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Preface

The main purpose of this book is to describe analytic techniques which are useful to
study questions such as linear series, multiplier ideals and vanishing theorems for al-
gebraic vector bundles. One century after the ground-breaking work of Riemann on
geometric aspects of function theory, the general progress achieved in differential ge-
ometry and global analysis on manifolds resulted into major advances in the theory of
algebraic and analytic varieties of arbitrary dimension. One central unifying concept
is positivity, which can be viewed either in algebraic terms (positivity of divisors and
algebraic cycles), or in more analytic terms (plurisubharmonicity, Hermitian connections
with positive curvature). In this direction, one of the most basic results is Kodaira’s
vanishing theorem for positive vector bundles (1953—1954), which is a deep consequence
of the Bochner technique and the theory of harmonic forms initiated by Hodge during
the 1940’s. This method quickly led Kodaira to the well-known embedding theorem for
projective varieties, a far reaching extension of Riemann’s characterization of abelian
varieties. Further refinements of the Bochner technique led ten years later to the theory
of L? estimates for the Cauchy-Riemann operator, in the hands of Kohn, Andreotti-
Vesentini and Hormander among others. Not only can vanishing theorems be proved or
reproved in that manner, but perhaps more importantly, extremely precise information
of a quantitative nature can be obtained about solutions of J-equations, their zeroes,
poles and growth at infinity.

We try to present here a condensed exposition of these techniques, assuming that
the reader is already somewhat acquainted with the basic concepts pertaining to sheaf
theory, cohomology and complex differential geometry. In the final chapter, we address
very recent questions and open problems, e.g. results related to the finiteness of the
canonical ring and the abundance conjecture, as well as results describing the geometric
structure of Kahler varieties and their positive cones.

This book is an expansion of lectures given by the author at the Park City Mathe-
matics Institute in 2008 and was published partly in Analytic and Algebraic Geometry,
edited by Jeff McNeal and Mircea Mustata, It is a volume in the Park City Mathemat-
ics Series, a co-publication of the Park City Mathematics Institute and the American
Mathematical Society.
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Introduction

This introduction will serve as a general guide for reading the various parts of this text.
The first three chapters briefly introduce basic materials concerning complex differential
geometry, Dolbeault cohomology, plurisubharmonic functions, positive currents and holo-
morphic vector bundles. They are mainly intended to fix notation. Although the most
important concepts are redefined, readers will probably need to already possess some
related background in complex analysis and complex differential geometry — whereas
the expert readers should be able to quickly proceed further.

The heart of the subject starts with the Bochner technique in Chapter 4, leading
to fundamental L? existence theorems for solutions of J-equations in Chapter 5. What
makes the theory extremely flexible is the possibility to formulate existence theorems with
a wide assortment of different L? norms, namely norms of the form [ < If |2¢72% where
¢ is a plurisubharmonic or strictly plurisubharmonic function on the given manifold or
variety X. Here, the weight ¢ need not be smooth, and on the contrary, it is extremely
important to allow weights which have logarithmic poles of the form ¢(z) = clog y" |g;|?,
where ¢ > 0 and (g,) is a collection of holomorphic functions possessing a common zero
set Z C X. Following Nadel [Nad89], one defines the multiplier ideal sheaf ¥(p) to be
the sheaf of germs of holomorphic functions f such that |f|?e~2¢ is locally summable.
Then .¥(p) is a coherent algebraic sheaf over X and H4(X, Kx ® L ® .¥(¢)) = 0 for all
q > 1 if the curvature of L is positive as a current. This important result can be seen as
a generalization of the Kawamata-Viehweg vanishing theorem [Kaw82, Vie82], which is
one of the cornerstones of higher dimensional algebraic geometry, especially in relation
with Mori’s minimal model program.

In the dictionary between analytic geometry and algebraic geometry, the ideal .¥(¢)
plays a very important role, since it directly converts an analytic object into an algebraic
one, and, simultaneously, takes care of the singularities in a very efficient way. Another
analytic tool used to deal with singularities is the theory of positive currents introduced
by Lelong [Lel57]. Currents can be seen as generalizations of algebraic cycles, and many
classical results of intersection theory still apply to currents. The concept of Lelong
number of a current is the analytic analogue of the concept of multiplicity of a germ
of algebraic variety. Intersections of cycles correspond to wedge products of currents
(whenever these products are defined).

Besides the Kodaira-Nakano vanishing theorem, one of the most basic “effective re-
sult” expected to hold in algebraic geometry is expressed in the following conjecture of
Fujita [Fuj87]: if L is an ample (i.e. positive) line bundle on a projective n-dimensional
algebraic variety X, then Kx + (n + 1)L is generated by sections and Kx + (n + 2)L is
very ample. In the last two decades, a lot of efforts have been brought for the solution
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of this conjecture — but reaching the expected optimal bounds will probably require
new ideas. The first major results are the proof of the Fujita conjecture in the case
of surfaces by Reider [Rei88] (the case of curves is easy and has been known since a
very long time), and the numerical criterion for the very ampleness of 2K x + L given in
[Dem93b], obtained by means of analytic techniques and Monge-Ampere equations with
isolated singularities. Alternative algebraic techniques were developed slightly later by
Kolldr [Kol92], Ein-Lazarsfeld [EL93], Fujita [Fuj93], Siu [Siu95, 96|, Kawamata [Kaw97|
and Helmke [Hel97]. We will explain here Siu’s method because it is technically the
simplest method; one of the results obtained by this method is the following effective
result: 2K x + mL is very ample for m > 2 + (?’"Tjrl). The basic idea is to apply the
Kawamata-Viehweg vanishing theorem, and to combine this with the Riemann-Roch for-
mula in order to produce sections through a clever induction procedure on the dimension
of the base loci of the linear systems involved.

Although Siu’s result is certainly not optimal, it is sufficient to obtain a nice con-
structive proof of Matsusaka’s big theorem [Siu93, Dem96]. The result states that there
is an effective value mg depending only on the intersection numbers L™ and L" ! - K,
such that mL is very ample for m > mg. The basic idea is to combine results on the
very ampleness of 2K x +mL together with the theory of holomorphic Morse inequalities
[Dem85b]. The Morse inequalities are used to construct sections of m’L — Kx for m/
large. Again this step can be made algebraic (following suggestions by F. Catanese and
R. Lazarsfeld), but the analytic formulation apparently has a wider range of applicability.

In the subsequent chapters, we pursue the study of L? estimates, in relation with
the Nullstellenstatz and with the extension problem. Skoda [Sko72b, 78] showed that
the division problem f = Y g;h; can be solved holomorphically with very precise L?
estimates, provided that the L? norm of |f||g|™ is finite for some sufficiently large
exponent p (p > n = dim X is enough). Skoda’s estimates have a nice interpretation in
terms of local algebra, and they lead to precise qualitative and quantitative estimates in
connection with the Bézout problem. Another very important result is the L? extension
theorem by Ohsawa-Takegoshi [OT87, Ohs88|, which has also been generalized later by
Manivel [Man93]. The main statement is that every L? section f of a suitably positive
line bundle defined on a subavariety Y C X can be extended to a L? section f defined
over the whole of X. The positivity condition can be understood in terms of the canonical
sheaf and normal bundle to the subvariety. The extension theorem turns out to have an
incredible amount of important consequences: among them, let us mention for instance
Siu’s theorem [Siu74] on the analyticity of Lelong numbers, the basic approximation
theorem of closed positive (1, 1)-currents by divisors, the subadditivity property .¥(¢ +
1Y) C F(p)-F(2p) of multiplier ideals [DELOO], the restriction formula .¥(¢)y) C F(¢)y,
... A suitable combination of these results yields another important result of Fujita
[Fuj94] on approximate Zariski decomposition, as we show in Chapter 14.

In Chapter 15, we show how subadditivity can be used to derive an “equisingular”
approximation theorem for (almost) plurisubharmonic functions: any such function can
be approximated by a sequence of (almost) plurisubharmonic functions which are smooth
outside an analytic set, and which define the same multiplier ideal sheaves. From this, we
derive a generalized version of the hard Lefschetz theorem for cohomology with values in a
pseudo-effective line bundle; namely, the Lefschetz map is surjective when the cohomology
groups are twisted by the relevant multiplier ideal sheaves.

Chapter 16 explains the proof of Siu’s theorem on the invariance of plurigenera, accor-
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ding to a beautiful approach developped by Mihai Paun [Pau07]. The proofs consists of
an iterative process based on the Ohsawa-Takegoshi theorem, and a very clever limiting
argument for currents.

Chapters 17 and 18 are devoted to the study of positive cones in Kéahler or projective
geometry. Recent “algebro-analytic” characterizations of the Kéahler cone [DP04] and
the pseudo-effective cone of divisors [BDPP04] are explained in detail. This leads to a
discussion of the important concepts of volume and mobile intersections, following S.
Boucksom’s PhD work [Bou02]. As a consequence, we show that a projective algebraic
manifold has a pseudo-effective canonical line bundle if and only if it is not uniruled.

Chapter 19 presents further important ideas of H. Tsuji, later refined by Berndtsson
and Paun, concerning the so-called “super-canonical metrics”, and their interpretation in
terms of the invariance of plurigenera and of the abundance conjecture. In the concluding
Chapter 20, we state Paun’s version of the Shokurov-Hacon-McKernan-Siu non vanishing
theorem and give an account of the very recent approach of the proof of the finiteness of
the canonical ring by Birkar-Paun [BiP09], based on the ideas of Hacon-McKernan and
Siu.






Chapter 1

Preliminary Material: Cohomology, Currents

1.A. Dolbeault Cohomology and Sheaf Cohomology

Let X be a C-analytic manifold of dimension n. We denote by AP*?T% the bundle of
differential forms of bidegree (p, q) on X, i.e., differential forms which can be written as

u = Z U[“]dZ[/\dE‘].

[I1=p, |J|=q
Here (21, ..., z,) denote arbitrary local holomorphic coordinates on X, I = (i1, ... ,1p),
J = (j1, - .., Jjq) are multi-indices (increasing sequences of integers in the range [1, ... , n],
of lengths |I| = p, |J| = q), and
dZ] IIdZil/\"'/\dZZ'p, dEJ ::dijl/\-~-/\d2jq.

o0

Let €77 be the sheaf of germs of complex valued differential (p, ¢)-forms with ‘€>° coef-
ficients. Recall that the exterior derivative d splits as d = d’ + d” where

ou
d'u = > aI’szk Adzr AdZy,
I|=p, | J|=g1<k<n O F
dur g
d"u = Sz Adzp A dz
Z Zr k T J

[I|=p, |J|=¢,1<k<n

are of type (p+ 1,q), (p,q + 1) respectively. The well-known Dolbeault-Grothendieck
lemma asserts that any d”-closed form of type (p, ¢) with g > 0 is locally d”-exact (this is
the analogue for d” of the usual Poincaré lemma for d, see e.g. [Hor66]). In other words,
the complex of sheaves (‘€P:* d") is exact in degree ¢ > 0; in degree ¢ = 0, Kerd" is the
sheaf Q% of germs of holomorphic forms of degree p on X.

More generally, if F'is a holomorphic vector bundle of rank r over X, there is a natural
d"” operator acting on the space ‘€ (X, AP 9T} ® F') of smooth (p, g)-forms with values
in F; if s = E1g>\<r sxex is a (p, g)-form expressed in terms of a local holomorphic frame
of F, we simply define d’s := " d"s\ ® ey, observing that the holomorphic transition
matrices involved in changes of holomorphic frames do not affect the computation of d”.
It is then clear that the Dolbeault-Grothendieck lemma still holds for F'-valued forms. For
every integer p = 0,1, ... ,n, the Dolbeault Cohomology groups HP'9(X, F') are defined
to be the cohomology groups of the complex of global (p, q) forms (graded by q):

(1.1) HP9(X,F) = H(€>®(X,A"*Tx ® F)).
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Now, let us recall the following fundamental result from sheaf theory (De Rham-Weil
isomorphism theorem): let (£°,d) be a resolution of a sheaf 9l by acyclic sheaves, i.e. a
complex of sheaves (£°®,4) such that there is an exact sequence of sheaves

0ol Jog0 Dot g S gent
and H*(X,Z?) =0 for all ¢ > 0 and s > 1. Then there is a functorial isomorphism
(1.2) HY(D(X,%%) — HI(X, ).

We apply this to the following situation: let ‘€(F")P? be the sheaf of germs of ‘€ sections
of AP1T%®F. Then (‘€(F)P-*,d") is a resolution of the locally free @ x-module Q% @O(F)
(Dolbeault-Grothendieck lemma), and the sheaves ‘€(F)P'? are acyclic as modules over
the soft sheaf of rings “€>°. Hence by (1.2) we get

(1.3) Dolbeault Isomorphism Theorem (1953). For every holomorphic vector bundle
F on X, there is a canonical isomorphism:

HP9(X, F) ~ HI(X, 0% @ O(F)).

If X is projective algebraic and F' is an algebraic vector bundle, Serre’s GAGA theo-
rem [Ser56] shows that the algebraic sheaf cohomology group HY9(X, Q5 ® O(F)) com-
puted with algebraic sections over Zariski open sets is actually isomorphic to the analytic
cohomology group. These results are the most basic tools to attack algebraic problems via
analytic methods. Another important tool is the theory of plurisubharmonic functions
and positive currents originated by K. Oka and P. Lelong in the decades 1940-1960.

1.B. Plurisubharmonic Functions

Plurisubharmonic functions have been introduced independently by Lelong and Oka in
the study of holomorphic convexity. We refer to [Lel67, 69] for more details.

(1.4) Definition. A function u :  — [—o0, +00[ defined on an open subset Q C C™ is
said to be plurisubharmonic (psh for short) if

(a) w is upper semicontinuous ;

(b) for every complex line L C C", ujonr, s subharmonic on QN L, that is, for all a € Q
and & € C™ with €] < d(a,CQ), the function u satisfies the mean value inequality:

1
< —
u(a) = o

2
/ u(a + € &) do.
0
The set of psh functions on 2 is denoted by Psh(().

We list below the most basic properties of psh functions. They all follow easily from
the definition.
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(1.5) Basic Properties.

(a) Every function u € Psh(Q) is subharmonic, namely it satisfies the mean value in-
equality on Euclidean balls or spheres:

1
u(a) < W /B(aﬂ u(z) dA(z)
for every a € Q and r < d(a,(€). Either u = —o0o or u € L\ on every connected

component of €.

(b) For any decreasing sequence of psh functions u; € Psh(Q2), the limit v = limuy, is
psh on €.

(¢) Let u € Psh(Q) be such that u Z —oo on every connected component of Q. If (p.)
is a family of smoothing kernels, then u * p. is “€*° and psh on

Q. = {z € Q; d(z,LQ) > e},

the family (u * p.) is increasing in € and lim._,g u * p. = u.

(d) Let uq,...,u, € Psh(2) and x : RP — R be a convex function such that
x(t1, ... ,tp) is increasing in each ¢;. Then x(ui, ... ,up,) is psh on . In par-
ticular w; + - -+ + up, max{uy, ... ,up}, log(e"* + - -+ e"r) are psh on Q. O

(1.6) Lemma. A function u € C*(Q,R) is psh on Q if and only if the Hermitian form:

Hu(a)(§) = Y 0%u/020z(a) ¢,

1<j k<n
s semi-positive at every point a € €.

Proof. This is an easy consequence of the following standard formula:

27 1
% u(a+ € &) dh — u(a) = g/ d Hu(a + (&) (&) dA(C),
0 0

™ tJjel<t

where d\ is the Lebesgue measure on C. Lemma 1.6 is a strong evidence that plurisub-
harmonicity is the natural complex analogue of linear convexity. O

For non smooth functions, a similar characterization of plurisubharmonicity can be
obtained by means of a regularization process.

(1.7) Theorem. If u € Psh(Q2), u # —oo on every connected component of ), then for
all £ € C™

0%u — .
Hu(§) = Z 9207, i€k € 9'(Q)
1<, k<n

is a positive measure. Conversely, if v € D' (Q) is such that Hv(§) is a positive measure
for every & € C™, there exists a unique function u € Psh(Q) which is locally integrable
on ) and such that v is the distribution associated to w.
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In order to get a better geometric insight of this notion, we assume more generally that
u is a function on a complex n-dimensional manifold X. If & : X — Y is a holomorphic
mapping and if v € C?(Y,R), we have d'd” (v o ®) = ®*d’d"v, hence

H(vo ®)(a, ) = Ho(®(a), ®'(a)¢).

In particular Hu, viewed as a Hermitian form on T, does not depend on the choice
of coordinates (z1, ..., 2,). Therefore, the notion of psh function makes sense on any
complex manifold. More generally, we have

(1.8) Proposition. If & : X — Y is a holomorphic map and v € Psh(Y), then
vo® e Psh(X).

(1.9) Example. It is a standard fact that log|z| is psh (i.e. subharmonic) on C. Thus
log | f| € Psh(X) for every holomorphic function f € H°(X,@x). More generally

log (| f1]®* 4+ -+ fq|*?) € Psh(X)

for every f; € HY(X,@x) and o; > 0 (apply Property 1.5 (d) with u;=a; log|f;|). We
will be especially interested in the singularities obtained at points of the zero variety
fi=---= fq =0, when the o; are rational numbers. U

(1.10) Definition. A psh function u € Psh(X) will be said to have analytic singularities
if u can be written locally as

«
u=Flog ([fil*+-+[/n) +v,

where o € Ry, v is a locally bounded function and the f; are holomorphic functions. If
X s algebraic, we say that u has algebraic singularities if u can be written as above on
sufficiently small Zariski open sets, with o € Q4 and f; algebraic.

We then introduce the ideal ¥ = ¥(u/a) of germs of holomorphic functions h such
that |h| < Ce*/® for some constant C, i.e.

Bl < C(IAl+- -+ fn]).

This is a globally defined ideal sheaf on X, locally equal to the integral closure .¥ of
the ideal sheaf .¥ = (f1, ..., fn), thus ¥ is coherent on X. If (g1, ...,gn/) are local
generators of ¥, we still have

a
u=3g log (|g1|2 4+ |gN/|2) +O(1).

