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Abstract. We prove the existence and uniqueness of Kähler-Einstein metrics on Q-Fano
varieties with log terminal singularities (and more generally on log Fano pairs) whose
Mabuchi functional is proper. We study analogues of the works of Perelman on the conver-
gence of the normalized Kähler-Ricci flow, and of Keller, Rubinstein on its discrete version,
Ricci iteration. In the special case of (non-singular) Fano manifolds, our results on Ricci
iteration yield smooth convergence without any additional condition, improving on previ-
ous results. Our result for the Kähler-Ricci flow provides weak convergence independently
of Perelman’s celebrated estimates.
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Introduction

Complex Monge-Ampère equations have been one of the most powerful tools in Kähler
geometry since T. Aubin and S.T. Yau’s classical works [Aub78, Yau78], culminating in
Yau’s solution to the Calabi conjecture. A notable application is the construction of Kähler-
Einstein metrics on compact Kähler manifolds. Whereas their existence on manifolds with
ample and trivial canonical class was settled in [Aub78] and [Yau78] respectively, determining
necessary and sufficient conditions for a Fano manifold to carry a Kähler-Einstein metric is
still an open problem that attracts a lot of attention (see [PS10])1.

In recent years, following the pioneering work of H. Tsuji [Tsu88], degenerate complex
Monge-Ampère equations have been intensively studied by many authors. In relation to the
Minimal Model Program, they led to the construction of singular Kähler-Einstein metrics
with zero or negative Ricci curvature [EGZ09] or, more generally, of canonical volume forms
on compact Kähler manifolds with nonnegative Kodaira dimension [ST12, ST09].

Making sense of and constructing Kähler-Einstein metrics on (possibly singular) Fano
varieties turns out to require more advanced tools in the study of degenerate complex Monge-
Ampère equations. The purpose of this article is to develop these tools, following the
first step taken in [BBGZ13], so as to investigate Kähler-Einstein metrics on singular Fano
varieties, and more generally on log Fano pairs.

A main motivation to study them comes from the fact that singular Kähler-Einstein Fano
varieties arise naturally as Gromov-Hausdorff limits of Kähler-Einstein Fano manifolds. This
had been strongly suggested by [CCT02, Tian10, LX14], among other works, and was finally
established very recently by S. Donaldson and S. Sun in [DS14].

Let X be a Q-Fano variety, i.e. a normal projective complex variety such that −KX

is Q-Cartier and ample, without any further a priori restriction on its singularities. Any
reasonable notion of a Kähler-Einstein metric on X should at least restrict to a Kähler
metric ω on the regular locus Xreg with Ric(ω) = ω.

We show (see Proposition 3.8) that the existence of such a metric ω on Xreg forces X to
have log terminal singularities, a class of singularities which comprises quotient singularities
and is characterized in analytic terms by a finite volume condition.

We prove that the volume
∫
Xreg

ωn is automatically finite, bounded above by c1(X)n with

n := dimCX. Relying on finite energy techniques and regularity of solutions to Monge-
Ampère equations, we further show that

∫
Xreg

ωn = c1(X)n if and only if ω extends to a

closed positive (1, 1)-current ω on X lying in c1(X) and having continuous local potentials,
or equivalently the curvature form of a continuous psh metric on the Q-line bundle −KX .
We then say that ω is a Kähler-Einstein metric on X.

In [DS14, Theorem 1.2] it is proved that the Gromov-Hausdorff limit of any sequence
(Xj , ωj) of Kähler-Einstein Fano manifolds with fixed volume c1(Xj)

n = V is a Q-Fano
variety X with log terminal singularities, equipped with a Kähler-Einstein metric ω in the
above sense, with c1(X)n = V . Combined with [LX14], this strongly suggests that Kähler-
Einstein Q-Fano varieties can be used to compactify the moduli space of Kähler-Einstein
Fano manifolds. We thank O.Debarre and B.Totaro for emphasizing this point.

1This problem has been solved recently by Chen, Donaldson and Sun [CDS14, CDS15], see also [Tia15].
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We now give precise formulations of our main results. To simplify the exposition, we
only consider the easier context of Fano varieties and refer the reader to the sequel for the
corresponding statements for log Fano pairs.

Existence and uniqueness of Kähler-Einstein metrics. We define a Mabuchi func-
tional Mab (extending the classical Mabuchi K-energy) and a J-functional J for a given
Q-Fano variety X with log terminal singularities, and we say as usual that the Mabuchi
functional is proper if Mab→ +∞ as J → +∞.

Our first main result is as follows.

Theorem A. Let X be a Q-Fano variety with log terminal singularities.

(i) The identity component Aut0(X) of the automorphism group of X acts transitively
on the set of Kähler-Einstein metrics on X,

(ii) If the Mabuchi functional of X is proper, then Aut0(X) = {1} and X admits a unique
Kähler-Einstein metric, which is the unique minimizer of the Mabuchi functional.

When X is non-singular, the first point is a classical result of S. Bando and T. Mabuchi
[BM87]. Our proof in the present context builds on the recent work of B. Berndtsson
[Bern15]. The second point generalizes a result of W.Y. Ding and G. Tian (see [Tian]), and
relies as in [Ber13] on the variational approach developed in our previous work [BBGZ13].
It should be recalled that, when X is non-singular and Aut0(X) = {1}, a deep result
of G. Tian [Tia97], strengthened in [PSSW08], conversely shows that the existence of a
Kähler-Einstein metric implies the properness of the Mabuchi functional. It would of course
be very interesting to establish a similar result for singular varieties2 .

Ricci iteration. In their independent works [Kel09] and [Rub08], J. Keller and Y. Rubin-
stein investigated the dynamical system known as Ricci iteration, defined by iterating the
inverse Ricci operator. Our second main result deals with the existence and convergence of
Ricci iteration in the more general context of Q-Fano varieties.

Theorem B. Let X be a Q-Fano variety with log terminal singularities.

(i) Given a smooth form ω0 ∈ c1(X), there exists a unique sequence of closed positive
currents ωj ∈ c1(X) with continuous potentials on X, smooth on Xreg, and such that

Ric(ωj+1) = ωj

on Xreg for all j ∈ N.
(ii) If we further assume that the Mabuchi functional of X is proper and let ωKE be the

unique Kähler-Einstein metric provided by Theorem A, then limj→+∞ ωj = ωKE,
the convergence being in C∞-topology on Xreg, and uniform on X at the level of
potentials.

When X is non-singular, this result settles [Rub08, Conjecture 3.2], which was obtained in
[Rub08, Theorem 3.3] under the more restrictive assumption that Tian’s α-invariant satisfies
α(X) > 1 (an assumption that implies the properness of the Mabuchi functional). Building
on a preliminary version of the present paper, a more precise version of Theorem B was
obtained in [JMR16, Theorem 2.5] for Kähler-Einstein metrics with cone singularities along
a smooth hypersurface of a non-singular variety.

2This should be a consequence of the present article and the recent work of Darvas-Rubinstein [DR15].
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Convergence of the Kähler-Ricci flow. When X is a Q-Fano variety with log terminal
singularities, the work of J. Song and G. Tian [ST09] shows that given an initial closed
positive current ω0 ∈ c1(X) with continuous potentials, there exists a unique solution (ωt)t>0

to the normalized Kähler-Ricci flow, in the following sense:

(i) For each t > 0, ωt is a closed positive current in c1(X) with continuous potentials;
(ii) On Xreg×]0,+∞[, ωt is smooth and satisfies ω̇t = −Ric(ωt) + ωt;

(iii) limt→0+ ωt = ω0, in the sense that their local potentials converge in C0(Xreg).

Our third main result studies the long time behavior of this normalized Kähler-Ricci flow,
and provides a weak analogue for singular Fano varieties of G. Perelman’s3 result on the
convergence of the Kähler-Ricci flow on Kähler-Einstein Fano manifolds:

Theorem C. Assume that the Mabuchi functional of X is proper, and denote by ωKE its
unique Kähler-Einstein metric. Then limt→+∞ ωt = ωKE and limt→+∞ ω

n
t = ωnKE, both in

the weak topology.

When X is non-singular, the above result is certainly weaker than Perelman’s theorem,
which yields convergence in C∞-topology. On the other hand, our approach, which relies on
a variational argument using results of [BBGZ13], is completely independent of Perelman’s
deep estimates - which are at any rate out of reach for the moment on singular varieties.

The strong topology of currents with finite energy. The classical differential-geometric
approach to the above convergence results requires delicate a priori estimates to guarantee
compactness of a given family of metrics in C∞-topology. Our approach consists in working
with the set T 1 of closed positive (1, 1)-currents ω in the fixed cohomology class c1(X) and
having finite energy in the sense that J(ω) < +∞. As a consequence of [BBGZ13], the
map ω 7→ V −1ωn (which corresponds to the complex Monge-Ampère operator at the level
of potentials) sets up a bijection between T 1 and the set M1 of probability measures with
finite energy.

With respect to the weak topology of currents, compactness in T 1 is easily obtained: any
set of currents with uniformly bounded energy is weakly compact. But the drawback of
this weak topology is that the Monge-Ampère operator is not weakly continuous as soon as
n ≥ 2.

An important novelty of this article is to define, study and systematically use a strong
topology on T 1 and M1, which turns them into complete metric spaces and with respect
to which the bijection T 1 ' M1 described above becomes a homeomorphism. At the level
of potentials, the strong topology appears as a higher dimensional and non-linear version of
the Sobolev W 1,2-norm4.

Relying on a property of Lelong numbers of psh functions proved in Appendix A, we
prove that ω-psh functions with finite energy have identically zero Lelong numbers on any
resolution of singularities of X, and hence satisfy an exponential integrability condition.
This is used to prove a compactness result in the strong topology of M1 for probability
measures with uniformly bounded entropy, which is a key point to our approach. Under the
assumption that the Mabuchi functional is proper, the entropy bound is easily obtained along

3Perelman explained his celebrated estimates during a seminar talk at MIT in 2003 (see [SeT08]). These
have been used since then in studying the C∞-convergence of the normalized Kähler-Ricci flow under various
assumptions (see notably [TZ07, PSeS07, PSSW08b]).

4This topology has been recently studied further in [Dar14].
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the normalized Kähler-Ricci flow and Ricci iteration, thanks to the monotonicity property
of the Mabuchi functional.

Structure of the article. The article is organized as follows:

• Section 1 is a recap on finite energy currents. It provides in particular a crucial
integrability property of their potentials (finite energy functions).
• Section 2 introduces the strong topology and establishes strong compactness of mea-

sures with uniformly bounded entropy.
• Section 3 studies the first basic properties of Kähler-Einstein metrics on log Fano

pairs, showing in particular that the singularities are at most log terminal;
• Section 4 gives a variational characterization of Kähler-Einstein metrics, extending

some results from [BBGZ13];
• Section 5 provides an extension of the uniqueness results of Bando-Mabuchi and

Berndtsson to the context of log Fano pairs, finishing the proof of Theorem A;
• Section 6 studies ’Ricci iteration’ in the context of log Fano pairs, and contains the

proof of Theorem B.
• Section 7 recalls Song and Tian’s construction of the normalized Kähler-Ricci flow

on a Q-Fano variety, and proves Theorem C;
• Section 8 adapts a construction of [AGP06] to get examples of log Fano pairs and log

terminal Fano varieties with Kähler-Einstein metrics that are not of orbifold type;
• The article ends with three appendices. The first one proves an Izumi-type estimate

that plays a crucial role for the integrability properties of quasi-psh functions with
finite energy. The second one provides an explicit version of Paun’s Laplacian es-
timate [Pau08], on which relies the C∞-convergence in Theorem B. The third one
gives a detailed proof of a version of Berndtsson’s subharmonicity theorem that plays
a crucial role in the proof of the uniqueness of Kähler-Einstein metrics.

Nota Bene. The current version of this article differs substantially from the first version
of the arXiv preprint. The latter dealt more generally with Mean Field Equations with
reference measures having Hölder continuous potentials, a point of view that made it less
readily accessible to differential geometers. Meanwhile, the preprint [DS14] appeared, giving
further motivation for the general context of our previous work. Another new feature of the
present version is the Izumi-type result proved in Appendix A.

Various important works have appeared since the the first version of our work was circu-
lating. We have only mentioned in footnotes those that are immediately connected to the
contents of the present article.

Acknowledgements. The authors would like to express their gratitude to Bo Berndtsson for
uncountably many interesting discussions related to this work, and in particular for his help
regarding the uniqueness theorem. We also thank the referee for useful suggestions.

1. Finite energy currents

The goal of this section is to establish a number of preliminary facts about functions and
measures with finite energy on a normal compact Kähler space, which rely on a combination
of the main results from [EGZ09, BEGZ10, BBGZ13, EGZ11].
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1.1. Plurisubharmonic functions and positive (1, 1)-currents. Let X be a normal,
connected, compact complex space, and denote by n its (complex) dimension.

By definition, a Kähler form ω0 on X is locally the restriction to X of an ambient Kähler
form in a polydisc where X is locally realized as a closed analytic subset. In particular, it
admits local potentials, which are smooth strictly psh functions.

A function ϕ : X → [−∞,+∞[ is ω0-plurisubharmonic (ω0-psh for short) if ϕ + u is
psh for each local potential u of ω0, which means that ϕ + u is the restriction to X of an
ambient psh function in a polydisc as above (see [FN80, Dem85] for further information on
psh functions in this context).

We denote by PSH(X,ω0) the set of ω0-psh functions on X, endowed with its natural
weak topology. By Hartogs’ lemma, ϕ 7→ supX ϕ is continuous on PSH(X,ω0) (with respect
to the weak topology), and we say that ϕ ∈ PSH(X,ω0) is normalized if supX ϕ = 0. We
denote by

PSHnorm(X,ω0) ⊂ PSH(X,ω0)

the set of normalized ω0-psh functions, which is compact for the weak topology. We also
denote by T (X,ω0) the set of all closed positive (1, 1)-currents ω ddc-cohomologous to ω0,
endowed with the weak topology. The map

ϕ 7→ ωϕ := ω0 + ddcϕ

defines a homeomorphism
PSHnorm(X,ω0) ' T (X,ω0).

with respect to the weak topologies. We denote its inverse by ω 7→ ϕω, so that ϕω is the
unique function in PSHnorm(X,ω0) such that

ω = ω0 + ddcϕω.

When X is non-singular, Demailly’s regularization theorem [Dem92] (see also [BK07]) shows
that any ϕ ∈ PSH(X,ω0) is the decreasing limit of a sequence of smooth ω0-psh functions.
The analogous statement is not known in the general singular case (except when ω0 ∈ c1(L)
represents the first Chern class of an ample line bundle L [CGZ13]). However, it follows
from [EGZ11] that every ϕ ∈ PSH(X,ω0) is the decreasing limit of a sequence of continuous
ω0-psh functions.

If we let π : X̃ → X be a resolution of singularities, then ω̃0 := π∗ω0 is a semipositive
(1, 1)-form which is big in the sense that

∫
X̃
ω̃n0 > 0. Since X is normal, π has connected

fibers, hence every ω̃0-psh function on X̃ is of the form ϕ ◦ π for a unique ω0-psh function
ϕ on X. We thus have a homeomorphism

PSH(X,ω0) ' PSH(X̃, ω̃0).

This reduces the study of ω0-psh functions on X to ω̃0-psh functions on X̃, where X̃ is thus
a compact Kähler manifold and ω̃0 is a semipositive and big (1, 1)-form.

1.2. Functions with full Monge-Ampère mass. Let X be a normal compact complex
space endowed with a fixed Kähler form ω0. For each ϕ ∈ PSH(X,ω0), the functions
ϕj := max{ϕ,−j} are ω0-psh and bounded for all j ∈ N. The Monge-Ampère measures
(ω0 + ddcϕj)

n are therefore well-defined in the sense of Bedford-Taylor, with∫
X

(ω0 + ddcϕj)
n =

∫
X
ωn0 =: V.
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By [BT87], the positive measures µj := 1{ϕ>−j}(ω0 + ddcϕj)
n satisfy

1{ϕ>−j}µj+1 = µj ,

and in particular µj ≤ µj+1. As in [BEGZ10], we say that ϕ has full Monge-Ampère mass
(this is called finite energy in [GZ07]) if limj→∞ µj(X) = 1, i.e.

lim
j→∞

∫
{ϕ≤−j}

(ω0 + ddc max{ϕ,−j})n = 0.

In that case we set (ω0 +ddcϕ)n := limj→+∞ µj , which is thus a positive measure on X with
mass V . More generally, for any ϕ1, ..., ϕn ∈ PSHfull(X,ω0) the positive measure

(ω0 + ddcϕ1) ∧ ... ∧ (ω0 + ddcϕn)

is also well-defined, and depends continuously on the ϕj ’s when the latter converge mono-
tonically.

We denote by
PSHfull(X,ω0) ⊂ PSH(X,ω0)

the set of ω0-functions with full Monge-Ampère mass. We say that a current ω ∈ T (X,ω0)
has full Monge-Ampère mass if so is ϕω, and we write

Tfull(X,ω0) ⊂ T (X,ω0)

for the set of currents with full Monge-Ampère mass. For each ϕ ∈ PSHfull(X,ω0) we define
a probability measure

MA(ϕ) := V −1ωnϕ.

We denote by M(X) the set of probability measures on X, endowed with the weak
topology, and we call

MA : PSHfull(X,ω0)→M(X)

the Monge-Ampère operator. We emphasize that for n ≥ 2 this operator is not continuous
in the weak topology of PSHfull(X,ω0).

For each ϕ ∈ PSHfull(X,ω0), the measure MA(ϕ) is non-pluripolar, i.e. it puts no mass on
pluripolar sets. Conversely, applying [BBGZ13, Corollary 4.9] to a resolution of singularities
shows that any non-pluripolar probability measure µ is of the form MA(ϕ) for some ϕ ∈
PSHfull(X,ω0). In other words, the map Tfull(X,ω) → M(X) defined by ω 7→ V −1ωn is
injective, and its image is exactly the set of non-pluripolar measures in M(X).

The following crucial integrability property of functions with full Monge-Ampère mass
relies on a non-trivial property of Lelong numbers of psh functions proved in Appendix A.

Theorem 1.1. Let ϕ ∈ PSHfull(X,ω0) and let π : X̃ → X be any resolution of singularities

of X. Then ϕ̃ := ϕ◦π has zero Lelong numbers. Equivalently, e−ϕ̃ ∈ Lp(X̃) for all p < +∞.

Proof. By Corollary 9.3 from Appendix A, we are to show that the slope s(ϕ, x) of ϕ at
any point x ∈ X is zero. Let (fi) be local generators of the maximal ideal of OX,x and set
ψ := log

∑
i |fi|, which is a psh function defined on a neighborhood U of x, with an isolated

logarithmic singularity at x. Let 0 ≤ θ ≤ 1 be a smooth function with compact support
in U such that θ ≡ 1 on a neighborhood of x. A standard computation (see e.g. [Dem92,
Lemma 3.5]) shows that

ρ := log
(
θeψ + (1− θ)

)
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satisfies ddcρ ≥ −Cω0 for some C > 0. It follows that ερ is ω0-psh for all ε > 0 small enough.
If s(ϕ, x) > 0 then ϕ ≤ ερ+ O(1) for any 0 < ε < s(ϕ, x). Since ϕ has full Monge-Ampère
mass, it follows from [BEGZ10, Proposition 2.14] that ερ also has full Monge-Ampère mass,
which is impossible since (ω0 + ddcερ)n ({x}) = εnm(X,x) > 0 by [Dem85].

Finally, the last equivalence is a classical result of Skoda [Sko72]. �

1.3. α-invariants and tame measures. The following uniform integrability exponent gen-
eralizes the classical one of [Tia87, TY87]:

Definition 1.2. The α-invariant of a measure µ ∈M(X) (with respect to ω0) is defined as

αω0(µ) := sup

{
α ≥ 0 | sup

ϕ∈PSHnorm(X,ω0)

∫
X
e−αϕdµ < +∞

}
.

Note that αω0(µ) > 0 implies that µ is non-pluripolar. We also introduce the following
ad hoc terminology.

