally using our variational characterization we prove the
existence, uniqueness and convergence as k → ∞ of k-balanced metrics in
the sense of Donaldson both in the (anti)canonical case and with respect to a
measure of finite pluricomplex energy.
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Introduction

Solving degenerate complex Monge-Ampère equations has been the subject of
intensive studies in the past decade, in connection with the search for canoni-
cal models and metrics of complex algebraic varieties (see e.g. [Ko l98], [Tian],
[Che00], [Don05a], [Siu06], [BCHM06], [EGZ09], [ST08]).

Many of these results ultimately relied on the seminal work of Yau [Yau78]
which involved a continuity method and difficult a priori estimates to construct
smooth solutions to non-degenerate Monge-Ampère equations.

But the final goal and outcome of some of these results was to produce singular
solutions in degenerate situations, and the main goal of the present paper is to
show that one can use the direct methods of the calculus of variations to obtain
such solutions. Our approach is to some extent a complex analogue of the method
used by Aleksandrov to provide weak solutions to the Minkowski problem [Ale38],
i.e. the existence of compact convex hypersurfaces of Rn with prescribed Gaussian
curvature.

Our approach yields more natural proofs of the main results of [GZ07], [EGZ09],
[BEGZ08], together with several new results to be described below.

0.1. Weak solutions to Calabi’s conjecture and balanced metrics.

0.1.1. Previous results. Consider for the moment a compact Kähler n-dimensional
manifold (X,ω) normalized by

∫
X ω

n = 1. Denote byMX the set of all probabil-
ity measures on X. Given a probability measure µ ∈ MX with smooth positive
density, it was proved in [Yau78] that there exists a unique Kähler form η in the
cohomology class of ω such that ηn = µ . More singular measures µ ∈MX were
later considered in [Ko l98]. In that case η is to be replaced by an element of the
set T (X,ω) of all closed positive (1, 1)-currents T cohomologous to ω, which can
thus be written T = ω+ddcϕ where ϕ is an ω-psh function, the potential of T (de-
fined up to a constant). When ϕ is bounded the positive measure Tn was defined
by Bedford-Taylor, and Ko lodziej showed the existence of a unique T ∈ T (X,ω)
with continuous potential such that Tn = µ when µ has L1+ε-density.

In order to consider more singular measures one first needs to extend the
Monge-Ampère operator T 7→ Tn. Even though this operator cannot be extended
in a reasonable way to the whole of T (X,ω), it was shown in [GZ07, BEGZ08]
using a construction of [BT87] that one can in fact define the non-pluripolar
product of arbitrary closed positive (1, 1)-currents T1, ..., Tp on X. It yields a
closed positive (p, p)-current

〈T1 ∧ ... ∧ Tp〉
putting no mass on pluripolar sets and whose cohomology class is bounded in
terms of the cohomology classes of the Tj ’s only. In particular given T ∈ T (X,ω)
we get a positive measure 〈Tn〉 putting no mass on pluripolar sets and of total
mass ∫

X
〈Tn〉 ≤

∫
X
ωn = 1

Equality holds if T has bounded potential, and more generally currents T ∈
T (X,ω) for which equality holds are said to have full Monge-Ampère mass, in
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which case it is licit to simply write Tn = 〈Tn〉. Now the main result of [GZ07]
states that every non-pluripolar measure µ ∈MX is of the form µ = Tn for some
T ∈ T (X,ω) with full Monge-Ampère mass, which is furthermore unique as was
later shown in this generality in [Din09].

The proofs of the above results from [Ko l98, GZ07] eventually reduce by reg-
ularization to the smooth case treated in [Yau78]. Our first goal in the present
article is to show how to solve singular Monge-Ampère equations by the direct
method of the calculus of variations, independently of [Yau78].

0.1.2. The variational approach. Denote by T 1(X,ω) the set of all currents T ∈
T (X,ω) with full Monge-Ampère mass and whose potential is furthermore inte-
grable with respect to Tn. According to [GZ07, BEGZ08] currents T in T 1(X,ω)
are characterized by the condition J(T ) < +∞, where J denotes a natural ex-
tension of Aubin’s J-functional [Aub84] obtained as follows. One first considers
the Aubin-Mabuchi energy functional defined on smooth ω-psh functions ϕ by

E(ϕ) :=
1

n+ 1

n∑
j=0

∫
X
ϕ(ω + ddcϕ)j ∧ ωn−j

[Aub84, Mab86]. It is easy to show using integration by parts that the Gâteaux
derivative of E at ϕ is given by integration against (ω + ddcϕ)n. This implies in
particular that E is non-decreasing on smooth ω-psh functions and a computation
of its second derivative (see equation (2.3) below) also shows that E is concave.
This functional is now extended by monotonicity to arbitrary ω-psh functions by
setting

E(ϕ) := inf{E(ψ)|ψ smooth ω-psh, ψ ≥ ϕ} ∈ [−∞,+∞[,

and the J-functional is in turn defined by

J(T ) :=

∫
X
ϕωn − E(ϕ)

for T = ω+ ddcϕ. It is well-defined by translation invariance and yields a convex
lower semicontinuous function

J : T (X,ω)→ [0,+∞]

which induces an exhaustion function on T 1(X,ω) = {J < +∞} in the sense
that {J ≤ C} is compact for each C > 0.

Now observe that the functional ϕ 7→ E(ϕ)−
∫
X ϕdµ also descends to a concave

functional
Fµ : T 1(X,ω)→]−∞,+∞]

by translation invariance and set

E∗(µ) := sup
T 1(X,ω)

Fµ,

This yields a convex lower semicontinuous functional

E∗ :MX → [0,+∞]

which is essentially the Legendre transform of E and will be called the pluricom-
plex electrostatic energy.
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Indeed in case (X,ω) is P1 endowed with its Fubiny-Study metric, E∗(µ) is
equal up to a factor to the logarithmic energy I(µ−ω) of the signed measure µ−ω
with total mass 0 (cf. Section 5). We shall thus say by analogy that µ ∈MX has
finite energy iff E∗(µ) < +∞.

We can now state our first main result.

Theorem A. A measure µ ∈ MX has finite energy iff µ = Tnµ with Tµ ∈
T 1(X,ω), which is characterized as the unique maximizer of Fµ on T 1(X,ω).

We will also show in Corollary 4.9 how to recover as a consequence the main
result of [GZ07].

The proof of Theorem A splits in two parts. The first one consists in showing
that any maximizer T ∈ T 1(X,ω) of Fµ has to satisfy Tn = µ, i.e. that a
maximizer ϕ of E(ϕ)−

∫
ϕdµ satisfies the Euler-Lagrange equation (ω+ddcϕ)n =

µ. This is actually non-trivial even when ϕ is smooth, the difficulty being that
the set of ω-psh functions has a boundary, so that a maximum is a priori not a
critical point. This difficulty is overcome by adapting to our case the approach
of [Ale38]. The main technical tool here is the differentiability result of [BB08],
which is the complex analogue of the key technical result of [Ale38].

The next step in the proof of Theorem A is then to show the existence of a
maximizer for Fµ when µ is assumed to satisfy E∗(µ) < +∞. Since J is an
exhaustion function on T 1(X,ω), a maximizer will be obtained by showing that
Fµ is proper with respect to J (i.e. Fµ → −∞ as J → +∞) and that it is upper
semi-continuous. The latter property is actually the most delicate part of the
proof.

Conversely it easily follows from the concavity property of Fµ that µ has finite
energy as soon as µ = Tnµ with Tµ ∈ T 1(X,ω).

0.1.3. Donaldson’s balanced metrics. Besides providing a solution by a direct
method, the properties of Fµ also imply that any Fµ-maximizing sequence Tj ∈
T 1(X,ω) has to converge to Tµ.

A particularly interesting example of such a maximizing sequence is provided
by µ-balanced metrics in the sense of [Don05b]. Here we assume that the coho-
mology class of ω is the first Chern class of an ample line bundle L, and a metric
e−φ on L is then said to be balanced with respect to µ if φ coincides with the
Fubiny-Study type metric associated to the L2-scalar product on H0(L) induced
by φ and µ. We will show:

Theorem B. Let L be an ample line bundle and let µ and Tµ ∈ c1(L) be as
in Theorem A. Then there exists a µ-balanced metric φk on kL for each k large
enough, and their normalized curvature currents 1

kdd
cφk converge towards Tµ in

the weak topology.

The existence of balanced metrics was established in [Don05b] under a stronger
regularity condition for µ. The convergence result, suggested in [Don05b] as
an analogue of [Don01], was observed to hold for smooth positive measures µ
in [Kel09] as a direct consequence of the work of Wang [Wan05].
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0.2. The case of a big class. Up to now we have assumed that the cohomology
class {ω} ∈ H1,1(X,R) is Kähler, but our variational approach works just as well
in the more general case of big cohomology classes, as considered in [BEGZ08].
Note that the case of a big class enables in particular to extend our results to
the case where X is singular, since the pull-back of a big class to a resolution of
singularities remains big.

The appropriate version of Theorem A will thus be proved in this more general
setting, thereby extending [GZ07] Theorem 4.2 to the case of a big class, and we
will show in Corollary 4.9 that it implies the main result of [BEGZ08].

The variational approach also applies to Kähler-Einstein metrics. We will
discuss the Fano case separately below, and assume here instead that X is of
general type, i.e. KX is a big line bundle. A metric e−φ on KX induces a measure
e2φ on X, and we can thus consider the functional

φ 7→ E(φ)− 1

2
log

∫
X
e2φ

which descends to a functional

F+ : T 1(KX)→ R

by translation invariance. We will then show:

Theorem C. Let X be a manifold of general type. Then F+ is upper semicon-
tinuous and J-proper. It achieves its maximum on T 1(KX) at a unique point
TKE = ddcφKE which satisfies

〈TnKE〉 = e2φKE+c

for some c ∈ R.

The solution φKE therefore coincides with the singular Kähler-Einstein metric
of [EGZ09, ST08, BEGZ08], which was proved to have minimal singularities
in [BEGZ08]. The ingredients entering the proof of Theorem C are similar to
that of Theorem A. The functional F+ is concave by Hölder’s inequality, and we
will show that it is upper semicontinuous and J-proper. This will show that a
maximizer exists, and we then deduce that a maximizer must satisfy the desired
equation by the differentiability result of [BB08].

0.3. Singular Kähler-Einstein metrics on Fano manifolds. Assume now
that X is a Fano manifold, i.e. −KX is ample. A psh weight φ on −KX with full
Monge-Ampère mass has zero Lelong numbers, thus e−2φ can be seen as volume
form on X with Lp density for every p < +∞. The functional

φ 7→ E(φ) +
1

2
log

∫
X
e−2φ,

descends to

F− : T 1(−KX)→ R
which is Ding-Tian’s functional [Tia97] up to sign. The critical points of F− in
the space of Kähler forms ω ∈ c1(X) are exactly the Kähler-Einstein metrics.
Tian and Ding-Tian obtained the following results [Tia97, Tian], assuming that
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H0(TX) = 0, so that Kähler-Einstein metrics are unique by [BM87]: X admits a
Kähler-Einstein ωKE iff F− is J-proper, and ωKE is then a maximizer of F−.

Even though this result is variational in spirit, its actual proof by Ding-Tian
relies on the continuity method. Using our variational approach we reprove part
of this result independently of the continuity method and without any assumption
on H0(TX).

Theorem D. Let X be a Fano manifold. Then a current T = ddcφ in T 1(−KX)
is a maximizer of F− iff it satisfies the Kähler-Einstein equation Tn = e−2φ+c

for some c ∈ R.
If F− is J-proper the supremum is attained and there exists TKE = ddcφKE ∈

T 1(−KX) such that TnKE = e−2φKE .

As we shall see such currents automatically have continuous potentials by [Ko l98].
It is an interesting problem to investigate higher regularity of these functions.

A striking feature of the present situation is that F− is not concave. However
E is geodesically affine for the L2-metric on the space of strictly psh weights
considered in [Mab87, Sem92, Don99], and it follows from Berndtsson’s results on
psh variation of Bergman kernels [Bern09a] that L− is geodesically convex with
respect to the L2-metric. We thus see that F− is geodesically concave, which
morally explains Ding-Tian’s result (compare Donaldson’s analogous result for
the Mabuchi functional [Don05a]).

However a main issue is of course that smooth geodesics are not known to exist
in general. The proof of Theorem D will instead rely on continuous geodesics φt,
whose existence is easily obtained.

Using similar ideas we give a new proof of Bando-Mabuchi’s uniqueness result
[BM87] and extend it to the case of singular Kähler-Einstein currents:

Theorem E. Let X be a Fano manifold. Assume that X admits a smooth Kähler-
Einstein metric ωKE and that H0(TX) = 0. Then ωKE is the unique maximizer
of F− over the whole of T 1(−KX).

An important step in the proof is to show that each φt in the geodesic con-
necting two Kähler-Einstein metrics satisfies the Kähler-Einstein equation for all
t if φ0 and φ1 do. Even though the geodesic φt is actually known to be (almost)
C1,1 [Che00, B lo09], a main technical point is that φt is a priori not strictly psh,
and one has to resort again to the differentiability result of [BB08] to infer that
φt is Kähler-Einstein from the fact that it maximizes F−.

Finally we establish in Theorem 7.1 an analogue of Theorem B for Kähler-
Einstein metrics. More specifically let X be Fano with H0(TX) = 0 and assume
that ωKE is a Kähler-Einstein metric. We will show that there exists a unique
k-anticanonically balanced metric ωk ∈ c1(X) in the sense of [Don05b] for each
k � 1 and that ωk → ωKE weakly. The proof of the existence of such anticanon-
ically balanced metrics relies in a crucial way on the linear growth estimate for
F− established in [PSSW08]. A proof of these results in the anti-canonically bal-
anced case has been announced in [Kel09]Theorem 5. The existence and uniform
convergence of canonically balanced metrics has also been independently been
obtain by B.Berndtsson (personal communication).
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Organization of the article. The structure of the paper is as follows.

• Section 1 is devoted to preliminary results in the big case that are ex-
tracted from [BEGZ08] and [BD09]. The only new result is the outer
regularity of the Monge-Ampère capacity in the big case.
• Section 2 is similarly a refresher on energy functionals whose goal is to

recall results from [GZ07, BEGZ08] as well as to extend to the singular
case of number of basic properties that are probably well-known in the
smooth case.
• Section 3 investigates the continuity and growth properties of the func-

tionals defined by integrating quasi-psh functions against a given Borel
measure.
• Section 4 is devoted to the proof of Theorem A in the general case of big

classes. Theorem 4.1 and Theorem 4.7 are the main statements.
• Section 5 connects our pluricomplex energy of measures to more classical

notions of capacity and to some of the results of [BB08].
• Section 6 is devoted to singular Kähler-Einstein metrics. It contains the

proof of Theorems C, D and E.
• Finally Section 7 contains our results on balanced metrics. The main re-

sult is Theorem 7.1 which treats in parallel the (anti)canonically balanced
case and balanced metrics with respect to a singular measure (Theorem
B).

Acknowledgements. We would like to thank J.-P.Demailly, P.Eyssidieux, J.Keller
and M.Paun for several useful conversations. We are especially grateful to B.Berndtsson
for indicating to us that the crucial result of Lemma 6.5 was a consequence of his
positivity results on direct images.

1. Preliminary results on big cohomology classes

In this whole section θ denotes a smooth closed (1, 1)-form on a compact Kähler
manifold X.

1.1. Quasi-psh functions. Recall that an upper semi-continuous function

ϕ : X → [−∞,+∞[

is said to be θ-psh iff ϕ ∈ L1(X) and θ+ddcϕ ≥ 0 in the sense of currents, where
dc is normalized so that

ddc =
i

π
∂∂.

By the ddc-lemma any closed positive (1, 1)-current T cohomologous to θ can
conversely be written as T = θ + ddcϕ for some θ-psh function ϕ which is fur-
thermore unique up to an additive constant.