If X is projective algebraic and u has analytic singularities with a € Q4, then u auto-
matically has algebraic singularities. From an algebraic point of view, the singularities
of u are in 1:1 correspondence with the “algebraic data” (¥, «). Later on, we will see
another important method for associating an ideal sheaf to a psh function.
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(1.11) Exercise. Show that the above definition of the integral closure of an ideal .¥ is
equivalent to the following more algebraic definition: .¥ consists of all germs h satisfying
an integral equation:

e+ aih® ' 4+ +ag_1h+ag=0, ap € I

Hint. One inclusion is clear. To prove the other inclusion, consider the normalization of
the blow-up of X along the (non necessarily reduced) zero variety V (.¥). O

1.C. Positive Currents

The reader can consult [Fed69] for a more thorough treatment of current theory. Let
us first recall a few basic definitions. A current of degree g on an oriented differentiable
manifold M is simply a differential ¢g-form © with distribution coefficients. The space
of currents of degree ¢ over M will be denoted by %’%(M). Alternatively, a current of
degree q can be seen as an element © in the dual space %7, (M) := (QLP(M))/ of the space
DP(M) of smooth differential forms of degree p = dim M — g with compact support; the
duality pairing is given by

(1.12) (©,a) = /M@ Na, o€ DP(M).

A basic example is the current of integration [S] over a compact oriented submanifold S
of M :

(1.13) <[S],a>z/ga, dega = p = dimp S.

Then [S] is a current with measure coefficients, and Stokes’ formula shows that d[S] =
(—1)771[dS], in particular d[S] = 0 if S has no boundary. Because of this example, the
integer p is said to be the dimension of © when © € U}, (M). The current © is said to
be closed if dO© = 0.

On a complex manifold X, we have similar notions of bidegree and bidimension; as
in the real case, we denote by

GDPYUX) =D (X), n = dim X,

n—p,n—q

the space of currents of bidegree (p,¢) and bidimension (n — p,n — ¢q) on X. According
to [Lel57], a current © of bidimension (p,p) is said to be (weakly) positive if for every
choice of smooth (1,0)-forms a;, ..., a, on X the distribution

1.14 O ANiag Aay A--- Nay, AN @ is a positive measure.
p p

(1.15) Exercise. If © is positive, show that the coefficients O ; of © are complex
measures, and that, up to constants, they are dominated by the trace measure:

1 . .
U@:@/\ﬁﬁPIQ_pZ@[,], 5:%d/d//‘2‘2: % Z dzj N dzj,

1<j<n
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which is a positive measure.
Hint. Observe that ) O ; is invariant by unitary changes of coordinates and that the
(p, p)-forms iay A@y A -+ Aoy, ATy, generate APPT, as a C-vector space. O

A current © = iZ1<j p<n ©jkdzj A dzy of bidegree (1,1) is easily seen to be positive

if and only if the complex measure Aij@jk is a positive measure for every n-tuple
(A1, ..., Ap) €C™

(1.16) Example. If u is a (not identically —oo) psh function on X, we can associate
with u a (closed) positive current © = i9du of bidegree (1,1). Conversely, each closed
positive current of bidegree (1,1) can be written under this form on any open subset
Q C X such that H5(Q,R) = H(Q, @) = 0, e.g. on small coordinate balls (exercise to
the reader). O

It is not difficult to show that a product ©; A--- A ©, of positive currents of bidegree
(1,1) is positive whenever the product is well defined (this is certainly the case if all ©;
but one at most are smooth; much finer conditions will be discussed in Chapter 2).

We now discuss another very important example of closed positive current. In fact,
with every closed analytic set A C X of pure dimension p is associated a current of
integration [A] such that:

(1.17) ([A],a}z/A 0, aeIPP(X),

reg

obtained by integrating over the regular points of A. In order to show that (1.17) is a
correct definition of a current on X, one must show that A,., has locally finite area in a
neighborhood of Aging. This result, due to [Lel57] is shown as follows. Suppose that 0 is
a singular point of A. By the local parametrization theorem for analytic sets, there is a
linear change of coordinates on C™ such that all projections

(21, e 20) = (Zigy -5 Ziy)

define a finite ramified covering of the intersection A N A with a small polydisk A in C”
onto a small polydisk A; in CP. Let n; be the sheet number. Then the p-dimensional
area of AN A is bounded above by the sum of the areas of its projections counted with
multiplicities, i.e.

Area(ANA) < Z nrVol(Ay).

The fact that [A] is positive is also easy. In fact
g AQy A Ay AT, = | det(ag)|? iwg AL A -+ Adw, AT,

if aj = )" ajrdwy, in terms of local coordinates (w1, ... ,wp) on Ayee. This shows that
all such forms are > 0 in the canonical orientation defined by iw; AWy A - -+ Aiwp, A Wp.
More importantly, Lelong [Lel57] has shown that [A] is d-closed in X, even at points of
Aging. This last result can be seen today as a consequence of the Skoda-El Mir extension
theorem. For this we need the following definition: a complete pluripolar set is a set
E such that there is an open covering (€2;) of X and psh functions u; on §; with
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ENnQ; = uj_l(—oo). Any (closed) analytic set is of course complete pluripolar (take u;
as in Example 1.9).

(1.18) Theorem (Skoda [Sko82], E1 Mir [EM84], Sibony [Sib85]). Let E be a closed
complete pluripolar set in X, and let © be a closed positive current on X ~ E such that
the coefficients ©r j of © are measures with locally finite mass near E. Then the trivial

extension © obtained by extending the measures Op ; by 0 on E is still closed on X.

Lelong’s result d[A] = 0 is obtained by applying the Skoda-El Mir theorem to © =
[Areg] on X N Aging.

Proof of Theorem 1.18. The statement is local on X, so we may work on a small open
set Q such that ENQ = v~} (—oc0), v € Psh(Q2). Let x : R — R be a convex increasing
function such that x(t) = 0 for t < —1 and x(0) = 1. By shrinking Q and putting
v, = x(k~tv*pe, ) with e — 0 fast, we get a sequence of functions v, € Psh(Q)N€>(Q)
such that 0 < v < 1, vy = 0 in a neighborhood of E N Q and limwvg(z) = 1 at every
point of @\ E. Let 6 € €°°([0,1]) be a function such that # = 0 on [0,1/3], 0 = 1 on
[2/3,1] and 0 < 0 < 1. Then ovy, =0 near ENQ and § o vy — 1 on Q \ E. Therefore

O = limy_, 4 o0 (0 0 v;)O and

dO©= lim OAd(0ouvy)

k—+oco

in the weak topology of currents. It is therefore sufficient to verify that © A d'(0 o vy)
converges weakly to 0 (note that d”© is conjugate to d’'©, thus d’© will also vanish).

Assume first that © € =57~ X). Then O Ad' (fovyg) € D™ 1(Q), and we have
to show that

(©Ad(Bov),@) = (0,0 (v)dve AT) — 0, YaeDQ)

k—+oo
As v +— (0,iy A7) is a non-negative Hermitian form on %'°(Q), the Cauchy-Schwarz
inequality yields
(0,18 AD[* < (0.18AB) (©,1y A7), VB,y € ZH(Q).
Let ¢ € %(2), 0 <9 < 1, be equal to 1 in a neighborhood of Supp a. We find
(6,0 (vy)d vy, A@)|” < (O, vidvg A d"vy) (0,0 (vy)%ic A ).

By hypothesis fQ\E O Nia Aa < oo and ' (vy) converges everywhere to 0 on 2, thus

(0,0 (vy)?%ia A@) converges to 0 by Lebesgue’s dominated convergence theorem. On the
other hand,
id'd"vi = 2upid'd" vy, + 2id' v, A d" v > 2idvy A d oy,

2(0, Yid'v, A d"v) < (O, pid d"v?).
As ¢ € D(Q), vp =0 near E and dO© = 0 on Q \ FE, an integration by parts yields

(©,uidd"f) = (O, ofidd"s) <C [ |6 < +ox,

Q\FE
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where C' is a bound for the coefficients of id’d”’+. Thus (O, ¢id vy A d"vg) is bounded,
and the proof is complete when © € /n-1.n=1,

In the general case © € I'PP, p < n, we simply apply the result already proved to
all positive currents © Ay € D171 where v = iy3 AFy A+ Adyp_p_1 A Vn—p—1
runs over a basis of forms of A”_p_l’”_p_lei with constant coefficients. Then we get

d(© Av) =dO A~ =0 for all such ~, hence d© = 0. O

(1.19) Corollary. Let © be a closed positive current on X and let E be a complete
pluripolar set. Then 1g® and 1x. O are closed positive currents. In fact, © = lx _g©
is the trivial extension of Ox g to X, and 1p© =06 — 6.

As mentioned above, any current © = id’'d”u associated with a psh function u is a
closed positive (1, 1)-current. In the special case u = log |f| where f € H*(X,0Ox) is a
non zero holomorphic function, we have the important

(1.20) Lelong-Poincaré Equation. Let f € H°(X,@x) be a non zero holomorphic
function, Zy = > " m;Z;, mj € N, the zero divisor of f and [Zf] =Y m;[Z;] the associ-
ated current of integration. Then

i
;331% [f = 124].

Proof (sketch). Tt is clear that id’d” log|f| = 0 in a neighborhood of every point = ¢
Supp(Zy) = |JZj, so it is enough to check the equation in a neighborhood of every
point of Supp(Z¢). Let A be the set of singular points of Supp(Zy), i.e. the union of the
pairwise intersections Z; N Z and of the singular loci Z gine; we thus have dim A < n—2.
In a neighborhood of any point € Supp(Zy) ~\ A there are local coordinates (z1, ..., 2y)
such that f(z) = 277 where m; is the multiplicity of f along the component Z; which
contains x and z; = 0 is an equation for Z; near . Hence

Ld'd" log |f| = mj—d'd" log|z1| = m;[Z;]
T T

in a neighborhood of z, as desired (the identity comes from the standard formula
1d'd"log|z| = Dirac measure dy in C). This shows that the equation holds on X \ A.
Hence the difference 1d'd"log|f| — [Zy] is a closed current of degree 2 with measure
coefficients, whose support is contained in A. By Exercise 1.21, this current must be 0,
for A has too small dimension to carry its support (A is stratified by submanifolds of
real codimension > 4). O

(1.21) Exercise. Let © be a current of degree ¢ on a real manifold M, such that both ©
and dO have measure coefficients (“normal current”). Suppose that Supp © is contained
in a real submanifold A with codimg A > ¢. Show that © = 0.

Hint: Let m = dimg M and let (z1, --- ,2,,) be a coordinate system in a neighborhood
Q of a point a € A such that ANQ = {z; = ... = 2, = 0}, £ > ¢. Observe that
2;0 = 2;d® = 0 for 1 < j < k, thanks to the hypothesis on supports and on the
normality of ©, hence dx; A O = d(z;0) — z,;dO© =0, 1 < j < k. Infer from this that all
coefficients in © = Z|I|:q ©dx vanish. ]
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We now recall a few basic facts of slicing theory (the reader will profitably consult
[Fed69] and [Siu74] for further developments). Let o : M — M’ be a submersion of
smooth differentiable manifolds and let © be a locally flat current on M, that is, a
current which can be written locally as © = U + dV where U, V have L] . coefficients.
It is a standard fact (see Federer) that every current © such that both © and d© have
measure coefficients is locally flat; in particular, closed positive currents are locally flat.

Then, for almost every ' € M’, there is a well defined slice ©,+, which is the current on
the fiber o~ !(2’) defined by

O, = Urgfl(xf) + dvrgf1($/).

The restrictions of U, V to the fibers exist for almost all 2’ by the Fubini theorem.
The slices O,/ are currents on the fibers with the same degree as © (thus of dimension
dim © — dim (fibers)). Of course, every slice O, coincides with the usual restriction of ©
to the fiber if © has smooth coefficients. By using a regularization ©. = © x p., it is easy
to show that the slices of a closed positive current are again closed and positive: in fact
U. . and V., converge to U, and V,s in L (071(2’)), thus O, ,» converges weakly to
O, for almost every x’. Now, the basic slicing formula is

(1.22) / OANaNGT* B = / (/ O (z'") A ozrg—l(x/)(x"))ﬁ(x’)
M x'eM’ 13”60'71(12’)

for every smooth form o on M and 8 on M’, such that o« has compact support and
dega = dim M — dim M’ — deg ©, deg 8 = dim M’. This is an easy consequence of the
usual Fubini theorem applied to U and V' in the decomposition © = U +dV, if we identify
locally o with a projection map:

M=M xM"— M, x=(2',2") — 2,

and use a partition of unity on the support of a.

To conclude this section, we discuss De Rham and Dolbeault cohomology theory in the
context of currents. A basic observation is that the Poincaré and Dolbeault-Grothendieck
lemmas still hold for currents. Namely, if (%', d) and (9'(F)P9,d”) denote the complex
of sheaves of degree ¢ currents (resp. of (p, ¢)-currents with values in a holomorphic vector
bundle F'), we still have De Rham and Dolbeault sheaf resolutions:

0—>R— D", 0— Q% @ O(F) = D' (F)P°.
Hence we get canonical isomorphisms

Hip(M,R) = HI((D(M,%'*),d)),

(1.23) HPY(X,F) = H((T(X, 2" (F)P*),d")).

In other words, we can attach a cohomology class {©} € HJ. (M, R) to any closed current
© of degree ¢, resp. a cohomology class {©} € HP4(X, F) to any d”-closed current of
bidegree (p,q). Replacing if necessary every current by a smooth representative in the
same cohomology class, we see that there is a well defined cup product given by the
wedge product of differential forms:

H®(M,R) x --- x Hi™(M,R) — H®tHam (M R),
<{@1}7 cee 7{@1}) — {@1} ARERNAN {@m}
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In particular, if M is a compact oriented variety and ¢q; + - - - + ¢, = dim M, there is a
well defined intersection number:

{01} (@2} - - (O} =/M{@1}A-~-A{@m}.

However, as we will see in the next section, the pointwise product ©1 A --- A ©,,, need
not exist in general.



Chapter 2

Lelong numbers and Intersection Theory

Lelong numbers were historically defined around 1960 as density numbers of positive
currents, and were quickly realized to be natural generalizations of the concept of multi-
plicity in algebraic geometric. As emphasized e.g. in [Dem82a, 85a, 87], they then started
to be viewed rather as a special case of a general intersection theory for closed positive
currents. We will adopt here this viewpoint.

2.A. Multiplication of  Currents and Monge-Ampere
Operators

Let X be a n-dimensional complex manifold. We set

1
dc - —(d/ - d//>.
2im
It follows in particular that d° is a real operator, i.e. d°u = d°u, and that dd® =
~d'd”. Although not quite standard, the 1/2im normalization is very convenient for
many purposes, since we may then forget the factor = or 27 almost everywhere (e.g. in

the Lelong-Poincaré Equation (1.20)).

Let u be a psh function and let © be a closed positive current on X. Our desire is to
define the wedge product dd“u A © even when neither u nor © are smooth. In general,
this product does not make sense because dd“u and © have measure coefficients and
measures cannot be multiplied; see Kiselman [Kis84] for interesting counterexamples.
Even in the algebraic setting considered here, multiplication of currents is not always
possible: suppose e.g. that © = [D] is the exceptional divisor of a blow-up in a surface;
then D-D = —1 cannot be the cohomology class of a closed positive current [D]?. Assume
however that u is a locally bounded psh function. Then the current u© is well defined
since u is a locally bounded Borel function and © has measure coefficients. According to
Bedford-Taylor [BT82] we define

dd°u A © = dd°(u®)
where dd°( ) is taken in the sense of distribution theory.

(2.1) Proposition. If u is a locally bounded psh function, the wedge product dd“u N\ ©
1 again a closed positive current.
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Proof. The result is local. Use a convolution u, = u * p;,, to get a decreasing sequence
of smooth psh functions converging to u. Then write

dd°(u®) = lim dd°(u,©)= lim dd°u, N O

V—+00 V—+00

as a weak limit of closed positive currents. Observe that u,© converges weakly to u©
by Lebesgue’s monotone convergence theorem. O

More generally, if uy, ... ,u,, are locally bounded psh functions, we can define
dd®uq A dduq - - N ddu, N O = dd° (ulddch A Adduy, N @)

by induction on m. Chern, Levine and Nirenberg [CLN69] noticed the following useful
inequality. Define the mass of a current © on a compact set K to be

el = [ Y ler|
K1

whenever K is contained in a coordinate patch and © = > O ;dzy A dz;. Up to
seminorm equivalence, this does not depend on the choice of coordinates. If K is not
contained in a coordinate patch, we use a partition of unity to define a suitable seminorm
[19||k. If © > 0, Exercise 1.15 shows that the mass is controlled by the trace measure,
Le [|O]lxk <C [ ONPBP.

(2.2) Chern-Levine-Nirenberg Inequality. For all compact subsets K, L of X with
L C K°, there exists a constant Ck 1, = 0 such that

|[dd“uy A -+ N dd“um N O||L < Cr,r ||utl|nee(r) - [[uml| oo () [|©O|| &

Proof. By induction, it is sufficient to prove the result for m = 1 and u; = u. There is a
covering of L by a family of open balls B;- CC B; C K contained in coordinate patches

of X. Le_t/(p,p) be the bidimension of ©, let 3 = 1d'd"|z|?, and let x € U (B;) be equal
to 1 on B;. Then

||ddu N @||m§;_ < C/_, dduNO AP < C/ xddun© A BPL
B B;
As © and § are closed, an integration by parts yields
lddu A O]l < c/ WO N ddx A B < Cllull e i) O]
B;

where C’ is equal to C' multiplied by a bound for the coefficients of the smooth form
ddx N P71, O

Various examples (cf. [Kis84]) show however that products of (1,1)-currents dd‘u;
cannot be defined in a reasonable way for arbitrary psh functions u;. However, functions
u; with —oo poles can be admitted if the polar sets are sufficiently small.
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(2.3) Proposition. Let u be a psh function on X, and let © be a closed positive current
of bidimension (p,p). Suppose that u is locally bounded on X \ A, where A is an analytic
subset of X of dimension < p at each point. Then dd°u /N © can be defined in such a way
that dd“u N © = lim,_, ; oo ddu, A © in the weak topology of currents, for any decreasing
sequence (uy),>0 of psh functions converging to u.