Definition 1.3. We say that a positive measure µ on X is tame if µ puts no mass on closed

analytic sets and if there exists a resolution of singularities π : X̃ → X such that the lift µ̃

of µ to X̃ has Lp-density (with respect to Lebesgue measure) for some p > 1.

By the lift of µ, we mean the push-forward by π−1 of its restriction to the Zariski open
set over which π is an isomorphism. As we shall see, this a priori artificial looking notion
of a tame measure appears naturally in the context of log terminal singularities.

Proposition 1.4. Let µ be a tame measure on X. Then αω0(µ) > 0, and for each ϕ ∈
PSHfull(X,ω0) we have e−ϕ ∈ Lp(µ) for all finite p. In particular, e−ϕµ is also tame.
Furthermore given p < +∞ and a weakly compact subset K ⊂ PSHfull(X,ω0), both the
identity map and the map ϕ 7→ e−ϕ define continuous maps K → Lp(µ).

Proof. Let π : X̃ → X be a resolution of singularities such that the lift µ̃ of µ to X̃ has Lp-
density for some p > 1. By [Sko72] and Hölder’s inequality, it follows that there exists ε > 0
such that

∫
X̃
e−εϕ̃dµ̃ is finite and uniformly bounded for all normalized ω̃0-psh functions ϕ̃ on

X̃. Since µ puts no mass on closed analytic subsets, we infer
∫
X e
−εϕdµ =

∫
X̃
e−εϕ̃dµ̃ < +∞,

hence αω0(µ) > 0.
If we take ϕ ∈ PSHfull(X,ω0) and set ϕ̃ := ϕ ◦ π, Theorem 1.1 shows that e−ϕ̃ belongs to

Lq for all q < +∞. By [Zer01], we even have a uniform Lq-bound as long as ϕ̃ stays in a
weakly compact set of ω̃0-psh functions. Using the elementary inequality∣∣∣ea − eb∣∣∣ ≤ |a− b|ea+b, a, b > 0,

the continuity of ϕ 7→ e−ϕ now follows from Hölder’s inequality. �

Lemma 1.5. Let µ ∈ M(X) be a tame probability measure. Then there exists a unique
ω ∈ Tfull(X,ω0) such that V −1ωn = µ, and ω has continuous potentials.

Proof. We have already observed that µ is non-pluripolar, which implies that µ = V −1ωn

for unique ω ∈ Tfull(X,ω0). To see that ω has continuous potentials, let π : X̃ → X be a
resolution of singularities such that µ̃ has Lp-density for some p > 1. By [EGZ09, EGZ11],

there exists a continuous ω̃0-psh function ϕ̃ on X̃ such that V −1(ω̃0 + ddcϕ̃)n = µ̃. If we let
ϕ be the corresponding ω0-psh function on X, then ϕ is continuous on X by properness of
π, and the result follows since ω := ω0 + ddcϕ by uniqueness. �
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1.4. Functions and currents of finite energy. We introduce

E1(X,ω0) :=
{
ϕ ∈ PSHfull(X,ω0), ϕ ∈ L1 (MA(ϕ))

}
,

and say that functions ϕ ∈ E1(X,ω0) have finite energy. We denote by

T 1(X,ω0) ⊂ Tfull(X,ω0)

the corresponding set of currents with finite energy, i.e. currents of the form ωϕ with ϕ ∈
E1(X,ω0). It is important to note that T 1(X,ω0) is not a closed subset of T (X,ω0).

The functional E : E1(X,ω0)→ R defined by

E(ϕ) =
1

n+ 1

n∑
j=0

V −1

∫
X
ϕωjϕ ∧ ω

n−j
0 (1.1)

is a primitive of the Monge-Ampère operator, in the sense that

d

dt t=0
E (tϕ+ (1− t)ψ) =

∫
(ϕ− ψ)MA(ψ)

for any two ϕ,ψ ∈ E1(X,ω0). This implies that

E(ϕ)− E(ψ) =
1

n+ 1

n∑
j=0

V −1

∫
X

(ϕ− ψ) (ω0 + ddcϕ)j ∧ (ω0 + ddcψ)n−j (1.2)

for all ϕ,ψ ∈ E1(X,ω0). The energy functional E satisfies E(ϕ + c) = E(ϕ) + c for c ∈ R,
and it is concave and non-decreasing on E1(X,ω0) (we refer the reader to [BEGZ10] for the
proofs of these results).

If we extend it to PSH(X,ω0) by setting E(ϕ) = −∞ for ϕ ∈ PSH(X,ω0) \ E1(X,ω0)
then E : PSH(X,ω0) → [−∞,+∞[ so defined is upper semi-continuous. As a consequence,
the convex set

E1
C(X,ω0) :=

{
ϕ ∈ E1(X,ω0), sup

X
ϕ ≤ C and E(ϕ) ≥ −C

}
(1.3)

is compact (for the L1-topology) for each C > 0.
We also recall the definition of two related functionals that were originally introduced by

Aubin. The J-functional (based at a given ψ ∈ E1(X,ω0)) is the functional on E1(X,ω0)
defined by setting

Jψ(ϕ) := E(ψ)− E(ϕ) +

∫
X

(ϕ− ψ)MA(ψ).

Note that Jψ(ϕ) = E(ψ) − E(ϕ) + E′(ψ) · (ϕ − ψ) ≥ 0 by concavity of E. For ψ = 0 we
simply write

J(ϕ) := J0(ϕ) = V −1

∫
X
ϕωn0 − E(ϕ).

Finally the I-functional is the symmetric functional defined by

I(ϕ,ψ) =

∫
X

(ϕ− ψ) (MA(ψ)−MA(ϕ)) =

n−1∑
j=0

V −1

∫
X
d(ϕ− ψ) ∧ dc(ϕ− ψ) ∧ ωjϕ ∧ ω

n−1−j
ψ

(1.4)
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which is also non-negative by concavity of E. When ψ = 0 we simply write

I(ϕ) := I(ϕ, 0) = V −1

∫
X
ϕωn0 −

∫
X
ϕMA(ϕ).

These functionals compare as follows (see for instance [BBGZ13, Lemma 2.2]):

n−1Jϕ(ψ) ≤ Jψ(ϕ) ≤ I(ϕ,ψ) ≤ (n+ 1)Jψ(ϕ). (1.5)

We will also use:

Lemma 1.6. For each ψ ∈ E1(X,ω0), there exists A,B > 0 such that

A−1J(ϕ)−B ≤ Jψ(ϕ) ≤ AJ(ϕ) +B

for all ϕ ∈ E1(X,ω0).

Proof. By translation invariance, we may restrict to ϕ ∈ E1
norm(X,ω0). We compute

Jψ(ϕ)− J(ϕ) = E(ψ) +

∫
X

(ϕ− ψ)MA(ψ)−
∫
X
ϕMA(0).

Since ϕ is normalized,
∫
X ϕMA(0) is uniformly bounded by [BBGZ13, Lemma 3.2]. On the

other hand, by [BBGZ13, Proposition 3.4], there exists C > 0 such that∣∣∣∣∫
X
ϕMA(ψ)

∣∣∣∣ ≤ CJ(ϕ)1/2

for all ϕ ∈ E1
norm(X,ω0). We thus get Jψ = J + O(J1/2) on E1

norm(X,ω0), and the result
follows. �

As opposed to E, these functionals are translation invariant, hence descend to T 1(X,ω0).
For ω, ω′ ∈ T 1(X,ω) we set Jω(ω′) = Jϕω(ϕω′) and I(ω, ω′) = I(ϕω, ϕω′). For each C > 0
we set

T 1
C (X,ω0) :=

{
ω ∈ T 1(X,ω0) | J(ω) ≤ C

}
.

1.5. Measures of finite energy. As in [BBGZ13], we define the energy of a probability
measure µ on X (with respect to ω0) as

E∗(µ) := sup
ϕ∈E1(X,ω0)

(
E(ϕ)−

∫
ϕµ

)
∈ [0,+∞]. (1.6)

This defines a convex lsc function E∗ : M(X) → [0,+∞], and a probability measure µ is
said to have finite energy if E∗(µ) < +∞. We denote the set of probability measures with
finite energy by

M1(X,ω0) := {µ ∈M(X) | E∗(µ) < +∞} ,
and we set for each C > 0

M1
C(X,ω0) := {µ ∈M(X) | E∗(µ) ≤ C} . (1.7)

By [BBGZ13, Theorem 4.7], the map ω 7→ V −1ωn is a bijection between T 1(X,ω0) and
M1(X,ω0) (but here again it is not continuous with respect to weak convergence).

The concavity of E shows that

E∗ (MA(ϕ)) = E(ϕ)−
∫
X
ϕMA(ϕ) = Jϕ(0) = (I − J)(ϕ), (1.8)
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and consequently the following Legendre duality relation holds:

E(ϕ) = inf
µ∈M(X)

(
E∗(µ) +

∫
X
ϕdµ

)
. (1.9)

We also note that

n−1E∗(MA(ϕ)) ≤ J(ϕ) ≤ nE∗(MA(ϕ)), (1.10)

by (1.5), hence ω 7→ V −1ωn maps T 1
C (X,ω0) intoM1

Cn(X,ω0), and similarly for its inverse.

We end this section with the following continuity properties:

Proposition 1.7. Let µ ∈ M1(X,ω0) be a measure with finite energy. Then µ acts con-
tinuously on E1

C(X,ω0) for each C > 0. Dually, every ϕ ∈ E1(X,ω0) acts continuously on
M1

C(X,ω0).

Proof. The first assertion is [BBGZ13, Theorem 3.11]. Let us prove the dual assertion. By
[EGZ11], we may choose a decreasing sequence of continuous ω0-psh functions ϕk converg-
ing pointwise to ϕ on X. This monotone convergence guarantees that I(ϕk, ϕ) → 0. By
[BBGZ13, Lemma 5.8], it follows that the map µ 7→

∫
X ϕµ is the uniform limit onM1

C(X,ω0)
of the maps µ 7→

∫
X ϕkµ, each of which is continuous by continuity of ϕk. �

1.6. A quasi-triangle inequality for I. When X has dimension 1,

I(ϕ,ψ) =

∫
X
d(ϕ− ψ) ∧ dc(ϕ− ψ)

coincides with the squared L2-norm of d(ϕ−ψ) for all ϕ,ψ ∈ E1(X,ω0). By Cauchy-Schwarz,

I1/2 satisfies the triangle inequality, and the convexity inequality (x + y)2 ≤ 2(x2 + y2) for
x, y ∈ R yields

1
2I(ϕ1, ϕ2) ≤ I(ϕ1, ϕ3) + I(ϕ3, ϕ2)

for any ϕ1, ϕ2, ϕ3 ∈ E1(X,ω0).
Our goal here is to establish the following higher dimensional version of this inequality.

Theorem 1.8. There exists a constant cn > 0, only depending on the dimension n, such
that

cnI(ϕ1, ϕ2) ≤ I(ϕ1, ϕ3) + I(ϕ3, ϕ1).

for all ϕ1, ϕ2, ϕ3 ∈ E1(X,ω0).

For any ϕ1, ϕ2, ψ ∈ E1(X,ω) we set

‖d(ϕ1 − ϕ2)‖ψ :=

(∫
X
d(ϕ1 − ϕ2) ∧ dc(ϕ1 − ϕ2) ∧ (ω + ddcψ)n−1

)1/2

, (1.11)

which is the L2-norm of d(ϕ1 − ϕ2) with respect to ωψ when the latter is a Kähler form.
Using (1.4) it is easy to see that

‖d(ϕ1 − ϕ2)‖2ϕ1+ϕ2
2

≤ I(ϕ1, ϕ2) ≤ 2n−1‖d(ϕ1 − ϕ2)‖2ϕ1+ϕ2
2

. (1.12)

Lemma 1.9. There exists cn > 0 only depending on n such that for all ϕ1, ϕ2, ψ ∈ E(X,ω0),

cn‖d(ϕ1 − ϕ2)‖2ψ ≤ I(ϕ1, ϕ2)1/2n−1
(
I(ϕ1, ψ)1−1/2n−1

+ I(ϕ2, ψ)1−1/2n−1
)
.
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Proof. The proof is a refinement of [BBGZ13, Lemma 3.12] and [GZ12, Lemma 3.1]. Set
u := ϕ1 − ϕ2, v := (ϕ1 + ϕ2)/2 and for each p = 0, ..., n− 1,

bp :=

∫
X
du ∧ dcu ∧ ωpψ ∧ ω

n−p−1
v .

By (1.12) we have b0 ≤ I(ϕ1, ϕ2), while

bn−1 = ‖d(ϕ1 − ϕ2)‖2ψ
is the quantity we are trying to bound. Let us first check that

bp+1 ≤ bp + 4
√
bpI(ψ, v) (1.13)

for p = 0, ..., n − 2. Using integration by parts and the identity ddcu = ωϕ1 − ωϕ2 , we
compute

bp+1 − bp =

∫
X
du ∧ dcu ∧ ddc(ψ − v) ∧ ωpψ ∧ ω

n−p−2
v

= −
∫
X
du ∧ dc(ψ − v) ∧ ddcu ∧ ωpψ ∧ ω

n−p−2
v

= −
∫
X
du ∧ dc(ψ − v) ∧ ωϕ1 ∧ ω

p
ψ ∧ ω

n−p−2
v +

∫
X
du ∧ dc(ψ − v) ∧ ωϕ2 ∧ ω

p
ψ ∧ ω

n−p−2
v .

For i = 1, 2 the Cauchy-Schwarz inequality yields∣∣∣∣∫
X
du ∧ dc(ψ − v) ∧ ωϕi ∧ ω

p
ψ ∧ ω

n−p−2
v

∣∣∣∣ ≤ (∫
X
du ∧ dcu ∧ ∧ωϕi ∧ ω

p
ψ ∧ ω

n−p−2
v

)1/2

×

×
(∫

X
d(ψ − v) ∧ dc(ψ − v) ∧ ωϕi ∧ ω

p
ψ ∧ ω

n−p−2
v

)1/2

≤ 2b1/2p I(ψ, v)1/2,

noting that ωϕi ≤ 2ωv and using (1.4). This proves (1.13).
Next we use the convexity of ϕ 7→ Jψ(ϕ) and (1.5) to get

2I(v, ψ) ≤ (n+ 1) (I(ϕ1, ψ) + I(ϕ2, ψ)) .

Setting

Hn := 8(n+ 1) (I(ϕ1, ψ) + I(ϕ2, ψ)) (1.14)

and

h(t) := t+
√
Hnt (1.15)

we thus have bp+1 ≤ h(bp) for p = 0, ..., n − 1 by (1.13). Since b0 ≤ I(ϕ1, ϕ2) and h is
non-decreasing, it follows that

‖d(ϕ1 − ϕ2)‖2ψ ≤ hn−1 (I(ϕ1, ϕ2)) , (1.16)

where hn−1 := h ◦ · · · ◦ h denotes the (n− 1)-st iterate of h : R+ → R+.
It is easy to check by induction on p ∈ N that

hp(t) ≤ 4H1−1/2p

n t1/2
p

for 0 ≤ t ≤ 2−2p+1
Hn (1.17)

There are two cases:
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• If I(ϕ1, ϕ2) ≤ 2−2nHn, we can apply (1.17) with p = n − 1, which combines with
(1.16) to yield

‖d(ϕ1 − ϕ2)‖2ψ ≤ 4H1−1/2n−1

n I(ϕ1, ϕ2)1/2n−1
.

We conclude by definition of Hn and the subadditivity of t 7→ t1/2
n−1

.
• Assume now that I(ϕ1, ϕ2) ≥ 2−2nHn. Using (1.4) we have

‖d(ϕ1 − ϕ2)‖ψ ≤ ‖d(ϕ1 − ψ)‖ψ + ‖d(ψ − ϕ2)‖ψ,
≤ I(ϕ1, ψ)1/2 + I(ϕ2, ψ)1/2,

hence

‖d(ϕ1 − ϕ2)‖2ψ ≤ 2(I(ϕ1, ψ) + I(ϕ2, ψ)) =
1

4(n+ 1)
Hn.

=
1

4(n+ 1)
H1−1/2n−1

n H1/2n−1

n ≤ 1

n+ 1
H1−1/2n−1

n I(ϕ1, ϕ2)1/2n−1
,

and we conclude as before.

�

Proof of Theorem 1.8. Set ψ := ϕ1+ϕ2

2 . The triangle inequality

‖d(ϕ1 − ϕ2)‖ψ ≤ ‖d(ϕ1 − ϕ3)‖ψ + ‖d(ϕ2 − ϕ3)‖ψ
and (1.12) yield

I(ϕ1, ϕ2) ≤ 2n
(
‖d(ϕ1 − ϕ3)‖2ψ + ‖d(ϕ2 − ϕ3)‖2ψ

)
Applying Lemma 1.9 we obtain

cnI(ϕ1, ϕ2) ≤ I(ϕ1, ϕ3)1/2n−1
(
I(ϕ1, ψ)1−1/2n−1

+ I(ϕ3, ψ)1−1/2n−1
)

+ I(ϕ2, ϕ3)1/2n−1
(
I(ϕ2, ψ)1−1/2n−1

+ I(ϕ3, ψ)1−1/2n−1
)
.

As before the convexity of Jψ and (1.5) imply

I(ϕ1, ψ) ≤ n+ 1

2
I(ϕ1, ϕ2), I(ϕ2, ψ) ≤ n+ 1

2
I(ϕ1, ϕ2)

and

I(ϕ3, ψ) ≤ n+ 1

2
(I(ϕ1, ϕ3) + I(ϕ2, ϕ3)) .

Plugging this in the above inequality, we obtain after changing cn,

cnI(ϕ1, ϕ2) ≤
(
I(ϕ1, ϕ3)1/2n−1

+ I(ϕ2, ϕ3)1/2n−1
)
×

×
(
I(ϕ1, ϕ2)1−1/2n−1

+ I(ϕ1, ϕ3)1−1/2n−1
+ I(ϕ2, ϕ3)1−1/2n−1

)
.

Note that we can assume I(ϕ1, ϕ2) ≥ max{I(ϕ1, ϕ3), I(ϕ2, ϕ3)}, otherwise the usual triangle
inequality holds and we are done. It follows therefore from our last inequality that

cnI(ϕ1, ϕ2) ≤ 3
(
I(ϕ1, ϕ3)1/2n−1

+ I(ϕ2, ϕ3)1/2n−1
)
I(ϕ1, ϕ2)1−1/2n−1

,

and the result follows thanks to the convexity inequality (x+ y)2n−1

≤ 22n−1−1
(
x2n−1

+ y2n−1
)

for x, y ∈ R. �
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2. The strong topology

2.1. The strong topology for functions. In order to circumvent the discontinuity of the
Monge-Ampère operator with respect to the weak topology, we introduce a strong topology
that makes it continuous.

Definition 2.1. The strong topology on E1(X,ω0) is defined as the coarsest refinement of
the weak topology such that E become continuous.

Lemma 2.2. Every strongly convergent sequence in E1(X,ω0) is contained in E1
C(X,ω0) for

some C > 0.

Proof. If ϕj → ϕ is a strongly convergent sequence in E1(X,ω0) then both supX ϕj and
E(ϕj) are convergent sequences, hence are bounded. �

As the next result shows, on E1
norm(X,ω0), the strong topology corresponds to the notion

of convergence in energy from [BBGZ13, §5.3].

Proposition 2.3. If ϕj , ϕ ∈ E1
norm(X,ω0) are normalized ω0-psh functions, then ϕj → ϕ

in the strong topology iff I(ϕj , ϕ)→ 0.

Proof. By (1.5) we have

(n+ 1)−1I(ϕj , ϕ) ≤ E(ϕ)− E(ϕj) +

∫
X

(ϕj − ϕ)MA(ϕ) = Jϕ(ϕj) ≤ I(ϕj , ϕ). (2.1)

If ϕj → ϕ strongly then all ϕj belong to E1
C(X,ω0) for some C > 0 by Lemma 2.2. By

Proposition 1.7 it follows that
∫
X(ϕj − ϕ)MA(ϕ)→ 0, hence I(ϕj , ϕ)→ 0 by (2.1).