The set of all θ-psh functions ϕ on X will be denoted by PSH(X, θ) and
endowed with the weak topology, which coincides with the L1(X)-topology. By
Hartogs’ lemma ϕ 7→ supX ϕ is continuous in the weak topology. Since the set
of closed positive currents in a fixed cohomology class is compact (in the weak
topology), it follows that the set of ϕ ∈ PSH(X, θ) normalized by supX ϕ = 0 is
compact.
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We introduce the extremal function Vθ defined by

Vθ(x) := sup{ϕ(x)|ϕ ∈ PSH(X, θ), sup
X
ϕ ≤ 0}. (1.1)

It is a θ-psh function with minimal singularities in the sense of Demailly, i.e. we
have ϕ ≤ Vθ +O(1) for any θ-psh function ϕ. In fact it is straightforward to see
that the following ’tautological maximum principle’ holds:

sup
X
ϕ = sup

X
(ϕ− Vθ) (1.2)

for any ϕ ∈ PSH(X, θ).

1.2. Ample locus and non-pluripolar products. The cohomology class {θ} ∈
H1,1(X,R) is said to be big iff there exists a closed (1, 1)-current

T+ = θ + ddcϕ+

cohomologous to θ such that T+ is strictly positive (i.e. T+ ≥ ω for some (small)
Kähler form ω). By Demailly’s regularisation theorem [Dem92] one can then
furthermore assume that T+ has analytic singularities, that is there exists c > 0
such that locally on X we have

ϕ+ = c log

N∑
j=1

|fj |2 mod C∞

where f1, ..., fN are local holomorphic functions. Such a current T is then smooth
on a Zariski open subset Ω, and the ample locus Amp (θ) of θ (in fact of its
class {θ}) is defined as the largest such Zariski open subset (which exists by the
Noetherian property of closed analytic subsets).

Note that any θ-psh function ϕ with minimal singularities is locally bounded
on the ample locus Amp (θ) since it has to satisfy ϕ+ ≤ ϕ+O(1).

In [BEGZ08] the (multilinear) non-pluripolar product

(T1, ..., Tp) 7→ 〈T1 ∧ ... ∧ Tp〉

of closed positive (1, 1)-currents is shown to be well-defined as a closed positive
(p, p)-current putting no mass on pluripolar sets. In particular given ϕ1, ..., ϕn ∈
PSH(X, θ) we define their mixed Monge-Ampère measure as

MA(ϕ1, ..., ϕn) = 〈(θ + ddcϕ1) ∧ ... ∧ (θ + ddcϕn)〉.

It is a non-pluripolar positive measure whose total mass satisfies∫
X

MA(ϕ1, ..., ϕn) ≤ vol(θ)

where the right-hand side denotes the volume of the cohomology class of θ. If
ϕ1, ..., ϕn have minimal singularities then they are locally bounded on Amp (θ),
and the product

(θ + ddcϕ1) ∧ ... ∧ (θ + ddcϕn)
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is thus well-defined by Bedford-Taylor [BT82]. Its trivial extension to X coincides
with MA(ϕ1, ..., ϕn), and we have∫

X
MA(ϕ1, ..., ϕn) = vol(θ).

In case ϕ1 = ... = ϕn = ϕ, we simply set

MA(ϕ) = MA(ϕ, ..., ϕ)

and we say that ϕ has full Monge-Ampère mass iff
∫
X MA(ϕ) = vol(θ). We

thus see that θ-psh functions with minimal singularities have full Monge-Ampère
mass, but the converse is not true.

A crucial point is that the non-pluripolar Monge-Ampère operator is contin-
uous along monotonic sequences of functions with full Monge-Ampère mass. In
fact we have (cf. [BEGZ08] Theorem 2.17):

Proposition 1.1. The operator

(ϕ1, ..., ϕn) 7→ MA(ϕ1, ..., ϕn)

is continuous along monotonic sequences of functions with full Monge-Ampère
mass. If

∫
X(ϕ− Vθ)MA(ϕ) is finite, then

lim
j→∞

(ϕj − Vθ)MA(ϕj) = (ϕ− Vθ)MA(ϕ)

for any monotonic sequence ϕj → ϕ.

1.3. Regularity of envelopes. In case {θ} ∈ H1,1(X,R) is a Kähler class,
plenty of smooth θ-psh functions are available. On the other hand for a general
big class the existence of even a single θ-psh function with minimal singularities
that is also C∞ on the ample locus Amp (θ) is unknown. For instance it follows
from [Bou04] that no θ-psh function with minimal singularities will have analytic
singularities unless {θ} admits a Zariski decomposition (on some birational model
of X). Examples of big line bundles without a Zariski decomposition have been
constructed by Nakayama (see [Nak04] Theorem 2.10 P.136).

On the other hand using Demailly’s regularization theorem one can easily show
that Vθ satisfies

Vθ(x) = sup{ϕ(x)|ϕ ∈ PSH(X, θ) with analytic singularities, sup
X
ϕ ≤ 0}

for x ∈ Amp (θ), which implies in particular that Vθ is in fact continuous on
Amp (α). But we actually have the following much stronger regularity result on
the ample locus. It was first obtained by the first named author in [Berm07] in
case α = c1(L) for a big line bundle L, and the general case is proved in [BD09].

Theorem 1.2. The function Vθ has locally bounded Laplacian on Amp (θ).

Since Vθ is quasi-psh this result is equivalent to the fact that the curent θ+ddcVθ
has L∞loc coefficients on Amp (α) and shows in particular by Schauder’s elliptic
estimates that Vθ is in fact C2−ε on Amp (α) for each ε > 0.

As was observed in [Berm07] we also get as a consequence the following nice
description of the Monge-Ampère measure of Vθ.
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Corollary 1.3. The Monge-Ampère measure MA(Vθ) has L∞-density with re-
spect to Lebesgue measure. More specifically we have θ ≥ 0 pointwise on {Vθ = 0}
and

MA(Vθ) = 1{Vθ=0}θ
n.

1.4. Monge-Ampère capacity. Let θ be a smooth closed (1, 1)-form with big
cohomology class. As in [BEGZ08] we define the Monge-Ampère (pre)capacity in
our setting as the upper envelope of all measures MA(ϕ) with ϕ ∈ PSH(X, θ),
Vθ − 1 ≤ ϕ ≤ Vθ, i.e.

Cap(B) := sup

{∫
B

MA(ϕ), ϕ ∈ PSH(X, θ), Vθ − 1 ≤ ϕ ≤ Vθ on X

}
. (1.3)

for every Borel subset B of X. In what follows we adapt to our setting some
arguments of [GZ05] Theorem 3.2 (which dealt with the case where θ is a Kähler
form).

Lemma 1.4. If K is compact the supremum in the definition of Cap(K) is
achieved by the usc regularisation of

hK := sup{ϕ ∈ PSH(X, θ), ϕ ≤ Vθ on X and ϕ ≤ Vθ − 1 on K}.

Proof. It is clear that h∗K is a candidate in the supremum defining Cap(K).
Conversely pick ϕ ∈ PSH(X, θ) such that Vθ − 1 ≤ ϕ ≤ Vθ on X. We have to
show that ∫

K
MA(ϕ) ≤

∫
K

MA(h∗K).

Upon replacing ϕ by (1−ε)ϕ+εVθ and then letting ε > 0 go to 0 we may assume
that Vθ − 1 < ϕ ≤ Vθ everywhere on X. Noting that K ⊂ {h∗K < ϕ} we get∫

K
MA(ϕ) ≤

∫
{h∗K<ϕ+1}

MA(ϕ)

≤
∫
{h∗K<ϕ+1}

MA(h∗K)

by the comparison principle (cf. [BEGZ08] Corollary 2.3 for a proof in our setting)

≤
∫
{h∗K<Vθ}

MA(h∗K) =

∫
K

MA(h∗K)

by Lemma 1.5 below and the result follows. �

Lemma 1.5. Let K be a compact subset. Then we have h∗K = Vθ − 1 a.e. on K
and h∗K = Vθ a.e. on X −K with respect to the measure MA(h∗K).

Proof. We have

hK ≤ Vθ − 1 ≤ h∗K on K.

But the set {hK < h∗K} is pluripolar by Bedford-Taylor’s theorem, so it has zero
measure with respect to the non-pluripolar measure MA(h∗K) and the second
point follows.
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On the other hand by Choquet’s lemma there exists a sequence of θ-psh func-
tions ϕj increasing a.e. to h∗K such that ϕj ≤ Vθ on X and ϕj ≤ Vθ − 1 on K. If
B is a small open ball centered at a point

x0 ∈ Amp (θ) ∩ {h∗K < Vθ} ∩ (X −K)

then we get
hK ≤ Vθ(x0)− δ ≤ Vθ on B

for some δ > 0 by continuity of Vθ on Amp (θ) (cf.Theorem 1.2) and it follows
that the function ϕ̂j which coincides with ϕj outside B and satisfies MA(ϕ̂j) = 0
on B also satisfies

ϕ̂j ≤ Vθ(x0) ≤ Vθ on B.

We infer that ϕ̂j increases a.e. to h∗K and the result follows by Beford-Taylor’s
continuity theorem for the Monge-Ampère along non-decreasing sequences of lo-
cally bounded psh functions. �

By definition, a positive measure µ is absolutely continuous with respect the
capacity Cap iff Cap(B) = 0 implies µ(B) = 0. This means exactly that µ is
non-pluripolar in the sense that µ puts no mass on pluripolar sets. Since µ is
subadditive, it is in turn equivalent to the existence of a non-decreasing right-
continuous function F : R+ → R+ such that

µ(B) ≤ F (Cap(B))

for all Borel sets B. Roughly speaking the speed at which F (t) → 0 as t → 0
measures ”how non-pluripolar” µ is.

Proposition 1.6. Let F : R+ → R+ be non-decreasing and right-continuous.
Then the convex set of all positive measures µ on X with µ(B) ≤ F (Cap(B)) for
all Borel subsets B is closed in the weak topology.

Proof. Since X is compact the positive measure µ is inner regular, i.e.

µ(B) = sup
K⊂B

µ(K)

where K ranges over all compact subsets of B. It follows that µ(B) ≤ F (Cap(B))
holds for every Borel subset B iff µ(K) ≤ F (Cap(K)) holds for every compact
subset K. This is however not enough to conclude since µ 7→ µ(K) is upper
semi-continuous in the weak topology. We are going to show in turn that

µ(K) ≤ F (Cap(K))

holds for every compact subset K iff

µ(U) ≤ F (Cap(U))

for every open subset U by showing that

Cap(K) = inf
U⊃K

Cap(U) (1.4)

where U ranges over all open neighbourhoods of K. Indeed since F is right-
continuous this yields F (Cap(K)) = infU⊃K F (Cap(U)). But µ 7→ µ(U) is now
lower semi-continuous in the weak topology so this will conclude the proof of
Proposition 1.6.
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By Lemma 1.4 and 1.5

Cap(K) =

∫
K

MA(h∗K) =

∫
X

(VX − h∗K)MA(h∗K) (1.5)

holds for every compact subset K. Now let Kj be a decreasing sequence of
compact neighbourhoods of a given compact subset K. It is straightforward to
check that h∗Kj increases a.e. to h∗K , and Proposition 1.1 thus yields

inf
U⊃K

Cap(U) ≥ Cap(K) = lim
j→∞

Cap(Kj) ≥ inf
U⊃K

Cap(U)

as desired. �

Remark 1.7. Since the Monge-Ampère precapacity is defined as the upper en-
velope of a family of Radon measures, it is automatically inner regular, i.e. we
have

Cap(B) = sup
K⊂B

Cap(K)

where K ranges over all compact subsets of B. On the other hand let Cap∗ be
the outer regularisation of Cap, defined on an arbitrary subset E by

Cap∗(E) := inf
U⊃E

Cap(U).

The above argument shows that

Cap∗(K) = Cap(K)

holds for every compact subset K. Using (1.5) and following word for word the
second half of the proof of Theorem 5.2 in [GZ05] one can further show that Cap∗

is in fact an (outer regular) Choquet capacity, and it then follows from Choquet’s
capacitability theorem that Cap∗ is also inner regular on Borel sets. We thus get

Cap(B) ≤ Cap∗(B) = sup
K⊂B

Cap∗(K)

= sup
K⊂B

Cap(K) ≤ Cap(B),

which means that Cap is also outer regular on Borel subsets in the sense that

Cap(B) = inf
U⊃B

Cap(U).

2. Finite energy classes

We let again θ be a closed smooth (1, 1)-form with big cohomology class. It
will be convenient (and harmless by homogeneity) to assume that the volume is
normalised by

vol(θ) = 1.

For any ϕ1, ..., ϕn ∈ PSH(X, θ) with full Monge-Ampère mass the mixed Monge-
Ampère measure MA(ϕ1, ..., ϕn) is thus a probability measure. We will denote
Ω := Amp (θ) the ample locus of θ.
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2.1. Aubin-Mabuchi energy functional. We define the Aubin-Mabuchi en-
ergy of ϕ ∈ PSH(X, θ) with minimal singularities by

E(ϕ) :=
1

n+ 1

n∑
j=0

∫
X

(ϕ− Vθ)MA
(
ϕ(j), V

(n−j)
θ

)
. (2.1)

Note that its restriction t 7→ E(tϕ + (1 − t)ψ) to line segments is a polynomial
map of degree n+ 1.

Let ϕ,ψ ∈ PSH(X, θ) with minimal singularities. It is easy to show by inte-
gration by parts (cf. [BEGZ08, BB08]) that the Gâteaux derivatives are given
by

E′(ψ) · (ϕ− ψ) =

∫
X

(ϕ− ψ)MA(ψ) (2.2)

and

E′′(ψ) · (ϕ− ψ,ϕ− ψ) = −n
∫

Ω
d(ϕ− ψ) ∧ dc(ϕ− ψ) ∧ (θ + ddcψ)n−1, (2.3)

which shows in particular that E is concave. Integration by parts also yields the
following properties proved in [BEGZ08, BB08].

Proposition 2.1. E is concave and non-decreasing. For any ϕ,ψ ∈ PSH(X, θ)
with minimal singularities we have

E(ϕ)− E(ψ) =
1

n+ 1

n∑
j=0

∫
X

(ϕ− ψ)MA
(
ϕ(j), ψ(n−j)

)
(2.4)

and∫
X

(ϕ−ψ)MA(ϕ) ≤ ... ≤
∫
X

(ϕ−ψ)MA
(
ϕ(j), ψ(n−j)

)
≤ ... ≤

∫
X

(ϕ−ψ)MA(ψ).

(2.5)
for j = 0, ..., n.

We also remark that E(Vθ) = 0 and E satisfies the scaling property

E(ϕ+ c) = E(ϕ) + c (2.6)

for any constant c ∈ R.
We now introduce the analogue of Aubin’s I and J-functionals (cf. [Aub84]

P.145,[Tian] P.67). We introduce the symmetric expression

I(ϕ,ψ) :=

∫
X

(ϕ− ψ)(MA(ψ)−MA(ϕ)) = −(E′(ϕ)− E′(ψ)) · (ϕ− ψ),

and we set

Jψ(ϕ) := E(ψ)− E(ϕ) +

∫
X

(ϕ− ψ)MA(ψ)

= (E(ψ) + E′(ψ) · (ϕ− ψ))− E(ϕ) ≥ 0

which controls the second order behaviour of E at ψ and is non-negative by
concavity of E. Note that Jψ is convex and non-negative by concavity of E. For
ψ = Vθ we simply write J := JVθ . By concavity of E we have 0 ≤ Jψ(ϕ) ≤ I(ϕ,ψ).
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On the other hand Proposition 2.1 shows that E(ϕ) − E(ψ) is the mean value
of a non-decreasing sequence whose extreme values are

∫
X(ϕ − ψ)MA(ϕ) and∫

X(ϕ− ψ)MA(ψ), and it follows for elementary reasons that

1

n+ 1
I(ϕ,ψ) ≤ Jψ(ϕ) ≤ I(ϕ,ψ). (2.7)

Elementary algebraic identities involving integration by parts actually show as
in [Tian] P.58 that

Jψ(ϕ) =

n−1∑
j=0

j + 1

n+ 1

∫
Ω
d(ϕ−ψ)∧dc(ϕ−ψ)∧ (θ+ddcψ)j ∧ (θ+ddcϕ)n−1−j . (2.8)

and

I(ϕ,ψ) =

n−1∑
j=0

∫
Ω
d(ϕ− ψ) ∧ dc(ϕ− ψ) ∧ (θ + ddcϕ)j ∧ (θ + ddcψ)n−1−j . (2.9)

As opposed to I(ϕ,ψ) the expression Jψ(ϕ) is not symmetric in (ϕ,ψ). However
we have

Lemma 2.2. For any two ϕ,ψ ∈ PSH(X, θ) with minimal singularities we have

n−1Jψ(ϕ) ≤ Jϕ(ψ) ≤ nJψ(ϕ).