Proof. When u is locally bounded everywhere, we have limu, ©® = u © by the monotone
convergence theorem and the result follows from the continuity of dd® with respect to
the weak topology.

First assume that A is discrete. Since our results are local, we may suppose that X
is a ball B(0, R) C C™ and that A = {0}. For every s < 0, the function ©u”>* = max(u, s)
is locally bounded on X, so the product © A dd“u>® is well defined. For |s| large, the
function u>? differs from u only in a small neighborhood of the origin, at which u may
have a —oo pole. Let 7 be a (p — 1,p — 1)-form with constant coefficients and set
s(r) = liminf|,;|_,_o u(z). By Stokes’ formula, we see that the integral

(2.4) I(s) := / ddu>s N O A
B(0,r)

does not depend on s when s < s(r), for the difference I(s) — I(s’) of two such integrals
involves the dd° of a current (u>* —u>*") A@ Ay with compact support in B(0, ). Taking
v = (dd°|z|*)P~!, we see that the current dd“u A © has finite mass on B(0,7) \. {0} and
we can define (1o} (dd“u A ©),7) to be the limit of the integrals (2.4) as r tends to zero
and s < s(r). In this case, the weak convergence statement is easily deduced from the
locally bounded case discussed above.

In the case where 0 < dim A < p, we use a slicing technique to reduce the situation
to the discrete case. Set ¢ = p — 1. There are linear coordinates (z1, ..., z,) centered
at any point of A, such that 0 is an isolated point of A N ({O} X C”_q). Then there are
small balls B’ = B(0,r’') in C?, B” = B(0,7") in C"4 such that AN (B’ x 9B") =0,
and the projection map

7:C"—=C% z2=(z1,...,20) = 2 = (21, ..., 2g)

defines a finite proper mapping A N (B’ x B”) — B’. These properties are preserved
if we slightly change the direction of projection. Take sufficiently many projections m,,
associated to coordinate systems (277, ... ,2/"), 1 < m < N, in such a way that the family
of (g, q)-forms

Tdz{" Ndzy{" N+ Nidzg" Ndzy!
defines a basis of the space of (g, ¢)-forms. Expressing any compactly supported smooth
(¢, q)-form in such a basis, we see that we need only define

(2.5) / ddu NO A f(2',2")idzy Adzy A -+ Nidzy A dz,
B/XB//
= / { f(2', @) ddu(z', ) NO(Z, o)}idz1 ANdZi A= Nidzg NdZg
’ B//

where f is a test function with compact support in B’ x B”, and ©(z’,e) denotes
the slice of © on the fiber {2’} x B” of the projection 7 : C* — C?. Each integral [,
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in the right hand side of (2.5) makes sense since the slices ({2'} x B”) N A are discrete.
Moreover, the double integral f B f g 18 convergent. Indeed, observe that u is bounded
on any compact cylinder:

Kse=B((1-0)r') x (BG") N B((1—2)r"))
disjoint from A. Take ¢ < § < 1 so small that
Supp f € B((1—0)r'") x B((1 —¢)r").

For all 2/ € B((1 — 6)r’), the proof of the Chern-Levine-Nirenberg inequality (2.2) with
a cut-off function x(z”) equal to 1 on B((1 — ¢)r”) and with support in B((1 —¢/2)r")
shows that

/ ddu(z’',e) N O(Z',e)
B((1—e)r"")

< CgHuHLoo(K&E)/ @(Z/,Z”) A ddc|z”|2.
2EB((1—e/2)r'")

This implies that the double integral is convergent. Now replace u everywhere by wu,
and observe that lim, _, | fB,, is the expected integral for every 2z’ such that ©(z’,e)
exists (apply the discrete case already proven). Moreover, the Chern-Levine-Nirenberg
inequality yields uniform bounds for all functions u,, hence Lebesgue’s dominated con-
vergence theorem can be applied to [ g~ We conclude from this that the sequence of
integrals (2.5) converges when u,, | u, as expected. U

(2.6) Remark. In the above proof, the fact that A is an analytic set does not play an
essential role. The main point is just that the slices ({z’} x B”) N A consist of isolated
points for generic choices of coordinates (z/,2"”). In fact, the proof even works if the
slices are totally discontinuous, in particular if they are of zero Hausdorff measure #';. It
follows that Proposition 2.3 still holds whenever A is a closed set such that #,_1(A) = 0.

O

2.B. Lelong Numbers

The concept of Lelong number is an analytic analogue of the algebraic notion of mul-
tiplicity. It is a very useful technique to extend results of the intersection theory of
algebraic cycles to currents. Lelong numbers have been introduced for the first time by
Lelong in [Lel57]. See also [Lel69; Siu74; Dem82a, 85a, 87] for further developments.

Let us first recall a few definitions. Let © be a closed positive current of bidimension
(p, p) on a coordinate open set 2 C C™ of a complex manifold X. The Lelong number of
© at a point x € () is defined to be the limit

v(0,z) = lim v(O,z,7), where v(0,z,r) = M
r—0+ ﬂ_per/p!



2 Lelong numbers and Intersection Theory 25

measures the ratio of the area of © in the ball B(z,r) to the area of the ball of radius r
in CP. As o9 =0 A I%(dec|z|2)p by Excercise 1.15, we also get

1
2.7 v(©,x,r) = — O(z dde|z|?)P.
(2.7) (©,2,7) /B@,T) (2) A (dd|2]2)

r2p

The main results concerning Lelong numbers are summarized in the following theorems,
due respectively to Lelong, Thie and Siu.

(2.8) Theorem ([Lel57]).

(a) For every positive current ©, the ratio v(0, z, 1) is a nonnegative increasing function
of r, in particular the limit v(©,z) as r — 0+ always exists.

(b) If © = dd°u is the bidegree (1,1)-current associated with a psh function u, then
v(0,z) =sup {7 = 0; u(z) < vylog|z —z| + O(1) at z}.
In particular, if u = log | f| with f € HY(X,Ox) and © = dd°u = [Z¢], we have

v([Zy],z) = ord,(f) = max{m € N; D*f(z) =0, |a| < m}.

(2.9) Theorem ([Thi67]). In the case where © is a current of integration [A] over an
analytic subvariety A, the Lelong number v([A], x) coincides with the multiplicity of A at
x (defined e.g. as the sheet number in the ramified covering obtained by taking a generic
linear projection of the germ (A, x) onto a p-dimensional linear subspace through x in
any coordinate patch ).

(2.10) Theorem ([Siu74]). Let © be a closed positive current of bidimension (p,p) on
the compler manifold X .

(a) The Lelong number v(O, x) is invariant by holomorphic changes of local coordinates.

(b) For every ¢ > 0, the set E.(0) = {z € X ; v(0,z) > ¢} is a closed analytic subset
of X of dimension < p.

The most important result is Theorem 2.10 (b), which was initially proved as a (very
deep) consequence of Hérmander’s L? estimates (Chapter 5); Kiselman [Kis78] later
found a much simpler proof based on his Legendre transformation for plurisubharmonic
functions; however, there is now an even more direct route relying on the Ohsawa-
Takegoshi L? extension theorem (cf. Corollary 13.3 below). The early proofs of the other
results were also rather intricate in spite of their rather simple nature. We reproduce
below a sketch of elementary arguments based on the use of a more general and more flex-
ible notion of Lelong number introduced in [Dem87]. Let ¢ be a continuous psh function
with an isolated —oc pole at z, e.g. a function of the form ¢(2) =log> >, n 19;(2)|"7,
v; > 0, where (g1, ...,gn) is an ideal of germs of holomorphic functions in @, with
g7 1(0) = {z}. The generalized Lelong number v(0, ) of © with respect to the weight ¢
is simply defined to be the mass of the measure © A (dd°p)P carried by the point x (the
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measure O A (dd°p)P is always well defined thanks to Proposition 2.3). This number can
also be seen as the limit v(0, ¢) = lim;—, - (0, ¢, t), where

(2.11) v(O,p,t) = / © A (dd°p)P.
p(z)<t

The relation with our earlier definition of Lelong numbers (as well as part (a) of Theo-
rem 2.8) comes from the identity

(2.12) v(©,x,1r) =v(0,¢p,logr), (z)=1log|z— x|,

in particular v(0,z) = v(0,log| ¢ —z|). This equality is in turn a consequence of the
following general formula, applied to x(t) = e* and t = logr:

(2.13) / O A (dd®x o )P = x'(t — O)p/ O A (ddp)?,
p(z)<t

p(z)<t

where x is an arbitrary convex increasing function. To prove the formula, we use a
regularization and thus suppose that ©, ¢ and x are smooth, and that ¢ is a non critical
value of ¢. Then Stokes’ formula shows that the integrals on the left and right hand side
of (2.13) are equal respectively to

/ O A (ddcxogo)p_1 Ad(x o), / O A (ddcgo)p_l Ndyp,
p(z)=t p(z)=t

and the differential form of bidegree (p — 1,p) appearing in the integrand of the first
integral is equal to (X' o ¢)P (dd°p)P~! A d°p. The expected formula follows. Part (b)
of Theorem 2.8 is a consequence of the Jensen-Lelong formula, whose proof is left as an
exercise to the reader.

(2.14) Jensen-Lelong Formula. Let u be any psh function on X. Then wu is inte-
grable with respect to the measure j, = (dd°p)"~* A d°p supported by the pseudo-sphere

{p(2) =71} and )
r(u) = u(dd®p)" v(ddu, @, t) dt.
e () /{w}( o+ [ vt

—o0
In our case, we set ¢(z) = log|z — x|. Then (dd°p)™ = J, and p, is just the unitary
invariant mean value measure on the sphere S(z,e”). For r < ry, Formula 2.14 implies
T
o (w) — g () = / v(ddu, x,t) ~ (r — ro)v(ddu, x) as r — —o0.
ro

From this, using the Harnack inequality for subharmonic functions, we get

liminf% = lim pr (1) = v(dd‘u, x).
z—z log |z — x| r—o—oo T

These equalities imply statement 2.8 (b).
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Next, we show that the Lelong numbers v (T, ¢) only depend on the asymptotic be-
havior of ¢ near the polar set ¢~ !(—occ). In a precise way:

(2.15) Comparison Theorem. Let © be a closed positive current on X, and let
o, X — [—00,400] be continuous psh functions with isolated poles at some point

x € X. Assume
¢ :=lim sup ¥(z)
oz P(2)
Then v(0,v) < lPv(O, v), and the equality holds if £ =lim/p.

< 400

Proof. (2.12) shows that v(©, Ap) = N\Pv (0, ¢) for every positive constant A. It is thus
sufficient to verify the inequality v(©, ) < v(0©, ¢) under the hypothesis limsup ¢ /¢ < 1.
For any ¢ > 0, consider the psh function

e = max(y — ¢, p).

Fix 7 < 0. For ¢ > 0 large enough, we have u. = ¢ on a neighborhood of ¢~1(r) and
Stokes’ formula gives

v(©,p,1) =1v(0,ue 1) = (0, u,.).

On the other hand, the hypothesis limsup /¢ < 1 implies that there exists ¢ty < 0 such
that u. =9 — c on {u. < to}. We thus get

v(0,uc) = (0,9 —c) = v(6,7),

hence v(0,9) < (0, ). The equality case is obtained by reversing the roles of ¢ and
1 and observing that lim ¢ /¢ = 1/1. O

Part (a) of Theorem 2.10 follows immediately from Theorem 2.15 by considering the
weights ¢(z) = log|7(2) — ()], ¥(2) = log|7’'(z) — 7/(x)| associated to coordinates
systems 7(z) = (21, ...,2n), 7(2) = (2}, ...,%],) in a neighborhood of z. Another
application is a direct simple proof of Thie’s Theorem 2.9 when © = [A] is the current of
integration over an analytic set A C X of pure dimension p. For this, we have to observe
that Theorem 2.15 still holds provided that = is an isolated point in Supp(©) Ny~ (—o0)
and Supp(©) N 1~1(—o0) (even though z is not isolated in ¢~ (—o0) or ¥~ (—oc0)),
under the weaker assumption that limsupg,,,e)5:— ¥(2)/¢(2) = £. The reason for
this is that all integrals involve currents supported on Supp(©). Now, by a generic
choice of local coordinates 2’ = (z1, ... ,2,) and 2" = (zp41, ..., 2,) on (X, x), the germ
(A, z) is contained in a cone || < C|z/|. If B’ C CP is a ball of center 0 and radius r’
small, and B” C C™ P is the ball of center 0 and radius " = Cr’, the projection

pr: AN(B'x B") — B’

is a ramified covering with finite sheet number m. When 2z € A tends to x = 0, the
functions

p(2) =log |2] = log(|'|* + |2"[*)'/%,  4(z) = log]|~'|.

satisfy lim,_,, ¥ (2)/¢(z) = 1. Hence Theorem 2.15 implies

v([A],z) = v([A], @) = v([A], ).
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Now, Formula 2.13 with x(t) = e* yields

v([A]; 4, logt) = t‘2p/ [A] A (%ddcew)p

{¢<logt}

1 P
= t‘zp/ (—pr*ddc\z'|2)
An{|z’|<t} 2

1
— mt_Qp/ (—ddc|z’|2)p =m,
Crn{|z’'|<t} 2

hence v([A],4) = m. Here, we have used the fact that pr is an étale covering with m
sheets over the complement of the ramification locus S C B’, and the fact that S is of
zero Lebesgue measure in B'.

(2.16) Proposition. Under the assumptions of Proposition 2.3, we have
v(ddu N\ O, z) > v(u,z) v(0, z)
at every point x € X.

Proof. Assume that X = B(0,r) and z = 0. By definition

v(dd“u A ©,z) = lim dd°u A © A (dd®log |z|)P~ 1.
r—0 |Z‘<,’,

Set v = v(u, ) and
u, (z) = max (u(z), (y — €) log |z| — v)
with 0 < e <~ (if v = 0, there is nothing to prove). Then u, decreases to u and

/ dd°u A © A (ddlog|z|)P~" > lim Sup/ ddu, A © A (dd®log |z])P~*
| |z

z|<r v=rtoo Jiz|<r

by the weak convergence of dd®u, A ©; here (dd®log]|z|)P~! is not smooth on B(0,r),
but the integrals remain unchanged if we replace log|z| by x(log|z|/r) with a smooth
convex function x such that x(¢) =t for t > —1 and x(t) = 0 for t < —2. Now, we have
u(z) < vlog|z| + C near 0, so u,(z) coincides with (v — €)log|z| — v on a small ball
B(0,r,) C B(0,r) and we infer

/ dd®u, A © A (dd®log |z|)P~1 = (v — 6)/ O A (dd°log|z|)P
|z|<r |z|<Ty
> (7 - ), 2).
As r €0, R[ and ¢ € )0, y[ were arbitrary, the desired inequality follows. O

We will later need an important decomposition formula of [Siu74]. We start with the
following lemma.

(2.17) Lemma. If © is a closed positive current of bidimension (p,p) and Z is an
irreducible analytic set in X, we set

myz =inf{x € Z; v(0,z)}.
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(a) There is a countable family of proper analytic subsets (Z;) of Z such that
v(©,z) =my forallx € Z \ UZ]/ We say that myz s the generic Lelong number
of © along Z.

(b) If dim Z = p, then © > mz[Z] and 10 = mz[Z].

Proof. (a) By definition of mz and E.(©), we have v(0,z) > myz for every x € Z and

v(©,2) =myz on Z\ U ZNE[(0).

ceQ,c>my

However, for ¢ > my, the intersection Z N E.(O) is a proper analytic subset of A.

(b) Left as an exercise to the reader. It is enough to prove that © > myz[Z.e,] at
regular points of Z, so one may assume that Z is a p-dimensional linear subspace in C".
Show that the measure (© — mz[Z]) A (dd°|z|?)P has nonnegative mass on every ball
|z — a| < r with center a € Z. Conclude by using arbitrary affine changes of coordinates
that © — mz[Z] > 0. O

(2.18) Decomposition Formula ([Siu74]). Let © be a closed positive current of bidi-
mension (p,p). Then © can be written as a convergent series of closed positive currents

+o0o
©=> M\|Z+R,
k=1

where [Zi] is a current of integration over an irreducible analytic set of dimension p,
and R is a residual current with the property that dim E.(R) < p for every ¢ > 0. This
decomposition is locally and globally unique: the sets Zy are precisely the p-dimensional
components occurring in the upperlevel sets E.(©), and A\, = mingez, v(0,z) is the
generic Lelong number of © along Zy,.

Proof of uniqueness. If © has such a decomposition, the p-dimensional components of
E.(©) are (Zj)x,>c, for v(0,z) = > \;jv([Z;],z) + v(R,z) is non zero only on |J Z; U
UE.(R), and is equal to \; generically on Z; (more precisely, v(0,z) = \; at every
regular point of Z; which does not belong to any intersection Z; U Zy, k # j or to
UE:(R)). In particular Z; and \; are unique.

Proof of existence. Let (Z;);>1 be the countable collection of p-dimensional components
occurring in one of the sets £.(0), ¢ € Q% , and let A; > 0 be the generic Lelong number of
© along Z;. Then Lemma 2.17 shows by induction on N that Ry = © — >, .,y Aj[Z]]
is positive. As Ry is a decreasing sequence, there must be a limit R = limy_, o, Ry in
the weak topology. Thus we have the asserted decomposition. By construction, R has
zero generic Lelong number along Z;, so dim E.(R) < p for every ¢ > 0. O

It is very important to note that some components of lower dimension can actually
occur in E.(R), but they cannot be subtracted because R has bidimension (p,p). A typi-
cal case is the case of a bidimension (n—1,n—1) current © = dd°u with
w=log(|f[" +--+|fn[™¥) and f; € HO(X,@x). In general UE.(O) = f(0)
has dimension < n — 1.