Assume conversely that I(ϕj , ϕ) → 0. By [BBGZ13, Proposition 5.6] it follows that
ϕj → ϕ weakly. It remains to show that E(ϕj) → E(ϕ). Using (1.5) we see that ϕj ∈
E1
C(X,ω0) for some fixed C > 0, hence

∫
X(ϕj − ϕ)MA(ϕ) → 0 by Proposition 1.7, and we

get E(ϕj)→ E(ϕ) using again (2.1). �

We are now going to show that I defines a complete metrizable uniform structure on
E1

norm(X,ω), whose underlying topology is the strong topology. These results will not be
used in the rest of the article.

When n = dimCX = 1, (1.4) shows that I(u, v)1/2 coincides with the L2-norm of the

gradient of u − v. As a consequence, I1/2 defines a complete metric space structure on
E1

norm(X,ω). Since the unit ball of the Sobolev space W 1,2 is not compact, it is easy to
see that the sets E1

C(X,ω0), even though they are weakly compact, are not compact in the
strong topology already for n = 1 (compare also Lemma 2.8).

In higher dimension, the quasi-triangle inequality of Theorem 1.8 implies that I defines a
uniform structure, which is furthermore metrizable for general reasons [Bour]. Let us now
show that it is complete.

Proposition 2.4. Every sequence (ϕj) in E1
norm(X,ω0) such that limj,k→+∞ I(ϕj , ϕk) = 0

converges in the strong topology of E1
norm(X,ω0).

Proof. Pick j0 such that I(ϕj , ϕk) ≤ 1 for all j, k ≥ j0. By (1.5) it follows that Jϕj0 (ϕj) is

bounded, hence also J(ϕj), by Lemma 1.6. We may thus find C > 0 such that ϕj ∈ E1
C(X,ω0)

for all j. Using the Cauchy-like assumption, it is as usual enough to show that some
subsequence of (ϕj) is strongly convergent. By weak compactness of E1

C(X,ω0), we may thus
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assume after perhaps to a subsequence that ϕj converges weakly to some ϕ ∈ E1
C(X,ω0). Let

us show that ϕj → ϕ strongly as well. Let ε > 0, and pick N ∈ N such that I(ϕj , ϕk) ≤ ε
for all j, k ≥ N . By (1.5) we get

E(ϕj)− E(ϕk) +

∫
X

(ϕk − ϕj)MA(ϕj) = Jϕj (ϕk) ≤ I(ϕj , ϕk) ≤ ε.

Since E is usc in the weak topology and MA(ϕj) is weakly continuous on E1
C(X,ω0) by

Proposition 1.7, it follows that by letting k →∞ with j fixed that

Jϕj (ϕ) = E(ϕj)− E(ϕ) +

∫
X

(ϕ− ϕj)MA(ϕj) ≤ ε

for all j ≥ N . Using again (1.5) we thus see as desired that I(ϕj , ϕ)→ 0. �

2.2. The strong topology for currents and measures. We introduce the following dual
strong topologies:

Definition 2.5. The strong topology on T 1(X,ω0) and M1(X,ω0) are respectively defined
as the coarsest refinement of the weak topology such that J and E∗ become continuous.

Proposition 2.6. The maps ϕ 7→ ωϕ and ω 7→ V −1ωn define homeomorphisms

E1
norm(X,ω0) ' T 1(X,ω0) 'M1(X,ω0)

for the strong topologies.

Proof. The strong bicontituity of ϕ 7→ ωϕ is easy to see, since we have by definition J(ϕ) =
V −1

∫
X ϕω

n
0 −E(ϕ) where ϕ 7→

∫
X ϕω

n
0 is weakly continuous. It is thus enough to establish

the continuity in the strong topology of the map E1
norm(X,ω0) →M1(X) ϕ 7→ MA(ϕ) and

of its inverse.
We thus consider ϕj , ϕ ∈ E1

norm(X,ω0) and set µj := MA(ϕj), µ := MA(ϕ). Suppose first
that ϕj → ϕ strongly. By [BBGZ13, Proposition 5.6] we have

∫
X ψµj →

∫
X ψµ uniformly

with respect to ψ ∈ E1
C(X,ω0) for each C > 0. This shows on the one hand that µj → µ

weakly, and on the other hand that
∫
X ϕjµj →

∫
X ϕµ. It follows that E∗(µj) = E(ϕj) −∫

X ϕjµj converges to E∗(µ) = E(ϕ)−
∫
X ϕµ, so that µj → µ strongly.

Conversely, assume that µj → µ strongly. Then E∗(µj) = E(ϕj)−
∫
X ϕjMA(ϕj) converges

to E∗(µ) = E(ϕ) −
∫
X ϕMA(ϕ), and also

∫
X ϕMA(ϕj) →

∫
X ϕMA(ϕ) by Proposition 1.7,

since MA(ϕj) = µj → MA(ϕ) = µ weakly. Adding up we get

E(ϕj)− E(ϕ) +

∫
X

(ϕ− ϕj)MA(ϕj)→ 0,

hence I(ϕj , ϕ)→ 0 by (2.1), which shows as desired that ϕj → ϕ strongly. �

The following dual equicontinuity properties hold:

Proposition 2.7. For each C > 0 we have:

(i) the set of probability measures M1
C(X,ω0) acts equicontinuously on E1(X,ω0) with

its strong topology;
(ii) the set of ω0-psh functions E1

C(X,ω0) acts equicontinuously on M1(X,ω0) with its
strong topology.
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Proof. In view of Propositions 2.3 and 2.6, (i) follows from [BBGZ13, Lemma 5.8], while (ii)
follows from [BBGZ13, Lemma 3.12]. �

As a consequence, we get the following characterization of strongly compact subsets of
M1(X,ω0):

Lemma 2.8. Let K be a weakly compact subset of M1(X,ω0). The following properties are
equivalent:

(i) K is strongly compact;
(ii) K ⊂ M1

A(X,ω0) for some A > 0, and for each C > 0 K acts equicontinuously on
E1
C(X,ω0) equipped with its weak topology.

Proof. Let us prove (i)⇒(ii). Since E∗ is by definition continuous with respect to this
topology, it is bounded on K, which shows that K is a subset of M1

A(X,ω0) for some
A > 0, and is necessarily weakly closed. Assume by contradiction that K fails to act
equicontinuously on E1

C(X,ω0) for some C > 0. Then there exists sequence µj ∈ K and
ϕj ∈ E1

C(X,ω0) such that ϕj → ϕ weakly but
∫
X(ϕj − ϕ)µj stays away from 0. Using

the compactness assumption we assume after perhaps passing to a subsequence that µj
converges in energy to some µ ∈ K. By Proposition 2.7 we then have

∫
X ϕjµj →

∫
X ϕµ,

and we also have
∫
X(ϕj − ϕ)µ→ 0 by Proposition 1.7. It follows that

∫
X(ϕj − ϕ)µj → 0, a

contradiction.
Conversely, assume that (ii) holds and let µj be a sequence in K. Set ϕj := ϕµj , so that

ϕj ∈ E1
C(X,ω0) for a uniform C > 0 by (1.10). By weak compactness of E1

C(X,ω0), we
may assume after perhaps passing to a subsequence that ϕj converges weakly to some ϕ ∈
E1
C(X,ω0). The equicontinuity assumption therefore implies that

∫
X(ϕj − ϕ)MA(ϕj) → 0.

We also have
∫
X(ϕj − ϕ)MA(ϕ)→ 0 by Proposition 1.7, hence

I(ϕj , ϕ) =

∫
X

(ϕj − ϕ) (MA(ϕ)−MA(ϕj))→ 0.

By Proposition 2.3 it follows that ϕj → ϕ in energy, hence µj → µ := MA(ϕ), and we have
proved as desired that µj admits a limit point in K. �

2.3. Entropy and the Hölder-Young inequality. We first recall a general definition:

Definition 2.9. Let µ, ν be probability measures on X. The relative entropy Hµ(ν) ∈
[0,+∞] of ν with respect to µ is defined as follows. If ν is absolutely continuous with respect
to µ and f := dν

dµ satisfies f log f ∈ L1(µ) then

Hµ(ν) :=

∫
X
f log f dµ =

∫
X

log

(
dν

dµ

)
dν.

Otherwise one sets Hµ(ν) = +∞.

We write
H(X,µ) := {µ ∈M(X) | Hµ(ν) < +∞}

and for each C > 0
HC(X,µ) := {µ ∈M(X) | Hµ(ν) ≤ C} ,

a compact subset ofM(X). We will use the following basic properties of the relative entropy.

Proposition 2.10. Let µ, ν be probability measures on X.
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(i) We have

Hµ(ν) = sup
g∈C0(X)

(∫
g dν − log

∫
egdµ

)
.

(ii) Hµ(ν) ≥ 2‖µ− ν‖2. In particular Hµ(ν) = 0 iff ν = µ.

Part (i) says that Hµ is the Legendre transform of the convex functional g 7→ log
∫
egdµ.

In particular it is convex and lower semi-continuous on M(X). We refer to [DZ, Lemma
6.2.13] for a proof.

The norm in (ii) denotes the total variation of µ− ν, i.e. its operator norm as an element
of C0(X)∗. The inequality in (ii) is known as Pinsker’s inequality, see [DZ, Exercise 6.2.17]
for a proof. For later use we note:

Lemma 2.11. For each lower semi-continuous function g on X we have

sup
ν∈M(X)

(∫
g dν −Hµ(ν)

)
= log

∫
egdµ.

Proof. When g is continuous this follows from Legendre duality (i.e. the Hahn-Banach the-
orem). Assume now that g is an arbitrary lsc function. The inequality∫

g dν ≤ log

∫
egdµ+Hµ(ν)

is a direct consequence of Jensen’s inequality. Conversely since g is lsc there exists an increas-
ing sequence of continuous functions gj ≤ g increasing pointwise to g. By the continuous
case we get for each j

log

∫
egjdµ = sup

ν∈M(X)

(∫
gj dν −Hµ(ν)

)
≤ sup

ν∈M(X)

(∫
g dν −Hµ(ν)

)
and the result follows by monotone convergence. �

We now briefly recall some facts on Orlicz spaces.

Definition 2.12. A weight is a convex non-decreasing lower semicontinuous function χ :
[0,+∞] → [0,+∞] such that χ−1{0} = {0} and χ(+∞) = +∞. Its conjugate weight
χ∗ : [0,+∞]→ [0,+∞] is the Legendre transform of χ (| · |), i.e.

χ∗(t) := sup
s≥0

(st− χ(s)) .

By Legendre duality we have χ∗∗ = χ. Apart from the well-known case of the conjugate
weights sp/p and tq/q with 1

p + 1
q = 1, the main example for us will be:

Example 2.13. The congugate weight of χ(s) := (s+ 1) log(s+ 1)− s is

χ∗(t) = et − t− 1.

Definition 2.14. Let µ be a positive measure on X and let χ be a weight. The Orlicz space
Lχ(µ) is defined as the set of all measurable functions f on X such that

∫
χ (ε|f |) dµ < +∞

for some ε > 0.
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Observe that f ∈ Lχ(µ) iff εf belongs to the convex symmetric set

B :=

{
g ∈ Lχ(µ),

∫
χ (|g|) dµ ≤ 1

}
for 0 < ε � 1. The Luxembourg norm on Lχ(µ) is then defined as the gauge of B, i.e. one
sets for f ∈ Lχ(µ)

‖f‖Lχ(µ) := inf

{
λ > 0,

∫
χ
(
λ−1|f |

)
dµ ≤ 1

}
.

It turns Lχ(µ) into a Banach space.

Proposition 2.15. [Hölder-Young inequality] For any two measurable functions f ∈ Lχ(µ)
and g ∈ Lχ∗(µ) we have ∫

|fg| dµ ≤ 2‖f‖Lχ(µ)‖g‖Lχ∗ (µ).

We recall the straightforward proof for the convenience of the reader.

Proof. We may assume that the right-hand side is non-zero. By homogeneity we may assume
that ‖f‖Lχ(µ) = ‖g‖Lχ∗ (µ) = 1, hence

∫
χ (|f |) dµ ≤ 1 and

∫
χ∗ (|g|) dµ ≤ 1. We have |fg| ≤

χ(|f |) + χ∗(|g|) pointwise on X by definition of χ∗, hence
∫
|fg| dµ ≤ 2 after integrating,

and the result follows. �

Corollary 2.16. Let ν = f µ be a positive measure that is absolutely continuous with respect
to µ, and let χ be a weight function such that

∫
χ(f) dµ ≤ A for some 1 ≤ A < +∞. Then

we have
‖g‖L1(ν) ≤ 2A‖g‖Lχ∗ (µ)

for every measurable function g.

Proof. The assumption amounts to ‖f‖
LA−1χ(µ)

≤ 1, and the weight τA(t) := A−1χ∗(At) is

conjugate to A−1χ. On the other hand it follows from the definition that

‖g‖LτA (µ) = A‖g‖
LA−1χ∗ (µ)

≤ A‖g‖Lχ∗ (µ)

since A ≥ 1, and the result follows from the Hölder-Young inequality. �

2.4. Strong compactness of measures with bounded entropy. The goal of this section
is to prove the following result, which is a main ingredient in the convergence of Ricci
iteration and of the Kähler-Ricci flow.

Theorem 2.17. Let µ0 be a tame probability measure on X. Then H(X,µ0) ⊂M1(X,ω0),
and for each A > 0 the set HA(X,µ0) is strongly compact.

We first show that measures of finite entropy have finite energy:

Lemma 2.18. Assume that µ0 is a probability measure on X with αω0(µ0) > 0.

(i) For each 0 < α < αω0(µ0) there exists C > 0 such that

Hµ0(µ) ≥ αE∗(µ)− C.
for all µ ∈M(X). In particular we have

H(X,µ0) ⊂M1(X,ω0),

and for each A > 0 there exists B > 0 such that HA(X,µ0) ⊂M1
B(X,ω0).
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(ii) If αω0(µ0) > n
n+1 then there exists ε, C > 0 such that

Hµ0(µ) ≥ (1 + ε)E∗(µ)− C
for all µ.

Proof. By definition of αω0(µ0), given α < αω0(µ0) there exists C > 0 such that

log

∫
e−αϕµ0 ≤ −α sup

X
ϕ+ C

for all ω0-psh functions ϕ, hence

− log

∫
e−αϕµ0 ≥ αV −1

∫
X
ϕωn0 − C ≥ αE(ϕ)− C.

By Lemma 2.11 this implies

Hµ0(µ) ≥ α sup
ϕ

(
V −1

∫
ϕωn0 −

∫
ϕµ

)
− C ≥ αE∗(µ)− C, (2.2)

which already proves (i). In order to prove (ii) we may assume that Hµ0(µ) is finite. By (i)
it follows that E∗(µ) is finite as well, hence µ = MA(ϕ) for some ϕ ∈ E1(X,ω0). By the
first inequality in (2.2) we then obtain Hµ0(µ) ≥ α I(ϕ)− C, hence

Hµ0(µ)− E∗(µ) ≥ (α− 1)I(ϕ) + J(ϕ)− C

≥
(
α− 1 + (n+ 1)−1

)
I(ϕ)− C =

(
α− n(n+ 1)−1

)
I(ϕ)− C

by (1.5). (ii) follows since I(ϕ) ≥ I(ϕ)− J(ϕ) = E∗(µ). �

Proof of Theorem 2.17. By Lemma 2.8, it is enough to show that HA(X,µ0) acts equicon-
tinuously on E1

C(X,ω0) for each C > 0. Let thus ϕj → ϕ be a weakly convergent sequence
in E1

C(X,ω0), and let µ = fµ0 be a measure in HA(X,µ0). Introduce as in Example 2.13 the
weight χ(s) := (s+ 1) log(s+ 1)− s, whose conjugate function is χ∗(t) = et− t− 1. We have
χ(s) ≤ s log s+O(1) on [0,+∞[, hence

∫
χ(f)dµ ≤ A1 for some A1 ≥ 1 only depending on

A. By Corollary 2.16 it follows that

‖ϕj − ϕ‖L1(µ) ≤ 2A1‖ϕj − ϕ‖Lχ∗ (µ0)

We are thus reduced to showing that ‖ϕj − ϕ‖Lχ∗ (µ0) → 0. Using the inequality χ∗(t) ≤ tet
and the definition of the norm ‖ · ‖Lχ∗ (µ0), we see that it is enough to show that

lim
j→+∞

∫
X
|ϕj − ϕ| exp (λ|ϕj − ϕ|)µ0 = 0 (2.3)

for every given λ > 0. But by Proposition 1.4 there exists B > 0 only depending on C
and λ such that

∫
e−2λϕµ0 and

∫
e−2λϕjµ0 are both bounded by B. Since supX ϕj ≤ C and

supX ϕ ≤ C, it follows that ∫
X

exp (2λ|ϕj − ϕ|)µ0 ≤ B1

for some other constant B1 > 0 independent of j. By Hölder’s inequality we infer∫
X
|ϕj − ϕ| exp (λ|ϕj − ϕ|) dµ ≤ B1/2

1 ‖ϕj − ϕ‖L2(µ0),

and (2.3) now follows since ϕj → ϕ in L2(µ0) by Proposition 1.4. �
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As a consequence we get the following stability result for Monge-Ampère equations:

Corollary 2.19. Let µ0 be a tame probability measure on X and let A > 0. For each
µ ∈M1(X,ω0) let ϕµ ∈ E1(X,ω0) be the unique normalized solution of MA(ϕµ) = µ. Then
µ 7→ ϕµ defines a continuous map from HA(X,µ0) with its weak topology to E1(X,ω0) with
its strong topology.

Proof. By Theorem 2.17 and Lemma 2.8, the weak and strong topologies coincide onHA(X,µ).
We conclude using Proposition 2.3. �

This result should be compared with [EGZ09, Theorem A], which (combined with [EGZ11]
to get the ”continuous approximation property”) implies that µ 7→ ϕµ defines a continuous
map Lp(µ0)→ C0(X) for p large enough.

3. Kähler-Einstein metrics on log Fano pairs

3.1. Log terminal singularities. A pair (X,D) is the data of a connected normal compact
complex variety X and an effective Q-divisor D such that KX + D is Q-Cartier. We may
then consider the ddc-cohomology class of −(KX + D), that we denote by c1(X,D). We
write

X0 := Xreg \ suppD.

Given a log resolution π : X̃ → X of (X,D) (which may and will always be chosen to be an
isomorphism over X0), there exists a unique Q-divisor

∑
i aiEi whose push-forward to X is

−D and such that

K
X̃

= π∗(KX +D) +
∑
i

aiEi.

The coefficient ai ∈ Q is known as the discrepancy of (X,D) along Ej , and the pair (X,D)
is klt (a short-hand for Kawamata log terminal) if aj > −1 for all j. It is a basic fact about
singularities of pairs that the same condition will then hold for all log resolutions of X.
When D = 0, one simply says that X is log terminal when the pair (X, 0) is klt (so that
KX is in particular Q-Cartier, i.e. X is Q-Gorenstein).

The discrepancies ai admit the following analytic interpretation. Let r be a positive inte-
ger such that r(KX +D) is Cartier. If σ is a nowhere vanishing section of the corresponding
line bundle over a small open set U of X then(

irn
2
σ ∧ σ̄

)1/r
(3.1)

defines a smooth, positive volume form on U0 := U ∩ X0. If fj is a local equation of Ej
around a point of π−1(U), it is easily seen that we have

π∗
(
irn

2
σ ∧ σ̄

)1/r
=
∏
i

|fi|2aidV (3.2)

locally on π−1(U) for some local volume form dV . Since
∑

iEi has normal crossings, this
shows that (X,D) is klt iff each volume form of the form (3.1) has locally finite mass near
singular points of X.