Proof. By Proposition 2.1 we have

n

∫
X

(ϕ− ψ)MA(ϕ) +

∫
X

(ϕ− ψ)MA(ψ) ≤ (n+ 1) (E(ϕ)− E(ψ))

≤
∫
X

(ϕ− ψ)MA(ϕ) + n

∫
X

(ϕ− ψ)MA(ψ)

and the result follows immediately. �

Proposition 2.3. For any ϕ,ψ ∈ PSH(X, θ) with minimal singularities and any
0 ≤ t ≤ 1 we have

I(tϕ+ (1− t)ψ,ψ) ≤ nt2I(ϕ,ψ).

Proof. We expand out

E′(tϕ+ (1− t)ψ) · (ϕ− ψ) =

∫
X

(ϕ− ψ)MA(tϕ+ (1− t)ψ)

= (1− t)n
∫
X

(ϕ− ψ)MA(ψ) +
n∑
j=1

(
n

j

)
tj(1− t)n−j

∫
X

(ϕ− ψ)MA(ϕ(j), ψ(n−j))

≥ (1− t)n
∫
X

(ϕ− ψ)MA(ψ) + (1− (1− t)n)

∫
X

(ϕ− ψ)MA(ϕ)

by (2.5)

= (1− t)nE′(ψ) · (ϕ− ψ) + (1− (1− t)n)E′(ϕ) · (ϕ− ψ).

This yields
I(tϕ+ (1− t)ψ,ψ) ≤ t(1− (1− t)n)I(ϕ,ψ)

and the result follows by convexity of (1− t)n. �
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Note that by definition of I and J we have

lim
t→0+

2

t2
Jψ(tϕ+ (1− t)ψ) = lim

t→0+

1

t2
I(tϕ+ (1− t)ψ), ψ)

= −E′′(ψ) · (ϕ− ψ,ϕ− ψ).

2.2. Finite energy classes. As in [BEGZ08] Definition 2.9 it is natural to ex-
tend E(ϕ) by monotonicity to an arbitrary ϕ ∈ PSH(X, θ) by setting

E(ϕ) := inf{E(ψ)|ψ ∈ PSH(X, θ) with minimal singularities, ψ ≥ ϕ}. (2.10)

By [BEGZ08] Proposition 2.10 we have

Proposition 2.4. The extension

E : PSH(X, θ)→ [−∞,+∞[

so defined is concave, non-decreasing and usc.

As a consequence E is continuous along decreasing sequences, and E(ϕ) can
thus be more concretely obtained as the limit of E(ϕj) for any sequence of ϕj ∈
PSH(X, θ) with minimal singularities such that ϕj decreases to ϕ pointwise. One
can for instance take ϕj = max(ϕ, Vθ − j).

Following [Ceg98] and [GZ07] we introduce

Definition 2.5. The domain of E is denoted by

E1(X, θ) := {ϕ ∈ PSH(X, θ), E(ϕ) > −∞}
and its image in the set T (X, θ) of all positive currents cohomologous to θ will
be denoted by T 1(X, θ). For each C > 0 we also introduce

EC := {ϕ ∈ E1(X, θ), sup
X
ϕ ≤ 0, E(ϕ) ≥ −C}.

Note that E1(X, θ) and each EC are convex subsets of PSH(X, θ).

Lemma 2.6. For each C > 0 EC is compact and convex.

Proof. Convexity follows from concavity of E. Pick ϕ ∈ PSH(X, θ) with supX ϕ ≤
0. We then have ϕ ≤ Vθ by (1.2) and it follows from the definition (2.1) of E
that

E(ϕ) ≤
∫
X

(ϕ− Vθ)MA(Vθ) ≤ sup
X
ϕ

by (1.2) again. Since E is usc we thus see that EC is a closed subset of the
compact set

{ϕ ∈ PSH(X, θ),−C ≤ sup
X
ϕ ≤ 0}

and the result follows. �

Lemma 2.7. The integral∫
X

(ϕ0 − Vθ)MA(ϕ1, ..., ϕn)

is finite for every ϕ0, ..., ϕn ∈ E1(X, θ) and is furthermore uniformly bounded for
ϕ0, ..., ϕn ∈ EC .
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Proof. Upon passing to the canonical approximants, we may assume that ϕ0, ..., ϕn
have minimal singularities. Set ψ := 1

n+1(ϕ0 + ...+ ϕn). Observe that Vθ − ϕ0 ≤
(n+ 1)(Vθ − ψ). Using the convexity of −E it follows that∫

X
(Vθ − ϕ0)MA(ψ) ≤ (n+ 1)

∫
X

(Vθ − ψ)MA(ψ)

≤ (n+ 1)2|E(ψ)| ≤ (n+ 1)(|E(ϕ0)|+ ...+ |E(ϕn)|).
On the other hand expanding out we easily get

MA(ψ) ≥ CnMA(ϕ1, ..., ϕn)

for some coefficient Cn only depending on n and the result follows. �

The following characterization of functions in E1(X, θ) follows from [BEGZ08]
Proposition 2.11.

Proposition 2.8. Let ϕ ∈ PSH(X, θ). The following properties are equivalent:

• ϕ ∈ E1(X, θ).
• ϕ has full Monge-Ampère mass and

∫
X(ϕ− Vθ)MA(ϕ) is finite.

• We have ∫ +∞
dt

∫
{ϕ=Vθ−t}

MA(max(ϕ, Vθ − t)) < +∞.

Functions in E1(X, θ) can almost be characterised in terms of the capacity
decay of sublevel sets:

Lemma 2.9. Let ϕ ∈ PSH(X, θ). If∫ +∞

t=0
tn Cap{ϕ < Vθ − t}dt < +∞

then ϕ ∈ E1(X, θ). Conversely for each C > 0∫ +∞

t=0
tCap{ϕ < Vθ − t}dt

is bounded uniformly for ϕ ∈ EC .

Note that if ϕ is an arbitrary θ-psh function then Cap{ϕ < Vθ − t} usually
decreases no faster that 1/t as t→ +∞.

Proof. The proof is adapted from Lemma 5.1 in [GZ07]. Observe that for each
t ≥ 1 the function ϕt := max(ϕ, Vθ − t) satisfies Vθ − t ≤ ϕt ≤ Vθ thus

t−1ϕt + (1− t−1)Vθ

is a candidate in the supremum defining Cap, so that

MA(ϕt) ≤ tn Cap .

Now the first assertion follows from Proposition 2.8.
In order to prove the converse we apply the comparison principle. Pick a

candidate
ψ ∈ PSH(X, θ), Vθ − 1 ≤ ψ ≤ Vθ
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in the supremum defining Cap. For t ≥ 1 we have

{ϕ < Vθ − 2t} ⊂ {t−1ϕ+ (1− t−1)Vθ < ψ − 1} ⊂ {ϕ < Vθ − t}

thus the comparison principle (cf. [BEGZ08] Corollary 2.3) implies∫
{ϕ<Vθ−2t}

MA(ψ) ≤
∫
{ϕ<Vθ−t}

MA(t−1ϕ+ (1− t−1)Vθ)

≤
∫
{ϕ<Vθ−t}

MA(Vθ) +
n∑
j=1

(
n

j

)
t−j
∫
{ϕ<Vθ−t}

MA
(
ϕ(j), V

(n−j)
θ

)

≤
∫
{ϕ<Vθ−t}

MA(Vθ) + C1t
−1

n∑
j=1

∫
{ϕ<Vθ−t}

MA
(
ϕ(j), V

(n−j)
θ

)
since t ≥ 1 and it follows that∫ +∞

t=0
tCap{ϕ < Vθ − t} ≤ C2 + C3

∫
X

(Vθ − ϕ)2MA(Vθ)

since E(ϕ) ≥ −C and Cap ≤ 1. But MA(Vθ) has L∞-density with respect to
Lebesgue measure by Corollary 1.3 and it follows from the uniform version of
Skoda’s theorem [Zer01] that there exists ε > 0 and C1 > 0 such that∫

X
e−εϕMA(Vθ) ≤ C1

for all ϕ in the compact subset EC of PSH(X, θ). This implies in turn that∫
X(Vθ − ϕ)2MA(Vθ) is uniformly bounded for ϕ ∈ EC and the result follows. �

Remark 2.10. Proposition B of [BGZ08b] says that the exponent n is optimal for
the similar statement in the setting of psh functions on hyperconvex domains.

Corollary 2.11. If A ⊂ X is a (locally) pluripolar subset, then there exists
ϕ ∈ E1(X, θ) such that A ⊂ {ϕ = −∞}.

Proof. Since {θ} is big there exists a proper modification µ : X ′ → X and an
effective R-divisor E on X ′ such that µ∗θ−E is cohomologous to a Kähler form
ω on X ′. By the Kähler version of Josefson’s theorem ([GZ05] Theorem 6.2) we
may thus find a positive current T in the class of ω whose polar set contains A.
The push-forward µ∗(T + E) is then a positive current in the class of θ, and we
have thus found ϕ ∈ PSH(X, θ) such that A ⊂ {ϕ = −∞}. Now let χ : R→ R be
a smooth convex non-decreasing function such that χ(−∞) = −∞ and χ(s) = s
for all s ≥ 0. If ϕ is θ-psh, then so is

ϕχ := χ ◦ (ϕ− Vθ) + Vθ,

and A is contained in the poles of ϕχ. On the other hand we can clearly make
Cap{ϕχ < Vθ − t} tend to 0 as fast as we like when t→∞ by choosing χ with a
sufficiently slow decay at −∞. It thus follows from Lemma 2.9 that ϕχ ∈ E1(X, θ)
for an appropriate choice of χ, and the result follows. Actually χ(t) = − log(1−t)
is enough (compare [GZ07] Example 5.2). �
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3. Action of a measure on psh functions

3.1. Finiteness. Given a probability measure µ on X and ϕ ∈ PSH(X, θ) we set

Lµ(ϕ) :=

∫
Ω

(ϕ− Vθ)dµ (3.1)

where Ω := Amp (θ) denotes the ample locus. Since Ω is Zariski open, we have

Lµ(ϕ) =

∫
X

(ϕ− Vθ)dµ

if µ is non-pluripolar.
This defines a functional Lµ : PSH(X, θ) → [−∞,+∞[ which is obviously

affine and satisfies the scaling property

Lµ(ϕ+ c) = Lµ(ϕ) + c

for any c ∈ R.
In the special case where µ = MA(Vθ) we will write as a short-hand

L0(ϕ) := LMA(Vθ)(ϕ) =

∫
Ω

(ϕ− Vθ)MA(Vθ) (3.2)

so that

J = L0 − E
holds by definition.

Lemma 3.1. Lµ is usc on PSH(X, θ). On the other hand given ϕ ∈ PSH(X, θ)
the map µ 7→ Lµ(ϕ) is also usc.

Proof. Let ϕj → ϕ be a convergent sequence of functions in PSH(X, θ). Hartogs’
lemma implies that ϕj is uniformly bounded from above, hence so is ϕj − Vθ.
Since we have

ϕ = (lim sup
j→∞

ϕj)
∗ ≥ lim sup

j→∞
ϕj

everywhere on X we infer

Lµ(ϕ) ≥ lim sup
j→∞

Lµ(ϕj)

as desired by Fatou’s lemma. The second assertion follows directly from the fact
that ϕ− Vθ is usc on Ω since Vθ is continuous on Ω. �

Lemma 3.2. Let ϕ ∈ PSH(X, θ) and set µ := MA(ϕ).

(i) If ϕ has minimal singularities then Lµ is finite on PSH(X, θ).
(ii) If ϕ ∈ E1(X, θ) then Lµ is finite on E1(X, θ).

Proof. (ii) follows directly from Lemma 2.7. We prove (i). Let ψ ∈ PSH(X, θ).
We can assume that ψ ≤ 0, or equivalently ψ ≤ Vθ. Assume first that ψ also has
minimal singularities. If we set Ω := Amp (θ), then we can integrate by parts
using Theorem 1.14 of [BEGZ08] to get∫

Ω
(Vθ − ψ)(θ + ddcϕ)n =

∫
Ω

(Vθ − ψ)(θ + ddcVθ) ∧ (θ + ddcϕ)n−1
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+

∫
Ω

(ϕ− Vθ)ddc(Vθ − ψ) ∧ (θ + ddcϕ)n−1.

The second term is equal to∫
Ω

(ϕ− Vθ)(θ + ddcVθ) ∧ (θ + ddcϕ)n−1 −
∫

Ω
(ϕ− Vθ)(θ + ddcψ) ∧ (θ + ddcϕ)n−1

and each of these terms is controled by

sup
X
|ϕ− Vθ|.

By iterating integration by parts as above we thus get∫
X

(Vθ − ψ)MA(ϕ) ≤ 2n sup
X
|ϕ− Vθ) +

∫
X

(Vθ − ψ)MA(Vθ).

The result follows by replacing ψ by max(ψ, Vθ − k) and letting k → ∞, since
MA(Vθ) has L∞ density with respect to Lebesgue measure. �

3.2. Properness and coercivity. The J-functional is translation invariant thus
it descends to a non-negative, convex and lower semicontinuous function J :
T (X, θ) → [0,+∞] which is finite precisely on T 1(X, θ). It actually defines an
exhaustion function of T 1(X, θ):

Lemma 3.3. The function J : T 1(X, θ)→ [0,+∞[ is an exhaustion of T 1(X, θ)
in the sense that each sublevel set {J ≤ C} ⊂ T 1(X, θ) is compact.

Proof. By Lemma 3.2 there exists A > 0 such that

sup
X
ϕ−A ≤

∫
X
ϕMA(Vθ) ≤ sup

X
ϕ.

Now pick T ∈ {J ≤ C} and write it as T = θ + ddcϕ with supX ϕ = 0. We then
have

J(T ) =

∫
X
ϕMA(Vθ)− E(ϕ) ≤ C

thus E(ϕ) ≥ −C − A. This means that the closed set {J ≤ C} is contained in
the image of EC+A by the quotient map

PSH(X, θ)→ T (X, θ).

The result now follows since EC+A is compact by Lemma 2.6. �

The following statement extends part of [GZ07] Lemma 2.11.

Proposition 3.4. Let L : PSH(X, θ)→ [−∞,+∞[ be a convex and non-decreasing
function satisfying the scaling property L(ϕ+ c) = L(ϕ) + c.

(i) If L is finite on a given compact convex subset K of PSH(X, θ) then L is
bounded on K.

(ii) If L is finite on E1(X, θ) then

sup
EC
|L| = O(C1/2) (3.3)

as C → +∞.
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Proof. (i) There exists C > 0 such that

sup
X

(ϕ− Vθ) = sup
X
ϕ ≤ C

for all ϕ ∈ K, thus L is uniformly bounded above by L(Vθ) + C. Assume by
contradiction that L(ϕj) ≤ −2j for some sequence ϕj ∈ K. We then consider
ϕ :=

∑
j≥1 2−jϕj , which belongs to K by Lemma 3.5 below. By (1.2) we have

ϕ ≤
N∑
j=1

2−jϕj + 2−NVθ

for each N , and the right-hand side is a (finite) convex combination of elements
in PSH(X, θ). The properties of L thus imply

−∞ < L(ϕ) ≤
N∑
j=1

2−jL(ϕj) + 2−NL(Vθ) = −N + 2−NL(Vθ)

and we reach a contradiction by letting N → +∞.
(ii) By (i) we have supEC |L| < +∞ for all C > 0. Note also that L(ϕ) ≤ L(Vθ)

for ϕ ∈ EC . If supEC |L| = O(C1/2) fails as C → +∞, then there exists a sequence

ϕj ∈ E1(X, θ) with supX ϕj = 0 such that

tj := |E(ϕj)|−1/2 → 0

and

tjL(ϕj)→ −∞. (3.4)

We claim that there exists C > 0 such that for any ϕ ∈ PSH(X, θ) with

supX ϕ = 0 and t := |E(ϕ)|−1/2 ≤ 1 we have

E(tϕ+ (1− t)Vθ) ≥ −C.