(2.19) Corollary. Let ©; = dduj, 1 < j < p, be closed positive (1,1)-currents on
a complex manifold X. Suppose that there are analytic sets Ay D --- D Ay, in X with
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codim A; > j at every point such that each uj;, j > 2, is locally bounded on X \ A;. Let
{Ap k}e=1 be the irreducible components of A, of codimension p exactly and let v; ) =
mingea, , ¥(0;,x) be the generic Lelong number of ©; along Ap . Then ©1 A--- A6,
s well-defined and

+oo
@1/\"'/\@p 2 Zyl7k""'ypyk[‘4p,k]'
k=1
Proof. By induction on p, Proposition 2.3 shows that ©; A --- A ©,, is well defined.
Moreover, Proposition 2.16 implies
V(O1 N ANOp,x) Zv(O,) - V(Op, k) Z Vi Upk

at every point € A, ;. The desired inequality is then a consequence of Siu’s decompo-
sition theorem. O



Chapter 3

Hermitian Vector Bundles,
Connections and Curvature

The goal of this chapter is to recall the most basic definitions of Hermitian differential
geometry related to the concepts of connection, curvature and first Chern class of a line
bundle.

Let F' be a complex vector bundle of rank r over a smooth differentiable manifold M.
A connection D on F' is a linear differential operator of order 1:

D:€®(M,\NT;; @ F) — € (M, AT}, @ F)
such that
(3.1) D(f Au)=df ANu+ (1) f A Du

for all forms f € € (M, APTy;), v € € (X, ATy, ® F'). On an open set 2 C M where
F admits a trivialization 6 : F|q =4 Q x C", a connection D can be written

Du~gdu+T ANu

where I' € €>°(Q, A'T;; ® Hom(C",C")) is an arbitrary matrix of 1-forms and d acts
componentwise (the coefficients of I are called the Christoffel symbols of the connection).
It is then easy to check that

D?*u~g (AT +T AT)Au on Q.
Since D? is a globally defined operator, there is a global 2-form
(3.2) Op € €>°(M,A*T;; ® Hom(F, F))

such that D?u = ©p A u for every form u with values in F.

Assume now that F' is endowed with a “€>° Hermitian metric h along the fibers and
that the isomorphism Fjo ~ Q x C" is given by a ‘€ frame (ey). We then have a
canonical sesquilinear pairing

(33)  €°(M,APT;, @ F) x € (M, AT, ® F) —s € (M, APHIT?, @ C)
(’LL, U) — {’LL, v}h
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given by

{u,v}h:ZuA/\Eu<e>\,e“)h, u:ZuA@)e)\, v:Zv“@)eu.

A p

The connection D is said to be Hermitian (with respect to h) if it satisfies the additional
property
d{u, v}, = {Du,v}p + (—1)% “{u, Dv}y,.

Assuming that (ey) is orthonormal, one easily checks that D is Hermitian if and only if
I'* = —TI". In this case ©}, = —Op, thus

i0p € €°(M,AN*T;; ® Herm(F, F)).

(3.4) Special Case. For a bundle F' of rank 1, the connection form I' of a Hermitian
connection D can be seen as a 1-form with purely imaginary coefficients I' = iA (A real).
Then we have Op = dI' = idA. In particular iOp is a closed 2-form. The first Chern
class of F' is defined to be the cohomology class

c1(F)g = {%@F} e H2 (M, R).

The cohomology class is actually independent of the connection, since any other connec-
tion D; differs by a global 1-form, Diu = Du + B A u, so that ©p, = ©p + dB. It is
well-known that ¢1 (F)g is the image in H?(M,R) of an integral class ¢; (F) € H*(M,Z) ;
by using the exponential exact sequence

CO *

0—-7Z—€— € —0,

c1(F) can be defined in Cech cohomology theory as the image by the coboundary map
HY(M,€*) — H?(M,Z) of the cocycle {g;r} € H'(M, €*) defining F; see e.g. [GrHTS]
for details. U

We now concentrate ourselves on the complex analytic case. If M = X is a complex
manifold X, every connection D on a complex €°° vector bundle F' can be splitted in
a unique way as a sum of a (1,0) and of a (0, 1)-connection, D = D’ 4+ D”. In a local
trivialization 0 given by a “€> frame, one can write

(3.5) D'u~gdu+T" Au,
(3.5") D"u~g d"u+T" Au,
with I' = IV 4+ IT'””. The connection is Hermitian if and only if IV = —(I'’)* in any

orthonormal frame. Thus there exists a unique Hermitian connection D corresponding
to a prescribed (0, 1) part D”.

Assume now that the bundle F' itself has a holomorphic structure, and is equipped
with a Hermitian metric A. The unique Hermitian connection for which D" is the d”
operator defined in Chapter 1 is called the Chern connection of F'. In a local holomorphic
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frame (ey) of E|q, the metric is given by the Hermitian matrix H = (hxy), hau = {(ex, ep).
We have
{u, 0} = hagux AT, = ul A HT,
A p

where ' is the transposed matrix of u, and easy computations yield

d{u,v}n = (du)" A Ho + (—1)%8uyt A (dH AT+ Hdv)

= (du+ T dH A u)T AHT + (—1)%8 9yt A (do+ T dH Av)

using the fact that dH = d’H + d’H and HT = H. Therefore the Chern connection D
coincides with the Hermitian connection defined by

Du ~¢ du + H 'dHA u,
(3.6)

D' ~gd +H dHNe=H 'd(Hs), D'=4d"

It is clear from this relations that D'? = D"? = 0. Consequently D? is given by to
D? = D'D"+ D"D’, and the curvature tensor Op is of type (1,1). Since d'd”’ +d"d' = 0,
we get
(D'D" +D"DYucy H dHANw+d"(H dHAu)
=d"(H 'dH) A
(3.7) Proposition. The Chern curvature tensor ©pj, := ©p of (F,h) is such that
iOp), € €°(X,AM'T% @ Herm(F, F)).

If 0 : Fio — Q x C" is a holomorphic trivialization and iof H is the Hermitian matriz
representing the metric along the fibers of Fiq, then

i@F,h ~p id//(ﬁ_ldlﬁ) on 2.

In case there cannot be any confusion on which Hermitian metric h is used, we also
sometimes simply write Op, = OF.

Let (21, ..., 2,) be holomorphic coordinates on X and let (ex)1<a<r be an orthonor-
mal frame of F'. Writing

iOp) = E Citapdz; Ndz ® €} ® ey,
1<g,k<n, 1<, usr

we can identify the curvature tensor to a Hermitian form

(3.8) Opn(E®@v) = Z Citnnéi€pvATy

1<g k<, IS, pusr

on Tx ® F. This leads in a natural way to positivity concepts, following definitions
introduced by Kodaira [Kod53], Nakano [Nak55] and Griffiths [Gri69].
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(3.9) Definition. The Hermitian vector bundle (F,h) is said to be

(a) positive in the sense of Nakano if we have éF,h(T) > 0 for all non zero tensors
T=37jx0/0z;®ex€Tx @ F.

(b) positive in the sense of Griffiths if @)F,h(f ® v) > 0 for all non zero decomposable
tensors E Qv eTx ® F',

Corresponding semipositivity concepts are defined by relaxing the strict inequalities.

(3.10) Special Case of Rank 1 Bundles. Assume that F' is a line bundle. The
Hermitian matrix H = (h;1) associated to a trivialization 6 : Fio ~  x C is simply a
positive function. It is often convenient to denote it as an exponential, namely e 2% (and
also sometimes e~ % simply, if we do not want to stress that H is a quadratic form), with
p € €*°(Q,R). In this case the curvature form ©pj can be identified to the (1,1)-form
d'd" ¢, and

is a real (1,1)-form. Hence F' is semi-positive (in either the Nakano or Griffiths sense)
if and only if ¢ is psh, resp. positive if and only if ¢ is strictly psh. In this setting, the
Lelong-Poincaré equation can be generalized as follows: let o € H(X, F') be a non zero
holomorphic section. Then

i

A1 dd°1 =|Zs
(3.11) gl = (7] - 5-

OF,h.

Formula (3.11) is immediate if we write ||o|| = |f#(o)|e™ % and if we apply (1.20) to the
holomorphic function f = 6(o). As we shall see later, it is very important for the
applications to consider also singular Hermitian metrics.

(3.12) Definition. A singular (Hermitian) metric h on a line bundle F is a metric
which is given in any trivialization 0 : Fiq =5 QO xC by

lelln =16©) e ¢, z€Q, (€ F,
where p € Li _(Q) is an arbitrary function, called the weight of the metric with respect
to the trivialization 6.

If ¢ : Fioo — ' x C is another trivialization, ¢’ the associated weight and g €
@*(Q2NQ) the transition function, then ' (§) = g(x) 0(§) for £ € F,, and so ¢’ = p+log |g|
on 2N Q. The curvature form of F is then given formally by the closed (1, 1)-current
ﬁ@p’h = dd®p on Q; our assumption ¢ € Li () guarantees that O exists in the
sense of distribution theory. As in the smooth case, 5-©F is globally defined on X and
independent of the choice of trivializations, and its De Rham cohomology class is the
image of the first Chern class ¢;(F) € H*(X,Z) in H? (X, R). Before going further, we

discuss two basic examples.

(3.13) Example. Let D = ) «;D; be a divisor with coefficients a; € Z and let
F = @(D) be the associated invertible sheaf of meromorphic functions w such that
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div(u) + D > 0; the corresponding line bundle can be equipped with the singular metric
defined by |lu|| = |u|. If g; is a generator of the ideal of D; on an open set 2 C X
then O(u) = u Hg?j defines a trivialization of @(D) over €2, thus our singular metric is
associated to the weight ¢ = > a;log|g;|. By the Lelong-Poincaré equation, we find

i
— Op = ddo = [D
where [D] = Y «o;[D;] denotes the current of integration over D. O

(3.14) Example. Assume that oy, 01, ... ,on are non zero holomorphic sections of F'.
Then we can define a natural (possibly singular) Hermitian metric h* on F* by

||§*||i* = Z ‘f* 'Uj(x)}Q for €* € Fy.

0<G<N

The dual metric h on F' is given by

" 10(o0(@))]? + [0(1 (2)) 2 + - -+ [0(on (2)) 2

with respect to any trivialization . The associated weight function is thus given by

o) =log (3 |0l (x))?) V2.

0<j<N

In this case ¢ is a psh function, thus i©f, is a closed positive current. Let us denote
by ¥ the linear system defined by og, ... ,on and by By, = ﬂaj_l(O) its base locus. We
have a meromorphic map

dy : X \ By — PV, x> (oo(z) : o1(x) s o2(x) - -+t on(T)).

Then %@ F,n is equal to the pull-back over X \ By of the Fubini-Study metric wps =
o= log(|20|? + |21> + - - - + |2n]?) of PV by ®y.. O

(3.15) Ample and Very Ample Line Bundles. A holomorphic line bundle F over
a compact compler manifold X s said to be

(a) very ample if the map ®p| : X — PN associated to the complete linear system
|F| = P(HY(X, F)) is a reqular embedding (by this we mean in particular that the
base locus is empty, i.e. Bjp| = 0).

(b) ample if some multiple mE, m > 0, is very ample.

Here we use an additive notation for Pic(X) = H!(X,@*), hence the symbol mF
denotes the line bundle F'®™. By Example 3.14, every ample line bundle F has a smooth
Hermitian metric with positive definite curvature form; indeed, if the linear system |mF|
gives an embedding in projective space, then we get a smooth Hermitian metric on F®™,
and the m-th root yields a metric h on F' such that ﬁ@ Fh = %‘I’Tm F|WFS- Conversely,
the Kodaira embedding theorem [Kod54] tells us that every positive line bundle F' is
ample (see Exercise 5.14 for a straightforward analytic proof of the Kodaira embedding

theorem).






Chapter 4

Bochner Technique and Vanishing Theorems

4.A. Laplace-Beltrami Operators and Hodge Theory

We start by recalling briefly a few basic facts of Hodge theory. Assume for the moment
that M is a differentiable manifold equipped with a Riemannian metric g = ) g;;dz;®dz;
and that (F, h) is a Hermitian vector bundle over M. Given a g-form u on M with values
in F', we consider the global L? norm

Jul® = /M u(z) 2V ()

where |u| is the pointwise Hermitian norm and dVj, is the Riemannian volume form (we
omit the dependence on the metrics in the notation, but we should really put |u(z)|g,h
and ||ul|4,n here). The Laplace-Beltrami operator associated to the connection D is by
definition

A=DD*+ D*D

where
D*: € (M, ATy, @ F) — €°(M,A"'T}{; ® F)

is the (formal) adjoint of D with respect to the L? inner product. Assume that M is
compact. Since
A€ (M,NTy @ F) — €°(M,\N Ty, @ F)

is a self-adjoint elliptic operator in each degree, standard results of PDE theory show
that there is an orthogonal decomposition

CC(M,NTy, @ F)=HIM,F)®ImA
where #9(M, F) = Ker A is the space of harmonic forms of degree ¢; #9(M, F) is a
finite dimensional space. Assume moreover that the connection D is integrable, i.e. that
D? = 0. It is then easy to check that there is an orthogonal direct sum
ImA=ImD ®ImD*,

indeed (Du, D*v) = (D?u,v) = 0 for all u,v. Hence we get an orthogonal decomposition

€ (M, AT ® F) = #HY(M, F) & Im D & Im D*,
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and Ker A is precisely equal to #9(M, F') ®Im D. Especially, the ¢g-th cohomology group
Ker A/Im A is isomorphic to #9(M, F'). All this can be applied for example in the case
of the De Rham groups Hp) (M, C), taking F' to be the trivial bundle F = M x C (notice,
however, that a nontrivial bundle F' usually does not admit any integrable connection):

(4.1) Hodge Fundamental Theorem. If M is a compact Riemannian manifold, there
s an 1somorphism

HY. (M, C) ~ #9(M,C)

from De Rham cohomology groups onto spaces of harmonic forms.

A rather important consequence of the Hodge fundamental theorem is a proof of
the Poincaré duality theorem. Assume that the Riemannian manifold (M, g) is oriented.
Then there is a (conjugate linear) Hodge star operator

x: ATy, @C — A™ Ty, ® C, m = dimg M

defined by u A *v = (u,v)dV}, for any two complex valued g-forms u, v. A standard
computation shows that * commutes with A, hence *u is harmonic if and only if u is.
This implies that the natural pairing

(1.2 Hi(M.0) x HE (M), ({uh o) = [ uno

is a nondegenerate duality, the dual of a class {u} represented by a harmonic form being

4.B. Serre Duality Theorem

Let us now suppose that X is a compact complex manifold equipped with a Hermitian
metric w = Y w;rdz; A dZ. Let F' be a holomorphic vector bundle on X equipped with
a Hermitian metric, and let D = D’ 4+ D" be its Chern curvature form. All that we said
above for the Laplace-Beltrami operator A still applies to the complex Laplace operators

A/ — D/D/* + D/*D/, A// — D//D//* + DH*DH,

with the great advantage that we always have D'? = D"? = 0. Especially, if X is a
compact complex manifold, there are isomorphisms

(4.3) HP(X, F) ~ #P9(X, F)

between Dolbeault cohomology groups HP?(X, F) and spaces HP9(X,F) of A”-har-
monic forms of bidegree (p,q) with values in F. Now, there is a generalized Hodge star
operator

x: APITY @ FF— AP ITS @ FF, n = dim¢ X,

such that u A xv = (u, v)dVj, for any two F-valued (p, ¢)-forms, when the wedge product
u A xv is combined with the pairing F' x F* — C. This leads to the Serre duality theorem
[Ser55]: the bilinear pairing

(4.4) HPYX,F)x H" P""9(X F*), ({u}, {v}) — /X uAv
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is a nondegenerate duality. Combining this with the Dolbeault isomorphism, we may
restate the result in the form of the duality formula

(4.4') HY(X, 0% @ O(F))* ~ H"9(X, Q%" @ G(F)).

4.C. Bochner-Kodaira-Nakano Identity on Kahler Manifolds

We now proceed to explain the basic ideas of the Bochner technique used to prove
vanishing theorems. Great simplifications occur in the computations if the Hermitian
metric on X is supposed to be Kdhler, i.e. if the associated fundamental (1,1)-form

w= iijkdzj A dzp,

satisfies dw = 0. It can be easily shown that w is Kahler if and only if there are holo-
morphic coordinates (z1, ... ,z,) centered at any point zy € X such that the matrix of
coefficients (w;y) is tangent to identity at order 2, i.e.

wir(2) = 8k +O(|2]*)  at zo.

It follows that all order 1 operators D, D', D” and their adjoints D*, D'*, D”* admit at
x( the same expansion as the analogous operators obtained when all Hermitian metrics on
X or F are constant. From this, the basic commutation relations of Kahler geometry can
be checked. If A, B are differential operators acting on the algebra €= (X, A**T% ® F),
their graded commutator (or graded Lie bracket) is defined by

[A,B] = AB — (-1)*BA

where a,b are the degrees of A and B respectively. If C is another endomorphism of
degree c, the following purely formal Jacob: identity holds:

(=) [A,[B,Cl] + (-1)"[B,[C, A]] + (-1)"[C. [A, B]] = 0.

(4.5) Basic Commutation Relations. Let (X,w) be a Kdhler manifold and let L be
the operators defined by Lu = w Au and A = L*. Then

(D", L] =iD’, [D'™*, L] = —iD",
[A, D"] = —iD"*, [A, D] =iD"*.

Proof (sketch). The first step is to check the identity [d"*, L] = id’ for constant metrics
on X = C" and F = X x C, by a brute force calculation. All three other identities
follow by taking conjugates or adjoints. The case of variable metrics follows by looking
at Taylor expansions up to order 1. U

(4.6) Bochner-Kodaira-Nakano Identity. If (X,w) is Kdhler, the complex Laplace
operators A’ and A" acting on F-valued forms satisfy the identity

A" = A +[iOp, Al.
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Proof. The last equality in (4.5) yields D"* = —i[A, D'], hence
A" =[D",§"] = —i[D", [A,D']].
By the Jacobi identity we get
[D",[A, D] = [A,[D',D"]] + [D',[D",A]] = [A, Op] +i[D', D™,

taking into account that [D’, D"] = D? = ©p},. The formula follows. O

4.D. Vanishing Theorems

Assume that X is compact and that u € ‘€°° (X, AP9T* X ® F) is an arbitrary (p, ¢)-form.
An integration by parts yields

(A, u) = || D'ul|* + [|D™ul|* > 0

and similarly for A”, hence we get the basic a priori inequality

(4.7) |D"ul|? + | D"*ul|? > / ([{©.n, Alu, u)dV,.
X

This inequality is known as the Bochner-Kodaira-Nakano inequality (see [Boc4S8;
Kod53; Nak55]). When u is A”-harmonic, we get

/X (([i®p,n, Alu, u) + (Tou, u))dV < 0.