The previous construction globalizes as follows:
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Definition 3.1. Let (X,D) be a pair and let φ be a smooth Hermitian metric on the Q-line
bundle −(KX + D). The corresponding adapted measure mφ on Xreg is locally defined by
choosing a nowhere zero section σ of r(KX +D) over a small open set U and setting

mφ :=
(
irn

2
σ ∧ σ

)1/r
/|σ|2/rrφ . (3.3)

The point of the definition is that the measure mφ does not depend on the choice of σ,
hence is globally defined. The above discussion shows that (X,D) is klt iff mφ has finite
total mass on X, in which case we view it as a Radon measure on the whole of X.

Lemma 3.2. Let (X,D) be a klt pair and let mφ be an adapted measure as above.

(i) If π : X̃ → X is a log resolution of (X,D) then the lift m̃φ of µ0 to X̃ writes m̃φ =

eψ
+−ψ−dV , where ψ± are quasi-psh functions with analytic singularities, smooth over

π−1(X0), and e−ψ
− ∈ Lp for some p > 1. In particular, µ̃0 is tame (Definition 1.3).

(ii) On X0 the Ricci curvature of the volume form mφ coincides with the curvature of φ.
(iii) The Bergman space O(X0) ∩ L2(mφ) contains only constant functions.

Property (ii) should be compared with [DT92, p.319, Remark].

Proof. Write as above K
X̃

= π∗(KX +D) +
∑

j ajEj . Let φj be a smooth Hermitian metric

on the line bundle O
X̃

(Ej) and let sj ∈ H0(X̃, Ej) be a section with Ej as its zero divisor.
If we set

ψ+ :=
∑
aj>0

2aj log |sj |φj and ψ− :=
∑
aj<0

2(−aj) log |sj |φj

then (3.2) immediately shows that

m̃φ = eψ
+−ψ−dV

where dV is a (smooth positive) volume form on X̃. Since aj > −1 there exists p > 1 such

that paj > −1 for all j, and the normal crossing property of
∑

j Ej yields e−ψ
− ∈ Lp, which

proves (i).
The proof of (ii) is straightforward from the very definition of µ0. In order to prove (iii),

let f ∈ O(X0) ∩ L2(mφ). We then have∫
π−1(X0)

|f ◦ π|2
∏
j

|sj |
2aj
φj
dV < +∞.

Since a holomorphic function extends accross a divisor as soon as it is locally L2 near the

divisor, the above L2 condition implies that f ◦ π extends to X̃ \
⋃
aj>0Ej , or equivalently

that f extends holomorphically to X \ Z with Z := π
(⋃

aj>0Ej

)
. But the fact that

D = −π∗
(∑

j ajEj

)
is effective implies that each Ej with aj > 0 is π-exceptional. As a

consequence Z has codimension at least two in X, and the normality of X therefore shows
that f extends to X, hence is constant since X is compact. �
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3.2. Kähler-Einstein metrics. We recall the following standard terminology:

Definition 3.3. A log Fano pair is a klt pair (X,D) such that X is projective and −(KX+D)
is ample.

Let (X,D) be a log Fano pair. We fix a reference smooth strictly psh metric φ0 on
−(KX + D), with curvature ω0 and adapted measure µ0 = mφ0 . We normalize φ0 so that
µ0 ∈M(X) is a probability measure. The volume of (X,D) is

V := c1(X,D)n =

∫
X
ωn0 .

We let T (X,D) := T (X,ω0) be the set of closed positive currents (with local potentials)
ω ∈ c1(X,D), and T 1(X,D) := T 1(X,ω0) be those with finite energy. Similarly we denote
by M1(X,D) the set of probability measures with finite energy, which are thus of the form
V −1ωn for a unique ω ∈ T 1(X,D).

For any current with full Monge-Ampère mass ω ∈ Tfull(X,D), Proposition 1.4 guarantees
that e−ϕωµ0 has finite mass, since µ0 is tame by Lemma 3.2. We may thus set

µω :=
e−ϕωµ0∫
X e
−ϕωµ0

. (3.4)

Lemma 3.4. The map T 1(X,ω0) → M1(X,ω0) ω 7→ µω is continous with respect to the
strong topology on both sides.

Proof. Let ωj → ω be a strongly convergent sequence in T 1(X,ω0), and set µj := µωj and

µ := µω. By Lemma 2.2 there exists C > 0 such that ϕj := ϕωj belongs to E1
C(X,ω0) for all

j. Since E1
C(X,ω0) is weakly compact, Proposition 1.4 shows that µj = fjµ0 and µ = fµ0

with ϕj → f in L2(µ0). This implies that µj → µ weakly, and also that µj has uniformly
bounded entropy with respect to µ0. By Theorem 2.17 and Lemma 2.8, it follows as desired
that µj → µ strongly. �

Definition 3.5. A Kähler-Einstein metric ω for the log Fano pair (X,D) is a current with
full Monge-Ampère mass ω ∈ Tfull(X,D) such that

V −1ωn = µω. (3.5)

Lemma 3.6. A Kähler-Einstein metric ω is automatically smooth on X0, with continuous
potentials on X, and it satisfies

Ric(ω) = ω + [D]

on Xreg.

Here [D] is the integration current on D|Xreg . Writing Ric(ω) on Xreg implicitely means
that the positive measure ωn|Xreg corresponds to a singular metric on −KXreg , whose cur-
vature is then Ric(ω) by definition. Note that the terminology is slightly abusive, since a
Kähler-Einstein metric ω for (X,D) is not smooth on X in general, hence not a Kähler form
on X in the sense of §1.1. This should hopefully cause no confusion.

Proof. Set ϕ := ϕω. The Kähler-Einstein equation (3.5) reads

(ω0 + ddcϕ)n = e−ϕ+cµ0

for some constant c ∈ R. If we choose a log resolution π : X̃ → X of (X,D), the equation
becomes (ω̃0 +ddcϕ̃)n = e−ϕ̃+cµ̃0, where ω̃0 = π∗ω0 is semipositive and big, µ̃0 satisfies (i) of
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Lemma 3.2, and ϕ̃ = ϕ◦π has e−ϕ̃ ∈ Lq for all finite q by Theorem 1.1. By [EGZ09, EGZ11]

ϕ̃ is continuous on X̃, and hence ϕ is continuous on X by properness of π. The smoothness
of ϕ on X0 follows from Theorem 10.1 (Appendix B) and the Evans-Krylov theorem.

Finally on Xreg we have

Ric(ω) = −ddc logωn = ddcϕ− ddc logµ0 = ddcϕ+ ω0 + [D]

by definition of the adapted measure µ0 = mφ0 and the Lelong-Poincaré formula. �

Remark 3.7. Assume that (X,D) is log smooth, i.e. X is smooth and D =
∑

i aiEi has
simple normal crossing support. If ai ≥ 1/2 for all i, it is shown in [CGP13] that any Kähler-
Einstein metric for (X,D) has cone singularities along

∑
iEi, with cone angle 2π(1 − ai)

along Ei. If the support of D = aE for a single smooth hypersurface E, [JMR16] shows
that ω has cone singularities without the restriction a ≥ 1/2, and that ω even admits a full
asymptotic expansion along E.

The definition of a log Fano pair requires the singularities to be klt. This condition is in
fact necessary to obtain Kähler-Einstein metrics on the regular part:

Proposition 3.8. Let (X,D) be any pair with −(KX+D) ample. Let Ω ⊂ Xreg be a Zariski
open subset with complement of codimension at least 2, and assume the existence of a closed
positive (1, 1)-current ω on Ω with continuous potentials such that

Ric(ω) = ω + [D]

on Ω. Then (X,D) is necessarily klt. We further have∫
Ω
ωn ≤ c1(X,D)n,

with equality iff ω is the restriction to Ω of a Kähler-Einstein metric for (X,D).

Proof. Let ψ be the singular metric on−KΩ corresponding to the measure ωn, with curvature
ddcψ = Ric(ω). If we let φD be the canonical psh metric on the Q-line bundle attached to
D|Ω, such that ddcφD = [D], we have by assumption ddcψ = ω + ddcφD on Ω, so that
φ := ψ − φD defines a psh metric on the Q-line bundle −(KX +D)|Ω, with curvature ω.

Now let σ be a local trivialisation of r(KX + D) for some positive r ∈ N, defined on an
open set U ⊂ X. If we denote by |σ|rφ the length of σ with respect to the metric induced
by rφ, then u := log |σ|2rφ is a psh function on U ∩ Ω, hence it automatically extends to a

psh function on U by normality, thanks to [GR56]. This means on the one hand that ψ
extends to a globally defined psh metric on −(KX + D), so that its curvature ω satisfies∫

Ω ω
n ≤ c1(X,D)n by [BEGZ10, Proposition 1.20]. On the other hand, unravelling the

definitions yields

(σ ∧ σ)1/r = eu/rωn (3.6)

on V ∩ Ω. Since u is in particular bounded above, this shows that (σ ∧ σ)1/r has locally
finite mass near singular points of U , so that (X,D) is klt.

Now to say that
∫

Ω ω
n = c1(X,D)n precisely means that ω belongs to Tfull(X,D), and

the last assertion follows from Lemma 3.6. �

4. The variational principle

In this section (X,D) denotes a log Fano pair, and we use the notation of §3.2.
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4.1. The Ding and Mabuchi functionals. Let H = Hµ0 the relative entropy with respect
to the given adapted µ0 ∈M(X). For each ϕ ∈ E1(X,ω0) we set

L(ϕ) := − log

∫
X
e−ϕµ0. (4.1)

Note that
µωϕ = e−ϕ+L(ϕ)µ0. (4.2)

Lemma 4.1. The map L : E1(X,ω)→ R is continous in the strong topology.

Proof. Let ϕj → ϕ be a convergent sequence in E1(X,ω0). By Lemma 2.2 there exists C > 0
such that ϕj ∈ E1

C(X,ω0) for all j. Since E1
C(X,ω0) is weakly compact, we conclude using

Proposition 1.4. �

By Lemma 2.11 we have

L(ϕ) = inf
µ∈M(X)

(
H(µ) +

∫
X
ϕµ

)
(4.3)

and the infimum is achieved for µ = µωϕ by (4.2) and the definition of H. This should be
compared with

E(ϕ) = inf
µ∈M(X)

(
E∗(µ) +

∫
X
ϕµ

)
,

where the infimum is achieved for µ = MA(ϕ). Observe also that L(ϕ + c) = L(ϕ) + c, so
that L− E is translation invariant.

Definition 4.2. We introduce the following two functionals on the set T 1(X,D) of currents
with finite energy.

(i) The Ding functional Ding : T 1(X,D)→ R, defined by

Ding(ω) := (L− E)(ϕω).

(ii) The Mabuchi functional Mab : T 1(X,D)→]−∞,+∞], defined by

Mab(ω) := (H − E∗)(V −1ωn).

Written in the form (3.5), the Kähler-Einstein equation is, at least formally, the Euler-
Lagrange equation of the Ding functional. In the case of Fano manifolds, this functional
seems to have been first explicitely considered by W.Y.Ding in [Ding88, p.465], hence the
chosen terminology.

Regarding the Mabuchi functional, our definition yields the following analogue of Chen
and Tian’s formula [Che00, Tian]

Mab(ω) = V −1

∫
X

log

(
V −1ωn

µ0

)
ωn + (J − I)(ω). (4.4)

Lemma 4.3. With respect to the strong topology of T 1(X,D), the Ding functional is con-
tinuous, while the Mabuchi functional is lower semicontinuous.

Proof. The energy E is continuous on E1(X,ω0) in the strong topology, by definition of the
latter. The continuity of the Ding functional is thus a consequence of Lemma 4.1. Similarly,
E∗ is strongly continuous onM1(X,D), and H is lsc in the weak topology, hence the result
for the Mabuchi functional. �
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Lemma 4.4. The Ding and Mabuchi functionals compare as follows:

(i) For all ω ∈ T 1(X,D) we have Mab(ω) ≥ Ding(ω), with equality iff ω is a Kähler-
Einstein metric for (X,D).

(ii) We have
inf

T 1(X,D)
Mab = inf

T 1(X,D)
Ding ∈ R ∪ {−∞}.

Proof. Unravelling the definition we get

Mab(ω)−Ding(ω) =

∫
X

log

(
V −1ωn

µ0

)
V −1ωn +

∫
X
ϕωV

−1ωn + log

∫
X
e−ϕωµ0

=

∫
X

log

(
V −1ωn

µω

)
V −1ωn = Hµω

(
V −1ωn

)
.

We conclude thanks to Proposition 2.10.
Part (ii) is proved exactly as [Ber13, Theorem 3.4] (see also [Li08]). We reproduce the

short argument for the convenience of the reader. Set

m = inf
M1(X,D)

(H − E∗) = inf
T 1(X,D)

Mab .

By (i) it is enough to show that Ding(ω) ≥ m for all ω ∈ T 1(X,D). Write ω = ω0 + ddcϕ
with ϕ ∈ E1(X,ω0). By Lemma 2.18 any probability measure µ with H(µ) < +∞ belongs
toM1(X,D), so the inequality H(µ) ≥ E∗(µ)+m is actually valid for all µ ∈M(X). Using
(4.3) we thus get L(ϕ) ≥ E(ϕ) +m, which concludes the proof. �

4.2. Weak geodesics and convexity. Let ω(0), ω(1) ∈ T 1(X,D) be two currents with
continuous potentials, and set ϕ0 := ϕω(0) and ϕ1 := ϕω(1). Let S ⊂ C be the open strip
0 < Re t < 1 and let ϕ be the usc upper envelope of the family of all continuous ω0-psh
functions (i.e. p∗1ω0-psh function, with p1 : X×S → X the first projection) ψ on X×S such
that ψ ≤ ϕ0 for Re t = 0 and ψ ≤ ϕ1 for Re t = 1. Setting ϕt := ϕ(·, t) and ω(t) := ω0+ddcϕt

we call (ω(t))t∈[0,1] the weak geodesic joining ω(0) to ω(1) (we also call the function ϕ the”

weak geodesic” joining ϕ0 to ϕ1).
By [Bern15, §2.2] we have:

Lemma 4.5. Let ϕ be the ω0-psh envelope defined above. Then:

(i) ϕ is ω0-psh and bounded on X × S.
(ii) (ω0 + ddcϕ)n+1 = 0 on X × S.

(iii) t 7→ ϕt is Lipschitz continuous, and converges uniformly on X to ϕ0 (resp. ϕ1) as
Re t→ 0 (resp. Re t→ 1).

Here again we write ω0 instead of p∗1ω0 in (ii) for simplicity. When dealing with Kähler
forms on a non-singular X, (ii) gives the geodesic equation for the Mabuchi metric defined
on the space of Kähler metrics, as was observed by Donaldson and Semmes. This explain
the present terminology.

Lemma 4.6. Let S be an open subset of C, ϕ be an ω0-psh function on X × S, and set
ϕt := ϕ(·, t), which is an ω0-psh function unless ϕt ≡ −∞.

(i) t 7→ L(ϕt) and t 7→ E(ϕt) are subharmonic on S.
(ii) If ϕ further satisfies (i) and (ii) of Lemma 4.5 then t 7→ E(ϕt) is even harmonic on

S.
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Proof. The assertions for E are well-known in the smooth case, and the proof in the present
context reduces to [BBGZ13, Proposition 6.2] by passing to a log resolution of (X,D). The
subharmonicity of L(ϕt) is deeper, and is basically a special case of Berdntsson’s theorem(s)
on the subharmonic variation of Bergman kernels. Let us briefly explain how to deduce the
present result from [Bern06].

Pick a log resolution π : X̃ → X, set X̃0 := π−1(X0), ω̃0 := π∗ω0, and semipositive

and big form on X̃. Since X̃0 is contained in the ample locus Amp (ω̃0) of ω̃0, we may

find a ω̃0-psh function ψ on X̃ which is smooth on X̃0 and such that ω̃0 + ddcψ ≥ η for

some Kähler form η on X̃ (cf. Appendix B). Applying [Dem92] to functions of the form
(1 − δ)ϕ ◦ π + δψ + δ|t|2 with 0 < δ � 1, we obtain (after perhaps slightly shrinking S) a

sequence of smooth functions ϕj on X̃ ×S such that ϕj → ϕ and ω̃0 + ddcϕj > 0 on X̃ ×S.

Using the isomorphism X̃0 ' X0 induced by π, we now view ϕj as a smooth, bounded
ω0-psh function on X0 × S. For each j and t ∈ S let φtj be the smooth Hermitian metric on

L := −KX0 defined by the (smooth positive) volume form e−ϕ
t
jµ0. By (ii) of Lemma 3.2,

the curvature of φj on X0 × S equals ω0 + ddcϕj , hence is positive. By (iii) of Lemma 3.2,
the Bergman kernel for L-valued (n, 0)-forms on X0 with respect to φtj coincides with the
constant function (∫

X0

e−ϕ
t
jµ0

)−1

.

In particular, this Bergman kernel is smooth on X0 × S.
Since Hörmander’s L2-estimates for L-valued (n, q)-forms apply for the positively curved

line bundle (L, φjt ) on the weakly pseudoconvex manifold X0 (cf. for instance [Dem96]), we
may then argue exactly as in [Bern06, pp.1638-1640] to get that

t 7→ − log

∫
X0

e−ϕ
t
jµ0

is subharmonic on S. The desired result now follows by letting j →∞. �

Combining these results we get the following crucial convexity property of the Ding func-
tional along weak geodesics:

Lemma 4.7. Let (ω(t))t∈[0,1] be the weak geodesic joining two currents ω(0), ω(1) ∈ T 1(X,D)
with continuous potentials. Then t 7→ Ding(ω(t)) is convex and continuous on [0, 1].

4.3. Variational characterization of Kähler-Einstein metrics. In this section we prove
the following generalization to log Fano pairs of a result of Ding and Tian for Fano manifolds
(without holomorphic vector fields):

Theorem 4.8. Given ω ∈ T 1(X,D) the following conditions are equivalent.

(i) ω is a Kähler-Einstein metric for (X,D).
(ii) Ding(ω) = infT 1(X,D) Ding.

(iii) Mab(ω) = infT 1(X,D) Mab.

Proof. The equivalence betwen (i) and (ii) is proved as in [BBGZ13, Theorem 6.6], which
we summarize for completeness. To prove (ii)⇒(i), we introduce the ω0-psh envelope Pu of
a function u on X as the usc upper envelope of the family of all ω0-psh functions ϕ such
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that ϕ ≤ u on X (or Pu ≡ −∞ if this family is empty). Given v ∈ C0(X) we set for all
t ∈ R

ϕt := P (ϕω + tv).

Since ϕt belongs to E1(X,ω0), L(ϕω+tv)−E(ϕt) achieves is minimum for t = 0. On the one
hand, ϕt is concave with respect to t for trivial reasons, and it follows by Hölder’s inequality
that L(ϕt) is also concave. Its right-handed derivative at t = 0 is easily seen to be∫

X
v µω,

see [BBGZ13, Lemma 6.1]. On the other hand, the differentiability theorem of [BeBo10] (ap-
plied in our case to a resolution of singularities of X) shows that t 7→ E(ϕt) is differentiable,
with derivative at t = 0 given by∫

X
vMA(Pϕω) = V −1

∫
X
v ωn.

Since the derivative at t = 0 of L(ϕω + tv)− E(ϕt) is zero, we obtain

V −1

∫
X
v ωn =

∫
X
v µω

for all v ∈ C0(X), which means that ω is a Kähler-Einstein metric.
To prove (i)⇒(ii), we rely on the convexity of the Ding functional along weak geodesics.

Let ω be any Kähler-Einstein metric. Since every ω0-psh function on X is the decreasing
limit of a sequence of continous ω0-psh functions thanks to [EGZ11], it is enough to show
that Ding(ω) ≤ Ding(ω′) for all ω′ ∈ T 1(X,D) with continuous potentials. Let (ω(t))t∈[0,1]

be the weak geodesic between ω(0) = ω and ω(1) = ω′. By Lemma 4.7 t 7→ Ding(ω(t)) is
convex and continuous on [0, 1]. To get as desired that Ding(ω(0)) ≤ Ding(ω(1)), it is thus
enough to show that

d

dt t=0+

Ding(ω(t)) ≥ 0,

which is proved exactly as in the last part of the proof of [BBGZ13, Theorem 6.6].
Finally, the equivalence between (ii) and (iii) is a consequence of Lemma 4.4. �

Remark 4.9. When X is non-singular with Aut0(X) = {1}, the implication (i)⇒(iii) was
proved by Ding and Tian [Tia97] using the continuity method. Their result was generalized
to singular Kähler-Einstein metrics on any non-singular Fano variety in [BBGZ13], using as
above Berndtsson’s theorem on psh variations of Bergman kernels.