Indeed
∫
X(ϕ− Vθ)MA(Vθ) is uniformly bounded when supX ϕ = 0 (for instance

by (i)) and the claim follows from Proposition 2.3 applied to ψ = Vθ.
As a consequence we get tjϕj +(1− tj)Vθ ∈ EC for all j � 1, and the convexity

property of L thus yield

tjL(ϕj) + (1− tj)L(Vθ) ≥ L(tjϕj + (1− tj)Vθ) ≥ inf
EC
L > −∞

which contradicts (3.4). �

Lemma 3.5. Let ϕj ∈ K be a sequence in a compact convex subset of PSH(X, θ).
Then ϕ :=

∑
j≥1 2−jϕj belongs to K.

Proof. By Hartogs’ lemma supX ϕ is uniformly bounded for ϕ ∈ K, thus we may
assume upon translating by a constant that supX ϕ ≤ 0 for each ϕ ∈ K. Let µ
be a smooth volume form on X. Then

∫
X ϕjdµ is uniformly bounded since K

is a compact subset of L1(X). It thus follows that
∫
X ϕdµ is finite by Fatou’s

lemma. But since ϕ is a decreasing limit of functions in PSH(X, θ) we either have
ϕ ∈ PSH(X, θ) or ϕ ≡ −∞ and the latter case is excluded by

∫
X ϕdµ > −∞,

qed. �
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We will now interpret Proposition 3.4 as a coercivity condition. Since our
convention is to maximize certain functionals in our variational approach, we
shall use the following terminology.

Definition 3.6. A function F : T 1(X, θ)→ R will be said to be

(i) J-proper if F → −∞ as J → +∞.
(ii) J-coercive if there exists ε > 0 and A > 0 such that

F ≤ −εJ +A

on T 1(X, θ).

The function F on T 1(X, θ) is induced by a function on E1(X, θ) of the form
E − L where L satisfies as above the scaling property. The J-coercivity of F
reads

E − L ≤ −ε(L0 − E) +A

where ε > 0 can of course be assumed to satisfy ε < 1 since J ≥ 0. Since we have

L0(ϕ) = sup
X
ϕ+O(1)

uniformly for ϕ ∈ PSH(X, θ) the J-coercivity of F is then easily seen to be
equivalent to the growth condition

sup
EC
|L| ≤ (1− ε)C +O(1) (3.5)

as C → +∞.
As a consequence of Proposition 3.4 we get

Corollary 3.7. Let L : E1(X, θ)→ R be a convex non-decreasing function satis-
fying the scaling property. Then the function F on T 1(X, θ) induced by E −L is
J-coercive.

When X is a Fano manifold with H0(TX) = 0 it was shown in [Tia97] that X
admits a Kähler-Einstein metric iff the function F− induced on T 1(X,−KX) by
the translation invariant function

φ 7→ E(φ) +
1

2
log

∫
X
e−2φ

is J-proper (cf. Section 6). This result was later refined in [PSSW08] who showed
that F− is actually J-coercive in the above sense if X is Kähler-Einstein. The
latter result will play a crucial role in our proof of the existence of anticanonically
balanced metrics in Section 7.

Let us finally record the following useful elementary fact.

Proposition 3.8. Let F be a J-proper and usc function on T 1(X, θ). Then
F achieves its supremum on T 1(X, θ). Moreover any asymptotically maximizing
sequence Tj ∈ T 1(X, θ) (i.e. such that limj→∞ F (Tj) = supF ) stays in a compact
subset of T 1(X, θ) and any accumulation point T of the Tj’s is a F -maximizer.

Proof. Let us recall the standard argument. It is clearly enough to settle the
second part. Let thus Tj be a maximizing sequence. It follows in particular
that F (Tj) is bounded from below, and the J-properness of F thus yields C > 0
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such that Tj ∈ {J ≤ C} for all j. Since {J ≤ C} is compact there exists an
accumulation point T of the Tj ’s, and F (Tj) → supF implies F (T ) ≥ supF
since F is usc. �

3.3. Continuity. In order to investigate the upper semi-continuity of Fµ = E−
Lµ on E1(X, θ) we will use the following general criterion.

Theorem 3.9. Let µ be a non-pluripolar measure and let K ⊂ PSH(X, θ) be a
compact convex subset such that Lµ is finite on K. The following properties are
equivalent.

(i) Lµ is continuous on K.
(ii) The map T : K → L1(µ) defined by T (ϕ) := ϕ− Vθ is continuous.
(iii) The set T (K) ⊂ L1(µ) is uniformly integrable, i.e.∫ +∞

t=k
µ{ϕ ≤ Vθ − t}dt→ 0

as k → +∞, uniformly for ϕ ∈ K.

Proof. By the Dunford-Pettis theorem, asumption (iii) means that T (K) is rela-
tively compact in the weak topology (induced by L∞(µ) = L1(µ)∗).

As a first general remark, we claim that graph of T is closed. Indeed let ϕj → ϕ
be a convergent sequence in K and assume that T (ϕj) → f in L1(µ). We have
to show that f = T (ϕ). But ϕj → ϕ implies that

ϕ = (lim sup
j→∞

ϕj)
∗

everywhere on X by general properties of psh functions. On the other hand
the set of points where (lim supj→∞ ϕj)

∗ > lim supj→∞ ϕj is negligible hence
pluripolar by a theorem of Bedford-Taylor, thus has µ-measure 0 by assumption
on µ. We thus see that ϕ = lim supj ϕj µ-a.e, hence T (ϕ) = lim supj T (ϕj) µ-a.e.

Since T (ϕj)→ f in L1(µ) there exists a subsequence such that T (ϕj)→ f µ-a.e.,
and it follows that f = T (ϕ) µ-a.e. as desired.

This closed graph property implies that the convex set T (K) is closed in the
norm topology (hence also in the weak topology by the Hahn-Banach theorem).
Indeed if T (ϕj) → f holds in L1(µ), then we may assume that ϕj → ϕ in K by
compactness of the latter space, hence f = T (ϕ) belongs to T (K) by the closed
graph property.

We now prove the equivalence between (i) and (ii). Observe that there exists
C > 0 such that T (ϕ) = ϕ−Vθ ≤ C for all ϕ ∈ K since supX ϕ = supX(ϕ−Vθ) is
bounded on the compact set K by Hartogs’ lemma. Given a convergent sequence
ϕj → ϕ in K we have T (ϕ) ≥ lim supj→∞ T (ϕj) µ-a.e. as was explained above,
thus Fatou’s lemma (applied to C−T (ϕj) ≥ 0) yields the asymptotic lower bound∫

T (ϕ)dµ ≥ lim sup
j→∞

∫
T (ϕj)dµ,

and the asymptotic equality case∫
T (ϕ)dµ = lim

j→∞

∫
T (ϕj)dµ
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holds iff T (ϕj)→ T (ϕ) in L1(µ). This follows from a basic lemma in integration
theory, which proves the desired equivalence.

If (ii) holds, then the closed convex subset T (K) is compact in the norm topol-
ogy, hence also weakly compact, and (iii) holds by the Dunford-Pettis theorem
recalled above.

Conversely assume that (iii) holds. We will prove (i). Let ϕj → ϕ be a
convergent sequence in K. We are to prove that

∫
T (ϕj)dµ→

∫
T (ϕ)dµ in L1(µ).

We may assume that
∫
T (ϕj)dµ → L for some L ∈ R since T (K) is bounded,

and we have to show that L =
∫
T (ϕ)dµ. For each k consider the closed convex

envelope

Ck := Conv{T (ϕj), j ≥ k}.
Each Ck is also weakly closed by the Hahn-Banach theorem, hence weakly compact
since it is contained in T (K). Since (Ck)k is a decreasing sequence of compact
subsets there exists f ∈ ∩kCk. For each k we may thus find a finite convex
combination ψk ∈ Conv{ϕj , j ≥ k} such that T (ψk) → f in the norm topology.
Since ϕj → ϕ in K we also have ψk → ϕ in K, hence f = T (ϕ) by the closed graph
property. On the other hand

∫
T (ψk)dµ is a convex combination of elements of

the form
∫
T (ϕj)dµ, j ≥ k, thus

∫
T (ψk)dµ→ L, and we finally get

∫
T (ϕ)dµ =∫

fdµ = L as desired. �

By Hölder’s inequality a bounded subset of L2(µ) is uniformly integrable, hence
the previous result applies to yield:

Corollary 3.10. Let µ be a probability measure such that

µ ≤ ACap

for some A > 0. Then T (EC) is bounded in L2(µ), and Lµ is thus continuous on
EC for each C > 0.

Proof. By (ii) of Lemma 2.9 we have∫ +∞

t=0
tµ{ϕ < Vθ − t}dt ≤ A

∫ +∞

t=0
tCap{ϕ < Vθ − t}dt ≤ C1

uniformly for ϕ ∈ EC , and the result follows. �

Theorem 3.11. Let ϕ ∈ E1(X, θ) and set µ := MA(ϕ). Then Lµ is continuous
on EC for each C > 0 and Fµ = E − Lµ is usc on E1(X, θ).

Proof. The second statement follows from the first. Indeed for each A {Fµ ≥ A}
is contained in EC for some C by Corollary 3.7, and we conclude that {Fµ ≥ A}
is closed as desired if we know that Fµ is usc on EC .

In order to prove the first assertion, assume first that ϕ has minimal singulari-
ties. Then the result follows from Corollary 3.10, since we have MA(ψ) ≤ ACap
for some A > 0. Indeed pick t ≥ 1 such that ψ ≥ Vθ− t. Then t−1ϕ+ (1− t−1)Vθ
is a candidate in the definition of Cap, and the claim follows since

MA(ϕ) ≤ tn MA(t−1ϕ+ (1− t−1)Vθ).

In the general case we write ϕ as the decreasing limit of its canonical approximants
ϕk := max(ϕ, Vθ − k). By Proposition 1.1 we have I(ϕk, ϕ) → 0 as k → ∞ and



24 ROBERT BERMAN, SÉBASTIEN BOUCKSOM, VINCENT GUEDJ, AHMED ZERIAHI

thus Lemma 3.12 below yields that LMA(ϕk) converges to Lµ uniformly on EC .
The result follows since for each k LMA(ϕk) is continuous on EC by the first part
of the proof. �

Lemma 3.12. We have

sup
EC

∣∣LMA(ψ1) − LMA(ψ2)

∣∣ = O
(
I(ψ1, ψ2)1/2

)
,

uniformly for ψ1, ψ2 ∈ EC .

Proof. Pick ϕ ∈ EC and set

ap :=

∫
X

(ϕ− Vθ)MA(ψ
(p)
1 , ψ

(n−p)
2 ).

Our goal is to find C1 > 0 only depending on C and a bound on |E(ψ1)|, |E(ψ2)|
such that

|an − a0| ≤ C1I(ψ1, ψ2)1/2.

It is enough to consider the case where ϕ,ψ1, ψ2 furthermore have minimal sin-
gularities. Indeed in the general case one can apply the result to the canonical
approximants with minimal singularities, and we conclude by continuity of mixed
Monge-Ampère operators along monotonic sequences. By integration by parts
([BEGZ08] Theorem 1.14) we have

ap+1 − ap =

∫
Ω

(ϕ− Vθ)ddc(ψ1 − ψ2) ∧ (θ + ddcψ1)p ∧ (θ + ddcψ2)n−p−1

= −
∫

Ω
d(ϕ− Vθ) ∧ dc(ψ1 − ψ2) ∧ (θ + ddcψ1)p ∧ (θ + ddcψ2)n−p−1

and the Cauchy-Schwarz inequality yields

|ap+1 − ap|2 ≤ ApBp
with

Ap :=

∫
Ω
d(ϕ− Vθ) ∧ dc(ϕ− Vθ) ∧ (θ + ddcψ1)p ∧ (θ + ddcψ2)n−p−1

and

Bp :=

∫
Ω
d(ψ1 − ψ2)∧ dc(ψ1 − ψ2)∧ (θ+ ddcψ1)p ∧ (θ+ ddcψ2)n−p−1 ≤ I(ψ1, ψ2)

by (2.9). By integration by parts again we get

Ap = −
∫

Ω
(ϕ− Vθ)ddc(ϕ− Vθ) ∧ (θ + ddcψ1)p ∧ (θ + ddcψ2)n−p−1

=

∫
Ω

(ϕ− Vθ)MA(Vθ, ψ
(p)
1 , ψ

(n−p−1)
2 )−

∫
Ω

(ϕ− Vθ)MA(ϕ,ψ
(p)
1 , ψ

(n−p−1)
2 )

which is uniformly bounded in terms of C only by Lemma 2.7. We thus conclude
that

|an − a0| ≤ |an − an−1|+ ...+ |a1 − a0| ≤ C1I(ψ1, ψ2)1/2

for some C1 > 0 only depending on C as desired. �
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4. Variational solutions of Monge-Ampère equations

4.1. Variational formulation. In this section we prove the following key step
in our approach, which extends Theorem A of the introduction to the case of
a big class. Recall that we have normalized the big cohomology class {θ} by
requiring that vol(θ) = 1. We let MX denote the set of all probability measures
on X. For any µ ∈MX E − Lµ descends to a concave functional

Fµ : T 1(X, θ)→ [−∞,+∞[.

Theorem 4.1. Given T ∈ T 1(X, θ) and µ ∈MX we have

Fµ(T ) = sup
T 1(X,θ)

Fµ iff µ = 〈Tn〉.

Proof. Write T = θ + ddcϕ and suppose that µ = 〈Tn〉 = MA(ϕ). Since E is
concave we have

E(ϕ) +

∫
X

(ψ − Vθ)MA(ϕ) ≥ E(ψ) +

∫
X

(ϕ− Vθ)MA(ϕ).

Indeed the inequality holds when ϕ,ψ have minimal singularities by (2.2) and
the general case follows by approximating ϕ by min(ϕ, Vθ − j) and similarly for
ψ. It follows that

Fµ(T ) = sup
T 1(X,θ)

Fµ.

In order to prove the converse we will rely on the differentiability result obtained
by the first two authors ([BB08] Theorem B). Given a usc function u : X →
[−∞,+∞[ we define its θ-psh envelope by

P (u) = sup{ϕ ∈ PSH(X, θ), ϕ ≤ u on X}

(or as P (u) :≡ −∞ is the set of θ-psh functions on the right is empty). Note that
P (u) is automatically usc. Indeed its usc majorant P (u)∗ ≥ P (u) is θ-psh and
satisfies P (u)∗ ≤ u since u is usc, and it follows that P (u) = P (u)∗ by definition.
Note also that

Vθ = P (0).

Now let v be a continuous function on X. Since v is in particular bounded, we
see that P (ϕ + tv) ≥ ϕ − O(1) belongs to E1(X, θ) for every t ∈ R. We claim
that the function

g(t) := E(P (ϕ+ tv))− Lµ(ϕ)− t
∫
X
vdµ

achieves its maximum at t = 0. Indeed since P (ϕ+ tv) ≤ ϕ+ tv we have

g(t) ≤ E(P (ϕ+ tv))− Lµ(P (ϕ+ tv)) ≤ E − Lµ(ϕ) = g(0)

by assumption since P (ϕ+ tu) ∈ E1(X, θ). By Lemma 4.2 below it follows that

0 = g′(0) =

∫
X
vMA(ϕ)−

∫
X
vdµ.

�
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Lemma 4.2. Given ϕ ∈ E1(X, θ) and a continuous function v on X we have

d

dt t=0
E(P (ϕ+ tv)) =

∫
X
vMA(ϕ).