If the Hermitian operator [iOF ;, A] acting on AP9T% ® F is positive on each fiber, we
infer that u must be zero, hence

HP(X, F) = #P9(X,F) =0

by Hodge theory. The main point is thus to compute the curvature form O and find
sufficient conditions under which the operator [iOp p, A] is positive definite. Elementary
(but somewhat tedious) calculations yield the following formulae: if the curvature of F
is written as in (3.8) and u = Y ujrdzr ANdzZy ey, |J|=p, |[K|=¢, 1 <A< risa
(p, q)-form with values in F', then

(4.8) ((OFn, Au,u) = Z Cikap UJ,jS, N UT kS
j7k7A7u7J7S

+ E Cikap UkR, KX UjR K 1
Jrk, A p R K

- Z C]]AM u‘]7K7>\ UJ:K:IM
hau,J, K

where the sum is extended to all indices 1 < j,k < n, 1 < A\,p < r and multiindices
|IR| =p—1,|S| = ¢—1 (here the notation u k) is extended to non necessarily increasing
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multiindices by making it alternate with respect to permutations). It is usually hard to
decide the sign of the curvature term (4.8), except in some special cases.

The easiest case is when p = n. Then all terms in the second summation of (4.8)
must have j = k and R = {1, ... ,n} ~ {j}, therefore the second and third summations
are equal. It follows that [i@p, A] is positive on (n, ¢)-forms under the assumption that
F' is positive in the sense of Nakano. In this case X is automatically Kahler since

w = TTF(i@F7h> =1 E Cjk)\)\dzj A d?k = i®det F.h
Jik,A

is a Kahler metric.

(4.9) Nakano Vanishing Theorem ([Nak55]). Let X be a compact complex manifold
and let F' be a Nakano positive vector bundle on X. Then

H"1(X,F)=HY(X,Kx®F)=0 for every q > 1.

Another tractable case is the case where F' is a line bundle (r = 1). Indeed, at each
point x € X, we may then choose a coordinate system which diagonalizes simultaneously
the Hermitians forms w(z) and i®p (), in such a way that

1<j<n 1<j<n

with 71 < -+ < ,. The curvature eigenvalues v; = 7;(x) are then uniquely defined and
depend continuously on x. With our previous notation, we have v; = ¢;;11 and all other
coeflicients cji, are zero. For any (p, ¢)-form u =) ujxdz; N dZg ® ey, this gives

(410) ([OrmAluuw) = > (Y u+dw— D )l

|J|=p, |K|=q J€J JEK 1<j<n

> (M4 g~ Tnepir — o ) ul?

Assume that i©p ), is positive. It is then natural to make the special choice w = i©p,
for the Kéhler metric. Then v; =1 for j = 1,2, ... ,n and we obtain ([iO@p, Alu, u) =
(p+q—n)lul?>. As a consequence:

(4.11) Akizuki-Kodaira-Nakano Vanishing Theorem ([AN54]). If F' is a positive
line bundle on a compact complex manifold X, then

HPY(X, F)=HY(X,Q% ® F) =0 for p+q>=n-+1.

More generally, if F' is a Griffiths positive (or ample) vector bundle of rank r > 1,
Le Potier [LP75] proved that HP9(X,F) = 0 for p +q > n + r. The proof is not a
direct consequence of the Bochner technique. A rather easy proof has been found by
M. Schneider [Sch74], using the Leray spectral sequence associated to the projectivized
bundle projection P(F') — X, using the following more or less standard notation.
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(4.12) Notation. If V' is a complex vector space (resp. complex vector bundle), we let
P(V) be the projective space (resp. bundle) of lines of V', and P(V) = P(V*) be the
projective space (resp. bundle) of hyperplanes of V.

(4.13) Exercise. It is important for various applications to obtain vanishing theorems
which are also valid in the case of semi-positive line bundles. The easiest case is the
following result of Girbau [Gir76]: let (X,w) be compact Kéhler; assume that F is a line
bundle and that i©g; > 0 has at least n — k positive eigenvalues at each point, for some
integer k > 0; show that HP4(X, F)=0forp+qg>n+k+ 1.
Hint: use the Kéahler metric w, = iOp} + ew with € > 0 small.

A stronger and more natural “algebraic version” of this result has been obtained by
Sommese [Som78]|: define F' to be k-ample if some multiple mF' is such that the canonical
map

@‘mF| X N B|mF\ — ]P)N_l

has at most k-dimensional fibers and dim B),,p| < k. If X is projective and F is k-ample,
show that HP9(X, F)=0forp+qg>n+k+1.

Hint: prove the dual result HP9(X,F~!) =0 for p+ ¢ <n — k — 1 by induction on k.
First show that F' 0-ample = F' positive; then use hyperplane sections ¥ C X to prove
the induction step, thanks to the exact sequences

0= @F'®O(-Y) = Q@ F ' — (AR F 1), —0,

0= 0PV e0(-Y)y — (R eF ), =0 oF) —0 O



Chapter 5

L? Estimates and Existence Theorems

5.A. Basic L? Existence Theorems

The starting point is the following L? existence theorem, which is essentially due to
Hormander [H6r65, 66], and Andreotti-Vesentini [AV65], following fundamental work by
Kohn [Koh63, 64]. We will only present the strategy and the main ideas and tools, refer-
ring e.g. to [Dem82b] for a more detailed exposition of the technical situation considered
here.

(5.1) Theorem. Let (X,w) be a Kdhler manifold. Here X is not necessarily compact,
but we assume that the geodesic distance 6, is complete on X. Let F' be a Hermitian
vector bundle of rank r over X, and assume that the curvature operator A = A4 =
[1©Fn, Ay] is positive definite everywhere on AP»9T% @ F, ¢ > 1. Then for angj form
g € L*(X,AP9T% @ F) satisfying D"g = 0 and [, (A 'g,g)dV., < +oo, there eists
f e L?(X, AP 1T% @ F) such that D" f = g and

/ IfIQde</<A_1g,g>de-
X X

Proof. The assumption that J,, is complete implies the existence of cut-off functions 1,
with arbitrarily large compact support such that |di, | < 1 (take 1, to be a function of the
distance x +— 4, (o, ), which is an almost everywhere differentiable 1-Lipschitz function,
and regularize if necessary). From this, it follows that very form u € L?(X, AP9T% ® F)
such that D”u € L? and D"*u € L? in the sense of distribution theory is a limit of
a sequence of smooth forms w, with compact support, in such a way that u, — u,
D"u, — D"u and D"*u, — D"*u in L? (just take u, to be a regularization of 1, u). As
a consequence, the basic a priori inequality (4.7) extends to arbitrary forms u such that
w, D"u,D"*u € L? . Now, consider the Hilbert space orthogonal decomposition:

L*(X,APT% @ F) = Ker D" @ (Ker D")*,

observing that Ker D" is weakly (hence strongly) closed. Let v = v; +v2 be the decompo-
sition of a smooth form v € UP4(X, F') with compact support according to this decom-
position (v1, v2 do not have compact support in general!). Since (Ker D)+ C Ker D"*
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by duality and g,v; € Ker D” by hypothesis, we get D"*v, = 0 and

(g, o) = l{g, o) ? < /X (A"g, g)dV, /X (Avy, v1) dV,

thanks to the Cauchy-Schwarz inequality. The a priori inequality (4.7) applied to u = vy
yields

X<Avlav1> Vi, < ||D"vi||* + | D" 01| = || D" w1 ||* = | D" 0],

Combining both inequalities, we find

(g0 < ([ 4 tgg) ) |prol?
X

for every smooth (p,q)-form v with compact support. This shows that we have a well
defined linear form:

w=D""vr (v,g), L*X,APT'T% @ F)> D" (IP4(F)) — C

on the range of D’"*. This linear form is continuous in L? norm and has norm < C' with

C= (/){(A_lg,g) de> 1/2.

By the Hahn-Banach theorem, there is an element f € L?(X,AP97'T% ® F) with
I|f|] < C, such that (v,g) = (D"*v, f) for every v, hence D”f = g in the sense of

distributions. The inequality ||f|| < C' is equivalent to the last estimate in the theorem.
U

The above L? existence theorem can be applied in the fairly general context of weakly
pseudoconvex manifolds. By this, we mean a complex manifold X such that there exists
a smooth psh exhaustion function ¥ on X (v is said to be an exhaustion if for every
¢ > 0 the upperlevel set X. = 1~1(c) is relatively compact, i.e. ¥(z) tends to +oco
when z is taken outside larger and larger compact subsets of X). In particular, every
compact complex manifold X is weakly pseudoconvex (take 1» = 0), as well as every
Stein manifold, e.g. affine algebraic submanifolds of CV (take 1(z) = |2|?), open balls
X = B(zo,7) (take ¢(z) = 1/(r — |z — 20|?)), convex open subsets, etc. Now, a basic
observation is that every weakly pseudoconvex Kéhler manifold (X, w) carries a complete
Kahler metric: let 1) > 0 be a psh exhaustion function and set

we = w+eid'd"P* = w4 2e(2ipd'd" Y + id'p A d"P).

Then |dy)|,. < 1/e and | (z) — ¥ (y)| < e 16, (z,y). It follows easily from this estimate
that the geodesic balls are relatively compact, hence §,_ is complete for every ¢ > 0.
Therefore, the L? existence theorem can be applied to each Kihler metric w,, and by
passing to the limit it can even be applied to the non necessarily complete metric w. An
important special case is the following

(5.2) Theorem. Let (X,w) be a Kihler manifold, dim X = n. Assume that X is weakly
pseudoconvex. Let F be a Hermitian line bundle and let

m(x) < < ()
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be the curvature eigenvalues (i.e. the eigenvalues of i©p 5, with respect to the metric w) at
every point. Assume that the curvature is positive, i.e. v1 > 0 everywhere. Then for any
form g € L*(X,A"™T% ®F) satisfying D"g = 0 and [ (71 + -+ 74) " 'g|? dViy < +o0,
there exists f € L*(X,AP971T% ® F) such that D" f = g and

/ FRav, < / (1 4+ g) Mg V.
X X

Proof. Indeed, for p = n, Formula (4.10) shows that
(Au,u) = (71 4+ ) lul?,

hence (A7 u,u) = (1 + -+ 74) " Hul?. O

An important observation is that the above theorem still applies when the Hermi-
tian metric on F' is a singular metric with positive curvature in the sense of currents.
In fact, by standard regularization techniques (convolution of psh functions by smooth-
ing kernels), the metric can be made smooth and the solutions obtained by Theorem
5.1 or Theorem 5.2 for the smooth metrics have limits satisfying the desired estimates.
Especially, we get the following:

(5.3) Corollary. Let (X,w) be a Kdhler manifold, dim X = n. Assume that X is weakly
pseudoconvex. Let F' be a holomorphic line bundle equipped with a singular metric whose
local weights are denoted ¢ € Llloc, i.e. H = E~%. Suppose that

iOp, =id'd"¢ > ew

for some € > 0. Then for any form g € L*(X,AN™T% ® F) satisfying D"g = 0, there
ezists f € L*(X,AP4'T% ® F) such that D" f = g and

1
/ fReedv, < = / lgl2e% dV,.
X qe Jx

Here we denoted somewhat incorrectly the metric by |f|?e~%, as if the weight ¢ was
globally defined on X (of course, this is so only if F' is globally trivial). We will use this
notation anyway, because it clearly describes the dependence of the L? norm on the psh
weights.

5.B. Multiplier Ideal Sheaves and Nadel Vanishing Theorem

We now introduce the concept of multiplier ideal sheaf, following A. Nadel [Nad89]. The
main idea actually goes back to the fundamental works of Bombieri [Bom70] and H. Skoda
[SkoT2a).

(5.4) Definition. Let ¢ be a psh function on an open subset Q C X ; to ¢ is associated
the ideal subsheaf ¥(p) C Cq of germs of holomorphic functions f € Oq ., such that
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|fI?e2¢ s integrable with respect to the Lebesque measure in some local coordinates
near x.

The zero variety V (.F(¢)) is thus the set of points in a neighborhood of which e=2%
is non integrable. Of course, such points occur only if ¢ has logarithmic poles. This is
made precise as follows.

(5.5) Definition. A psh function ¢ is said to have a logarithmic pole of coefficient v at
a point x € X if the Lelong number

- ©(2)
.= liminf — 2
V(@) T log |z — 7

is non zero and if v(p,x) = 7.

(5.6) Lemma (Skoda [SkoT2a]). Let ¢ be a psh function on an open set Q and let x € Q.

(a) If v(p,x) < 1, then e™2% is integrable in a neighborhood of x, in particular F(p), =

(b) If v(p,x) = n+ s for some integer s > 0, then e 2% > Clz — z|72"72% in a neigh-
borhood of x and ¥(p) C mffml, where mg , is the mazimal ideal of Ogq 4.

(¢) The zero variety V($(p)) of $(p) satisfies

En(p) CV(H(p)) C Eily)

where E.(¢) ={z € X ; v(p,x) > c} is the c-upperlevel set of Lelong numbers of ¢.

Proof. (a) Set © = dd°p and v = v(0,z) = v(p,x). Let x be a cut-off function with
support in a small ball B(x,r), equal to 1 in B(z,7/2). As (dd®log |z|)" = do, we get

wM:L(ﬁmmmwmpﬁw
- /B( )ddc(X(O‘P(C)) Alog | — z|(ddlog|¢ — Z|)n—1

for z € B(x,r/2). Expanding dd°(xy) and observing that dx = dd°x = 0 on B(z,r/2),
we find

o) = [ X0 A log|C (o | — 1)+ smooth terms
on B(x,r/2). Fix r so small that
[, X(QBO A i log ¢ ™ < v(©,a.7) < 1.
By continuity, there exists §,e > 0 such that

Iw:é(ﬁ@mmwwmmww*@—a
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for all z € B(x, ). Applying Jensen’s convexity inequality to the probability measure

dp=(¢) = 1(2) "' x(Q)O(¢) A (dd°log [¢ — =[)" ",

we find
Co(z) = / G eglc 2 da() + O
B(x,r
— O <0 [ 0= a O du (o).
B(z,r)
As

dp=(¢) < C1l¢ = 2|7 20(¢) A (dd°[¢ )" = Cal¢ — 27" Pdoo(¢),
we get

8—24,0(z) < CS/ |<- _ Z|_2(1_6)_(2n_2)d0'@(<>,
B(z,r)

and the Fubini theorem implies that e=2#(*) is integrable on a neighborhood of z.

(b) If v(p, z) =+, the convexity properties of psh functions, namely, the convexity of
log 7+ sup|,_, =, ¢(2) implies that

¢(z) <vyloglz —z|/ro + M,

where M is the supremum on B(z,rg). Hence there exists a constant C' > 0 such that
e~2#(2) > (C|z — 2|7%7 in a neighborhood of . The desired result follows from the
estimate

2
CLaZa To
/ de(Z) ~ COHSt./ ( ‘aa‘2r2|a|>r2n—1—2’y dT',
B |27 . >

which holds modulo multiplicative constants and is an easy consequence of Parseval’s
formula. Now, if v has integral part [y] = n + s, the integral converges if and only if
an, =0 for |o] < s.

(c) is just a simple formal consequence of (a) and (b). O

(5.7) Proposition ([Nad89]). For any psh function ¢ on Q C X, the sheaf $(p) is a
coherent sheaf of ideals over 2. Moreover, if  is a bounded Stein open set, the sheaf
F(p) is generated by any Hilbert basis of the L? space #?(Q, ©) of holomorphic functions
[ on Q such that [, |f]?e™2% d\ < +oc.

Proof. Since the result is local, we may assume that () is a bounded pseudoconvex open
set in C". By the strong noetherian property of coherent sheaves, the family of sheaves
generated by finite subsets of #2(Q, ¢) has a maximal element on each compact subset of
Q, hence #?(, ) generates a coherent ideal sheaf § C @q. It is clear that ¥ C .¥(¢p); in
order to prove the equality, we need only check that ¥, +.%(p), Nm$"! = F(p), for every
integer s, in view of the Krull lemma. Let f € .¥(p), be defined in a neighborhood V of
x and let 0 be a cut-off function with support in V' such that # = 1 in a neighborhood of
x. We solve the equation d’u = g := d”(0f) by means of Hérmander’s L? estimates 5.3,
where F' is the trivial line bundle 2 x C equipped with the strictly psh weight

P(2) = p(2) + (n+ s)log |z — @] + |2]*.
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We get a solution u such that [, |u]?e™2?|z — 2| 2("")dX < oo, thus F = 0f — u is
holomorphic, F € #?%(Q, ) and f, —F, = u, € J(cp)xﬂmfi'ml. This proves the coherence.

Now, f is generated by any Hilbert basis of #2(£2, ), because it is well-known that the
space of sections of any coherent sheaf is a Fréchet space, therefore closed under local L?
convergence. O

The multiplier ideal sheaves satisfy the following basic functoriality property with
respect to direct images of sheaves by modifications.

(5.8) Proposition. Let i : X' — X be a modification of non singular complex manifolds
(i.e. a proper generically 1:1 holomorphic map), and let ¢ be a psh function on X. Then

1 (O(Kx) @ F(p o p)) = O(Kx) ® H(p).

Proof. Let n = dim X = dim X’ and let S C X be an analytic set such that p : X’'\.5" —
X .S is a biholomorphism. By definition of multiplier ideal sheaves, O(K x)®.%(¢) is just
the sheaf of holomorphic n-forms f on open sets U C X such that i"” fAf e 2% € Li (U).
Since ¢ is locally bounded from above, we may even consider forms f which are a priori
defined only on U \ S, because f will be in LZ (U) and therefore will automatically

extend through S. The change of variable formula yields
[iteagere= [ wtep g,
U p=1(U)

hence f € T(U,O(Kx) @ J(p)) iff u*f € T(p=1(U),0(Kx/) @ F(popu)). Proposition 5.8
is proved. O

(5.9) Remark. If ¢ has analytic singularities (according to Definition 1.10), the com-
putation of .¥(y) can be reduced to a purely algebraic problem.