As a corollary, we see that the set of Kähler-Einstein metrics is ”totally geodesic” in the
space of currents with continuous potentials:

Corollary 4.10. Let ω(0) and ω(1) be two Kähler-Einstein metrics, and let (ω(t))t∈[0,1] be
the weak geodesic joining them. Then ω(t) is a Kähler-Einstein metric for all t ∈ [0, 1].

Proof. By Lemma 4.6 t 7→ Ding(ω(t)) is convex on [0, 1], and is equal to infT 1(X,D) Ding at
both ends by Theorem 4.8. It is thus constantly equal to infT 1(X,D) Ding on [0, 1], and the
result follows by another application of Theorem 4.8. �
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4.4. Properness and the α-invariant. We say as usual that the Mabuchi functional (resp.
the Ding functional) is proper if Mab→ +∞ (resp. Ding→ +∞) as J → +∞. We also say
that Mab (resp. Ding) is coercive if there exists ε, C > 0 such that Mab ≥ εJ − C (resp.
Ding ≥ εJ − C).

Regarding coercivity, the following result holds.

Proposition 4.11. The following conditions are equivalent:

(i) The Ding functional is coercive.
(ii) The Mabuchi functional is coercive.

(iii) A Moser-Trudinger type estimate

‖e−ϕ‖Lp(µ0) ≤ Ae−E(ϕ)

holds for some p > 1, A > 0, and all ϕ ∈ E1(X,ω0).

Proof. (i)=⇒(ii) is obvious since Mab ≥ Ding by Lemma 4.4. If (ii) holds then there exists
ε > 0 and C > 0 such that H(µ) − E∗(µ) ≥ εE∗(µ) − C, hence H(µ) ≥ pE∗(µ) − C with
p := 1 + ε. By Lemma 2.11 we then have for each ϕ ∈ E1(X,ω0)

log

∫
X
e−pϕµ0 = sup

µ

(∫
X

(pϕ)µ−H(µ)

)
≤ −p inf

µ

(
E∗(µ) +

∫
X
ϕµ

)
+ pC = −pE(ϕ) + pC

and hence ‖e−ϕ‖Lp(µ0) ≤ eCe−E(ϕ), which proves that (ii)=⇒(iii). Assume now that (iii)
holds. Set ε := p− 1 > 0. The assumption reads

1
1+ε log

(∫
X
e−(1+ε)ϕµ0

)
≤ −E(ϕ) + C1 (4.5)

for some C1 > 0 and all ϕ ∈ E1(X,ω0). On the other hand, since αω0(µ0) > 0 by Proposition
1.4, we may assume that ε > 0 is small enough so that

log

(∫
X
e−εϕµ0

)
≤ ε

∫
X
ϕMA(0) + C2 (4.6)

for some C2 > 0 and all ϕ ∈ PSH(X,ω0).
Writing ϕ = (1− ε)(1 + ε)ϕ+ ε2ϕ, we have by convexity

log

(∫
X
e−ϕµ0

)
≤ (1− ε) log

(∫
X
e−(1+ε)ϕµ0

)
+ ε log

(∫
X
e−εϕµ0

)
Using (4.5) and (4.6), it follows that

L(ϕ) ≥ (1− ε2)E(ϕ) + ε2

∫
X
ϕMA(0)− C3,

and we conclude that

Ding(ϕ) = L(ϕ)− E(ϕ) ≥ ε2

(∫
X
ϕMA(0)− E(ϕ)

)
− C3 = ε2J(ϕ)− C3

for ϕ ∈ E1(X,ω0). We have this shown that (iii)=⇒(i). �

In order to extend Tian’s well-known criterion of properness [Tia87], we introduce:
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Definition 4.12. The α-invariant of of the log Fano pair (X,D) is defined as α(X,D) :=
αω0(µ0), i.e.

α(X,D) = sup

{
α > 0 | sup

ϕ∈PSHnorm(X,ω0)

∫
X
e−αϕµ0 < +∞

}
.

Here ω0 and µ0 denote as before the curvature and the adapted measure of a smooth
strictly psh metric φ0 on −(KX +D), the definition being easily seen to be independent of
the choice of φ0. As an immediate consequence of Lemma 2.18, we obtain as desired:

Proposition 4.13. If α(X,D) > n
n+1 then the Mabuchi functional (or, equivalently, the

Ding functional) of (X,D) is coercive, and hence proper.

The following topological characterization of properness is crucial to our approach.

Theorem 4.14. The Mabuchi functional

Mab : T 1(X,D)→ R ∪ {+∞}
is proper in the above sense if and only if it is an exhaustion function with respect to the
strong topology, i.e. the sublevel set{

ω ∈ T 1(X,D) | Mab(ω) ≤ m
}

is strongly compact for all m ∈ R.

Proof. By Proposition 2.3, the statement is equivalent to the strong compactness of

Cm :=
{
µ ∈M1(X,D) | H(µ) ≤ E∗(µ) +m

}
.

This set is strongly closed in M1(X,D) by Lemma 4.3. Using (1.10), the properness as-
sumption shows that E∗ is bounded on Cm, hence Cm ⊂ HA(X,µ) for some A > 0. The
result follows since HA(X,µ) is strongly compact by Theorem 2.17. The converse is straight-
forward to see, using Proposition 2.3 and (1.10). �

Corollary 4.15. It the Mabuchi functional is proper, then (X,D) admits a Kähler-Einstein
metric.

Proof. Theorem 4.14 implies that Mab admits a minimizer in T 1(X,D), which is necessarily
a Kähler-Einstein metric by Theorem 4.8. �

We will prove in Theorem 5.3 below that ω is furthermore unique in that case, and that
Aut0(X,D) = {1}. Recall that, for X non-singular with Aut0(X) = {1} (and D = 0), a
deep result of Tian [Tia97], strengthened in [PSSW08], conversely shows that the existence
of a Kähler-Einstein metric implies the properness of the Mabuchi functional - an infinite
dimensional version of the Kempf-Ness theorem.

5. Uniqueness and reductivity

The goal of this section is to prove a singular version of Bando and Mabuchi’s uniqueness
theorem [BM87]. As we shall see, it is a fairly direct consequence of a slight variant of a
result of Berndtsson [Bern15], stated and proved with full details in Appendix C.

Theorem 5.1. Let (X,D) be a log Fano pair. For any two Kähler-Einstein metrics ω, ω′ for
(X,D), there exists a 1-parameter subgroup λ : (C,+)→ Aut0(X,D) such that λ(1)∗ω = ω′

and λ(is)∗ω = ω for all s ∈ R.
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Here Aut(X,D) denotes the stabilizer of D in Aut(X). Since Aut(X,D) preserves the
polarization −(KX + D), it is realized as the stabilizer of X and D in the linear group
of H0(X,−m(KX + D)) for m large enough, and it is therefore a linear algebraic group.
Further, recall that the identity component Aut0(X) of the full automorphism group is also
a complex algebraic group with Lie algebra H0(X,TX), where TX = (Ω1

X)∗ denotes the
Zariski tangent sheaf (cf. [Kol96, Exercise 2.6.4]).

Following [CDS15], we observe that Theorem 5.1 yields the following generalization of a
classical result of Matsushima [Mat57], which plays a key role in [CDS15].

Corollary 5.2. If the log Fano pair (X,D) admits a Kähler-Einstein metric ω, then Aut0(X,D)
coincides with the complexification of the compact group K of holomorphic isometries of
(X,ω). In particular, it is a reductive group.

Proof. For each g ∈ Aut0(X,D), g∗ω is a Kähler-Einstein metric for (X,D). By Theorem
5.1, we may thus find a one-parameter subgroup λ of Aut0(X,D) with λ(is) ∈ K for all s ∈ R
and such that λ∗(1)ω = g∗ω. The first condition implies that λ(1) lies in the complexification
of K, and the second one means g ∈ Kλ(1), so we are done. �

Proof of Theorem 5.1. Let π : X̃ → X be a log resolution of (X,D). The klt condition
enables to write in a unique way

π∗(KX +D) = K
X̃

+ ∆− E

where ∆ is an effective Q-divisor on X̃ with coefficients in [0, 1), E is an effective divisor

on X̃ with integer coefficients, and π∗(∆ − E) = D. We do not claim that ∆ and E are
without common components, but on the other hand observe that ∆ and E have SNC
support and E is necessarily π-exceptional. Set L := −K

X̃
+ E, so that the canonical

section of OX(E) induces a holomorphic L-valued n-form u on X having E as its zero

divisor. Since E is exceptional, we have H0(X̃,K
X̃

+ L) = Cu. Note also that L = M + ∆
where M := −π∗(KX +D) is a semipositive, big Q-line bundle. By the Kawamata-Viehweg

(or Nadel) vanishing theorem, we thus have H1(X̃,K
X̃

+ L) = 0.
Choose continuous psh metrics ψ0, ψ1 on −(KX + D) with curvature ω, ω′ respectively,

and normalized so that E(ψ0) = E(ψ1) = 0. Let ψ be the ’weak geodesic’ joining ψ0 to
ψ1 as in §4.2, so that ψ is a locally bounded psh metric on the pull-back of −(KX +D) to
X × S with S = {t ∈ C | 0 < Re t < 1}. Recall that t 7→ ψt is Lipschitz continuous on S,
independent of Im t, and converges uniformly to ψ0 (resp. ψ1) as t→ 0 (resp. t→ 1).

By Lemma 4.6, E(ψt) is an affine function of t ∈ (0, 1), which converges to E(ψ0) =
E(ψ1) = 0 as t→ 0 and 1, and hence E(ψt) = 0 for all t ∈ S.

By Lemma 4.7, t 7→ Ding(ψt) = L(ψt) is continuous and convex on [0, 1], with Ding(ψ0) =
Ding(ψ1) = inf Ding thanks to the variational characterization of Kähler-Einstein metrics
(Theorem 4.8). It follows that Ding(ψt) = inf Ding for all t ∈ S, and another application
of the variational characterization shows that ωt := ddcψt is a Kähler-Einstein metric for
(X,D) for all t ∈ S.

Now set τ := π∗ψ, let φ := τ + φ∆ be the, with φ∆ the canonical metric on ∆ with
curvature current equal to [∆], so that φ is a psh metric on the pull-back of L to X × S,
and observe that

L(ψt) = − log

∫
X̃
u ∧ ū e−φt .
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By Theorem 11.1 in Appendix C, there exists a holomorphic vector field V on X̃ \ E such

that ddczφt = ddczτt + [∆] moves along the local flow of V on X̃ \ E. Using for instance
the uniqueness of the Siu decomposition of a closed positive (1, 1)-current, it follows that
ddczτt = π∗ωt also moves along the local flow of V , i.e.(

LV +
∂

∂t

)
π∗ωt = 0. (5.1)

Since E is π-exceptional, V induces a holomorphic vector field on a Zariski open set Ω ⊂ Xreg

with X \ Ω of codimension at least 2. But the Zariski tangent sheaf TX is a dual sheaf and
X is normal, so V extends to a section in H0(X,TX), still denoted by V for simplicity.
Since H0(X,TX) is the Lie algebra of the complex Lie group Aut0(X), λ(t) := exp(−tV )
defines a (C,+)-action on X. By (5.1), λ(−t)∗ωt is independent of t ∈ S. For all t, t′ ∈ S,
λ(−t)∗ψt − λ(−t′)∗ψt′ is thus a constant, and

L(λ(−t)∗ψt) = L(ψt) = L(ψt′) = L(λ(−t′)∗ψt′)

shows that in fact λ(−t)∗ψt = λ(−t′)∗ψt′ . Since ψt′ converges uniformly to ψ0 as t′ → 0,
we conclude that ψt = λ(t)∗ψ0 for all t ∈ S, and hence ψ1 = λ(1)∗ψ0 in the limit. Since
ψt is independent of Im t, we have λ(ε + is)∗ψ0 = ψε for 0 < ε < 1 and s ∈ R, and hence
λ(is)∗ψ0 = ψ0 in the limit. Finally, the Kähler-Einstein equation shows that

λ(t)∗(ω0 + [D]) = λ(t)∗Ric(ω0) = Ric(λ(t)∗ω0) = Ric(ωt) = ωt + [D] = λ(t)∗ω0 + [D]

on Xreg, so that λ is indeed a 1-parameter subgroup of Aut0(X,D). �

The next result summarizes the consequences of the properness of the Mabuchi functional
regarding Kähler-Einstein metrics.

Theorem 5.3. Assume that the Mabuchi functional of (X,D) is proper. Then we have:

(i) Aut0(X,D) = {1}.
(ii) (X,D) admits a unique Kähler-Einstein metric ωKE.
(iii) For every sequence ωj ∈ T 1(X,D) such that Mab(ωj) converges to infT 1(X,D) Mab,

we have ωj → ωKE in the strong topology of T 1(X,D).

Proof. By Corollary 4.15 there exists a Kähler-Einstein metric ω. Let us prove (i). Let λ be a
one-parameter subgroup of Aut0(X,D). We claim that λ preserves ω for all t ∈ C. Granting
this, the affine variety Aut0(X,D) will be contained in the compact group of isometries of
ω, and hence will be trivial. To prove the claim, observe that λ(t)∗ω is a Kähler-Einstein
metric for each t ∈ C. If we let φ be a continuous psh metric on −(KX +D) with curvature
ω and set ϕt := λ(t)∗φ−φ0, then ϕ(x, t) := ϕt(x) is a continuous ω0-psh function on X ×C
such that

(ω0 + ddcϕ)n+1 = 0

on X × C. By Lemma 4.6 E(ϕt) is thus harmonic on C, while
∫
X(ϕt − ϕω)MA(ϕω) is

subharmonic, simply because t 7→ ϕt(x) is subharmonic for each x ∈ X fixed. It follows that

Jω(λ(t)∗ω) = E(ϕω)− E(ϕt) +

∫
X

(ϕt − ϕω)MA(ϕω)

is subharmonic and bounded on C, hence constant since it vanishes for t = 0. By [BBGZ13,
Theorem 4.1] it follows that as desired that λ(t)∗ω = ω for all t ∈ C.
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By Theorem 5.1, (i) implies the uniqueness part in (ii). It remains to prove (iii). Since
Mab(ωj) is in particular bounded above, (ωj) stays in a strongly compact set by Theorem
4.14. It is thus enough to show that any strong limit point ω∞ of ωj has to coincide
with ω. But since Mab is lsc in the strong topology by Lemma 4.3, we have Mab(ω∞) ≤
lim infj Mab(ωj) = infT 1(X,D) Mab. By Theorem 4.8 it follows as desired that ω∞ = ω. �

We will also use the following variant for the Ding functional to prove the convergence of
the Kähler-Ricci flow:

Lemma 5.4. Assume that the Mabuchi functional of (X,D) is proper, and let ωj ∈ T 1(X,∆)
be a sequence such that Mab(ωj) is bounded above. If Ding(ωj) converges to infT 1(X,D) Ding,
then ωj strongly converges to the unique Kähler-Einstein metric ωKE of (X,D).

Proof. The assumption guarantees that (ωj) stays in a strongly compact set, and it is thus
enough to show that any limit point ω∞ of (ωj) in the strong topology necessarily coincides
with ωKE. But the minimizing assumption on (ωj) and the strong continuity of Ding (Lemma
4.3) imply that Ding(ω∞) = infT 1(X,D) Ding, and we conclude by Theorem 4.8. �

6. Ricci iteration

We still denote by (X,D) a log Fano pair, and use the notation of §4.1.

6.1. The Ricci inverse operator. For each ω ∈ T 1(X,D), the measure µω is tame by
Proposition 1.4. Using Lemma 1.5 we may thus introduce:

Definition 6.1. For each ω ∈ T 1(X,D) we let Rω ∈ T 1(X,D) be the unique current with
continuous potentials such that

V −1 (Rω)n = µω. (6.1)

The map R : T 1(X,D)→ T 1(X,D) so defined is called the Ricci inverse operator.

The defining equation for Rω may be rewritten as

Ric(Rω) = ω + [D] (6.2)

on Xreg, and Rω = ω iff ω is a Kähler-Einstein metric.

Lemma 6.2. The Ricci inverse operator satisfies the following properties.

(i) R : T 1(X,D)→ T 1(X,D) is continuous with respect to the strong topology.
(ii) If ω ∈ T 1(X,D) is smooth on a given open subset U of X0, then so is Rω.

Proof. (i) follows from Proposition 2.6 and Lemma 3.4. As in the proof of Lemma 3.6,
assertion (ii) is a consequence of Theorem 10.1 applied to a log resolution of (X,D), combined
with the Evans-Krylov theorm. �

As in [Rub08, Kel09] we next observe that the Mabuchi functional decreases along R:

Lemma 6.3. For all ω ∈ T 1(X,D) we have Mab(Rω) ≤ Mab(ω), with equality iff Rω = ω,
i.e. ω is a Kähler-Einstein metric.

Proof. We have by definition

Mab(Rω) = (H − E∗)(V −1ωn) = (H − E∗)(µω).
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Now (1.6) implies in particular that E∗(µω) ≥ E(ϕω)−
∫
X ϕω µω, whereas we have

H(µω) = L(ϕω)−
∫
X
ϕω µω

by definition of L and H. As a consequence we get

Mab(Rω) ≤ (L− E)(ϕω) = Ding(ω)

and the result follows thanks to Lemma 4.4. �

6.2. Convergence of Ricci iteration. Our goal in this section is to prove the following
result, which extends in particular [Rub08, Theorem 3.3].

Theorem 6.4. Let (X,D) be a log Fano pair whose Mabuchi functional is proper, and let
ωKE be its unique Kähler-Einstein metric.

(i) For all ω ∈ T 1(X,D) we have

lim
j→+∞

Rjω = ωKE

in the strong topology, the convergence being uniform at the level of potentials.
(ii) If ω is smooth on an open subset U of X0, then Rjω is also smooth on U for all j,

and the convergence holds in C∞(U).

As mentioned in the introduction, a more precise version of this result was obtained in
[JMR16] when X is non-singular and the support of D is a smooth hypersurface.

Proof. Step 1: Convergence in energy. Set

M :=
{
ω′ ∈ T 1(X,D) | Mab(ω′) ≤ Mab(ω)

}
.

Note that ωKE belongs toM, since it minimizes Mab by Theorem 4.8. Theorem 4.14 implies
thatM is strongly compact, since the Mabuchi functional of (X,D) is assumed to be proper.
By Lemma 6.3 R defines a strongly continuous map R :M→M. We are going to show that
Rjω converges strongly to ωKE by using a Lyapunov-type argument. Since M is strongly
compact, it is enough to show that any limit point ω∞ of Rjω necessarily coincides with
ωKE, i.e. is a fixed point of R. Since Mab(Rjω) is non-increasing by Lemma 6.3 and bounded
below by Theorem 4.8, it admits a limit

lim
j→∞

Mab(Rjω) = m.

By continuity of R, both ω∞ and Rω∞ are limit points of (Rjω), hence Mab(Rω∞) =
Mab(ω∞) = m, which shows that ω is a fixed point of R by Lemma 6.3.

Step 2: Uniform convergence on X. Setting ϕj := ϕRjω and ϕKE := ϕωKE . By Lemma
6.2, all ϕj are continuous, and we are to show that ϕj → ϕKE uniformly on X. Unravelling
the definitions, we get that

MA(ϕj+1) = e−ϕj+L(ϕj)µ0

for all j ∈ N. Since ϕj converges strongly to ϕ, we have L(ϕj) → L(ϕ) by Lemma 4.3,
while e−ϕj → e−ϕ in Lp(µ0) for all finite p by Proposition 1.4. If we pick a log resolution

π : X̃ → X and use the usual notation, we get that

fj :=
(ω̃0 + ddcϕ̃j)

n

dV
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converges in Lp to

f :=
(ω̃0 + ddcϕ̃KE)n

dV

for some p > 1. By [EGZ09, Theorem A] it follows that ϕ̃j → ϕ̃KE uniformly on X̃, hence
ϕj → ϕKE uniformly on X.