Proof. By dominated convergence we get the following equivalent integral formu-
lation

E(P (ϕ+ v))− E(ϕ) =

∫ 1

t=0
〈v,MA(P (ϕ+ tv))〉dt. (4.1)

Since ϕ is usc, we can write it as the decreasing limit of a sequence of continuous
functions uj onX. It is then straightforward to check that for each t ∈ R P (ϕ+tv)
is the decreasing limit of P (uj + tv). By Theorem B of [BB08] we have

E(P (uj + v))− E(P (uj)) =

∫ 1

t=0
〈v,MA(P (uj + tv))〉dt

for each j. By Proposition 2.4 the energy E is continuous along decreasing
sequences hence

E(P (ϕ+ tv)) = lim
j→∞

E(P (uj + tv))

and
〈v,MA(P (ϕ+ tv))〉 = lim

j→∞
〈v,MA(P (uj + tv))〉

by [BEGZ08] Theorem 1.17 since P (ϕ+tv) has full Monge-Ampère mass. We thus
obtain (4.1) by dominated convergence, since the total mass of MA(P (uj + tv))
is equal to 1 for each j and t. �

We introduce the Legendre transform of E:

Definition 4.3. The electrostatic energy of a probability measure µ on X is
defined as the Legendre transform

E∗(µ) := sup
T 1(X,θ)

Fµ.

We will say that µ has finite energy if E∗(µ) < +∞.

Note that E∗(µ) ≥ 0 since E(Vθ) = Lµ(Vθ) = 0. We thus get a convex
functional

E∗ :MX → [0,+∞],

which is furthermore lower semi-continuous (in the weak topology of measures)
by Lemma 3.1.

Here is a first characterization of measures µ with finite energy.

Lemma 4.4. A probability measure µ has finite energy iff Lµ is finite on E1(X, θ).
In that case µ is necessarily non-pluripolar.

Proof. If Lµ is finite on E1(X, θ) then Fµ := E −Lµ is J-proper on T 1(X, θ) and
is bounded on each J-sublevel set by Corollary 3.7, and the result follows. �

The next result shows that E is in turn the Legendre transform of E∗.

Proposition 4.5. For any ϕ ∈ E1(X, θ) we have

E(ϕ) = inf
µ∈MX

(E∗(µ) + Lµ(ϕ)) .
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Proof. We have E∗(µ) ≥ E(ϕ) − Lµ(ϕ) and equality holds for µ = MA(ϕ) by
Theorem 4.1. The result follows immediately. �

We can alternatively relate E∗ and J as follows. If µ is a probability measure
on X we define an affine functional Hµ on T (X, θ) by setting

Hµ(T ) :=

∫
(ϕ− Vθ) (MA(Vθ)− µ)

with T = θ + ddcϕ. Then we have

E∗(µ) = sup
T∈T 1(X,ω)

(Hµ(T )− J(T )) ,

and Theorem 4.1 combined with the uniqueness result of [BEGZ08] says that the
supremum is attained (exactly) at T iff µ = 〈Tn〉.

4.2. Direct method. We will also use the following technical result.

Lemma 4.6. Let ν be a measure with finite energy and let A > 0. Then E∗ is
bounded on

{µ ∈MX |µ ≤ Aν}.

Proof. By Proposition 3.4 there exists B > 0 such that

sup
EC
|Iν | ≤ B(1 + C1/2)

for all C > 0, hence

sup
EC
|Lµ| ≤ AB(1 + C1/2)

for all µ ∈MX such that µ ≤ Aν. It follows that

E∗(µ) = sup
E1(X,θ)

(E − Lµ)

≤ sup
C>0

(
AB(1 + C1/2)− C

)
< +∞.

�

We are now in a position to state one of our main results (see Theorem A of
the introduction).

Theorem 4.7. A probability measure µ on X has finite energy iff there exists
T ∈ T 1(X, θ) such that µ = 〈Tn〉. In that case T = Tµ is unique and satisfies

n−1E∗(µ) ≤ J(Tµ) ≤ nE∗(µ).

Furthermore any maximizing sequence Tj ∈ T 1(X, θ) for Fµ converges to Tµ.

Proof. Suppose first that µ = 〈Tn〉 for some T ∈ E1(X, θ). Then µ has finite
energy by Lemma 4.4. Uniqueness follows from [BEGZ08], where it was more
generally proved that a current T ∈ T (X, θ) with full Monge-Ampère mass is
determined by 〈Tn〉 by adapting Dinew’s proof [Din09] in the Kähler case.

Write T = θ + ddcϕ. By the easy part of Theorem 4.1 we have

E∗(µ) = E(ϕ)−
∫
X

(ϕ− Vθ)MA(ϕ) = Jϕ(Vθ)
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and the second assertion follows from Lemma 2.2.
Now let Tj ∈ T 1(X, θ) be a maximizing sequence for Fµ. Since Fµ is J-proper

the Tj ’s stay in a compact set, so we may assume that they converge towards
S ∈ T 1(X, θ) and we are to show that S = T . Now Fµ is usc by Theorem 3.11
thus Fµ(S) has to be equal to supT 1(X,θ) Fµ. By Theorem 4.1 we thus get

〈Sn〉 = µ = 〈Tn〉
hence S = T as desired by uniqueness.

We now come to the main point. Assume that µ has finite energy in the above
sense that E∗(µ) < +∞. In order to find T ∈ T 1(X, θ) such that 〈Tn〉 = µ it
is enough to show by Theorem 4.1 that Fµ achieves its supremum on T 1(X, θ).
Since Fµ is J-proper it is even enough to that Fµ is usc, which we know holds
true a posteriori by Theorem 3.11.

We are unfortunately unable to establish this a priori, thus we resort to a more
indirect argument. Assume first that µ ≤ ACap for some A > 0. Corollary 3.10
then implies that Lµ is continuous on EC for each C, hence Fµ is usc in that case
and we infer that µ = 〈Tn〉 for some T ∈ T 1(X, θ) as desired.

In the general case we rely on the following result already used in [GZ07,
BEGZ08] and which basically goes back to Cegrell [Ceg98].

Lemma 4.8. Let µ be a probability measure that puts no mass on pluripolar
subsets. Then µ is absolutely continuous with respect to a probability measure ν
such that ν ≤ Cap.

Proof. As in [Ceg98] we apply the generalised Radon-Nikodym theorem to the
compact convex set of measures

C := {ν ∈MX , ν ≤ Cap}.
By Proposition 1.6 this is indeed a closed subset of MX hence is compact.
By [Rai69] there exists ν ∈ C, ν ′ ⊥ C and f ∈ L1(ν) such that

µ = fν + ν ′.

Since µ puts no mass on pluripolar sets and C characterises such sets, it follows
that ν ′ = 0, qed. �

Since µ is non-pluripolar by Lemma 4.4, we can use Lemma 4.8 and write
µ = fν with ν ≤ Cap and f ∈ L1(ν). Now set

µk := (1 + εk) min(f, k)ν

where εk ≥ 0 is chosen so that µk has total mass 1. We thus have µk ≤ 2kCap
thus by the above first part of the proof we have µk = 〈Tnk 〉 for some Tk ∈
T 1(X, θ). On the other hand we have µk ≤ 2µ for all k thus E∗(µk) is uniformly
bounded by Lemma 4.6. By the first part of the proof it follows that all Tk stay
in a sublevel set {J ≤ C}. Since the latter is compact we may assume that
Tk → T for some T ∈ T 1(X, θ). In particular T has full Monge-Ampère mass
and [BEGZ08] Corollary 2.21 thus yields

〈Tn〉 ≥ (lim inf
k→∞

(1 + εk) min(f, k))ν = µ,

hence 〈Tn〉 = µ since both measures have total mass 1, qed. �
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By a similar argument we can now recover the main result of [BEGZ08].

Corollary 4.9. Let µ be a non-pluripolar probability measure on X. Then there
exists T ∈ T (X, θ) such that µ = 〈Tn〉.

Proof. Using Lemma 4.8 as above we can write µ = fν with ν ≤ Cap and
f ∈ L1(ν), and we set µk = (1 + εk) min(f, k)ν as above. By Theorem 4.7 there
exists Tk ∈ T 1(X, θ) such that µk = 〈Tnk 〉. We may assume that Tk converges to
some T ∈ T (X, θ).

We claim that T has full Monge-Ampère mass, which will imply 〈Tn〉 = µ
by [BEGZ08] Corollary 2.21 just as above. Write T = θ+ddcϕ and Tk = θ+ddcϕk
with supX ϕ = supX ϕk = 0 for all k. By general Orlicz space theory ([BEGZ08]
Lemma 3.3) there exists a convex non-decreasing function χ : R− → R− with a
sufficiently slow growth at −∞ and C > 0 such that∫

X
(−χ)(ψ − Vθ)dµ ≤

∫
X

(ψ − Vθ)dν + C

for all ψ ∈ PSH(X, θ) normalized by supX ψ = 0. Now
∫
X(ϕk − Vθ)dν = Lµ(ϕk)

is uniformly bounded by Corollary 3.10, and we infer that∫
X

(−χ)(ϕk − Vθ)MA(ϕk) ≤ 2

∫
X

(−χ)(ϕk − Vθ)dµ

is uniformly bounded. This means that the χ-weighted energy (cf. [BEGZ08]) of
ϕk is uniformly bounded (since ϕk has full Monge-Ampère mass) and we conclude
that ϕ has finite χ-energy by semi-continuity of the χ-energy. This implies in turn
that ϕ has full Monge-Ampère as desired. �

5. Pluricomplex electrostastics

We assume throughout this section that θ = ω is a Kähler form (still normalized
by
∫
X ω

n = 1). We then have Vω = 0.

5.1. Pluricomplex energy of measures. We first record the following useful
explicit formulas.

Lemma 5.1. Let µ be a probability measure with finite energy, and write µ =
(ω + ddcϕ)n with ϕ ∈ E1(X,ω). Then we have

E∗(µ) =
1

n+ 1

n−1∑
j=0

∫
X
ϕ
(
(ω + ddcϕ)j ∧ ωn−j − µ

)
=

n−1∑
j=0

j + 1

n+ 1

∫
X
dϕ ∧ dcϕ ∧ (ω + ddcϕ)j ∧ ωn−j . (5.1)

Proof. By the easy part of Theorem 4.1 we have

E∗(µ) = E(ϕ)−
∫
X
ϕdµ = Jϕ(0)

and the formulas follow from the explicit formulas for E and Jϕ(ψ) given in
Section 2. �
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When X is a compact Riemann surface (n = 1) a given probability measure µ
may be written µ = ω + ddcϕ by solving Laplace’s equation. Then E∗(µ) < +∞
iff ϕ belongs to the Sobolev space L2

1(X), and in that case

2E∗(µ) =

∫
X
ϕ(ω − µ) =

∫
X
dϕ ∧ dcϕ

is nothing but the classical Dirichlet functional applied to the potential ϕ.

We now indicate the relation with the classical logarithmic energy (cf. [ST]
Chapter 1). Recall that a signed measure λ on C is said to have finite logarithmic
energy if (z, w) 7→ log |z −w| belongs to L1(|λ| ⊗ |λ|), and its logarithmic energy
is then defined by

I(λ) =

∫ ∫
log |z − w|−1λ(dz)λ(dw).

When λ has finite energy its logarithmic potential

Uλ(z) =

∫
log |z − w|λ(dw)

belongs to L1(|λ|) and we have

I(λ) = −
∫
Uλ(z)λ(dz).

The Fubiny-Study form ω (normalized to mass 1) has finite energy and a simple
computation in polar coordinates yields I(ω) = −1/2. We also have

Uω(z) =
1

2
log(1 + |z|2).

The logarithmic energy I can be polarized into a quadratic form

I(λ, µ) :=

∫ ∫
log |z − w|−1λ(dz)µ(dw)

on the vector space of signed measures with finite energy, which then splits into
the I-orthogonal sum of Rω and of the space of signed measures with total mass
0. The quadratic form I is positive definite on the latter space ([ST] Lemma
I.1.8).

Lemma 5.2. Let X = P1 and ω to be the Fubini-Study form normalized to mass
1. If µ is a probability measure on C ⊂ P1 then E∗(µ) < +∞ iff µ has finite
logarithmic energy and in that case we have

E∗(µ) =
1

2
I(µ− ω).

Proof. We have µ = ω + ddc(Uµ − Uω), so the first assertion means that µ has
finite logarithmic energy iff Uµ −Uω belongs to the Sobolev space L2

1(P1), which
is a classical fact. The second assertion follows from (5.1), which yields

2E∗(µ) = −
∫

(Uµ − Uω)(µ− ω) = I(µ− ω).

�
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5.2. A pluricomplex electrostatic capacity. As in [BB08] we consider a
weighted subset consisting of a compact subset K of X together with a con-
tinuous function v ∈ C0(K), and we define the equilibrium weight of (K, v) as
the extremal function

PKv := sup∗{ϕ|ϕ ∈ PSH(X,ω), ϕ ≤ v on K}.
The function PKv belongs to PSH(X,ω) if K is non-pluripolar and satisfies

PKv ≡ +∞ otherwise (cf. [Sic81], [GZ05]).
If K is a compact subset of Cn and

ϕFS :=
1

2
log(1 + |z|2)

denotes the potential on Cn of the Fubiny-Study metric, then PK(−ϕFS) + ϕFS
coincides with Siciak’s extremal function, i.e. the usc upper envelope of the family
of all psh functions u on Cn with logarithmic growth such that u ≤ 0 on K.

The equilibrium measure of a non-pluripolar weighted compact set (K, v) is
defined as

µeq(K, v) := MA(PKv)

and its energy at equilibrium is

Eeq(K, v) := E(PKv).

The functional v 7→ Eeq(K, v) is concave and Gâteaux differentiable on C0(K),
with directional derivative at v given by integration against µeq(K, v) by Theorem
B of [BB08]. As a consequence of Theorem 4.1 we get the following related
variational characterization of µeq(K, v).

Let MK denote the set of all probability measures on K.

Theorem 5.3. If (K, v) is a non-pluripolar weighted compact subset then we
have

Eeq(K, v) = inf
µ∈MK

(E∗(µ) + 〈v, µ〉)

and the infimum is achieved precisely for µ = µeq(K, v).
Conversely if K is pluripolar then E∗(µ) = +∞ for each µ ∈MK .

Proof. Assume first that K is non-pluripolar. The concave functional F :=
Eeq(K, ·) is non-decreasing on C0(K) and satisfies the scaling property F (v+c) =
F (v) + c so its Legendre transform

F ∗(µ) := sup
v∈C0(K)

(F (v)− 〈v, µ〉)

is necessarily infinite outside MK ⊂ C0(K)∗. The basic theory of convex func-
tions thus yields

F (v) = inf
µ∈MK

(F ∗(µ) + 〈v, µ〉)

and the infimum is achieved exactly at µ = F ′(v) = µeq(K, v). What we have to
show is thus F ∗ = E∗|MK

. But on the one hand PK(v) ≤ v on K implies

F ∗(µ) ≤ sup
v∈C0(K)

(E(PKv)− 〈PKv, µ〉)
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≤ sup
ϕ∈E1(X,ω)

(E(ϕ)− 〈ϕ, µ〉) = E∗(µ).

On the other hand every ϕ ∈ E1(X,ω) has identically zero Lelong numbers, so it
can be written as a decreasing limit of smooth ω-psh functions ϕj by [Dem92].
For each j the function vj := ϕj |K ∈ C0(K) satisfies ϕj ≤ PK(vj) hence

E(ϕj)− 〈ϕj , µ〉 ≤ E(PKvj)− 〈vj , µ〉 ≤ F ∗(µ)

and we infer E∗(µ) ≤ F ∗(µ) as desired since

E(ϕ)− 〈ϕ, µ〉 = lim
j→∞

(E(ϕj)− 〈ϕj , µ〉)

by Proposition 2.1 and monotone convergence respectively.
Now assume that K is pluripolar. If there exists µ ∈ MK with E∗(µ) < +∞.

then Theorem A implies in particular that µ puts no mass on pluripolar sets,
which contradicts µ(K) = 1. �

One can interpret Theorem 5.3 as a pluricomplex version of weighted electro-
statics where K is a condenser, µ describes a charge distribution on K, E∗(µ) is
its internal electrostatic energy and 〈v, µ〉 is the external energy induced by the
field v. The equilibrium distribution µeq(K, v) is then the unique minimizer of
the total energy E∗(µ) + 〈v, µ〉 of the system.