The first observation is that .¥(¢) can be computed easily if ¢ has the form ¢ =
Y- ajloglg;| where D; = gj_l(O) are nonsingular irreducible divisors with normal cross-
ings. Then .f(¢p) is the sheaf of functions h on open sets U C X such that

/ B [T lg;1 29 dV < +oc.
U

Since locally the g; can be taken to be coordinate functions from a local coordinate
system (z1, ... ,2,), the condition is that h is divisible by Hg;-nj where m; — a; > —1
for each j, i.e. m; > |«a;] (integer part). Hence

H(p) = O(~|D]) = 6(~ Y _|a;] D;)

where | D| denotes the integral part of the Q-divisor D =) «;D;.

Now, consider the general case of analytic singularities and suppose that

«
o~ Slog (| 4+ | fwl)
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near the poles. By the explanations given after Definition 1.10, we may assume that the
(f;)'s are generators of the integrally closed ideal sheaf ¥ = ¥(¢/a), defined as the sheaf
of holomorphic functions h such that |h| < Cexp(p/a). In this case, the computation
is made as follows (see also L. Bonavero’s work [Bon93], where similar ideas are used in
connection with “singular” holomorphic Morse inequalities).

First, one computes a smooth modification p : X — X of X such that w*f is an
invertible sheaf @(—D) associated with a normal crossing divisor D = ) \;D;, where

(D;) are the components of the exceptional divisor of X (take the blow-up X’ of X
with respect to the ideal ¥ so that the pull-back of ¥ to X’ becomes an invertible sheaf
@(—D'), then blow up again by Hironaka [Hir64] to make X’ smooth and D’ have normal
crossings). Now, we have K = u*Kx + R where R = > pjD;j is the zero divisor of the
Jacobi function J,, of the blow-up map. By the direct image formula (5.8), we get

F(p) = p (@(Kg — ' Kx)® F(po H)) = s (@(R) ® F(po u))

Now, {f; o u} are generators of the ideal @(—D), hence

popu~ad Aloglgl

where g; are local generators of @(—D;). We are thus reduced to computing multiplier

ideal sheaves in the case where the poles are given by a Q-divisor with normal crossings
Y- a\;D;. We obtain .¥(¢ o ) = @(— " |a;|D;), hence

H(p) = 105 (D (ps — lar; ) D;). -

(5.10) Exercise. Compute the multiplier ideal sheaf .¥(y) associated with the function
@ =log(|z1|** + - - - + |z,|*?) for arbitrary real numbers a; > 0.

Hint: using Parseval’s formula and polar coordinates z; = r; e'%  show that the problem
is equivalent to determining for which p-tuples (81, ..., p) € N? the integral

/ iy rdr - rydry _/ t§51+1)/a1"'t§vﬁp+l)/% 71 dt;
[0,1]» [0,1]»

T%al-i--'--i-?“zap t1+"'+tp j=12aj tj

is convergent. Conclude from this that .¥(p) is generated by the monomials z|* -~-z§”
such that > (8, + 1)/, > 1. (This exercise shows that the analytic definition of .¥(¢y)
is sometimes also quite convenient for computations). U

Let F' be a line bundle over X with a singular metric h of curvature current O .
If ¢ is the weight representing the metric in an open set 2 C X, the ideal sheaf .¥(yp)
is independent of the choice of the trivialization and so it is the restriction to €2 of a
global coherent sheaf .¥(h) on X. We will sometimes still write .¥(h) = () by abuse of
notation. In this context, we have the following fundamental vanishing theorem, which
is probably one of the most central results of analytic and algebraic geometry (as we will
see later, it contains the Kawamata-Viehweg vanishing theorem as a special case).
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(5.11) Nadel Vanishing Theorem ([Nad89; Dem93b]). Let (X,w) be a Kdhler weakly
pseudoconvex manifold, and let F' be a holomorphic line bundle over X equipped with a
singular Hermitian metric h of weight ¢. Assume that iOp ) > ew for some continuous
positive function € on X. Then

HY(X,0(Kx + F)® J(h)) =0 forall g > 1.

Proof. Let 9 be the sheaf of germs of (n, ¢)-forms v with values in F' and with mea-
surable coefficients, such that both |u|?e=2¢ and |d"u|?e~2%¥ are locally integrable. The
d” operator defines a complex of sheaves (£®,d”) which is a resolution of the sheaf
O(Kx + F) ® $(p): indeed, the kernel of d” in degree 0 consists of all germs of holo-
morphic n-forms with values in F' which satisfy the integrability condition; hence the
coefficient function lies in .¥(y); the exactness in degree ¢ > 1 follows from Corollary 5.3
applied on arbitrary small balls. Each sheaf £7 is a C*°-module, so &£* is a resolution by
acyclic sheaves. Let 1) be a smooth psh exhaustion function on X. Let us apply Corol-
lary 5.3 globally on X, with the original metric of F multiplied by the factor e=X°¥,
where y is a convex increasing function of arbitrary fast growth at infinity. This factor
can be used to ensure the convergence of integrals at infinity. By Corollary 5.3, we con-
clude that H7(T'(X,%£°®)) =0 for ¢ > 1. The theorem follows. O

(5.12) Corollary. Let (X,w), F' and ¢ be as in Theorem 5.11 and let x1, ... ,xN be
isolated points in the zero variety V(S(p)). Then there is a surjective map

HY(X,Kx +F) — P O(Kx+F),, @ (Ox [H(9)), -

1N

Proof. Consider the long exact sequence of cohomology associated to the short exact
sequence 0 — f(¢) = Ox — Ox/F(p) — 0 twisted by O(Kx + F), and apply Theo-
rem 5.11 to obtain the vanishing of the first H! group. The asserted surjectivity property
follows. O

(5.13) Corollary. Let (X,w), F' and ¢ be as in Theorem 5.11 and suppose that the
weight function ¢ is such that v(p,x) > n+ s at some point x € X which is an isolated
point of E1(p). Then H°(X, Kx + F) generates all s-jets at x.

Proof. The assumption is that v(p,y) < 1 for y near z, y # x. By Skoda’s Lemma
5.6 (b), we conclude that e~2¢ is integrable at all such points y, hence .¥(p), = Ox,,,
whilst .f(¢), C m?:; by Lemma 5.6 (a). Corollary 5.13 is thus a special case of 5.12. [

The philosophy of these results (which can be seen as generalizations of the Hor-
mander-Bombieri-Skoda theorem [Bom?70; Sko72a, 75]) is that the problem of construct-
ing holomorphic sections of Kx 4+ F' can be solved by constructing suitable Hermitian
metrics on F’ such that the weight ¢ has isolated poles at given points x;.

(5.14) Exercise. Assume that X is compact and that L is a positive line bundle on X.
Let {z1,...,zn} be a finite set. Show that there are constants a,b > 0 depending
only on L and N such that H°(X, mL) generates jets of any order s at all points z; for
m > as + b.
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Hint: Apply Corollary 5.12 to F' = —Kx 4+ mL, with a singular metric on L of the form
h = hpe™=¥, where hg is smooth of positive curvature, ¢ > 0 small and ¥(z) ~ log |z — ;]|
in a neighborhood of z;. U

Derive the Kodaira embedding theorem from the above result:

(5.15) Theorem (Kodaira embedding theorem). If L is a line bundle on a compact
complex manifold, then L is ample if and only if L is positive. O

(5.16) Exercise (solution of the Levi problem). Show that the following two properties
are equivalent.

(a) X is strongly pseudoconvex, i.e. X admits a strongly psh exhaustion function.

(b) X is Stein, i.e. the global holomorphic functions H°(X, @) separate points and yield
local coordinates at any point, and X is holomorphically convex (this means that for
any discrete sequence 2, there is a function f € H%(X, @x) such that |f(z,)| — 00).

O

(5.17) Remark. As long as forms of bidegree (n,q) are considered, the L? estimates
can be extended to complex spaces with arbitrary singularities. In fact, if X is a complex
space and ¢ is a psh weight function on X, we may still define a sheaf Kx(¢) on X, such
that the sections on an open set U are the holomorphic n-forms f on the regular part
U N X.,eg, satisfying the integrability condition i”2f A fe 2% ¢ Li (U). In this setting,
the functoriality Property 5.8 becomes

s (KX/((,D o ,u)) = KX(SD)

for arbitrary complex spaces X, X’ such that u : X’ — X is a modification. If X is
nonsingular we have Kx(¢) = O(Kx) ® J(¢), however, if X is singular, the symbols
Kx and .¥(¢) must not be dissociated. The statement of the Nadel vanishing theorem
becomes H?(X,O(F) ® Kx(p)) = 0 for ¢ > 1, under the same assumptions (X Kéhler
and weakly pseudoconvex, curvature > cw). The proof can be obtained by restricting
everything to X,es. Although in general X,., is not weakly pseudoconvex (e.g. in case
codim Xging = 2), Xyeg is always Kédhler complete (the complement of a proper analytic
subset in a Kéhler weakly pseudoconvex space is complete Kéahler, see e.g. [Dem82b]).
As a consequence, Nadel’s vanishing theorem is essentially insensitive to the presence of
singularities. O






Chapter 6

Numerically Effective and
Pseudo-effective Line Bundles

6.A. Pseudo-effective Line Bundles and Metrics with
Minimal Singularities

The concept of pseudo-effectivity is quite general and makes sense on an arbitrary com-
pact complex manifold X (no projective or Kéahler assumption is needed). In this general
context, it is better to work with 09-cohomology classes instead of De Rham cohomology
classes: we define the Bott-Chern cohomology of X to be

(6.1) HEA(X) = {d-closed (p, q)-forms}/{00-exact (p, q)-forms}.

By means of the Frolicher spectral sequence, it is easily shown that these cohomology
groups are finite dimensional and can be computed either with spaces of smooth forms or
with currents. In both cases, the quotient topology of H3A(X) induced by the Fréchet
topology of smooth forms or by the weak topology of currents is Hausdorff. Clearly
Hp(X) is a bigraded algebra. This algebra can be shown to be isomorphic to the usual
De Rham cohomology algebra H*®(X,C) if X is Kéhler (or more generally if X is in the
Fujiki class “€ of manifolds bimeromorphic to Kédhler manifolds).

(6.2) Definition. Let L be a holomorphic line bundle on a compact complexr manifold
X. be say that L pseudo-effective if c1(L) € Hllg’cl(X) is the cohomology class of some
closed positive current T', i.e. if L can be equipped with a singular Hermitian metric h
with T = ﬁ@L,h >0 as a current.

The locus where h has singularities turns out to be extremely important. The follow-
ing definition was introduced in [DPS00].

(6.3) Definition. Let L be a pseudo-effective line bundle on a compact complexr man-
ifold X . Consider two Hermitian metrics hy, ho on L with curvature i@L,hj >0 in the
sense of currents.

(a) We will write hy < ha, and say that hy is less singular than he, if there ezists a
constant C' > 0 such that hy < Chs.

(b) We will write hy ~ ha, and say that hy, hy are equivalent with respect to singularities,
if there exists a constant C > 0 such that C~ hy < hy < Chs.
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Of course h; < hs if and only if the associated weights in suitable trivializations
locally satisfy po < ¢1 + C. This implies in particular v(¢1, z) < v(p2,x) at each point.
The above definition is motivated by the following observation.

(6.4) Theorem. For every pseudo-effective line bundle L over a compact complex mani-
fold X, there exists up to equivalence of singularities a unique class of Hermitian metrics
h with minimal singularities such that i©p p > 0.

Proof. The proof is almost trivial. We fix once for all a smooth metric ho, (whose
curvature is of random sign and signature), and we write singular metrics of L under
the form h = hooe¥. The condition iOr 5, = 0 is equivalent to ﬁ(‘)&/} > —u where
U = ﬁ@ L.ho - This condition implies that v is plurisubharmonic up to the addition of
the weight ¢ of hoo, and therefore locally bounded from above. Since we are concerned
with metrics only up to equivalence of singularities, it is always possible to adjust 1 by
a constant in such a way that supy 1 = 0. We now set

hmin - hooe_wmina r‘vbmin(m) - Sip ’g[)(.f)

where the supremum is extended to all functions v such that supy ¢» = 0 and ﬁa@w >
—u. By standard results on plurisubharmonic functions (see Lelong [Lel69]), ¥y still
satisfies ﬁ@&/}min > —u (i.e. the weight ¢ oo +¥min Of Amin is plurisubharmonic), and Ay,
is obviously the metric with minimal singularities that we were looking for. [In principle
one should take the upper semicontinuous regularization 1. of ¥mnin to really get a
plurisubharmonic weight, but since ., also participates to the upper envelope, we
obtain here ¥, = ¥

* ., automatically]. 0

(6.5) Remark. In general, the supremum ) = sup, ¢y ; of a locally dominated family
of plurisubharmonic functions v; is not plurisubharmonic strictly speaking, but its “up-
per semi-continuous regularization” ¢*(z) = limsup,_,, ¥ (¢) is plurisubharmonic and
coincides almost everywhere with ¢, with ¢* > 1. However, in the context of (6.5), ¥*
still satisfies ¢* < 0 and ﬁ@glﬂ > —u, hence ¥* participates to the upper envelope. As
a consequence, we have ©¥* < ¢ and thus ¥ = ¢* is indeed plurisubharmonic. Under a
strict positivity assumption, namely if L is a big line bundle (i.e. the curvature can be
taken to be strictly positive in the sense of currents, see Definition 6.12 and Theorem
(6.17 b), then hyi, can be shown to possess some regularity properties. The reader may
consult [BmDO09] for a rather general (but certainly non trivial) proof that i, pos-
sesses locally bounded second derivatives 924y, / 0207, outside an analytic set Z C X ;
in other words, iOy, 5., has locally bounded coefficients on X \ Z. See also (18.32) for
further consequences. O

(6.6) Definition. Let L be a pseudo-effective line bundle. If h is a singular Hermitian
metric such that 1O p > 0 and

HY(X,mL® $(h®™)) ~ H*(X,mL)  for all m >0,
we say that h is an analytic Zariski decomposition of L.
In other words, we require that h has singularities so mild that the vanishing condi-

tions prescribed by the multiplier ideal sheaves .¥(h®™) do not kill any sections of L and
its multiples.
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(6.7) Exercise. A special case is when there is an isomorphism pL = A + F where A
and E are effective divisors such that H°(X,mpL) = H°(X, mA) for all m and @G(A) is
generated by sections. Then A possesses a smooth Hermitian metric h 4, and this metric
defines a singular Hermitian metric h on L with poles %E and curvature %@A,h at %[E]
Show that this metric h is an analytic Zariski decomposition.

Note: when X projective and there is a decomposition pL = A + E with A nef (see
(6.9)), E effective and H(X, mpL) = H°(X, mA) for all m, one says that the Q-divisor
equality L = %A + %E is an algebraic Zariski decomposition of L. It can be shown that
Zariski decompositions exist in dimension 2, but in higher dimension it can be seen that
they do not exist in general. O

(6.8) Theorem. The metric hyin with minimal singularities provides an analytic Zariski
decomposition.

It follows that an analytic Zariski decomposition always exists (while algebraic de-
compositions do not exist in general, especially in dimension 3 and more).

Proof. Let 0 € HY(X,mL) be any section. Then we get a singular metric h on L by
putting |£], = |¢/o(z)Y/™| for € € L,, and it is clear that |o|,m = 1 for this metric.
Hence 0 € H*(X,mL ® .¥(h®™)), and a fortiori 0 € H*(X, mL ® .F(hZ")) since Ay, is

less singular than h. O

6.B. Nef Line Bundles

Many problems of algebraic geometry (e.g. problems of classification of algebraic surfaces
or higher dimensional varieties) lead in a natural way to the study of line bundles satis-
fying semipositivity conditions. It turns out that semipositivity in the sense of curvature
(at least, as far as smooth metrics are considered) is not a very satisfactory notion. A
more flexible notion perfectly suitable for algebraic purposes is the notion of numerical
effectivity. The goal of this section is to give a few fundamental algebraic definitions
and to discuss their differential geometric counterparts. We first suppose that X is a
projective algebraic manifold, dim X = n.

(6.9) Definition. A holomorphic line bundle L over a projective manifold X is said to
be numerically effective, nef for short, if L - C' = fC c1(L) = 0 for every curve C C X.

If L is nef, it can be shown that L? - Y = [, c1(L)? > 0 for any p-dimensional
subvariety Y C X (see e.g. [Har70]). In relation to this, let us recall the Nakai-Moishezon
ampleness criterion: a line bundle L is ample if and only if L? - Y > 0 for every p-
dimensional subvariety Y (related stronger statements will be proved in Chapter 17).
From this, we easily infer

(6.10) Proposition. Let L be a line bundle on a projective algebraic manifold X,
on which an ample line bundle A and a Hermitian metric w are given. The following
properties are equivalent:

(a) L is nef;
(b) for any integer k > 1, the line bundle kL + A is ample;
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(c) for every e >0, there is a smooth metric he on L such that O . > —cw.

Proof. (a) = (b). If L is nef and A is ample then clearly kL + A satisfies the Nakai-
Moishezon criterion, hence kL + A is ample.

(b) = (c¢). Condition (c) is independent of the choice of the Hermitian metric,
so we may select a metric hqy on A with positive curvature and set w = i©4p,. If
kL + A is ample, this bundle has a metric hyr 44 of positive curvature. Then the metric
hy = (hkp+a ® h;l)l/k has curvature

. . . 1.
004, =~ (1Okr4a —104) > —El@A,hA ;

| =

in this way the negative part can be made smaller than € w by taking k large enough.

(c) = (a). Under hypothesis (c), we get L-C = [, 2O n > — Jow for every
curve C' and every € > 0, hence L - C' > 0 and L is nef. O

Let now X be an arbitrary compact complex manifold. Since there need not exist
any curve in X, Property 6.10 (c) is simply taken as a definition of nefness ([DPS94]):

(6.11) Definition. A line bundle L on a compact complex manifold X is said to be nef
if for every € > 0, there is a smooth Hermitian metric he on L such that iOp ;. > —cw.