Step 3: Smooth convergence. Let again π : X̃ → X be a log resolution, and write

µ̃0 = eψ
+−ψ−dV as in Lemma 3.2. We then have for all j ∈ N

V −1(ω̃0 + ddcϕ̃j+1)n = eψ
+−ψ−−ϕ̃j+L(ϕj)dV (6.3)

By Step 2 ϕ̃j and L(ϕj) are uniformly bounded. Since ψ− is locally bounded below on

Ũ := π−1(U) ' U , Theorem 10.1 shows that the complex Hessian of ϕ̃j is locally bounded

on Ũ , uniformly with respect to j. In particular, the functions ψ+ − ψ− − ϕ̃j + L(ϕj)

appearing in the right-hand side of (6.3) are locally Lipschitz continuous on Ũ , uniformly
with respect to j. Applying the version of the Evans-Krylov a priori estimate given in [B lo,
Theorem 4.5.1], we get a uniform C2+α-bound for ϕj on compact subsets of U , which implies

as desired that ϕ̃j is smooth and uniformly bounded in C∞(Ũ), by applying the standard
elliptic boot-strapping argument to (6.3).

�

7. Convergence of the Kähler-Ricci flow

To avoid unnecessary technical complications in the definition of the Kähler-Ricci flow,
we assume in this section that D = 0, so that X is a Q-Fano variety with log terminal
singularities.

7.1. The Kähler-Ricci flow. The following result can be deduced from [ST09] (a detailed
proof is provided in [BG12]):

Theorem 7.1. [ST09] Given any initial closed positive current ω(0) ∈ T 1(X) with contin-
uous potentials, there exists a unique solution (ω(t))t∈]0,+∞[, of the normalized Kähler-Ricci
flow, in the following sense:

(i) for each t ∈]0,+∞[, ω(t) ∈ T 1(X) has continuous potentials on X;
(ii) on Xreg×]0,+∞[ ω(t) is smooth and satisfies ω̇(t) = −Ric(ω(t)) + ω(t);

(iii) limt→0+ ω(t) = ω(0), in the sense that their local potentials converge in C0(Xreg).

Our goal is to prove the following convergence result.

Theorem 7.2. Let (ω(t))t∈]0,+∞[ be the Kähler-Ricci flow with initial data ω(0) as above.
Assume that the Mabuchi functional of X is proper, and let ωKE be its unique Kähler-
Einstein metric as in Theorem 5.3. Then

lim
t→+∞

ω(t) = ωKE

in the strong topology of T 1(X).
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7.2. Monotonicity along the flow. We show in this section that the Ding and Mabuchi
functionals are both non-increasing along the flow, as in the usual non-singular setting.

Proposition 7.3. Let (ω(t))t∈]0,+∞[ be the Kähler-Ricci flow with initial data ω(0). Then
Mab(ω(t)) and Ding(ω(t)) are both non-increasing functions of t. For all t′ > t > 0 we have
more precisely

Ding(ω(t′))−Ding(ω(t)) ≤ −
∫ t′

t

∥∥V −1ω(s)n − µω(s)

∥∥2
ds.

The monotonicity of the two functionals is standard in the non-singular case, where ω(t)
is smooth on X × [0,+∞[. The technical difficulty in the present case is that we cannot
directly differentiate Ding(ω(t)) and Mab(ω(t)) since ω̇(t) is a priori not globally bounded on
Xreg. We will rely on an approximation argument, using the following specific information
about the construction of ω(t). What Song and Tian construct in [ST09] is a function
ϕ : X×]0,+∞[→ R with the following properties:

• ϕ is smooth on Xreg×]0,+∞[, and ϕt := ϕ(·, t) is a continuous ω0-psh function for
each t fixed.
• On Xreg×]0,+∞[ we have

∂

∂t
ϕ = log

V −1(ω0 + ddcϕt)n

µ(t)
,

with

µ(t) :=
e−ϕ

t
µ0∫

X e
−ϕtµ0

.

• limt→0+ ϕ
t = ϕω(0) uniformly on compact subsets of Xreg.

Let π : X̃ → X be a log resolution of X, so that the exceptional divisor E = π−1(Xsing) has

simple normal crossings. Set ω̃0 := π∗ω0, which is semipositive and big on X̃, with ample

locus X̃0 := X̃ \ E. By Lemma 3.2, the pull-back of µ0 to X̃ is of the form

µ̃0 = eψ
+−ψ−dV,

where ψ± are quasi-psh functions with analytic singularities alors E. Pick a Kähler form η on

X̃. In Song and Tian’s construction, the restriction of ϕ̃ := ϕt ◦π to X̃0×]0,+∞[ is the C∞-

limit (on compact sets) of the restriction of a sequence of smooth functions ϕj : X̃×]0,+∞[
such that:

• there exists εj > 0 converging to 0 such that ϕtj is ωj-psh with ωj := ω̃0 + εjη.

• On X̃×]0,+∞[ we have

∂

∂t
ϕj = log

V −1
j (ωj + ddcϕtj)

n

µj(t)
, (7.1)

where Vj =
∫
X̃
ωnj ,

µj(t) =
e−ϕ

t
jµj∫

X e
−ϕtjµj

with µj = eψ
+
j −ψ

−
j dV for decreasing sequences of smooth approximants ψ±j of ψ±.
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We also extract from [ST09] the following estimate to be used in what follows:

Lemma 7.4. There exists p > 1 such that the measures (ωj + ddcϕtj)
n are bounded in Lp,

uniformly with respect to j, as long as t stays in a compact subset of ]0,+∞[.

Proof. By [ST09, Corollary 3.4] we have a uniform estimate (ωj +ddcϕtj)
n ≤ C µj , as long as

t stays in a compact subset of ]0,+∞[. The result follows since µj = eψ
+
j −ψ

−
j dV is bounded

in Lp. �

Lemma 7.5. Let Ej be the energy functional on E1(X̃, ωj), and E∗j the dual functional on

M1(X̃, ωj). Then we have for each t > 0 fixed

Ding(ω(t)) = lim
j→∞

(
− log

(∫
X̃
e−ϕ

t
jµj

)
− Ej(ϕtj)

)
and

Mab(ω(t)) = lim
j→∞

(
Hµj − E∗j

) (
V −1
j

(
ωj + ddcϕtj

)n)
.

Proof. By Lemma 7.4 ϕtj is uniformly bounded with respect to j, t being fixed. Since

ϕtj → ϕ̃t in C∞ topology on X̃0, dominated convergence yields

lim
j→+∞

∫
X̃0

(
ϕtj − ϕt

) (
ωj + ddcϕ̃t

)n
= 0.

On the other hand, since (ωj + ddcϕtj)
n → (ω̃0 + ddcϕ̃t)n pointwise on X̃0 and (ωj + ddcϕtj)

n

is bounded in Lp, we also get by dominated convergence

lim
j→+∞

∫
X̃

(ϕtj − ϕ̃t)(ωj + ddcϕtj)
n = 0

as j →∞, and similarly

lim
j→+∞

∫
X̃
e−ϕ

t
jµj =

∫
X̃
e−ϕ̃

t
µ̃0.

Since both ϕtj and ϕ̃t are ωj-psh, the concavity of Ej yields∫
X̃

(ϕtj − ϕ̃t)
(
ωj + ddcϕtj

)n ≤ Ej(ϕtj)− Ej(ϕ̃t)
≤
∫
X̃

(ϕtj − ϕ̃t)
(
ωj + ddcϕ̃t

)n
.

We thus see that

lim
j→+∞

Ej(ϕ
t
j) = Eω̃0

(ϕ̃t) = E(ϕt),

which proves that the first assertion, as well as the convergence of

E∗j
((
ωj + ddcϕ̃tj

)n)
= Ej(ϕ

t
j)−

∫
X̃
ϕtj
(
ωj + ddcϕ̃tj

)n
to E∗

(
MA(ϕt)

)
. If we set

fj :=
V −1
j

(
ωj + ddcϕ̃tj

)n
µj
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and

f :=
V −1

(
ω̃0 + ddcϕ̃t

)n
µ̃0

,

it remains to show that

Hµj

(
V −1
j

(
ωj + ddcϕ̃tj

)n)
=

∫
X̃

(fj log fj)µj

converges to H(MA(ϕt)) =
∫
X̃

(f log f)µ̃0. But since fj log fj is uniformly bounded and

converges pointwise to f log f on X̃0, this follows again from the Lp convergence µj → µ̃0. �

Proof of Proposition 7.3. We perform the following standard computation:

d

dt

(
Hµj − E∗j

) (
V −1
j

(
ωj + ddcϕtj

)n)

= nV −1
j

∫
X̃

ϕjt + log

V −1
j

(
ωj + ddcϕjt

)n
µj

 ddcϕ̇tj ∧
(
ωj + ddcϕtj

)n−1

= nV −1
j

∫
ϕ̇tj dd

c log

V −1
j

(
ωj + ddcϕjt

)n
µj(t)

 ∧ (ωj + ddcϕjt )
n−1

= −nV −1
j

∫
dϕ̇jt ∧ dcϕ̇tj ∧ (ωj + ddcϕjt )

n−1 ≤ 0

using (7.1). By Lemma 7.5 it follows that Mab(ω(t)) is non-increasing along the flow.
Similarly we compute

d

dt

(
log

(∫
X̃
e−ϕ

t
jµj

)
+ Ej(ϕ

t
j)

)
= −

∫
X̃
ϕ̇tj µj(t) + V −1

j

∫
X̃
ϕ̇tj

(
ωj + ddcϕjt

)n
= Hµj(t)

(
V −1
j

(
ωj + ddcϕtj

)n)
+HV −1

j (ωj+ddcϕtj)
n (µj(t)) ,

using again (7.1). By Pinsker’s inequality (see Proposition 2.10), it follows that(
log

(∫
X̃
e−ϕ

t′
j µj

)
+ Ej(ϕ

t′
j )

)
−
(

log

(∫
X̃
e−ϕ

t
jµj

)
+ Ej(ϕ

t
j)

)

≥
∫ t′

t
‖V −1

j

(
ωj + ddcϕsj

)n − µj(s)‖2ds.
By Lemma 7.5, the left-hand side converges to −Ding(ω(t′)) + Ding(ω(t)) as j → ∞. On
the other hand

lim inf
j→+∞

‖V −1
j

(
ωj + ddcϕsj

)n − µj(s)‖ ≥ ‖MA(ϕs)− µ(s)‖ = ‖V −1ω(s)n − µω(s)‖

by lower semicontinuity of the total variation with respect to weak convergence, and we get
the desired result thanks to Fatou’s lemma. �
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7.3. Proof of Theorem 7.2. By Proposition 7.3, Mab(ω(t)) is bounded above for, say,
t ≥ 1 . Thanks to Lemma 5.4, we are thus reduced to showing that

lim
t→+∞

Ding(ω(t)) = inf
T 1(X,D)

Ding .

Since Ding(ω(t)) is bounded below, Proposition 7.3 yields the existence of a sequence tj →
+∞ such that ‖V −1ω(tj)

n − µω(tj)‖ → 0 as j →∞. Since ω(t) stays in a strongly compact

set, we may assume upon passing to a subsequence that ω(tj) converges strongly to some
ω∞ ∈ T 1(X,D). By Proposition 2.3 we have ω(tj)

n → ωn∞ strongly. The same argument
as in the proof of Lemma 4.3 (relying on Proposition 1.4) shows that µω(tj) → µω∞ weakly.

We conclude that V −1ωn∞ = µω∞ , and hence Ding(ω∞) = infT 1(X,D) Ding by Theorem 4.8.
By strong continuty of Ding (Lemma 4.3), it follows that

lim
j→∞

Ding(ω(tj)) = Ding(ω∞) = inf
T 1(X,D)

Ding,

which concludes the proof.

8. Examples

8.1. Log Fano pairs. As explained in [GK07], to each orbifold X is attached a klt pair
(X,D), where the normal variety X has quotient singularities and the boundary D has an
irreducible decomposition of the form

D =
∑
E

(1− 1
mE

)E

with mE ∈ N. This boundary encodes the ramification of X in codimension one, and X is
uniquely determined by the pair (X,D). If X is a Fano orbifold then (X,D) is a log Fano
pair. A Kähler-Einstein metric ω for (X,D) is then smooth in the orbifold sense.

A related class of log Fano pairs arises by taking quotients of Fano varieties. More
specifically, let Y be a Q-Fano variety with log terminal singularities, let G be a finite group
of automorphisms of Z, and set X := Y/G. Then p : Y → X is a ramified Galois cover, and
there exists a unique effective Q-divisor D supported on the ramification locus of X such
that KZ = p∗(KX + D). This shows that (X,D) has klt singularities and −(KX + D) is
ample, so that (X,D) is a log Fano pair. When Z is non-singular this is a special case of
the previous examples, with X := [Z/G].

Note that T (X,D) ' T (Z)G, and in particular Kähler-Einstein metrics on (X,D) corre-
spond precisely to G-invariant Kähler-Einstein metrics on Z.

8.2. Properness of the Mabuchi functional. Inspired by a nice construction of [AGP06],
we prove a criterion that produces a rather broad class of log Fano pairs having a proper
Mabuchi functional.

Theorem 8.1. Let X be a Q-Fano variety with log terminal singularities, and let D be an
effective Q-Cartier divisor satisfying

(i) D ∼Q −KX ,
(ii) (X,D) is klt,
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so that (X, (1 − λ)D) is in particular a log Fano pair for every (rational) λ ∈]0, 1[. If
the Ding functional (or, equivalently, the Mabuchi functional) of X is bounded below (in
particular, if X admits a Kähler-Einstein metric), then the Ding and Mabuchi functionals
of (X, (1− λ)D) are coercive for all rational numbers λ ∈]0, 1[.

Remark 8.2. It is interesting to compare this result with [Ber13, Theorem 7], which deals
with the case where X is a (non-singular) Fano manifold and D is reduced, smooth and
irreducible (so that (X,D) is merely lc in that case). Without any further assumption on
X, it is then proved that α(X, (1 − λ)D) → 1 as λ → 0, which implies in particular that
the Mabuchi functional of (X, (1 − λ)D) is coercive for 0 < λ � 1. As a consequence,
(X, (1 − λ)∆) admits a unique Kähler-Einstein metric for 0 < λ � 1, which is further
known to have cone singularities of cone angle 2πλ along D by [JMR16].

Note on the other hand that the irreducibility of D is crucial in this result: for X = P1 and
D = [0] + [∞], the Mabuchi functional of (X, (1− λ)D) cannot proper even for 0 < λ� 1,
since Aut0(X, (1 − λ)D) = Aut0(X,D) = C∗ is not trivial. This also shows that it is not
enough to assume (X,D) lc in (ii) of Theorem 8.1.

It is shown in [Lee08, Proposition 2.5] that any effective divisor D on Pn of degree d such
that (Pn, n+1

d D) is klt defines a stable point in the projective space |OPn(d)| with respect to
the action of the reductive group Aut(Pn). As a consequence of the above result, we get the
following generalization of this fact:

Corollary 8.3. Let X be a Kähler-Einstein Fano manifold (so that G := Aut0(X) is re-
ductive by [Mat57]), and let L be an ample G-line bundle on X with cL ∼Q −KX for some
c ∈ Q+. Then every effective divisor D ∼ L such that (X, cD) is klt defines a G-stable point
of |L| = PH0(X,L).

Proof. By semicontinuity [Kol97], U := {D ∈ |L| | (X, cD) klt} is a G-invariant Zariski open
subset of |L|. It is thus enough to show that the stabilizer GD of D in G is finite for all
D ∈ U (compare [Bri09, Proposition 1.26]), which amounts to G0

D = {1} since GD is an
algebraic group. But the Mabuchi functional of (X, cD) is proper by Theorem 8.1, hence
G0
D = Aut0(X,D) = Aut0(X, cD) = {1} by Theorem 5.3. �

Example 8.4. Let H be an irreducible hypersurface of degree d in X := Pn, with n ≥ 3.
Assume that n + 2 ≤ d ≤ 2n + 1 and that the singularities of H are at most log canonical
(lc for short). By inversion of adjunction, it follows that the pair (X,H) is lc as well (see
[Kol97, Theorem 7.5]). Since n+1

d < 1, it follows that (X, n+1
d H) is klt. But we also have

1
2 <

n+1
d , thus Theorem 8.1 implies that (X, 1

2H) admits a unique Kähler-Einstein metric.
Since H has even degree, we can construct a double cover p : Y → X ramified along H,
which satisfies KY = p∗

(
KX + 1

2H
)
, and Y is thus a Q-Fano variety with log terminal

singularities and a Kähler-Einstein metric (invariant under the Galois group of p).
If the singularities of H are for instance at most ordinary double points (i.e. locally

analytically isomorphic to
{∑n

i=1 z
2
i = 0

}
, which are lc), then the singularities of the double

cover Y are also ordinary double points, and are not quotient singularities since ordinary
double points have a trivial local fundamental group in dimension n ≥ 3. It follows that the
Kähler-Einstein metric of Y cannot be constructed by orbifold methods.

Proof of Theorem 8.1. Let us first fix some notation. Since D ∼Q −KX we have

−(KX + (1− λ)D) ∼Q −λKX .
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Let φ0 be a reference smooth strictly psh metric on −KX , with curvature form ω0 and
adapted probability measure µ0. We use φλ := λφ0 as a reference smooth strictly psh
metric on −(KX + (1− λ)D), with curvature form ωλ and adapted measure µλ. Note that
ϕ 7→ ψ = λϕ sets up an isomorphism PSH(X,ω0) ' PSH(X,ωλ). Denoting by Eλ the
energy functional of E1(X,ωλ), it is straightforward to check that

Eλ(ψ) = λE(ϕ). (8.1)

By Proposition 4.11, we will be done if we can prove that functions ψ ∈ E1(X,ωλ) satisfy a
Moser-Trudinger condition

‖e−ψ‖Lp(µλ) ≤ Ae−Eλ(ψ)

for some p > 1 and A > 0 (independent of ψ).
Since the Ding functional of X is assumed to be bounded below, we have an estimate

‖e−ϕ‖L1(µ0) ≤ Ae−E(ϕ)

for all ϕ ∈ E1(X,ω0). By (8.1), it follows that

‖e−ψ‖
Lλ−1 (µ0)

≤ Ae−Eλ(ψ) (8.2)

for all ψ ∈ E1(X,ωλ). On the other hand, it is immediate to check from the definition that

µλ = e−(1−λ)ρµ0 for some quasi-psh function ρ which locally satisfies ρ = log |f |2 + O(1),
where f is a local equation of D. Since (X,D) is klt, we thus have e−ρ ∈ Lq(µ0) for some
q > 1.

Now pick δ ∈]q−1(1− λ), 1− λ[. By Hölder’s inequality we have∫
X
e−(1−δ)λ−1ψµλ =

∫
X
e−(1−δ)λ−1ψ−(1−λ)ρµ0 ≤

(∫
X
e−λ

−1ψµ0

)1−δ (∫
X
e−δ

−1(1−λ)ρµ0

)δ
.

Since δ−1(1−λ) < q and e−ρ ∈ Lq(µ0), we have
∫
X e
−δ−1(1−λ)ρµ0 < +∞. We thus get C > 0

and

p := (1− δ)λ−1 > 1.

such that

‖e−ψ‖Lp(µλ) ≤ C ‖e−ψ‖Lλ−1 (µ0)

for all ψ ∈ E1(X,ωλ). Combining this with (8.2) yields the desired Moser-Trudinger condi-
tion. �

9. Appendix A: an Izumi-type estimate

Let X be a normal complex space with a given point x ∈ X and let ϕ be a psh function
on X. Choose local generators (fi) of the maximal ideal mx of OX,x and define the slope of
ϕ at x by

s(ϕ, x) := sup

{
s ≥ 0 | ϕ ≤ s log

∑
i

|fi|+O(1)

}
∈ [0,+∞[ (9.1)

Since log
∑

i |fi| only depends on the choice of generators up to a bounded term, it is clear
that s(ϕ, x) is independent of the choice of (fi). For f ∈ OX,x we have

s(log |f |, x) = ordx(f) := lim
m→∞

1
m ordx(fm),
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with

ordx(f) := max
{
k ∈ N | f ∈ mk

x

}
.