In view of Theorem 5.3 it is natural to define the electrostatic capacity of a
weighted compact subset (K, v) by

− logCe(K, v) =
n+ 1

n
inf{E∗(µ) + 〈v, µ〉, µ ∈MK}.

We then have Ce(K, v) = 0 iff K is pluripolar, and

Ce(K, v) = exp

(
−n+ 1

n
Eeq(K, v)

)
when K is non-pluripolar.

Our choice of constants is guided by [BB08] Corollary A, which shows that
Ce(K, v) coincides (up to a multiplicative constant) with the natural general-
ization of Leja-Zaharjuta’s transfinite diameter when ω is the curvature form of
a metric on ample line bundle L over X. In particular this result shows that
the Leja-Zaharjuta transfinite diameter d∞(K) of a compact subset K ⊂ Cn,
normalized so that

d∞(tK) = td∞(K)

for each t > 0, is proportional to Ce(K,−ϕFS).
By the continuity properties of extremal functions and of the energy functional

along monotone sequences, it follows that the capacity Ce(·, v) can be extended
in the usual way as an outer Choquet capacity on X which vanishes exactly on
pluripolar sets. In view of Lemma 5.2 this electrostatic capacity extends the
classical logarithmic capacity of a compact subset K ⊂ C, which is equal to

exp (− inf{I(µ), µ ∈MK}) .
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On the other hand the Alexander-Taylor capacity of a weighted compact subset
(K, v) may be defined by

T (K, v) := exp(− sup
X
PKv).

(compare [AT84, GZ05]). We thus have T (K, v) = 0 iff K is pluripolar. We have
for instance

T (BR, 0) =
R

(1 +R2)1/2

when X = Pn and BR ⊂ Cn is the ball of radius R (cf. [GZ05] Example 4.11). In
particular this implies T (BR, v) ' R as R→ 0.

The two capacities compare as follows.

Proposition 5.4. There exists C > 0 such that

T (K, v)1+1/n ≤ Ce(K, v) ≤ CeMT (K, v)1/n

for each M > 0 and each weighted compact subset (K, v) so that v ≥ −M on K.

Proof. The definition of E immediately implies that

Eeq(K, v) = E(PKv) ≤ sup
X
PKv

hence the left-hand inequality. Conversely v ≥ −M implies PKv ≥ −M hence
Proposition 2.1 yields∫

X
(PKv)ωn − nM ≤ (n+ 1)Eeq(K, v).

But there exists a constant C > 0 such that

sup
X
ϕ ≤

∫
X
ϕωn + C

for all ϕ ∈ PSH(X,ω) by compactness of T (X,ω), and we get

1

n
sup
X
PKv ≤

n+ 1

n
Eeq(K, v) +M + C ′

as desired. �

Observe that when K lies in the unit ball of Cn ⊂ Pn and

v(z) = −1

2
log(1 + |z|2)

then we get v ≥ − log
√

2 on K and the above results improve on [LT83].

6. Variational principles for Kähler-Einstein metrics

In this section we use the variational approach to study the existence of Kähler-
Einstein metrics on manifolds with definite first Chern class. The Ricci-flat case
is an easy consequence of Theorem A. In Section 6.1 we treat the case of manifolds
of general type and prove Theorem C. The more delicate case of Fano manifolds
occupies the remaining sections: in Section 6.2 we construct continuous geodesics
in the space of positive closed currents with precribed cohomology class, we then
prove Theorem D in Section 6.3, while uniqueness of (singular) Kähler-Einstein
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metrics with positive curvature (Theorem E) is established in Section 6.4. We will
use throughout the convenient language of weights, i.e. view metrics additively.
We refer for instance to [BB08] for explanations.

6.1. Manifolds of general type. Let X be a smooth projective variety of
general type, i.e. such that KX is big. A weight φ on KX induces a volume form
e2φ. By a singular Kähler-Einstein weight we mean a psh weight on KX such
that MA(φ) = e2φ and such that

∫
X e

2φ = vol(KX) =: V , or equivalently such
that MA(φ) has full Monge-Ampère mass.

In [EGZ09] a singular Kähler-Einstein weight was constructed using the exis-
tence of the canonical model

Xcan := Proj⊕m≥0 H
0(X,mKX)

provided by the fundamental result of [BCHM06]. In [Tsu06] a direct proof of the
existence of a singular Kähler-Einstein weight was sketched and the argument was
expanded in [ST08]. In [BEGZ08] existence and uniqueness of singular Kähler-
Einstein weights was established using a generalized comparison principle, and the
unique singular Kähler-Einstein weight was furthermore shown to have minimal
singularities in the sense of Demailly.

We propose here to give a direct variational proof of the existence of a singular
Kähler-Einstein weight in E1(KX) (we therefore don’t recover the full force of
the result in [BEGZ08]). We proceed as before but replacing the functional Fµ
by F+ := E − L+ where we have set

L+(φ) :=
1

2
log

∫
X
e2φ.

Proof of Theorem C. Note that e2φ has L∞-density with respect to Lebesgue
measure. Indeed if φ0 is a given smooth weight on KX we have e2φ = e2φ−2φ0e2φ0

where e2φ0 is a smooth positive volume form and the function φ− φ0 is bounded
from above on X. Given φ1, φ2 ∈ PSH(KX), we can in particular consider the
integral ∫

X
(φ1 − φ2)e2φ :=

∫
X

(φ1 − φ0)e2φ −
∫
X

(φ2 − φ0)e2φ,

which is of course independent of the choice of φ0.

Lemma 6.1. The directional derivatives of L+ on PSH(KX) are given by

d

dt t=0+
L+(tφ+ (1− t)ψ) =

∫
X(φ− ψ)e2ψ∫

X e
2ψ

.

Proof. By the chain rule it is enough to show that

d

dt t=0+

∫
X
etφ+(1−t)ψ =

∫
X

(φ− ψ)eψ.

One has to be a little bit careful since φ− ψ is not bounded on X. But we have∫
X

(
etφ+(1−t)ψ − eψ

)
=

∫
X

(
et(φ−ψ) − 1

)
eψ.
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Now (et(φ−ψ)− 1)/t decreases pointwise to φ−ψ as t decreases to 0 by convexity
of exp and the result indeed follows by monotone convergence. �

Using this fact and arguing exactly as in Theorem 4.1 proves that

F+(φ) = sup
E1(KX)

F+ (6.1)

implies

MA(φ) = e2φ+c (6.2)

for some c ∈ R. Indeed apart from [BB08] the main point of the proof of The-
orem 4.1 is that E(P (φ + v)) − Lµ(φ + v) is maximum for v = 0 if E − Lµ is
maximal at φ, and this only relied on the fact that Lµ is non-decreasing, which
is also the case for L+.

Conversely E is concave while L+ is convex by Hölder’s inequality, thus F+ is
concave and (6.2) implies (6.1) as in Theorem 4.1.

In order to conclude the proof of Theorem C we need to prove that F+ achieves
its supremum on E1(KX), or equivalently on T 1(KX). Now Corollary 3.7 applies
to F+ = E − L+ since L+ is non-decreasing, convex and satisfies the scaling
property, and we conclude that F+ is J-proper as before. It thus remains to
check that F+ is upper semicontinuous, which will follow if we prove that L+ is
usc on EC for each C as before.

But we claim that L+ is actually continuous on PSH(KX). Indeed let φj → φ
be a convergent sequence in PSH(KX). Upon extracting we may assume that
φj → φ a.e. On the other hand, given a reference weight φ0, supX(φj − φ0) is

uniformly bounded by Hartogs’ lemma, thus e2(φj−φ0) is uniformly bounded and
we get

∫
X e

2φj →
∫
X e

2φ as desired by dominated convergence.

6.2. Continuous geodesics. Let ω be a semi-positive (1, 1)-form on X. If Y
is a complex manifold, then a map Φ : Y → PSH(X,ω) will be said to be psh
(resp. locally bounded, continuous, smooth) iff the induced function Φ(x, y) :=
Φ(y)(x) on X × Y is π∗Xω-psh (resp. locally bounded, continuous, smooth). We
shall also say that Φ is maximal if it is psh, locally bounded and

(π∗Xω + ddc(x,y)Φ)n+m = 0

where m := dimY and ddc(x,y) acts on both variables (x, y). If Y is a radially

symmetric domain in C and Φ is smooth on X×Y such that ω+ddcxΦ(·, y) > 0 for
each y ∈ Y then by definition Φ is flat iff Φ(et) is a geodesic for the Riemannian
metric on

{ϕ ∈ C∞(X), ω + ddcϕ > 0}
defined in [Mab87, Sem92, Don99].

Proposition 6.2. If Φ : Y → PSH(X,ω) is a psh map then E ◦ Φ is a psh
function on Y (or is indentically −∞ on some component of Y ). When Φ is
furthermore locally bounded we have

ddcy(E ◦ Φ) = (πY )∗

(
(π∗Xω + ddc(x,y)Φ)n+1

)
. (6.3)
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In particular if dimY = 1 then E ◦ Φ is harmonic on Y if Φ is maximal (=har-
monic in this case).

Proof. Assume first that Φ is smooth. Then we can consider

E ◦ Φ :=
1

n+ 1
(πY )∗

Φ

n∑
j=0

(π∗Xω + ddcxΦ)j ∧ π∗Xωn−j
 . (6.4)

The formula

ddcy(E ◦ Φ) = (πY )∗

(
(π∗Xω + ddc(x,y)Φ)n+1

)
follows from an easy but tedious computation relying on integration by parts and
will be left to the reader.

When Φ(x, y) is bounded and π∗Xω-psh the same argument works. Indeed
integration by parts is a consequence of Stokes formula applied to a local relation
of the form u = dv, and the corresponding relation in the smooth case can be
extended to the bounded case by a local regularization argument.

Finally let Φ(x, y) be an arbitrary π∗Xω-psh function. We may then write Φ as
the decreasing limit of max(Φ,−k) as k → ∞, and by Proposition 2.4 E ◦ Φ is
then the pointwise decreasing limit of E ◦ Φk, whereas

(π∗Xω + ddc(x,y)Φk)
n+1 → (π∗Xω + ddc(x,y)Φ)n+1

by Bedford-Taylor’s monotonic continuity theorem. �

Proposition 6.3. Let Ω b Cm be a smooth strictly pseudoconvex domain and let
ϕ : ∂Ω→ PSH(X,ω) be a continuous map. Then there exists a unique continuous
extension Φ : Ω→ PSH(X,ω) of ϕ which is maximal on Ω.

The proof is a simple adaptation of Bedford-Taylor’s techniques to the present
situation. Although it has recently appeared in [BD09] we include a proof as a
courtesy to the reader.

Proof. Uniqueness follows from the maximum principle. Let F be the set of all
continuous psh maps Ψ : Ω → PSH(X,ω) such that Ψ ≤ ϕ on ∂Ω. Note that
F is non-empty since it contains all sufficiently negative constant functions of
(x, y). Let Φ be the upper envelope of F . We are going to show that Φ = ϕ on
∂Ω and that Φ is continuous. The latter property will imply that Φ is π∗Xω-psh,
and it is then standard to show that Φ is maximal on Ω by using local solutions
to the homogeneous Monge-Ampère equation (compare. [Dem91] P.17, [BB08]
Proposition 1.10).

Assume first that ϕ is a smooth. We claim that ϕ admits a smooth psh
extension ϕ̃ : Ω → PSH(X,ω). Indeed we first cover Ω by two open subsets
U1, U2 such that U1 retracts smoothly to ∂Ω. We can then then extend ϕ to a
smooth map ϕ1 : U1 → PSH(X,ω) using the retraction and pick any constant
map ϕ2 : U2 → PSH(X,ω). Since PSH(X,ω) is convex θ1ϕ1 + θ2ϕ2 defines a
smooth extension Ω → PSH(X,ω) (where θ1, θ2 is a partition of unity adapted
to U1, U2). Now let χ be a smooth strictly psh function on Ω vanishing on the
boundary of Ω. Then ϕ̃ := θ1ϕ1 + θ2ϕ2 + Cχ yields the desired smooth psh
extension of ϕ.
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Since ϕ̃ belongs to F we get in particular ϕ̃ ≤ Φ hence Φ = ϕ on ∂Ω. We now
take care of the continuity of Φ, basically following [Dem91] P.13. By [Dem92]
the exists a sequence Φk of smooth functions on X ×Ω which decrease pointwise
to the usc regularization Φ∗ and such that

ddcΦk ≥ −εk(π∗Xω + ddcχ).

Note that Ψk := (1 − εk)(Φk + εkχ) is thus π∗Xω-psh. Given ε > 0 we have
Φ∗ < ϕ̃+ ε on a compact neighbourhood U of X × ∂Ω thus Ψk < ϕ̃+ ε on U for
k � 1. It follows that max(Ψk − ε, ϕ̃) belongs to F , so that Ψk − ε ≤ Φ, and we
get

Φ ≤ Φ∗ ≤ Φk ≤ (1− εk)−1(Φ + ε)− εkχ,
which in turn implies that Φk converges to Φ uniformly on X × Ω. We conclude
that Φ is continuous in that case as desired.

Let now ϕ : ∂Ω→ PSH(X,ω) be an arbitrary continuous map. By Richberg’s
approximation theorem (cf. e.g. [Dem92]) we may find a sequence of smooth
functions ϕk : ∂Ω → PSH(X,ω) such that supX×∂Ω |ϕ − ϕk| =: εk tends to 0.
The corresponding envelopes Φk then satisfy Φk−εk ≤ Φ ≤ Φk+εk, which shows
that Φk → Φ uniformly on X × Ω, and the result follows. �

6.3. Fano manifolds. Let X be a Fano manifold. Our goal in this section is
to prove that singular Kähler-Einstein weights, i.e. weights φ ∈ E1(−KX) such
that MA(φ) = e−2φ, can be characterized by a variational principle.

Lemma 6.4. The map E1(X,ω)→ L1(X) ϕ 7→ e−ϕ is continuous.

Proof. As already observed every ϕ ∈ PSH(X,ω) with full Monge-Ampère mass
has identically zero Lelong numbers (cf. [GZ07] Corollary 1.8), which amounts
to saying that e−ϕ belongs to Lp(X) for all p < +∞ by Skoda’s integrability
criterion. Now let ϕj → ϕ be a convergent sequence in E1(X, θ). Then e−ϕj →
e−ϕ a.e.. On the other hand supX ϕj is uniformly bounded, thus is follows from
the uniform version of Skoda’s theorem [Zer01] that e−ϕj stays in a bounded
subset of L2(X). In particular e−ϕj is uniformly integrable, and it follows that
e−ϕj → e−ϕ in L1(X). �

Set L−(φ) := −1
2 log

∫
X e
−2φ and F− := E−L−. Note that L− is now concave

on E1(−KX) by Hölder’s inequality, so that E − L− is merely the difference of
two concave functions. However we have the following psh analogue of Prekopa’s
theorem, which follows from Berndtsson’s results on the psh variation of Bergman
kernels and shows that L− is geodesically convex :

Lemma 6.5. Let Φ : Y → PSH(−KX) be a psh map. Then L− ◦Φ is psh on Y .

Proof. Consider the product family πY : Z := X × Y → Y and consider the
line bundle M := π∗X(−KX), which coincides with relative anticanonical bundle

of Z/Y . Then y 7→ 1
2 log

(∫
X e
−2Φ(·,y)

)−1
is the weight of the L2 metric in-

duced on the direct image bundle (πY )∗OZ
(
KZ/Y +M

)
. The result thus follows

from [Bern09a]. �

We are now ready to prove the main part of Theorem D.
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Theorem 6.6. Let X be a Fano manifold and let φ ∈ E1(−KX). The following
properties are equivalent.

(i) F−(φ) = supE1(−KX) F−.

(ii) MA(φ) = e−2φ+c for some c ∈ R.

Furthermore φ is continuous in that case.

As mentioned in the introduction this result extends a theorem of Ding-Tian
(cf. [Tian] Corollary 6.26) to singular weights while relaxing the assumption that
H0(TX) = 0 in their theorem.