In general, it is not possible to extract a smooth limit hy such that i©p , > 0.
The following simple example is given in [DPS94] (Example 1.7). Let E be a non trivial
extension 0 — @ — E — (@ — 0 over an elliptic curve C' and let X = P(F) (with notation
as in (4.12)) be the corresponding ruled surface over C'. Then L = @p(gy(1) is nef but
does not admit any smooth metric of nonnegative curvature. In fact one can show that
up to a constant factor there is only one singular Hermitian metric with semi-positive
curvature current, associated with the section of L defined by the inclusion @ — FE; its
curvature current is the current of integration [C] on a curve C' C X which is a section
of X — C. This example answers negatively a question raised by Fujita [Fuj83].

Let us now introduce the important concept of Kodaira-Iitaka dimension of a line
bundle.

(6.12) Definition. If L is a line bundle, the Kodaira-Iitaka dimension k(L) is the
supremum of the rank of the canonical maps:

o, X\B, —PV,), z—H,={ceV,;0(x)=0}, m=>1

with Vi, = HY(X,mL) and By, = ey, 0 (0) = base locus of Vi,. In case Vi, = {0}
for allm > 1, we set k(L) = —oo. A line bundle is said to be big if k(L) = dim X .

The following lemma is well-known (the proof is a rather elementary consequence of
the Schwarz lemma).

(6.13) Serre-Siegel Lemma ([Ser54; Sie55]). Let L be a holomorphic line bundle on a
compact complex manifold. Then we have :
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(a) A2(X,mL) < O(m*®) form > 1;
(b) k(L) is the smallest constant for which this estimate holds;

(c) the volume of L defined as

|
Vol(L) = lim sup %hO(X, kL)

k—+oo

is finite, and L is big if and only if Vol(L) > 0.

Notice that if L is ample, we have h?(X, kL) = 0 for ¢ > 1 and k > 1 by the
Kodaira-Serre vanishing theorem, hence
0 L™ n
h°(X, kL) ~ x(X, kL) ~ —'k
n!
by the Riemann-Roch formula. Thus Vol(L) = L™ ( = ¢;(L)™) if L is ample. This is still
true if X is K&hler and L is nef. In fact, in that case, we will show later (see Corollary

8.3) that h%(X,kL) = o(k™) for ¢ > 1 (in the projective algebraic case, one can even
show that h?(X,kL) = O(k™"?), see Lemma 6.18).

6.C. Description of the Positive Cones

Let us recall that an integral cohomology class in H?(X,Z) is the first Chern class of a
holomorphic (or algebraic) line bundle if and only if it lies in the Neron-Severi group

(6.14) NS(X) = Ker (H*(X,Z) — H*(X,Ox))

(this fact is just an elementary consequence of the exponential exact sequence
0 >7Z — @ — @ — 0). If X is compact Kéhler, as we will suppose from now on
in this section, this is the same as saying that the class is of type (1,1) with respect to
Hodge decomposition.

= NS(X) ®z R, which can be viewed

Let us consider the real vector space NSg(X)
1,1) cohomology classes. Its dimension is

as a subspace of the space H11 (X, R) of real (1,
by definition the Picard number

(6.15) p(X) = ranky NS(X) = dimg NSg(X).

We thus have 0 < p(X) < hY1(X), and the example of complex tori shows that all
intermediate values can occur when n = dim X > 2.

The positivity concepts for line bundles considered in Sections 6.A and 6.B possess in
fact natural generalizations to (1,1) classes which are not necessarily integral or rational
— and this works at least in the category of compact Ké&hler manifolds (in fact, by using
Bott-Chern cohomology, one could even extend these concepts to arbitrary compact
complex manifolds).

(6.16) Definition. Let (X,w) be a compact Kdihler manifold.
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(a) The Kihler cone is the set # C HV1(X,R) of cohomology classes {w} of Kdihler
forms. This is an open convex cone.

(b) The closure K of the Kdihler cone consists of classes {a} € HV1 (X, R) such that for
every € > 0 the sum {a+¢cw} is Kdhler, or equivalently, for every e > 0, there exists
a smooth function ¢. on X such that a4+ 100, > —ew. We say that K is the cone
of nef (1,1)-classes.

(c) The pseudo-effective cone is the set ‘€ C HYY(X,R) of cohomology classes {T} of
closed positive currents of type (1,1). This is a closed convex cone.

(d) The interior €° of € consists of classes which still contain a closed positive current
after one subtracts e{w} for e > 0 small, in other words, they are classes of closed
(1,1)-currents T such that T > ew. Such a current will be called a Kahler current,
and we say that {T} € HY1(X,R) is a big (1,1)-class.

H = Kihler cone in HY'(X,R) [open]
F = nef cone in HY(X,R) [closure of ]
€ = pseudo-effective cone in H%1(X, R) [closed]

‘€° = big cone in H»1(X, R) [interior of €]

The openness of F is clear by definition, and the closedness of ‘€ is a consequence of
the fact that bounded sets of currents are weakly compact (as follows from the similar
weak compactness property for bounded sets of positive measures). It is then clear that
K€

In spite of the fact that cohomology groups can be defined either in terms of forms
or currents, it turns out that the cones F and € are in general different. To see this, it
is enough to observe that a Kéhler class {a} satisfies [}, a” > 0 for every p-dimensional
analytic set. On the other hand, if X is the surface obtained by blowing-up P? in
one point, then the exceptional divisor E ~ P! has a cohomology class {a} such that
[pa=E?=—1, hence {a} ¢ K, although {a} = {[E]} € €.

In case X is projective, all Chern classes ¢1(L) of line bundles lie by definition in
NS(X), and likewise, all classes of real divisors D = ) ¢;Dj, ¢; € R, lie in NSg(X). In
order to deal with such algebraic classes, we therefore introduce the intersections

HKns = HN NSR(X), Ens = EN NSR(X),

and refer to classes of H1'1(X,R) not contained in NSg(X) as transcendental classes.
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A very important fact is that all four cones FHng, €ns, Hns, ‘€Rg have simple alge-
braic interpretations.

(6.17) Theorem. Let X be a projective manifold. Then

(a) Hns is equal to the open cone Amp(X) generated by classes of ample (or very
ample) divisors A (Recall that a divisor A is said to be very ample if the linear
system HO(X, @(A)) provides an embedding of X in projective space).

(b) The interior €Xg is the cone Big(X) generated by classes of big divisors, namely
divisors D such that h®(X,@(kD)) > ck¥™X for k large.

(¢) E€ns is the closure Eff(X) of the cone generated by classes of effective divisors, i.e.
divisors D =" ¢;Dj, ¢; € Ry

(d) The closed cone Fns consists of the closure Nef(X) of the cone generated by nef
divisors D (or nef line bundles L), namely effective integral divisors D such that
D -C >0 for every curve C, also equal to Amp(X).

In other words, the terminology “nef”, “big”, “pseudo-effective” used for classes of
the full transcendental cones appear to be a natural extrapolation of the algebraic case.

Proof. First notice that since all of our cones “€ have non empty interior in NSg(X') (which
is a rational vector space in terms of a basis of elements in H?(X,Q)), the rational points
“€g := €N NSg(X), NSg(X) = NS(X) ®z Q, are dense in each of them.

(a) is therefore just Kodaira’s embedding theorem when we look at rational points, and
properties (b) and (d) are obtained easily by passing to the closure of the open cones.
We will now give details of the proof only for (b) which is possibly slightly more involved.

By looking at points of ‘€g = €° N NSg(X) and multiplying by a denominator, it
is enough to check that a line bundle L such that ¢;(L) € ‘€° is big. However, this
means that L possesses a singular Hermitian metric hy, such that O, 5, > cw for some
Kahler metric w. For some integer pg > 0, we can then produce a singular Hermitian
metric with positive curvature and with a given logarithmic pole hﬁoe_e(z) log |z—o|* jp
a neighborhood of every point xg € X (here 6 is a smooth cut-off function supported on
a neighborhood of zg). Then Hérmander’s L? existence theorem [Hor65] can be used to
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produce sections of L¥ which generate all jets of order (k/pg) —n at points x¢, so that L
is big.

Conversely, if L is big and A is a (smooth) very ample divisor, the exact sequence
0— Ox(kL —A) = Ox (kL) — Ga(kLja) — 0 and the estimates h°(X,@x (kL)) > ck",
hO(A,@4(kL;4)) = O(k™ ') imply that @x (kL — A) has a section for k large, thus
kL — A = D for some effective divisor D. This means that there exists a singular metric
hr on L such that

1 1/1 1
G, L1 e
37O = 1 (g7 0ana + D) > o
where w = 5-045,,,, hence ¢; (L) € €°. O

Before going further, we need a lemma.

(6.18) Lemma. Let X be a compact Kdhler n-dimensional manifold, let L be a nef line
bundle on X, and let E be an arbitrary holomorphic vector bundle. Then h1(X,O(F) ®
O(kL)) = o(k™) as k — 400, for every q > 1. If X is projective algebraic, the following
more precise bound holds:

hi(X,6(E)® G(kL)) = O(k"™9), Vg > 0.

Proof. The Kéhler case will be proved in Chapter 8, as a consequence of the holomorphic
Morse inequalities. In the projective algebraic case, we proceed by induction on n =
dim X. If n = 1 the result is clear, as well as if ¢ = 0. Now let A be a nonsingular ample
divisor such that E®@(A— K x ) is Nakano positive. Then the Nakano vanishing theorem
applied to the vector bundle F' = E ® @G(kL + A — K x ) shows that H1(X,O(E)®O(kL+
A)) =0 for all ¢ > 1. The exact sequence

0— @G(kL) = O(kL 4+ A) = O(EL + A)j4 — 0
twisted by E implies
HY(X,6(E)® @(kL)) ~ HI" (A, O(E 4 @ G(kL + A);4),

and we easily conclude by induction since dim A = n — 1. Observe that the argument
does not work any more if X is not algebraic. It seems to be unknown whether the
O(k™~7) bound still holds in that case. O

(6.19) Corollary. If L is nef, then L is big (i.e. k(L) = n) if and only if L™ > 0.
Moreover, if L is nef and big, then for every § > 0, L has a singular metric h = e=2%
such that maxzex v(p,x) < 0 and IO ), > ew for some ¢ > 0. The metric h can
be chosen to be smooth on the complement of a fized divisor D, with logarithmic poles
along D.

Proof. By Lemma 6.18 and the Riemann-Roch formula, we have h°(X, kL) = x(X, kL) +
o(k™) = k™ L™ /n!+ o(k™), whence the first statement. By the proof of Theorem 6.17 (b),
there exists a singular metric h; on L such that

i

2m

1/1 1 1
@L,h1 = E(%@A’h‘é + [D]) > Ew, w = %@A,hA-
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Now, for every € > 0, there is a smooth metric h. on L such that ﬁ@L,he > —ew. The

convex combination of metrics h. = h}*hl=F¢ is a singular metric with poles along D
which satisfies )
i

2

Its Lelong numbers are ev(D, z) and they can be made smaller than § by choosing € > 0
small. 0

OLn = e(w+ [D]) — (1 — ke)ew > ke*w.

We still need a few elementary facts about the numerical dimension of nef line bundles.

(6.20) Definition. Let L be a nef line bundle on a compact Kihler manifold X. One
defines the numerical dimension of L to be

nd(L) = max{k=0,...,n; c1(L)" #0 in H**(X,R)}.

By Corollary 6.19, we have k(L) = n if and only if nd(L) = n. In general, we merely
have an inequality.

(6.21) Proposition. If L is a nef line bundle on a compact Kdhler manifold, then
k(L) < nd(L).

Proof. By induction on n = dim X. If nd(L) = n or k(L) = n the result is true, so we
may assume 7 := k(L) <n —1and k:=nd(L) <n—1. Fix m > 0so that ® = @,z
has generic rank r. Select a nonsingular ample divisor A in X such that the restriction
of @1, to A still has rank r (for this, just take A passing through a point = ¢ B, at
which rank(d®;) = r < n, in such a way that the tangent linear map d®,r, , still has
rank 7). Then k(L;a) > r = k(L) (we just have an equality because there might exist
sections in HY(A, mL;4) which do not extend to X). On the other hand, we claim that
nd(Lys) = k = nd(L). The inequality nd(L;4) > nd(L) is clear. Conversely, if we set
w = %@ Ah, > 0, the cohomology class ¢1(L)* can be represented by a closed positive
current of bidegree (k, k)
' k
after passing to some subsequence (there is a uniform bound for the mass thanks to the
Kihler assumption, taking wedge products with w™~*). The current 7 must be non zero
since ¢ (L)* # 0 by definition of k = nd(L). Then {[A]} = {w} as cohomology classes,
and
/ cr(Lia)" AR = / (D) A[A] AW = / T AW > 0.
A X X

This implies nd(L;4) > k, as desired. The induction hypothesis with X replaced by A
yields

k(L) < k(Lya) <nd(La) < nd(L). O

(6.22) Remark. It may happen that k(L) < nd(L): take e.g.

L— X=X xXs
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equals to the total tensor product of an ample line bundle L; on a projective manifold
X and of a unitary flat line bundle L9 on an elliptic curve X5 given by a representation
m(X2) — U(1) such that no multiple kLs with k # 0 is trivial. Then H°(X, kL) =
HO(X1, kL)) ® H°(X5,kLs) = 0 for k > 0, and thus x(L) = —oo. However c¢;(L) =
prici (L) has numerical dimension equal to dim X;. The same example shows that the
Kodaira dimension may increase by restriction to a subvariety (if Y = X; x {point},
then k(Ljy) = dimY). O

6.D. The Kawamata-Viehweg Vanishing Theorem

We derive here an algebraic version of the Nadel vanishing theorem in the context of
nef line bundles. This algebraic vanishing theorem has been obtained independently by
Kawamata [Kaw82] and Viehweg [Vie82], who both reduced it to the Akizuki-Kodaira-
Nakano vanishing theorem [AN54] by cyclic covering constructions. Since then, a number
of other proofs have been given, one based on connections with logarithmic singularities
[EV86], another on Hodge theory for twisted coefficient systems [Kol85], a third one on
the Bochner technique [Dem89] (see also [EV92] for a general survey). Since the result
is best expressed in terms of multiplier ideal sheaves (avoiding then any unnecessary
desingularization in the statement), we feel that the direct approach via Nadel’s vanishing
theorem is extremely natural.

If D=> «;D; > 0is an effective Q-divisor, we define the multiplier ideal sheaf ¥(D)
to be equal to .¥(¢) where ¢ = > ajlg;| is the corresponding psh function defined by
generators g; of G(—D;). If D is a divisor with normal crossings,we know that

(6.23) J(D)=0@(—|D]),  where [D]=) |a;|D;
is the integer part of D. In general, the computation of .¥(D) can be made algebraically

by using a desingularization p : X — X such that p*D becomes a divisor with normal
crossings (Hironaka [Hir64]), and the direct image formula proved in (5.8):

(6.24) Ox(Kx)® H(p) = (O3 (K 5) @ F(p o)),
(6.24) I(p) = 1 (O5(Kz, ) ® F(p o p))

. . . . . % -1
in terms of the relative canonical sheaf KEZ/X =Kz u (Kx).

(6.25) Kawamata-Viehweg Vanishing Theorem. Let X be a projective algebraic
manifold and let F be a line bundle over X such that some positive multiple mF can be
written mF = L + D where L is a nef line bundle and D an effective divisor. Then

HY(X,0(Kx +F)® $(m~'D)) =0 for ¢>n—nd(L).

(6.26) Special Case. If F' is a nef line bundle, then

HY(X,0(Kx +F))=0 for ¢>n—nd(F).
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Proof of Theorem 6.25. First suppose that nd(L) = n, i.e. that L is big. By the proof
of Theorem 6.17 (b), there is a singular Hermitian metric hg on L such that the corre-
sponding weight ¢ has algebraic singularities and

i®L,h0 = Qid/d”(po 2 EoW

for some g9 > 0. On the other hand, since L is nef, there are metrics given by weights
e such that 5-Op, > —cw for every ¢ > 0, w being a Kahler metric. Let pp =
> ajloglg;| be the weight of the singular metric on @(D). We define a singular metric

on F' by
1

$F = E((l —0)pr.e +00r,0+ SOD)

with e € § < 1, § rational. Then pp has algebraic singularities, and by taking § small
enough we find .¥(pr) = F(Lpp) = F(L D). In fact, f(¢r) can be computed by taking
integer parts of certain Q-divisors, and adding d¢y, o does not change the integer part of
the rational numbers involved when ¢ is small. Now

1
dd®pp = . ((1=0)ddpr,c + 6dd°pr o + dd°¢p)
1 )
> — (= (1-6)ew + deow + [D]) = %,
m m

if we choose € < dgg. Nadel’s theorem 5.11 thus implies the desired vanishing result for
all ¢ > 1.

Now, if nd(L) < n, we use hyperplane sections and argue by induction on n = dim X.
Since the sheaf O(Kx) ® .¥(m~1D) behaves functorially with respect to modifications
(and since the L? cohomology complex is “the same” upstairs and downstairs), we may
assume after blowing-up that D is a divisor with normal crossings. Then the multiplier
ideal sheaf .f(m~'D) = @(—|m~1D]) is locally free. By Serre duality, the expected
vanishing is equivalent to

HYX,0(-F)®@(lm™'D]))=0  for ¢ < nd(L).

Select a nonsingular ample divisor A such that A meets all components D; transversally,
and take A positive enough so that @(A+ F — [m~1D]) is ample. Then HY(X,@(—A —
F) @ @G(|lm™D])) = 0 for ¢ < n by Kodaira vanishing, and the exact sequence 0 —
Ox(—A) = Ox — (i4)+04 — 0 twisted by O(—F) ® @(|m~'D]) yields an isomorphism

HI(X,6(~F) @ 6(|m™'D))) ~ HI(A, 6(~F\4) © 6(|m~ D))
The proof of Proposition 6.21 showed that nd(L;4) = nd(L), hence the induction hy-

pothesis implies that the cohomology group on A on the right hand side is zero for
g < nd(L). O

6.E. A Uniform Global Generation Property due to Y.T. Siu

Let X be a projective manifold, and (L, h) a pseudo-effective line bundle. The “uniform
global generation property” states in some sense that the tensor product sheaf L ® .¥(h)
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has a uniform positivity property, for any singular Hermitian metric A with nonnegative
curvature on L.