Remark 9.1. By [Dem85, p.50, Corollaire 6.6] the non-decreasing function

χ(t) := sup
{
∑
i |fi|<et}

ϕ

is convex (generalized three-circle theorem), and we have s(ϕ, x) = limt→−∞ χ(t)/t. This
implies in particular that the supremum in (9.1) is attained.

Izumi’s theorem [Izu81] states that for every resolution of singularities π : X̃ → X and

every prime divisor E ⊂ X̃ lying above x ∈ X, there exists a constant C > 0 such that

ordE(f ◦ π) ≤ C ordx(f)

for all f ∈ OX,x. Our goal here is to prove the following extension of this result to psh
functions:

Theorem 9.2. Let π : X̃ → X be any resolution of singularities and let E ⊂ X̃ be a prime
divisor above x ∈ X. Then there exists C > 0 such that

ν(ϕ ◦ π,E) ≤ Cs(ϕ, x)

for all psh functions ϕ on X.

Here
ν(ϕ ◦ π,E) = min

p∈E
ν(ϕ ◦ π, p)

is the generic Lelong number of ϕ ◦ π along E. Note that ordE(f ◦ π) = ν(ϕ ◦ π,E) with
ϕ = log |f |.

Corollary 9.3. If ϕ is a psh function with s(ϕ, x) = 0 for some x ∈ X, then ν(ϕ◦π, p) = 0
for every resolution of singularities and every p ∈ π−1(x).

Proof. Let b : X ′ → X̃ be the blow up of X̃ at point p ∈ X̃. Then π′ = π ◦ b : X ′ → X
is yet another resolution of singularities. Set E = β−1(p). This is a prime divisor to which
we can apply Theorem 9.2 . The conclusion follows then by recalling the following classical
interpretation of Lelong number: ν(ϕ ◦ π ◦ b, E) = ν(ϕ ◦ π, p). �

Proof of Theorem 9.2. By Hironaka’s theorem we may assume that π : X̃ → X dominates
the blow-up of X at x, so that the scheme-theoretic fiber π−1(x) is an effective divisor∑

i aiEi. Note that
∑

iEi is connected by Zariski’s ”main theorem”.
Set bi := ν(π∗ϕ,Ei). Using the Siu decomposition of the positive current T := ddcπ∗ϕ

we may write T = R + B where B =
∑

i biEi is an effective R-divisor and R is a positive
current such that ν(R,Ei) = 0 for all i. We first claim that

s(ϕ, x) = min
i

bi
ai
. (9.2)

Indeed, if we write mx = (fi) as above then π∗ log
∑

i |fi| has analytic singularities described
by the divisor π−1(x), i.e. locally on X we have

π∗ log
∑
i

|fi| =
∑
i

ai log |zi|+O(1)
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where zi is a local equation of Ei. We thus see that

ϕ ≤ s log
∑
i

|fi|+O(1)⇐⇒ π∗ϕ ≤
∑
i

sai log |zi|+O(1)

locally on X̃, and the positivity of R = T −B shows that this holds iff bi = ν(π∗ϕ,Ei) ≥ sai
for all i, hence the claim.

In view of (9.2), the desired statement amounts to an estimate maxi bi ≤ C mini bi for
some C > 0 independent of ϕ. Thanks to Lemma 9.4 below, this will hold if we can show
that −B|Ei is pseudoeffective for all i. Since the restriction to each Ei of the cohomology
class of T = π∗ddcϕ is trivial, we are reduced to showing that {R}|Ei is pseudoeffective.
Since ν(R,Ei) = 0, this follows from Demailly’s regularization theorem. Let us recall the
standard argument: by[Dem92], after perhaps shrinking X slightly about 0 we may write
R as a weak limit of closed positive (1, 1)-currents Rk with analytic singularities such that
{Rk} = {R}, Rk ≥ −εkω for some εk → 0 and Rk is less singular than R. In particular we
have ν(Rk, Ei) = 0 for all i, which means that the local potentials of Rk are not entirely
singular along Ei, so that Rk|Ei is a well-defined closed (1, 1)-current. We thus see that
({R}+ εk{ω}) |Ei is pseudoeffective for all k, and the claim follows. �

Lemma 9.4. Let E =
∑

iEi be a reduced compact connected divisor on a Kähler manifold
M . Let B =

∑
biEi be an effective R-divisor supported in E, and assume that −B|Ei is

pseudoeffective for all i. Then there exists a constant C > 0 only depending on E such that
maxi bi ≤ C mini bi.

The proof to follow is directly inspired from [BFJ12, §6.1].

Proof. Let ω be a Kähler form on M . Thanks to the connectedness of E, we may index the
Ei such that B =

∑N
i=1 biEi with b1 = mini bi, br = maxi bi for 1 ≤ r ≤ N , and Ei∩Ei+1 6= ∅

for all i = 1, ..., r − 1. For each i we have

(−D|Ei) · (ω|Ei)n−2 = −
∑
j

bjci,j ≥ 0,

with

ci,j :=
(
Ei · Ej · ωn−2

)
,

hence ∑
j 6=i

bjci,j ≤ bi |ci,i| . (9.3)

Now ci,j ≥ 0 if j 6= i, and ci,i+1 > 0 for all i since Ei meets Ei+1. It follows that

bi+1 ≤
|ci,i|
ci,i+1

bi

for all i, hence maxi bi = br ≤ Cb1 = mini bi with C :=
∏r−1
i=1

|ci,i|
ci,i+1

�

Remark 9.5. Besides the slope s(ϕ, x) considered above, Demailly introduced in [Dem85] a
different generalization of Lelong numbers on normal complex spaces, defined as the inter-
section multiplicity

ν(ϕ, x) := (ddcϕ) ∧ (ddc log
∑
i

|fi|)n−1 ({x}) ,
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where (fi) are generators of mx, the definition being independent of that choice. When
a = (g1, ..., gr) is an mx-primary ideal and ϕ = log

∑
i |gi| then ν(ϕ, x) computes the mixed

(Hilbert-Samuel) multiplicity 〈a,mx, ...,mx〉. In particular for ϕ = ψ we have ν(ψ, x) =
m(X,x), the multiplicity of X at x. By Demailly’s comparison theorem we have

ν(ϕ, x) ≥ s(ϕ, x)m(X,x),

and the inequality is strict in general. Using the notation of the proof of Theorem 9.2 and
recalling that −π−1(x) is π-nef, we conjecture by analogy with the algebraic case that

ν(ϕ, x) = (B · (−π−1(x))n−1).

By Theorem 9.2 this would imply in particular that conversely ν(ϕ, x) ≤ Cs(ϕ, x) for some
C > 0 independent of ϕ.

10. Appendix B: Laplacian estimate

The goal of this section is to present an explicit version of the main result of [Pau08], in
order to make it suitable to our purpose.

In what follows (X,ω) denotes a compact Kähler manifold, ∆ = trω dd
c is the (analysts’)

Laplace operator with respect to the reference Kähler form ω, and θ ≥ 0 is a semi-positive
closed (1, 1)-form such that

∫
X θ

n > 0, where n = dimCX. We let Amp (θ) denote the ample
locus of (the cohomology class of) θ.

Theorem 10.1. Let µ be a positive measure on X of the form µ = eψ
+−ψ−dV with ψ±

quasi-psh and e−ψ
− ∈ Lp for some p > 1. Assume that ϕ is a bounded θ-psh function such

that (θ + ddcϕ)n = µ. Then we have ∆ϕ = O(e−ψ
−

) locally in Amp (θ).
More precisely, assume given a constant C > 0 such that

(i) ddcψ+ ≥ −C ω and supX ψ
+ ≤ C.

(ii) ddcψ− ≥ −C ω and ‖e−ψ−‖Lp ≤ C.

Let also U b Amp (θ) be a relatively compact open subset. Then there exists A > 0 only
depending on θ, p, C and U such that

0 ≤ θ + ddcϕ ≤ Ae−ψ− ω

on U .

This result recovers in particular [Yau78, Theorem 7, p.398].

Proof. We may of course assume that ϕ is normalized. During the proof A,A1, ... will denote
positive constants that may vary from line to line, but are under control in the sense that
they only depend on θ, p, C and U . Since U is contained in Amp (θ), we may choose a
Zariski open set Ω ⊃ U and a θ-psh function ψ such that (θ + ddcψ)|Ω is the restriction of

a Kähler form ω̃ on a higher compactification X̃ of Ω, so that

ω̃ ≥ δω on Ω for some δ > 0 and ψ → −∞ near ∂Ω.

The proof of Theorem 10.1 is divided in two steps. In the first and main one, an a priori
estimate for smooth solutions of non-degenerate perturbations of the equation is established.
In the second step we conclude using a regularization argument.
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Step 1: A priori estimates. For 0 < ε ≤ 1 we set ωε := ω̃+ ε ω, viewed as a Kähler form
on Ω. Note that ωε ≥ δ ω, so that

trωε(α) ≤ δ−1 trω(α) (10.1)

for every positive (1, 1)-form α. Assume that ψ+ and ψ− are smooth functions satisfying (i)
and (ii) of Theorem 10.1, and assume given a smooth normalized θε-psh function ϕε such
that

(θ + εω + ddcϕε)
n = eψ

+−ψ− dV. (10.2)

The goal of Step 1 is to establish that |∆ϕε| ≤ Ae−ψ
−

on U with A > 0 under control.
Since we have ωε ≤ Aω over U with A under control, it will be enough to prove that

ω′ε := θ + εω + ddcϕε

satisfies trωε(ω
′
ε) ≤ Ae−ψ

−
on U .

We first recall the Laplacian inequality obtained in [Siu87, pp.98-99]: if τ, τ ′ are two
Kähler forms on a complex manifold, then there exists a constant B > 0 only depending on
a lower bound for the holomorphic bisectional curvature of τ such that

∆τ ′ log trτ (τ ′) ≥ −trτ Ric(τ ′)

trτ (τ ′)
−B trτ ′(τ). (10.3)

We remark that Siu’s argument uses the fact that τ and τ ′ are ddc-cohomologous. But the
general case is valid as well since Siu’s computations are purely local and any Kähler form is
even locally ddc-exact. This being said, let us apply this inequality to the two Kähler forms
ωε and ω′ε on Ω.

Since ω̃ extends to a Kähler form on a higher compactification X̃ of Ω, the holomorphic
bisectional curvature of ωε = ω̃ + ε ω is obviously bounded over Ω by a constant B > 0
under control, and (10.3) yields

∆ω′ε log trωε(ω
′
ε) ≥ −

trωε Ric(ω′ε)

trωε(ω
′
ε)
−B trω′ε(ωε). (10.4)

On the other hand, applying ddc log to (ω′ε)
n = eψ

+−ψ−ωn yields

−Ric(ω′ε) = −Ric(ω) + ddcψ+ − ddcψ− ≥ −Aω − ddcψ−

where A is under control thanks to (i). Using trωε(ω) ≤ nδ−1 and the trivial inequality

n ≤ trωε(ω
′
ε) trω′ε(ωε) (10.5)

we thus infer from (10.4)

∆ω′ε log trωε(ω
′
ε) ≥ −

∆ωεψ
−

trωε(ω
′
ε)
−A trω′ε(ωε). (10.6)

with A under control.
We next argue along the lines of [Pau08, Lemma 3.2] to take care of the term ∆ωεψ

−. By
(ii) we have Aωε + ddcψ− ≥ 0 with A under control. Applying trωε to the trivial inequality

0 ≤ Aωε + ddcψ− ≤ trω′ε(Aωε + ddcψ−)ω′ε

yields

0 ≤ An+ ∆ωεψ
− ≤ (A trω′ε(ωε) + ∆ω′εψ

−) trωε(ω
′
ε).
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Plugging this into (10.6) and using again (10.5) we thus obtain

∆ω′ε

(
log trωε(ω

′
ε) + ψ−

)
≥ −A trω′ε(ωε). (10.7)

where A is under control. Now set

ρε := ϕε − ψ,

so that ω′ε = ωε + ddcρε. We then have n = trω′ε(ωε) + ∆ω′ερε, and we finally deduce from
(10.7) that

∆ω′ε

(
log trωε(ω

′
ε) + ψ− −A1ρε

)
≥ trω′ε(ωε)−A2 (10.8)

on Ω, with A1, A2 under control.
We are now in a position to apply the maximum principle. On the one hand, ρε = ϕε−ψ

tends to +∞ near ∂Ω. On the other hand, trωε(ω
′
ε) ≤ δ−1 trω(ω′ε) is bounded above on Ω

since ω′ε is smooth over X. The function

H := log trωε(ω
′
ε) + ψ− −A1ρε

therefore achieves its maximum at some x0 ∈ Ω, and (10.8) yields trω′ε(ωε)(x0) ≤ A2. On
the other hand, trivial eigenvalue considerations show that

trτ1(τ2) ≤ n (τn2 /τ
n
1 ) trτ2(τ1)n−1

for any two Kähler forms τ1, τ2, whence

log trωε(ω
′
ε) ≤ ψ+ − ψ− + log

(
ωn

ωnε

)
+ (n− 1) log trω′ε(ωε) + log n

by (10.2). Using ω ≤ δ−1ωε it follows that

H ≤ A3 log trω′ε(ωε) +A4 −A1ρε

where A3, A4 are under control, and we obtain

sup
Ω
H = H(x0) ≤ A5 −A1 inf

Ω
ρε ≤ A5 −A1 inf

X
ϕε

with A5 under control, since ρε = ϕε − ψ and ψ ≤ 0. By the L∞-estimate provided by
[EGZ09], we now obtain

log trωε(ω
′
ε) + ψ− −A1ρε = H ≤ A

on Ω for some constant A under control. Since ϕε is normalized we conversely have

ρε ≤ −ψ ≤ A6 over U b Ω, and we finally infer as desired trωε(ω
′
ε) ≤ Ae−ψ

−
on U .

Step 2: Regularization. We now consider the set-up of Theorem 10.1. By Demailly’s
regularization theorem [Dem92], there exist two decreasing sequences of smooth functions
ψ±j such that

• limj→∞ ψ
±
j = ψ± on X.

• ddcψ±j ≥ −Aω for some A > 0 under control.

In fact, the constant A > 0 depends in principle on the Lelong numbers of the quasi-psh
functions ψ± according to Demailly’s result, but these Lelong numbers can be uniformly
bounded in terms of the lower bound −Cω for ddcψ± by a standard argument, see for
instance [Bou02, Lemma 2.5].
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For each 0 < ε ≤ 1 the closed (1, 1)-form θ + ε ω is Kähler, and Yau’s theorem [Yau78]
yields smooth normalized θε-psh functions ϕε,j such that

(θε + ddcϕε,j)
n = eψ

+
j −ψ

−
j +cε,jωn,

where cε,j ∈ R is a normalizing constant. Since eψ
+
j −ψ

−
j ≤ eC−ψ

−
is uniformly bounded in

Lp, cε,j is under control and Step 1 of the proof shows that

|∆ϕε,j | ≤ Ae−ψ
−
j (10.9)

over U , with A > 0 under control.
Now for each fixed j it follows from [BEGZ10, Lemma 5.3] that ϕε,j converges weakly as

ε→ 0 to the normalized solution ϕj of

(θ + ddcϕj)
n = eψ

+
j −ψ

−
j +cjωn,

which therefore satisfies as well |∆ϕj | ≤ Ae−ψ
−
j on U . But we also have eψ

+
j −ψ

−
j → eψ

+−ψ−

in Lp by dominated convergence, and it follows that ϕj → ϕ weakly on X by [EGZ09,
Theorem A], which concludes the proof of Theorem 10.1. �

11. Appendix C: a version of Berndtsson’s subharmonicity theorem

The goal of this section is to extract from [Bern15] the proof the following result.

Theorem 11.1. Let X be a compact Kähler manifold and L a line bundle on X such that:

(i) h0(X,KX + L) = 1 and h1(X,KX + L) = 0;
(ii) L = M + ∆ where M is a semipositive Q-line bundle, ∆ =

∑
i aiDi is an effective

Q-divisor with SNC support and ai ∈ (0, 1).

Set S := {t ∈ C | 0 < Re t < 1} and consider a psh metric φ on the pull-back of L to X × S
of the form φ = τ + φ∆ where

(iii) τ is a bounded psh metric on the pull-back of M to X×S, with t 7→ τt only depending
on Re t and Lipschitz continuous;

(iv) φ∆ =
∑

i ai log |si|2 with si the canonical section of O(Di), so that ddcφ∆ = [∆].

For each generator u of H0(X,KX + L), viewed as an L-valued holomorphic n-form on X,
the function

L(t) = − log ‖u‖2φt = − log

∫
X
in

2
u ∧ ū e−φt

is then subharmonic on S. If it is further harmonic, then there exists a holomorphic vector
field V on {u 6= 0} ⊂ X such that (

LV +
∂

∂t

)
ddczφt = 0,

with LV the Lie derivative along V .

The situation here is a slight variant of [Bern15, §6.2], which corresponds to the case
where u is nowhere zero (and hence L = −KX). The arguments given in that part of the
paper are rather brief, and a more precise exposition of the proof is presented in [CDS15,
Appendix 1]. However, the latter still suffers from some minor oversights, having to do
with the negative part of the curvature in the regularization and the possibly non-uniform
convergence of the curvature formula. We therefore take the opportunity to present here
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a proof with full details. We are very grateful to Bo Berndtsson who kindly answered our
questions on his proof.

In what follows we fix a reference Kähler metric ω on X.

Step 0: Preliminary facts. Assume for the moment that φ is a fixed smooth metric on
L. The (1, 0)-part of the induced Chern connection is given by

∂φ = ∂ − ∂φ ∧ • (11.1)

in any local trivialization of L. It is related to the adjoint ∂
∗
φ of ∂ by the Kähler commutation

identity i∂φ = [∂
∗
φ, ω ∧ •]. For an L-valued (p, 0)-form v, this becomes

i∂φv = ∂
∗
φ(ω ∧ v). (11.2)

In particular, the image of ∂φ on (p, 0)-forms is orthogonal to the kernel of ∂. For p = n−1,
v 7→ ω ∧ v is a pointwise isometry between L-valued (n − 1, 0) and (n, 1)-forms, and the

Hodge star operator satisfies ?(ω ∧ v) = i(n−1)2
v. In particular,

〈ω ∧ v, α〉L2(φ) = i(n−1)2

∫
X
v ∧ α. (11.3)

for any L-valued (n, 1)-form α.

Lemma 11.2. For each L-valued (n, 0)-form η on X, there exists a unique L-valued (n −
1, 0)-form v such that

(i) ∂φv = Pη, the projection of η orthogonal to the kernel of ∂;
(ii) ω ∧ ∂v = 0.

Proof. The image of ∂ is closed, since it has finite codimension in Ker ∂. As a result,
Pη ∈ (Ker ∂)⊥ = Im ∂

∗
φ may be uniquely written as Pη = ∂

∗
φβ for an L-valued (n, 1)-

form β ∈ (Ker ∂
∗
φ)⊥ = Im ∂, which may be written as β = ω ∧ v for a unique L-valued

(n− 1, 0)-form v.
Since we are assuming that Hn,1(X,C) = H1(X,KX +L) = 0, β above is in fact in Ker ∂,

which concludes the proof. �

Remark 11.3. For later use, note that any L-valued (n − 1, 0)-form v for which (ii) holds
satisfies ∫

X
v ∧ Pα e−φ = 0

for all L-valued (n, 1)-form α, by (11.3).