Proof. The proof of (i)⇒(ii) is similar to that of Theorem 4.1: given u ∈ C0(X)
we have

E(P (φ+u))+
1

2
log

∫
X
e−2(φ+u) ≤ E(P (φ+u))+

1

2
log

∫
X
e−2P (φ+u) ≤ E(φ)+

1

2
log

∫
X
e−2φ

thus u 7→ E(P (φ+u))+log
∫
X e
−(φ+u) achieves its maximum at 0. By Lemma 4.2

MA(φ) coincides with the differential of u 7→ −1
2 log

∫
X e
−2(φ+u) at 0 and we get

MA(φ) = e−2φ+c for some c ∈ R as desired.
The equation MA(φ) = e−2φ+c shows in particular that MA(φ) has L1+ε den-

sity and we infer from [Ko l98] that φ is continuous.
Conversely let φ ∈ E1(−KX) be such that MA(φ) = e−2φ+c and let ψ ∈

E1(−KX). We are to show that F−(φ) ≥ F−(ψ). By scaling invariance of F−
we may assume that c = 0, and by continuity of F− along decreasing sequences
we may assume that ψ is continuous. Since φ is also continuous by Kolodziej’s
theorem, Proposition 6.3 yields a radially symmetric continuous map Φ : A →
PSH(X,ω) where A denotes the annulus {z ∈ C, 0 < log |z| < 1}, such that Φ
is harmonic on A and coincides with φ (resp. with ψ) for log |z| = 0 (resp. 1).
The path φt := Φ(et) is thus a ”continuous geodesic” in PSH(X,ω), and E(φt)
is an affine function of t on the segment [0, 1] by Proposition 6.2. On the other
hand Lemma 6.5 implies that L−(φt) is a convex function of t, thus F−(φt) is
concave, with F−(φ0) = F−(φ) and F−(φ1) = F−(ψ). In order to show that
F−(φ) ≥ F−(ψ) it will thus be enough to show

d

dt t=0+
F−(φt) ≤ 0. (6.5)

Note that φt(x) is a convex function of t for each x fixed, thus

ut :=
φt − φ0

t

decreases pointwise as t→ 0+ to a function v on X that is bounded from above
(by u1 = φ0 − φ1). The concavity of E implies

E(φt)− E(φ0)

t
≤
∫
X
utMA(φ0)

hence
d

dt t=0+
E(φt) ≤

∫
X
vMA(φ0) =

∫
X
ve−2φ0 (6.6)
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by the monotone convergence theorem (applied to−ut, which is uniformly bounded
below and increases to −v). Note that this implies in particular that v ∈ L1(X).
On the other hand we have∫

X e
−2φt −

∫
X e
−2φ0

t
= −

∫
X
utf(φt − φ0)e−2φ0

with f(x) := (1−e−2x)/x, and f(φt−φ0) is uniformly bounded on X since φt−φ0

is uniformly bounded. It follows that |utf(φt−φ0)| is dominated by an integrable
function, hence

d

dt t=0+

∫
X
e−2φt = −

∫
X
ve−2φ0 (6.7)

since f(φt − φ0) → 1. The combination of (6.6) and (6.7) now yields (6.5) as
desired. �

Remark 6.7. Suppose that φ, ψ ∈ PSH(−KX) are smooth such that φ is Kähler-
Einstein. We would like to briefly sketch Ding-Tian’s argument for comparison.
Since F− is translation invariant we may assume that they are normalized so
that

∫
X e
−2φ =

∫
X e
−2ψ = 0, and our goal is to show that E(φ) ≥ E(ψ). By the

normalization we get MA(φ) = V e−2φ with V := vol(−KX) = c1(X)n and there
exists a smooth weight τ ∈ PSH(−KX) such that MA(τ) = V e−2ψ by [Yau78]. If
we further assume that H0(TX) = 0 then [BM87] yields the existence of a smooth
path φt ∈ PSH(−KX) ∩ C∞ with φ0 = τ , φ1 = φ and

MA(φt) = V e−(tφt+(1−t)ψ) (6.8)

for each t ∈ [0, 1]. The argument of Ding-Tian can then be formulated as follows.
The claim is that t(E(φt)−E(ψ)) is a non-decreasing function of t, which implies
E(φ)− E(ψ) ≥ 0 as desired. Indeed we have

d

dt
(t(E(φt)− E(ψ))) = E(φt)− E(ψ) + t〈E′(φt), φ̇t〉. (6.9)

On the other hand differentiating
∫
X e
−(tφt+(1−t)ψ) = 1 yields

0 =
d

dt

∫
X
e−(tφt+(1−t)ψ) = −

∫
X

(φt + tφ̇t − ψ)e−(tφt+(1−t)ψ)

thus
〈E′(φt), φt + tφ̇t − ψ〉 = 0

by (6.8), and (6.9) becomes

d

dt
(t(E(φt)− E(ψ))) = E(φt)− E(ψ) + 〈E′(φt), ψ − φt〉 = Jφt(ψ)

which is non-negative as desired by concavity of E.

Proof of Theorem D. The first part of the proof of Theorem D follows from
Theorem 6.6. Observe now that F− is u.s.c. If it is J-proper then its supremum is
attained on a compact convex set of weights with energy uniformly bounded from
below by some large constant −C. The conclusion thus follows from Theorem
6.6.

As opposed to F+, let us recall for emphasis that F− is not necessarily J-proper
(see [Tian]).
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6.4. Uniqueness of Kähler-Einstein metrics. This section is devoted to
the proof of Theorem E, which extends in particular [BM87] in case H0(TX) = 0.

Theorem 6.8. Let X be a Kähler-Einstein Fano manifold without non-trivial
holomorphic vector field. Then F achieves its maximum on T 1(−KX) at a unique
point.

Proof. Let φ be a smooth Kähler-Einstein weight on −KX , which exists by as-
sumption. We may assume that φ is normalized so that MA(φ) = e−2φ. Now let
ψ ∈ E1(−KX) be such that MA(ψ) = e−ψ. We are going to show that φ = ψ. By
Kolodziej’s theorem ψ is continuous, and we consider as before the continuous
geodesic φt connecting φ0 = φ to φ1 = ψ. Theorem 6.6 implies that the concave
function F−(φt) achieves its maximum at t = 0 and t = 1, thus F−(φt) is constant
on [0, 1]. Since E(φt) is affine, it follows that L−(φt) is also affine on [0, 1], hence
L−(φt) ≡ 0 since L−(φ0) = L−(φ1) = 0 by assumption. This implies in turn that
E(φt) is constant. Theorem 6.6 therefore yields MA(φt) = e−2φt for all t ∈ [0, 1].

Set vt := ∂
∂tφt, which is non-decreasing in t by convexity. One sees as in the

proof of Theorem 6.6 that vt ∈ L1(X) and∫
X
vte
−2φt = 0 (6.10)

for all t. We claim that v0 = 0, which will imply vt ≥ v0 = 0 for all t, hence
vt = 0 a.e. for all t by (6.10), and the proof will be complete.

We are going to show by differentiating the equation (ddcφt)
n = e−2φt that

nddcv0 ∧ (ddcφ0)n−1 = −v0e
−2φ0 (6.11)

in the sense of distributions, i.e.

n

∫
X
v0(ddcφ0)n−1 ∧ ddcw = −

∫
X
wv0(ddcφ0)n

for every smooth function w on X. Using (ddcφ0)n = e−2φ0 (6.11) means that
v0 is an eigendistribution with eigenvalue −1 of the Laplacian ∆ of the (smooth)
Kähler-Einstein metric ddcφ0, and thus v0 = 0 since H0(TX) = 0 (cf.[Tian],
Lemma 6.12).

We claim that
d

dt t=0+

∫
X
we−2φt = −

∫
X
wv0e

−2φ0 (6.12)

and
d

dt t=0+

∫
X
w(ddcφt)

n = n

∫
X
v0(ddcφ0)n−1 ∧ ddcw, (6.13)

which will imply (6.11). The proof of (6.12) is handled as before: we write∫
X
w
e−2φt − e−2φ0

t
= −

∫
X
wutf(φt − φ0)e−2φ0

with f(x) := (1− e−x)/x and use the monotone convergence theorem.
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On the other hand, writing ddcw as the difference of two positive (1, 1)-forms
shows by monotone convergence that (6.13) is equivalent to∫

X
w ((ddcφt)

n − (ddcφ0)n) = n

∫
X

(φt − φ0)(ddcφ0)n ∧ ddcw + o(t),

where the left-hand side can be rewritten as∫
X

(φt − φ0)

n−1∑
j=0

(ddcφt)
j ∧ (ddcφ0)n−j−1

 ∧ ddcw
after integration by parts. The result will thus follow if we can show that∫

X
(φt − φ0)

(
(ddcφt)

j ∧ (ddcφ0)n−j−1 − (ddcφ0)n−1
)
∧ ddcw = o(t)

for j = 0, ..., n− 1, which will in turn follow from∫
X

(φt − φ0)ddc(φt − φ0) ∧ (ddcφt)
j ∧ (ddcφ0)n−j−2 ∧ ddcw = o(t) (6.14)

for j = 0, ..., n− 2. Now we have∫
X

(φt − φ0)ddc(φt − φ0) ∧ (ddcφt)
j ∧ (ddcφ0)n−j−2 ∧ ddcw

=

∫
X
d(φt − φ0) ∧ dc(φt − φ0) ∧ (ddcφt)

j ∧ (ddcφ0)n−j−2 ∧ ddcw.

Since w is smooth and ddcφ0 is a Kähler form we have

−Cddcφ0 ≤ ddcw ≤ Cddcφ0

for C � 1, and we see that (6.14) will follow from∫
X
d(φt − φ0) ∧ dc(φt − φ0) ∧ (ddcφt)

j ∧ (ddcφ0)n−j−1 = o(t)

for j = 0, ..., n − 1 since d(φt − φ0) ∧ dc(φt − φ0) ∧ (ddcφt)
j ∧ (ddcφ0)n−j−2 is a

positive current. Now consider as before

∆φ0E(φt) := E(φ0)− E(φt) +

∫
X

(φt − φ0)MA(φ0).

Since E(φt) is constant, the monotone convergence theorem yields

d

dt t=0+
∆φ0E(φt) =

∫
X
v0MA(φ0) =

∫
X
v0e
−2φ0 = 0.

By (2.8) this implies that∫
X
d(φt − φ0) ∧ dc(φt − φ0) ∧ (ddcφt)

j ∧ (ddcφ0)n−j−1 = o(t)

for j = 0, ..., n− 1 as desired. �
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7. Balanced metrics

Let A be an ample line bundle and denote by Hk the space of all positive Her-
mitian products on H0(kA), which is isomorphic to the Riemannian symmetric
space

Hk ' GL(Nk,C)/U(Nk)

with Nk := h0(kA). We will always assume that k is taken large enough to ensure
that kA is very ample. There is a natural injection

fk : Hk ↪→ PSH(A) ∩ C∞

sending H ∈ Hk to the Fubiny-Study type weight

fk(H) :=
1

2k
log

 1

Nk

Nk∑
j=1

|sj |2


where (sj) is an H-orthonormal basis of H0(kA).
On the other hand every measure µ on X yields a map

hk(µ, ·) : PSH(A)→ Hk
by letting hk(µ, φ) be the L2-scalar product on H0(kA) induced by µ and kφ.

We are going to consider the following three situations (compare [Don05b]).

(Sµ) Let µ be a probability measure with finite energy on X and let φ0 be a
reference smooth strictly psh weight on A. We set

hk(φ) := hk(µ, φ)

and

L(φ) := Lµ(φ) =

∫
X

(φ− φ0)dµ.

We also let T ∈ c1(A) be the unique closed positive current with finite energy
such that V −1〈Tn〉 = µ where V := (An).

(S+) A = KX is ample. A weight φ ∈ PSH(KX) induces a measure e−2φ with
L∞ density on X and we set

hk(φ) := hk(e
2φ, φ)

and

L(φ) := L+(φ) =
1

2
log

∫
X
e2φ.

We let T := ωKE be the unique Kähler-Einstein metric.

(S−) A = −KX is ample. A weight φ ∈ E1(−KX) induces a measure e−2φ on X
with Lp density for all p < +∞ and we set

hk(φ) := hk(e
−2φ, φ)

and

L(φ) := L−(φ) = −1

2
log

∫
X
e−2φ.
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We also assume that H0(TX) = 0 and that T := ωKE is a Kähler-Einstein metric,
which is therefore unique by [BM87] or Theorem 6.8 above.

As in [Don05b] we shall say in each case that H ∈ Hk is k-balanced if it is
a fixed point of hk ◦ fk. The maps hk and fk induce a bijective correspondence
between the k-balanced point in Hk and the k-balanced weights φ ∈ PSH(A), i.e.
the fixed point of fk ◦ hk. The k-balanced points H ∈ Hk admit the following
variational characterization (cf. [Don05b] and Corollary 7.5 below). Consider the
function Dk on Hk defined by

Dk := − 1

2kNk
log det, (7.1)

where the determinant is computed with respect to a fixed base point in Hk.
Then H ∈ Hk is k-balanced iff it maximizes the function

Fk := Dk − L ◦ fk (7.2)

on Hk. There exists furthermore at most one such maximizer up to scaling
(Corollary 7.3).

Our main result in this section is the following.

Theorem 7.1. In each of the three settings (Sµ), (S+) and (S−) above there
exists for each k � 1 a k-balanced metric φk ∈ PSH(A), unique up to a constant.
Moreover in each case ddcφk converges weakly to T as k →∞.

This type of result has its roots in the seminal work of Donaldson [Don01]
and the present statements were inspired by [Don05b]. In fact the existence of
k-balanced metrics in case (Sµ) was established in [Don05b] Proposition 3 as-
suming that µ integrates log |s| for every section s ∈ H0(mA). On P.12 of the
same paper the author conjectured the convergence statement in the case where
µ is a smooth positive volume form, by analogy with [Don01]. The result was
indeed observed to hold for such measures in [Kel09] as a direct consequence of
the work of Wang [Wan05], which in turn relied on the techniques introduced
in [Don01]. The settings (S±) were introduced and briefly discussed in Section
2.2.2 of [Don05b].

The main idea of our argument goes as follows. In each case the functional
F := E−L is usc and J-coercive on E1(A) (by Corollary 3.7 in case (Sµ) and (S+)
and by [PSSW08] in case (S−)) and T is characterized as the unique maximizer
of F on T 1(A) = E1(A)/R by our variational results.

The crux of our proof is Lemma 7.7 below which compares the restriction J ◦fk
of the exhaustion function of E1(A) to Hk to a natural exhaustion function Jk on
Hk. This result enables us to carry over the J-coercivity of F to a Jk-coercivity
property of Fk that is furthermore uniform with respect to k (Lemma 7.9). This
shows on the one hand that Fk achieves its maximum on Hk, which yields the
existence of a k-balanced weight φk. On the other hand it provides a lower bound

F (φk) ≥ sup
Hk

Fk + o(1)
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which allows us to show that φk is a maximizing sequence for F . We can then
use Proposition 3.8 to conclude that ddcφk converges to T .

7.1. Convexity properties. Any geodesic t 7→ Ht in Hk is the image of 1-
parameter subgroup of GL(H0(kA)), which means that there exists a basis S =
(sj) of H0(kA) and

(λ1, ..., λNk) ∈ RNk

such that eλjtsj is Ht-orthonormal for each t. We will say that Ht is isotropic if

λ1 = ... = λNk .

The isotropic geodesics are thus the orbits of the action of R+ on Hk by scaling.
In these notations there exists c ∈ R such that

Dk(Ht) =
t

kNk

∑
j

λj + c (7.3)

for all t, and we have

fk(Ht) =
1

2k
log

 1

Nk

∑
j

e2tλj |sj |2
 . (7.4)

Observe that z 7→ fk(H<z) defines a psh map C → PSH(A), i.e. fk(H<z) is psh
in all variables over C×X. We also record the formula

∂

∂t
fk(Ht) =

1

k

∑
j λje

2tλj |sj |2∑
j e

2tλj |sj |2
. (7.5)

The next convexity properties will be crucial to the proof of Theorem 7.1.
Recall that k is assumed to be large enough to guarantee that kA is very ample.

Lemma 7.2. The function Dk is affine on Hk and E ◦ fk is convex. Moreover
in each of the three settings (Sµ), (S+) and (S−) above L ◦ fk is convex on Hk,
and strictly convex along non-isotropic geodesics.