Step 1: Regularization. As in [Bern15, §2.3], we rely on [BK07] to write the bounded
psh metric τ on the pull-back of M to X×S as the decreasing limit of a sequence of smooth
metrics τν over X × Sν for a slightly smaller strip

Sν = {t ∈ C | δν < Re t < 1− δν}
with δν → 0, such that

ddcτν ≥ −ενω
on X × Sν for some sequence εν → 0. We denote by ddc the operator on the product; an
additional index z or t will indicate partial derivatives. Note that shrinking the time interval
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is necessary in the regularization process, since we are working over the non-compact product
manifold X × S.

Since t 7→ τt is Lipschitz continuous and only depends on Re t, we can further arrange
that t 7→ τνt is uniformly Lipschitz continuous and only depends on Re t (by averaging).

We also introduce a regularization of φ∆ by setting

φν∆ :=
∑
i

ai log
(
|si|2 + ν−1eψi

)
with ψi a smooth metric on O(Di). It satisfies:

(i) ddcφν∆ ≥ −Cω for some uniform constant C > 0;
(ii) for each neighborhood U of supp ∆, there exists ενU → 0 such that ddcφν∆ ≥ −ενUω

outside U .

Setting φν := τν + φν∆ defines a smooth metric on the pull-back of L to X × S, only de-

pending on Re t, with time derivative φ̇νt = τ̇νt ∈ C∞(X) uniformly bounded and converging

a.e. to φ̇t.

Step 2: Hodge theoretic estimates. For each t, ν, we denote by ‖η‖φνt the L2-norm
of an L-valued (p, q)-form η with respect to the fixed Kähler metric ω and the hermitian
metric φνt on L. We write P νt η for the projection of η orthogonal to the kernel of ∂, and

∂
φνt
z for the (1, 0)-part of the Chern connection associated to φνt . As explained in Remark

3.2 and Lemma 6.3 of [Bern15], the equation in Lemma 11.2 satisfies the following uniform
estimate:

Lemma 11.4. There exists a constant C > 0 such that for each t, ν and each L-valued
(n, 0)-form η, the unique L-valued (n− 1, 0)-form v solving

(i) ∂
φνt
z v = P νt η;

(ii) ω ∧ ∂zv = 0.

satisfies ‖v‖φνt ≤ C‖η‖φνt .

We will also rely on the following estimate, which follows from (the proof of) [Bern15,
Lemma 6.5].

Lemma 11.5. For each δ > 0, there exists a neighborhood Uδ ⊂ X of supp ∆ such that∫
Uδ

|v|2φνt ≤ δ
(
‖|v‖2φνt + ‖∂zv‖2φνt

)
for all L-valued (n− 1, 0)-forms v on X, all ν and t ∈ Sν .

Combining these facts, we obtain the following key technical result.

Lemma 11.6. For each ν, there exists a unique smooth family vν = (vνt )t∈Sν of L-valued
(n− 1, 0)-forms such that

(i) ∂
φνt
z vνt = P νt (φ̇νt u);

(ii) ω ∧ ∂zvνt = 0.

The L2-norm ‖vνt ‖φνt is bounded independently of t and ν. After perhaps passing to a sub-
sequence, we can further find a sequence of smooth cut-off functions 0 ≤ χν ≤ 1 on X (with
χν ≡ 0 on some neighborhood of supp ∆) such that
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(iii) χνdd
cφνt ≥ −ενω;

(iv)
∫
X(1− χν)|vνt |2φνt ≤ εν

(
1 + ‖∂zvνt ‖2φνt

)
,

for some sequence εν > 0 converging to 0.

Step 3: Subharmonicity of L. Our goal here is to show that L(t) = − log ‖u‖2φt is

subharmonic on S. This function is the decreasing limit of Lν(t) := − log ‖u‖2φνt , which

may be viewed as the weight of the L2-metric induced by φνt on the trivial line bundle
Sν ×H0(X,KX + L). By [Bern15, Theorem 3.1] (see also [CDS15, Lemma 14] for a direct
computation), we thus have the curvature formula

‖u‖2φνt dd
c
tL

ν = ‖∂zvνt ‖2φνt idt ∧ dt̄+

∫
X

Θν , (11.4)

where we have set

Θν := in
2
ddcφνt ∧ wν ∧ wν (11.5)

with

wν := u− dt ∧ vνt , (11.6)

and
∫
X denotes fiber integration.

First, we observe that the left-hand coefficient satisfies

C−1 ≤ ‖u‖2φνt ≤ C

for some uniform constant C > 0. This is a consequence of e−φ
ν
t ≤ e−φt = e−τt−φ∆ , since

e−φ∆ is integrable while e−τt ≤ Ce−τt0 for any fixed t0 by Lipschitz continuity of t 7→ τt.
Next, as in [Bern15, §6.2], we note that∫

X
χνΘν ≥ −Cενidt ∧ dt̄, (11.7)

thanks to the L2-bound ‖vνt ‖φνt ≤ C and the curvature lower bound χνdd
cφνt ≥ −ενω. On

the other hand, the global curvature bound ddcφνt ≥ −Cω combined with (iv) in Lemma
11.6 yields∫

X
(1− χν)Θν ≥ −C

(∫
X

(1− χν)|vνt |2φνt

)
idt ∧ dt̄ ≥ −Cεν

(
1 + ‖∂zvνt ‖2φνt

)
idt ∧ dt̄. (11.8)

Injecting these estimates in the curvature formula (11.4), we obtain

ddctL
ν ≥

(
c‖∂zvνt ‖2φνt − εν

)
idt ∧ dt̄ (11.9)

for some uniform constant c > 0 and εν → 0. In particular, we get as desired ddctL ≥ 0 in
the limit, thereby proving that L is subharmonic.

Step 4: Holomorphy of v. From now on, we assume that L is harmonic, so that ddcLν → 0
weakly on S. As a first consequence, we obtain the following estimates:

Lemma 11.7. The following fiber integrals converge weakly to zero on S as ν →∞.

(i)
∫
X |∂zv

ν
t |2φνt ;

(ii)
∫
X χνΘν ;

(iii)
∫
X(1− χν)Θν ;
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(iv)
∫
X(1− χν)|vνt |2φνt .

Proof. (i) follows directly from (11.9). Another application of the curvature formula (11.4)
then yields

∫
X Θν → 0. Now let f ∈ C∞c (S) be a non-negative test function. Then injecting

(i) in (11.8) yields
∫
X×S f(1− χν)Θν ≥ −ενK , while (11.7) gives

∫
X×S fχνΘν ≥ −ενK . Since

the sum converges to zero by what we just saw, we get (ii) and (iii). Finally, (iv) is a
consequence of (i) and point (iv) of Lemma 11.6. �

By the uniform L2-bound on vνt , the corresponding sequence vν on X × S is bounded in
L2

loc. After passing to a subsequence, we may assume that vν converges weakly in L2
loc(X×S)

to a section v. Our goal is to show that v is in fact holomorphic on X × S.
As a direct consequence of estimate (i) in Lemma 11.7, we have ∂zv = 0 weakly. The

hard part is to prove that ∂v/∂t̄ = 0 holds weakly. We first observe that it is enough to
show

lim
ν

∫
X×S

idt ∧ dt̄ ∧ ∂v
ν

∂t̄
∧ αt e−φ

ν
= 0 (11.10)

for all compactly supported Lipschitz continuous families αt of bounded L-valued (n, 1)-
forms on X. Indeed, choosing αt supported in a local coordinate chart in which L is
trivialized and identifiying metrics on L with functions, we can write

vν =
n∑
j=1

fνj (z, t)dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn,

and it is then enough to choose αt of the form

αt(z) = eφt(z)g(z, t)dz1 ∧ · · · ∧ dzn ∧ dz̄j
with g ∈ C∞c .

Let K ⊂ S be a compact set such that αt = 0 for t /∈ K. Using again Hn,1(X,L) = 0, we
get for each t, ν a unique L-valued (n, 0)-form βνt , orthogonal to the kernel of ∂z and such
that

αt = P νt αt + ∂zβ
ν
t

By [Bern15, Lemma 4.2], t 7→ βνt is uniformly Lipschitz continuous as a map from S to L2,
with respect to any choice of a reference smooth metric on L. We will rely on the following
identity.

Lemma 11.8. For each t, ν, we have∫
X×K

idt ∧ dt̄ ∧ ∂v
ν

∂t̄
∧ αt e−φ

ν
= (−1)n

∫
X×K

ddcφν ∧ wν ∧ β̄νt e−φ
ν
.

Recall that we have set wν = u− dt ∧ vν .

Proof. By construction, vν satisfies ω ∧ ∂zvν = 0, and hence ∂z
(
∂vν

∂t̄

)
∧ ω = 0 as well. As

noted in Remark 11.3, it follows that
∫
X

∂vν

∂t̄ ∧ P
ν
t αt e

−φνt = 0, and hence∫
X

∂vν

∂t̄
∧ ᾱt e−φ

ν
t =

∫
X

∂vν

∂t̄
∧ ∂zβνt e−φ

ν
t . (11.11)
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Next, we claim that∫
X

∂vν

∂t̄
∧ ∂zβνt e−φ

ν
t = (−1)n

∫
X
∂
φνt
z

(
∂vν

∂t̄

)
∧ βνt e−φ

ν
t . (11.12)

Indeed, (11.3) gives

i(n−1)2

∫
X

∂vν

∂t̄
∧ ∂zβνt e−φ

ν
t = 〈∂v

ν

∂t̄
∧ ω, ∂zβνt 〉L2(φνt )

= 〈∂∗φν
(
∂vν

∂t̄
∧ ω
)
, βνt 〉L2(φνt ) = i〈∂φνz

(
∂vν

∂t̄

)
, βνt 〉L2(φνt ) = in

2+1

∫
X
∂φ

ν

z

(
∂vν

∂t̄

)
∧ βνt e−φ

ν
t ,

using the Kähler identity (11.2). The claim follows since in
2+1−(n−1)2

= (−1)n.
Now, a simple computation shows that

∂φ
ν

z

(
∂vν

∂t̄

)
= P νt u

ν
t (11.13)

with

uνt := ∂zφ̇
ν
t ∧ vν + φ̈νt u.

To see this, recall that ηνt := ∂φ
ν

z vν − φ̇νt u satisfies by construction ∂zη
ν
t = 0. Using the local

description ∂
φνt
z = ∂z − ∂zφνt ∧ ·, we apply ∂/∂t̄ to get

∂ηνt
∂t̄

= ∂
φνt
z

(
∂vν

∂t̄

)
− ∂zφ̇νt ∧ vν − φ̈νu.

The desired identity follows since the left-hand side is in the kernel of ∂z while

∂
φνt
z

(
∂vν

∂t̄

)
= ∂

∗
φνt

(
∂vν

∂t̄
∧ ω
)

is orthogonal to the kernel of ∂z. Finally, writing

ddcφν = φ̈νt idt ∧ dt̄+ i∂zφ̇
ν
t ∧ dt̄+ idt ∧ ∂zφ̇νt + ddczφ

ν

and using the fact that βνt has type (0, n) on X shows that

ddcφν ∧ wν ∧ βνt = idt ∧ dt̄ ∧ uνt ∧ βνt .
As a result, we get∫

X×K
ddcφν ∧ wν ∧ βνt e−φ

ν
=

∫
X×K

idt ∧ dt̄ ∧ uνt ∧ βνt e−φ
ν

=

∫
X×K

idt ∧ dt̄ ∧ P νt uνt ∧ βνt e−φ
ν

=

∫
X×K

idt ∧ dt̄ ∧ ∂φνz
(
∂vν

∂t̄

)
∧ βνt e−φ

ν
,

where the second equality uses that βνt is orthogonal to the kernel of ∂z and the third one
comes from (11.13). Lemma 11.8 now follows in view of (11.11) and (11.12). �

Thanks to the previous lemma, the desired estimate (11.10) boils down to the following.

Lemma 11.9. For each non-negative f ∈ C∞c (S), we have limν

∫
X×S fdd

cφν∧wν∧βνt e−φ
ν

=
0.

The proof will rely on the following consequence of the Bochner-Kodaira-Nakano identity.
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Lemma 11.10. Let (M,ω) be a Kähler manifold of complex dimension m, φ be a smooth
metric on a holomorphic line bundle L over M , and η be a compactly supported L-valued
form of bidegree (m− 1, 0). Then

i(m−1)2

∫
M
ddcφ ∧ η ∧ η e−φ ≤ ‖∂φη‖2φ.

This inequality is referred to as the ’Hörmander inequality’ in [Bern15, §4].

Proof. The Bochner-Kodaira-Nakano identity (cf. for instance [Dem96, §13.2]) gives

‖∂η‖2φ = ‖∂φη‖2φ + 〈[ddcφ,Λ]η, η〉L2(φ)

with Λ the pointwise adjoint of L = ω ∧ ·. For bidegree reasons (compare (11.3)), we have

〈[ddcφ,Λ]η, η〉L2(φ) = −〈ddcφ ∧ η, ω ∧ η〉L2(φ)

= −i(m−1)2

∫
M
ddcφ ∧ η ∧ η e−φ.

�

Proof of Lemma 11.9. Because of the large negative part of the curvature ddcφν near supp ∆,
we cut the integral into two pieces using χν . Note we may and do assume that f and χν
have been chosen so that f1/2, χ

1/2
ν and (1− χν)1/2 are smooth.

First, the curvature bound χνdd
cφν + ενω ≥ 0 and the Cauchy-Schwarz inequality yield∣∣∣∣∫

X×S
f (χνdd

cφν + ενω) ∧ wν ∧ βνt e−φ
ν

∣∣∣∣
≤
(
in

2

∫
X×S

f (χνdd
cφν + ενω) ∧ wν ∧ w̄ν e−φ

ν

)1/2

×(
in

2

∫
X×S

f (χνdd
cφν + ενω) ∧ βνt ∧ βνt e−φ

ν

)1/2

.

The first right-hand factor∫
X×S

f (χνdd
cφν + ενω) ∧ wν ∧ w̄ν e−φ

ν
=

∫
X×S

fχνΘν + εν

∫
X×S

fχνω ∧ wν ∧ w̄ν e−φ
ν

tends to 0 thanks to Lemma 11.7 and the L2-bound on vνt . To show that the second factor is
bounded, we apply the Bochner-Kodaira-Nakano identity of Lemma 11.10 on X × S, which
yields

in
2

∫
X×S

fχνdd
cφν ∧ βνt ∧ βνt ≤

∫
X×S

|∂φν
(

(fχν)1/2βνt

)
|2φν .

But since βνt has bidegree (n, 0) on X, ∂φ
ν

only acts by the t-variable on (fχν)1/2βνt , and
the right-hand side is thus bounded by Lipschitz continuity of t 7→ βνt ∈ L2 and t 7→ φν ,
since f1/2 is smooth. We have thus proved that∫

X×S
fχν dd

cφν ∧ wν ∧ βνt e−φ
ν → 0.

Using now the global curvature bound ddcφν + Cω ≥ 0, we now write∣∣∣∣∫
X×S

f (1− χν)(ddcφν + Cω) ∧ wν ∧ βνt e−φ
ν

∣∣∣∣
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≤
(∫

X×S
f (1− χν)(ddcφν + Cω) ∧ wν ∧ w̄ν e−φ

ν

)1/2

×(∫
X×S

f (1− χν)(ddcφν + Cω) ∧ βνt ∧ βνt e−φ
ν

)1/2

.

The first factor∫
X×S

f (1− χν)(ddcφν + Cω) ∧ wν ∧ w̄ν e−φ
ν ≤

∫
X×K

(1− χν)Θν + C ′
∫
X×K

(1− χν)|vνt |2φν

tends to zero by Lemma 11.7, and the second factor is bounded for the same reason as above,
using that (f(1− χν))1/2 is smooth. It follows that∫

X×S
f (1− χν)(ddcφν + Cω) ∧ wν ∧ βνt e−φ

ν → 0.

Since ∫
X×S

f (1− χν)ω ∧ wν ∧ w̄ν e−φ
ν ≤ C

∫
X×S

f (1− χν)|vνt |2φν

tends to 0, we conclude as desired that∫
X×S

fddcφν ∧ wν ∧ βνt e−φ
ν

=∫
X×S

fχνdd
cφν ∧ wν ∧ βνt e−φ

ν
+

∫
X×S

f (1− χν)ddcφν ∧ wν ∧ βνt e−φ
ν

tends to 0. �

Step 5: End of the proof. Recall that v is obtained as the weak L2
loc limit on X × S of

vν .

Lemma 11.11. The distributional equation ∂z∂zφ ∧ v = ∂zφ̇t ∧ u is satisfied on X × S.

Proof. Set hν := P νt (φ̇νt u) − φ̇νt u, which satisfies ∂zh
ν = 0. These functions are uniformly

bounded in L2
loc(X×S), since

∫
X |h

ν
t |2φνt is uniformly bounded thanks to the uniform Lipschitz

bound for t 7→ φνt . We may thus assume that hν → h weakly in L2
loc.

Since ∂zh = 0, the desired result will follow from the identity

∂zv − ∂zφ ∧ v = φ̇tu+ h, (11.14)

understood locally on X × S. Recall that all (pluri)subharmonic functions belong to the

Sobolev space W 1,1
loc , basically because the Newton kernel has the same property. In partic-

ular, (11.14) is an equality in L1
loc(X × S), and it will thus be enough to argue on the open

set U := (X \ supp ∆)× S where the psh function φ is locally bounded.

Rewrite ∂φ
ν

z vν = P νt (φ̇νt u) as

∂z(e
−φνvν) = (φ̇νt u+ hν)e−φ

ν
= u

∂

∂t
(e−φ

ν
) + hν e−φ

ν
.

On U , we have e−φ
ν → e−φ strongly in L2

loc, and vν → v and hν → h weakly in L2
loc. This

is enough to get

∂z(e
−φv) = u

∂

∂t
(e−φ) + h e−φ (11.15)
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on U . Since the psh function φ is locally bounded on U , it satisfies the chain rule

d(e−φ) = e−φdφ,

see for instance [BEGZ10, Lemma 1.9], and (11.14) thus follows from (11.15). �

By Lemma 11.6, vνt is uniquely determined by an equation whose only dependence on t
is through φνt . As a result, vνt is independent of Im t, and hence so is vt. Being holomorphic
in t, the latter is thus independent of t.

On the open set {u 6= 0}, define a holomorphic vector field V by requiring that iV u = −v.
Since θt := ddczφt satisfies θt ∧ u = 0 for bidegree reasons, we have

(iV θt) ∧ u = θt ∧ (iV u) = −θt ∧ v,

and Lemma 11.11 thus gives

(iV θt + i∂zφ̇t) ∧ u = 0.

For bidegree reasons and since we are working over the locus where u does not vanish,
it follows that iV θt + i∂zφ̇t = 0. Using the Cartan identity LV = diV + iV d for the Lie
derivative, we obtain the desired equation(

LV +
∂

∂t

)
θt = 0,

thereby concluding the proof of Theorem 11.1.
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Birkhäuser Verlag, Basel (2000).
[Tian10] G. Tian: Existence of Einstein metrics on Fano manifolds. Metric and Differential Geometry,

a volume in honor of Jeff Cheeger for his 65th birthday (2010).
[Tian15] G. Tian: K-stability and Kähler-Einstein metrics. Comm. Pure Appl. Math. 68 (2015), no. 7,

1085-1156.
[TZ07] G. Tian, X. Zhu: Convergence of Kähler-Ricci flow. J. Amer. Math. Soc. 20 (2007), no. 3,

675–699.
[TY87] G. Tian, S.T. Yau: Kähler-Einstein metrics on complex surfaces with c1 > 0. Comm. Math.

Phys. 112 (1987), no.1, 175–203.
[Tsu88] H. Tsuji: Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties

of general type. Math. Ann. 281 (1988), no. 1, 123–133.
[Yau78] S. T. Yau: On the Ricci curvature of a compact Kähler manifold and the complex Monge-

Ampère equation. I. Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411.
[Zer01] A. Zeriahi: Volume and capacity of sublevel sets of a Lelong class of psh functions. Indiana

Univ. Math. J. 50 (2001), no. 1, 671–703.
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