Proof. The first property follows from (7.3). Let Ht be a geodesic in Hk and set

φt := fk(Ht).

The convexity of t 7→ E(φt) follows from Proposition 6.2 since z 7→ φ<z is a psh
map as was observed above.

Let us now first consider the cases (Sµ) and (S+). Since t 7→ φt(x) is convex
for each x ∈ X the convexity of L(φt) directly follows since φ 7→ L(φ) is convex
and non-decreasing in these cases. In order to get the strict convexity along
non-isotropic geodesics one however has to be slightly more precise. By (7.5) we
have

k
∂

∂t
φt =

∑
j

λjσj(t)

with

σj(t) :=
e2tλj |sj |2∑
i e

2tλi |si|2
,
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and a computation yields

k

2

∂2

∂t2
φt =

∑
j

λ2
jσj(t)

−
∑

j

λjσj(t)

2

.

Now the Cauchy-Schwarz inequality implies that∑
j

λjσj(t)

2

≤

∑
j

λ2
jσj(t)

∑
j

σj(t)

 ,

which shows that ∂2

∂t2
φt ≥ 0 (which we already knew) since∑

j

σj(t) = 1.

Furthermore the equality case ∂2

∂t2
φt(x) = 0 holds for a given t ∈ R and a given

x ∈ X iff there exists c ∈ R such that for all j we have

λjσj(t)
1/2 = cσj(t)

1/2

at the point x. If x belongs to the complement of the zero divisors Z1, ..., ZNk of

the sj ’s we therefore conclude that ∂2

∂t2
φt(x) > 0 for all t unless Ht is isotropic.

Now in both cases (Sµ) and (S+) the map φ 7→ L(φ) is convex and non-
decreasing on PSH(A) as we already noticed. We thus have

d2

dt2
L(φt) ≥

∫
X

(
∂2

∂t2
φt

)
L′(φt)

where L′(φt) is viewed as a positive measure on X. This measure is in both
cases non-pluripolar, thus the union of the zero divisors Zj has zero measure
with respect to L′(φt), and it follows as desired from the above considerations
that t 7→ L(φt) is strictly convex when Ht is non-isotropic.

We finally consider case (S−). Since z 7→ φ<z is a psh map, the convexity
of t 7→ L(φt) follows from Lemma 6.5, which was itself a direct consequence
of [Bern09a]. Now if we assume that Ht is non-isotropic then the strict convexity
follows from [Bern09b]. Indeed if t 7→ L−(φt) is affine on a non-empty open
interval I then [Bern09b] Theorem 2.4 implies that c(φt) = 0 on I and that the
vector field Vt that is dual to the (0, 1)-form

∂

(
∂

∂t
φt

)
with respect to the metric ddcφt is holomorphic for each t ∈ I. Since we assume
that H0(TX) = 0 we thus get Vt = 0. But we have by definition

c(φt) =
∂2

∂t2
φt − |Vt|2

where the norm of Vt is computed with respect to ddcφt, and we conclude that
∂2

∂t2
φt = 0 on I. This however implies that Ht is isotropic by the first part of the

proof, and we have reached a contradiction. �



46 ROBERT BERMAN, SÉBASTIEN BOUCKSOM, VINCENT GUEDJ, AHMED ZERIAHI

Corollary 7.3. The function Fk := Dk − L ◦ fk is concave on Hk and all its
critical points are proportional.

Proof. The first assertion follows directly from Lemma 7.2. As a consequence
H ∈ Hk is a criticical point of Fk iff it is a maximizer. Now let H0, H1 be
two critical points and let Ht be the geodesic through H0, H1. If Ht is non-
isotropic then t 7→ Fk(Ht) is strictly concave, which contradicts the fact that it is
maximized at t = 0 and t = 1. So we conclude that Ht must be isotropic, which
means that H0 and H1 are proportional as desired. �

7.2. Variational characterization of balanced metrics. Recall that a k-
balanced weight φ is by definition a fixed point of fk ◦ hk. The maps fk and hk
induce a bijective correspondence between the fixed points of fk ◦hk and those of
tk := hk ◦ fk in Hk.

The following result is implicit in [Don05b].

Lemma 7.4. Let H ∈ Hk. Then H is a fixed point of tk iff it is a critical point
of

Fk = Dk − L ◦ fk.

Proof. Recall that for each geodesic Ht with H0 = H there exists λ ∈ RNk and
an H-orthonormal basis (sj) such that etλjsj is Ht-orthonormal. We claim that

k
d

dt t=0
L ◦ fk(Ht) =

∑
j

λj‖sj‖2tk(H)

∑
j

‖sj‖2tk(H)

−1

. (7.6)

In case (Sµ) we have by (7.5)

k
d

dt t=0
L ◦ fk(Ht) =

∫
X

∑
j λj |sj |2∑
j |sj |2

dµ

=
∑
j

λj

∫
X
|sj |2e−2kfk(H)dµ =

∑
j

λj‖sj‖2hk◦fk(H)

and the result follows since ∑
j

‖sj‖2hk◦fk(H) = 1

in that case. In case (S±) we find on the other hand

k
d

dt t=0
L ◦ fk(Ht) =

(∫
X

∑
j λj |sj |2∑
j |sj |2

e±2fk(H)

)(∫
X
e±2fk(H)

)−1

.

and (7.6) again easily follows by writing∫
X
e±2fk(H) =

∑
j

∫
X

|sj |2∑
i |si|2

e±2fk(H) =
∑
j

‖sj‖2tk(H).
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As a consequence of (7.6) we see that H is a critical point of Fk = Dk −L ◦ fk
iff

1

Nk

∑
j

λj =

∑
j

λj‖sj‖2tk(H)

∑
j

‖sj‖2tk(H)

−1

(7.7)

holds for all H-orthonormal basis (sj) and all λ ∈ RNk . If we choose in particular
(sj) to be also tk(H)-orthogonal then (7.7) holds for all λ ∈ RNk iff ‖sj‖2tk(H) = 1

for all j, which means that tk(H) = H. Conversely tk(H) = H certainly implies
(7.7) since (sj) is then tk(H)-orthonormal, and the proof is complete. �

As a consequence of Corollary 7.3 and Lemma 7.4 we get

Corollary 7.5. Up to an additive constant there exists at most one k-balanced
weight φ ∈ PSH(A), and φ exists iff Fk = Dk−L◦fk admits a maximizer H ∈ Hk,
in which case we have φ = fk(H).

7.3. Asymptotic comparison of exhaustion functions. Recall that we have
fixed a reference smooth strictly psh weight φ0 on A. We set µ0 := MA(φ0) and
normalize the determinant (and thus the function Dk) by taking

Bk := hk(µ0, φ0)

as a base point in Hk and setting detBk = 1.
We now introduce a natural exhaustion function on Hk/R+.

Lemma 7.6. The scale-invariant function Jk := L0 ◦ fk −Dk induces a convex
exhaustion function of Hk/R+.

Proof. Convexity follows from Lemma 7.2. The fact that Jk → +∞ at infinity
on Hk/R+ is easily seen and is a special case of [Don05b] Proposition 3. �

The next key estimate shows that the restriction J ◦ fk of the exhaustion func-
tion J of E1(A) to Hk is asymptotically bounded from above by the exhaustion
function Jk. In other words the injection

fk : Hk ↪→ E1(A)

sends each Jk-sublevel set {Jk ≤ C} into a J-sublevel set {J ≤ Ck} where Ck is
only slighly larger than C.

Lemma 7.7. There exists εk → 0 such that

J ◦ fk ≤ (1 + εk)Jk + εk on Hk (7.8)

for all k.

Before proving this result we need some preliminaries. Given any weight φ on
A recall that the distortion function of (µ0, kφ) is defined by

ρk(µ0, φ) :=
∑
j

|sj |2kφ
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where (sj) is an arbitrary hk(µ0, φ)-orthonormal basis ofH0(kA), and the Bergman
measure of (µ0, kφ) is then the proability measure

βk(µ0, φ) :=
1

Nk
ρk(µ0, φ)µ0.

When φ is smooth and strictly psh the Bouche-Catlin-Tian-Zelditch theorem [Bou90,
?, Tia90, ?] implies the C∞-convergence

lim
k→∞

βk(µ0, φ) = MA(φ). (7.9)

The operator

Pk := fk ◦ hk(µ0, ·)
satisfies by definition

Pk(φ)− φ =
1

2k
log
(
N−1
k ρk(µ0, φ)

)
.

As a consequence any smooth strictly psh weight φ is the C∞ limit of Pk(φ).
Now let H ∈ Hk and let t 7→ Ht be the (unique) geodesic in Hk such that

H0 = Bk and H1 = H. We denote by

v(H) :=
∂

∂t t=0
fk(Ht)

the tangent vector at t = 0 to the corresponding path t 7→ fk(Ht). As before
there exists (λ1, ..., λNk) ∈ RNk and a basis (sj) that is both Bk-orthonormal and
H-orthogonal such that

v(H) =
1

k

∑
j λj |sj |2∑
j |sj |2

. (7.10)

By convexity in the t-variable we note that

v(H) ≤ fk(H1)− fk(H0) = fk(H)− Pk(φ0) (7.11)

holds pointwise on X.

Lemma 7.8. We have

Dk(H) =

∫
X
v(H)βk(µ0, φ0)

Proof. Let Ht be the geodesic through Bk and H as above. On the one hand we
have

Dk(Ht) =
t

kNk

∑
j

λj .

On the other hand (7.10) yields∫
X
v(H)βk(µ0, φ0) =

1

kNk

∑
j

λj

∫
X
|sj |2kφ0dµ0

and the result follows since (sj) is Bk-orthonormal. �



A VARIATIONAL APPROACH TO COMPLEX MONGE-AMPÈRE EQUATIONS 49

We are now in a position to prove Lemma 7.7.

Proof of Lemma 7.7. Let H ∈ Hk. In what follows all O and o are meant to
hold as k →∞ uniformly with respect to H ∈ Hk. By scaling invariance of both
sides of (7.8) we may assume that H is normalized by

L0(fk(H)) = 0,

so that

sup
X

(fk(H)− φ0) ≤ O(1)

and (7.11) yields

sup
X
v(H) ≤ O(1). (7.12)

since Pk(φ0) = φ0 +O(1).
On the other hand Lemma 7.8 gives

Dk(H) =

∫
X
v(H)µ0 + o (‖v(H)‖L1) (7.13)

since βk(µ0, ψ0) → MA(ψ0) = µ0 in L∞ by Bouche-Catlin-Tian-Zelditch. Now
we have

‖v(H)‖L1 ≤ 2 sup
X
v(H)−

∫
X
v(H)dµ0

= −Dk(H) + o(‖v(H)‖L1) +O(1)

(by (by (7.12)) and (7.13)) and it follows that

(1 + o(1))‖v(H)‖L1 ≤ −Dk(H) +O(1). (7.14)

On the other hand the convexity of E ◦ fk (Lemma 7.2) shows that

E ◦ fk(H)− E(Pk(φ0)) ≥ 〈E′(Pk(φ0)), v(H)〉 =

∫
X
v(H)MA(Pk(ψ0)).

Now we have E(Pk(φ0)) = o(1) since Pk(φ0) = φ0 + o(1) uniformly on X and∫
X
v(H)MA(Pk(ψ0)) =

∫
X
v(H)µ0 + o(‖v(H)‖L1)

by uniform convergence of MA(Pk(ψ0)) to MA(ψ0) = µ0. By (7.13) we thus get

E ◦ fk(H) ≥ Dk(H) + o(‖v(H)‖L1) + o(1)

≥ (1 + o(1))Dk(H) + o(1)

by (7.14) and the result follows.
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7.4. Coercivity. Recall that F = E−L is J-coercive, i.e. there exists 0 < δ < 1
and C > 0 such that

F ≤ −δJ + C (7.15)

on E1(A). The next result uses the key estimate (7.8) to show that the J-
coercivity of F carries over to a uniform Jk-coercivity estimate for Fk = Dk−L◦fk
for all k � 1.

Lemma 7.9. There exists ε > 0 and B > 0 such that

Fk ≤ −εJk +B

holds on Hk for all k � 1.

Proof. As discussed after Definition 3.6 (7.15) is equivalent to the linear upper
bound

L0 − L ≤ (1− δ)J + C (7.16)

which implies
L0 ◦ fk − L ◦ fk ≤ (1− δ)J ◦ fk + C.

On the other hand we have

J ◦ fk ≤ (1 + εk)Jk + εk

by (7.8) hence

L0 ◦ fk − L ◦ fk ≤ (1− δ)(1 + εk)Jk + C + εk.

Since J ≥ 0 (7.8) shows in particular that Jk bounded below on Hk uniformly
with respect to k. For k � 1 we have (1− δ)(1 + εk) < (1− ε) and C + εk < B
for some ε > 0 and B > 0 and we thus infer

L0 ◦ fk − L ◦ fk ≤ (1− ε)Jk +B.

It is then immediate to see that this is equivalent to the desired inequality by
using Jk = L0 ◦ fk −Dk. �

Note that the coercivity constants ε and B of Fk can even be taken arbitrarily
close to those δ and C of F , as the proof shows.

Combining Lemma 7.9 with Lemma 7.6 yields

Corollary 7.10. For each k � 1 the scale-invariant functional Fk tends to −∞
at infinity on Hk/R+, hence it achieves its maximum on Hk.

7.5. Proof of Theorem 7.1. The existence and uniqueness of a k-balanced
metric φk for k � 1 follows by combining Corollary 7.5 and Corollary 7.10. Recall
that φk = fk(Hk) where Hk ∈ Hk is the unique maximizer of Fk = Dk −L ◦ fk on
Hk.

In order to prove the convergence of ddcφk to T we will rely on Proposition 3.8.
Since T is characterized as the unique maximizer of F = E − L, we will be done
if we can show that

lim inf
k→∞

F (φk) ≥ F (ψ) (7.17)

for each ψ ∈ E1(A). As a first observation we note that it is enough to prove (7.17)
when ψ is smooth and strictly psh. Indeed by [Dem92] we can write an arbitrary
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element of E1(A) as a decreasing sequence of smooth strictly psh weights (since
A is ample and functions in E1(A) have zero Lelong numbers) and the monotone
continuity properties of E and L therefore show that supE1(E − L) is equal to
the sup of E − L over all smooth strictly psh weights.

Let us now establish (7.17) for a smooth strictly psh ψ. Since Fk = Dk−L◦ fk
is maximized at Hk we have in particular

Fk(Hk) ≥ Dk(hk(µ0, ψ))− L(Pk(ψ)). (7.18)

Since Dk(hk(µ0, φ0)) = 0 the first term on the right-hand side of (7.18) writes

Dk(hk(µ0, ψ)) =

∫ 1

t=0

(
d

dt
Dk(hk(µ0, tψ + (1− t)φ0))

)
dt.

By [BB08] Lemma 4.1 we have

d

dt
Dk(hk(µ0, tψ + (1− t)φ0)) =

∫
X

(ψ − φ0)βk(φ0, tψ + (1− t)φ0)

and the Bouche-Catlin-Tian-Zelditch theorem yields

Dk(hk(µ0, ψ))→
∫ 1

t=0

∫
X

(ψ − φ0)MA(tψ + (1− t)φ0)dt = E(ψ).

(this argument is actually an easy special case of [BB08] Theorem A). The second
term on the right-hand side of (7.18) satisfies L(Pk(ψ))→ L(ψ) since Pk(ψ)→ ψ
uniformly. It follows that

Fk(Hk) ≥ F (ψ) + o(1) (7.19)

(where o(1) depends on ψ) and we will thus be done if we can show that

F (φk)− Fk(Hk) ≥ o(1).

Now we have

F (φk)− Fk(Hk) = (Jk − J ◦ fk) (Hk) ≥ −εkJk(Hk) + o(1)

by (7.8) so it is enough to show that Jk(Hk) is bounded from above. But we can
apply the uniform coercivity estimate of Lemma 7.9 to get

Fk(Hk) ≤ −εJk(Hk) +O(1)

for some ε > 0. Since the left-hand side is bounded from below in view of (7.19)
we are finally done.
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(1984), no. 2, 143–153.
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