(6.27) Theorem (Y.T. Siu, [Siu98]). Let X be a projective manifold. There exists an
ample line bundle G on X such that for every pseudo-effective line bundle (L,h), the
sheaf O(G 4+ L) ® ¥(h) is generated by its global sections. In fact, G can be chosen as
follows: pick any very ample line bundle A, and take G such that G — (Kx + nA) is
ample, e.g. G = Kx + (n+ 1)A.

Proof. Let ¢ be the weight of the metric A on a small neighborhood of a point zy € X.
Assume that we have a local section u of @(G + L) ® .¥(h) on a coordinate open ball
B = B(zp,6), such that

/ lu(2)|2e™22() |z — 2| 72"V (2) < +oc.
B

Then Skoda’s division theorem [Sko72b] (see also Corollary 11.13) implies u(z) = > (z; —
2j.0)v;(z) with

|vj(z)|26_2“’(z)\z — zo\_z(”_1+5)dV(Z) < 400,

in particular u,, € O(G+L)®.9(h)®@mx . Select a very ample line bundle A on X. We
take a basis o = (o) of sections of HY(X,G ®mx .,) and multiply the metric h of G by
the factor || ~2("*+¢). The weight of the above metric has singularity (n 4 ¢)log |z — zo|?
at zp, and its curvature is

(6.28) i0¢g + (n +¢€)iddlog|o|> > iOg — (n +¢)O 4.

Now, let f be a local section in H°(B,O(G + L) ® .F(h)) on B = B(z,6), 6 small. We
solve the global 0 equation _ _
Ou = 0(0f) on X

with a cut-off function 6 supported near zy and with the weight associated with our
above choice of metric on G + L. Thanks to Nadel’s theorem, the solution exists if the
metric of G + L — Kx has positive curvature. As iOr, ;, > 0 in the sense of currents,
(6.28) shows that a sufficient condition is G — Kx — nA > 0 (provided that ¢ is small
enough). We then find a smooth solution u such that u,, € O(G + L) ® $(h) ® mx ,,,
hence

F:=0f —uc HY(X,0(G+ L)®.%(h))

is a global section differing from f by a germ in @(G + L) ® .¥(h) ® mx ,,. Nakayama’s
lemma implies that H°(X,@(G + L) ® .$(h)) generates the stalks of @(G + L) ® F(h).



Chapter 7

A Simple Algebraic Approach to
Fujita’s Conjecture

This chapter is devoted to a proof of various results related to the Fujita conjecture.
The main ideas occurring here are inspired by a recent work of Y.T. Siu [Siu96]. His
method, which is algebraic in nature and quite elementary, consists in a combination of
the Riemann-Roch formula together with Nadel’s vanishing theorem (in fact, only the
algebraic case is needed, thus the original Kawamata-Viehweg vanishing theorem would
be sufficient). Slightly later, Angehrn and Siu [AS95; Siu95] introduced other closely
related methods, producing better bounds for the global generation question; since their
method is rather delicate, we can only refer the reader to the above references. In the
sequel, X denotes a projective algebraic n-dimensional manifold. The first observation
is the following well-known consequence of the Riemann-Roch formula.

(7.1) Special Case of Riemann-Roch. Let ¥ C Ox be a coherent ideal sheaf on X
such that the subscheme Y = V() has dimension d (with possibly some lower dimen-
sional components). Let [Y] = > \;[Y;] be the effective algebraic cycle of dimension d
associated to the d dimensional components of Y (taking into account multiplicities \;
given by the ideal ¥). Then for any line bundle F, the Euler characteristic

\(Y, 6(F +mL) y) = x(X,6(F + mL) & O /7)
is a polynomial P(m) of degree d and leading coefficient L% - [Y]/d!

The second fact is an elementary lemma about numerical polynomials (polynomials
with rational coefficients, mapping Z into Z).

(7.2) Lemma. Let P(m) be a numerical polynomial of degree d > 0 and leading coeffi-
cient ag/d!, aq € Z, ag > 0. Suppose that P(m) > 0 for m > mg. Then

(a) For every integer N > 0, there exists m € [mg, mo + Nd| such that P(m) > N.
(b) For every k € N, there exists m € [mg, mg + kd] such that P(m) > agk?®/2971.
(c) For every integer N > 2d?, there exists m € [mg, mg + N] such that P(m) > N.

Proof. (a) Each of the N equations P(m) =0, P(m) =1, ..., P(m) = N —1 has at most
d roots, so there must be an integer m € [mg, mo + dN| which is not a root of these.
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(b) By Newton’s formula for iterated differences AP(m) = P(m + 1) — P(m), we get

AYP(m) = Z (1) (j) Pm+d—j)=aq, Vm € Z.

1<5<d

Hence if j € {0,2,4, ...,2[d/2]} C [0,d] is the even integer achieving the maximum of
P(mgo + d — j) over this finite set, we find

2*4Pmm+d—j%=<cg4—CD+- )Pmm+d i) = aq,

whence the existence of an integer m € [mg, mg + d] with P(m) > aq/2%"!. The case
k = 1 is thus proved. In general, we apply the above case to the polynomial Q(m) =
P(km — (k — 1)myg), which has leading coefficient aqk?/d!

(c¢) If d = 1, part (a) already yields the result. If d = 2, a look at the parabola shows
that

max
mée[mo,mo+N]|

asN?/8, if N is even,
>
P(m) = {ag(NQ —1)/8, if N is odd;

thus max,,e(mq,mo+n) P(m) = N whenever N > 8. If d > 3, we apply (b) with k equal
to the smallest integer such that k4/2%1 > N, i.e. k = [2(N/2)Y/?], where [z] € Z
denotes the round-up of z € R. Then kd < (2(N/2)*/¢ 4 1)d < N whenever N > 2d?, as
a short computation shows. O

We now apply Nadel’s vanishing theorem pretty much in the same way as Siu [Siu96],
but with substantial simplifications in the technique and improvements in the bounds.
Our method yields simultaneously a simple proof of the following basic result.

(7.3) Theorem. If L is an ample line bundle over a projective n-fold X, then the adjoint
line bundle Kx + (n+ 1)L is nef.

By using Mori theory and the base point free theorem ([Mor82; Kaw84]), one can
even show that Kx + (n+ 1)L is semiample, i.e., there exists a positive integer m such
that m(Kx + (n+1)L) is generated by sections (see [Kaw85; Fuj87]). The proof rests on
the observation that n 4+ 1 is the maximal length of extremal rays of smooth projective
n-folds. Our proof of (7.3) is different and will be given simultaneously with the proof of
Theorem 7.4 below.

(7.4) Theorem. Let L be an ample line bundle and let G be a nef line bundle on a
projective n-fold X . Then the following properties hold.

(a) 2Kx + mL + G generates simultaneous jets of order si, ...,s, € N at arbitrary

points 1, ... ,x, € X, t.e., there is a surjective map

H(X,2Kx +mL+G) — @ OQ2Kx+mL+G)®Ox, /mY L,

1<j5<p
3 2s; — 1
provided that m > 2 + Z < nr S] )
1<5<p

. . 3n+1

In particular 2K x + mL + G is very ample for m > 2 + )
n
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(b) 2Kx + (n + 1)L + G generates simultaneous jets of order si, ... ,s, at arbitrary
points x1, ... ,x, € X provided that the intersection numbers LYY of L over all
d-dimensional algebraic subsets Y of X satisfy

2s; — 1
Ld~Y> Tn7d] > <3n+ & )

1<5<p

Proof. The proofs of Theorem 7.3 and Theorem 7.4 (a), (b) go along the same lines, so we
deal with them simultaneously; in the case of (7.3), we simply agree that {z1,...,z,} = 0.
The idea is to find an integer (or rational number) mg and a singular Hermitian metric
ho on K x +moL with strictly positive curvature current i©, > ew, such that V (.$(hy))
is 0-dimensional and the weight ¢ of hg satisfies v(pg, z;) > n + s; for all j. As L and
G are nef, (m — mg)L + G has for all m > mg a metric A’ whose curvature i® has
arbitrary small negative part (see [Dem90]), e.g., Oy > —Sw. Then iOp, +i0y > Sw
is again positive definite. An application of Corollary 5.12 to F = Kx + mL + G =
(Kx +moL) + ((m —mg)L + G) equipped with the metric hg ® h’ implies the existence
of the desired sections in Kx + F = 2K x +mL + G for m > my.

Fix an embedding ®,; : X — PN, i > 0, given by sections Ao, ...,An of
H O(X pL), and let hy, be the associated metric on L of positive definite curvature form
w = —@L .hp,- In order to obtain the desired metric hg on Kx +moL, we fix a € N* and
use a double induction process to construct singular metrics (h,,),>1 on aK x + by L for
a non increasing sequence of positive integers by > by > --- > b, > ---. Such a sequence
much be stationary and mg will just be the stationary limit mq = lim by /a. The metrics
hy,. are taken to satisfy the following properties:

(a) hgk,, is an algebraic metric of the form

|7(8) I

(a—|—1)u( ;LM . )\ga—kl)bk—amz)

l€llR,.., =

NG

( 1<i<y, 0N ‘T

defined by sections o; € H(X, (a+1)Kx+m;L), m; < “ty, 1 <i < v, where £ —

7,(£) is an arbitrary local trivialization of aK x + by L ; note that of* - /\(aH)b’“ e

is a section of

ap((a+ 1) Kx +m; L) + ((a+ 1)by — am;)ul = (a + 1)pu(aKx + by L).

(b) ordg,(o;) = (a+1)(n + s;) for all 4,5;
(c) H(hiyt1) D F(hgy) and F(hg,p41) # F(hi,) whenever the zero variety V(¥ (hy,,))

has positive dimension.

. a+1 a a+1)by—am;y |2
The weight ¢y, = m log > ’7']2 )“(ai“ . )\g. )P )
monic and the condition m; < “Tﬂbk implies (a + 1)by — am; > 1, thus the difference
Pl — mlogz (A7)
Ldd oy, > ﬁw. Moreover, condition b) clearly implies v(¢k,., ;) = a(n + s;).

of hy,, is plurisubhar-
is also plurisubharmonic. Hence ﬁ@hk,l,(aKX + b L) =

Finally, condition c¢) combined with the strong Noetherian property of coherent sheaves
ensures that the sequence (hy,),>1 will finally produce a zero dimensional subscheme
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V(F(hk,,)). We agree that the sequence (hy ., ),>1 stops at this point, and we denote by
hi = hy,, the final metric, such that dim V(.¥(hy)) = 0.

For k = 1, it is clear that the desired metrics (h; ,),>1 exist if b; is taken large enough
(so large, say, that (a + 1)Kx + (by — 1)L generates jets of order (a + 1)(n + maxs;) at
every point; then the sections o1, ..., 0, can be chosen with my = --- =m, = b; — 1).
Suppose that the metrics (hg,),>1 and hi have been constructed and let us proceed
with the construction of (hxt1,),>1. We do this again by induction on v, assuming
that hyy1, is already constructed and that dim V (.f(hx41,)) > 0. We start in fact the
induction with v = 0, and agree in this case that .¥(hg+1,0) = 0 (this would correspond
to an infinite metric of weight identically equal to —o0). By Nadel’s vanishing theorem
applied to

F,, =aKx +mL = (aKx +bpL)+ (m —by)L

with the metric hy ® (hz)®™ b we get
HYX,0((a+1)Kx +mL)® ¥(h)) =0 for g > 1, m > by.

As V(S(hg)) is O-dimensional, the sheaf @Oy /.f(hy) is a skyscraper sheaf, and the exact
sequence 0 — F(hg) — Ox — Ox/.F(h;) — 0 twisted with the invertible sheaf @((a +
1)K x +mL) shows that

HYX,0((a+1)Kx +mL)) =0 for ¢ > 1, m > by.
Similarly, we find
HUX,0((a+1)Kx +mL) ® F(hgt1,,)) =0 forg > 1, m = br41

(also true for v = 0, since .¥(hgy1,0) = 0), and when m > max (b, bx+1) = by, the exact
sequence 0 = F(hy41,) = Ox = Ox /S (hgy1,v) — 0 implies

HO(X,0((a+ )Kx +mL) ©Ox/I(hi1,)) =0 forq>1,m > by

In particular, since the H! group vanishes, every section u’ of (a + 1)K x + mL on the
subscheme V' (.$(hg41,,)) has an extension u to X. Fix a basis u}, ... ,u/y of the sections
on V(F(hg+1,,)) and take arbitrary extensions uy, ... ,uy to X. Look at the linear map
assigning the collection of jets of order (a + 1)(n + s;) — 1 at all points z;

u= Y aju;— @V (y),
1<ySN
Since the rank of the bundle of s-jets is (”:S), the target space has dimension
n+(a+1)(n+s;)— 1)
0= I .
> (e
1<g<p

In order to get a section 0,41 = wu satisfying condition b) with non trivial restriction
0,41 to V(F(hrt1,0)), we need at least N = ¢ + 1 independent sections uj, ..., uly.
This condition is achieved by applying Lemma 7.2 to the numerical polynomial
P(m) = x(X,@((a + 1) Kx +mL) & Ox /H(hxs1,))
=h(X,0((a+1)Kx +mL) @ Ox/F(hgr1,)) =0,  m > by
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The polynomial P has degree d = dim V(S (hg+1,)) > 0. We get the existence of
an integer m € [bg, by + 1] such that N = P(m) > § + 1 with some explicit integer
n € N (for instance n = n(J + 1) always works by Lemma 7.2 (a), but we will also
use other possibilities to find an optimal choice in each case). Then we find a section
ov41 € HY(X, (a 4+ 1)Kx + mL) with non trivial restriction o/, ; to V(F(hit1,)),
vanishing at order > (a + 1)(n + s;) at each point z;. We just set m,11 = m, and
the condition m,11 < “1’1 br+1 is satisfied if by, + 1 < “1’1 bi+1. This shows that we can
take inductively

a
b =|——(@ 1.
k1 Ll_i_l(kﬂLﬁ)JﬂL

By definition, Ag+1,,4+1 < Rk+1,, hence F(hpt1,041) DO F(hgt1,0). We necessarily have
S(hit1,04+1) # F(hk41,), for F(hgs1,+1) contains the ideal sheaf associated with the
zero divisor of o,.4, whilst 0,41 does not vanish identically on V(.$(hgy1,)). Now,
an easy computation shows that the iteration of byi1 = [ 47(bx +n)] + 1 stops at
by = a(n+ 1) + 1 for any large initial value b;. In this way, we obtain a metric ho,
of positive definite curvature on aKx + (a(n+ 1) + 1)L, with dim V(.¥(hs)) = 0 and
V(poo, ;) = a(n + s;) at each point z;.

Proof of Theorem 7.3. In this case, the set {x;} is taken to be empty, thus § = 0. By
Theorem 7.2 (a), the condition P(m) > 1 is achieved for some m € [by, bx, +n] and we can
take n = n. As uL is very ample, there exists on pL a metric with an isolated logarithmic
pole of Lelong number 1 at any given point zy (e.g., the algebraic metric defined with
all sections of pL vanishing at xg). Hence

F! =aKx + (a(n+1)+ 1)L + nuL

has a metric h, such that V(.¥(h,)) is zero dimensional and contains {z(}. By Corollary
6.12, we conclude that

Kx+F,=(a+1)Kx + (a(n+1)+1+nu)L

is generated by sections, in particular Kx + W#L is nef. As a tends to +o0, we

infer that Kx + (n+ 1)L is nef. O
Proof of Theorem 7.4 (a). Here, the choice a = 1 is sufficient for our purposes. Then
an+2s; —1
0= J .
> ()
1<isp

If {x;} # 0, we have § +1 > (Snn_l) +1 > 2n? for n > 2. Lemma 7.2 (c) shows that
P(m) > d+1 for some m € [by, by, +n] with n = 6+ 1. We can start in fact the induction
procedure k — k + 1 with by =n+ 1 = 0 + 2, because the only property needed for the

induction step is the vanishing property
HY(X,2Kx +mL)=0  forq>1,m> by,

which is true by the Kodaira vanishing theorem and the ampleness of Ky + b; L (here
we use Fujita’s result 7.3, observing that by > n + 1). Then the recursion formula
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bit1 = |2(bx +n)] + 1 yields by =n+1 =6+ 2 for all k, and Theorem 7.4 (a) follows.
U

Proof of Theorem 7.4 (b). Quite similar to Theorem 7.4 (a), except that we take n = n,
a=1and b, = n+1 for all k. By Lemma 7.2 (b), we have P(m) > aqk?/2¢"! for
some integer m € [mg, mo + kd], where ag > 0 is the coefficient of highest degree in P.
By Lemma 7.2 we have aq > infqimy—qL? Y. We take k = |n/d]. The condition
P(m) > d+1 can thus be realized for some m € [mg, mg + kd] C [mg, mo + n] as soon as

. d d jod—1
Lnf LY (nfd)? /20t >,

which is equivalent to the condition given in Theorem 7.4 (b). O

(7.5) Corollary. Let X be a smooth projective n-fold, let L be an ample line bundle and
G a nef line bundle over X. Then m(K x+(n+2)L)+G is very ample for m > (3”:1) —2n.

Proof. Apply Theorem 7.4 (a) with G’ = a(Kx + (n+ 1)L) + G, so that
2Kx +mL+G' = (a+2)(Kx+ (n+2)L)+ (m—2n—4—a)L + G,
andtakem:a+2n+4>2—|—(3”;1). O

The main drawback of the above technique is that multiples of L at least equal to
(n + 1)L are required to avoid zeroes of the Hilbert polynomial. In particular, it is not
possible to obtain directly a very ampleness criterion for 2K x + L in the statement of
Theorem 7.4 (b). Nevertheless, using different ideas from Angehrn-Siu [AS95; Siu96|
has obtained such a criterion. We derive here a slightly weaker version, thanks to the
following elementary lemma.

(7.6) Lemma. Assume that for some integer p € N* the line bundle uF generates
simultaneously all jets of order p(n + s;) + 1 at any point x; in a subset {x1, ... ,xp}
of X. Then Kx + F generates simultaneously all jets of order s; at x;.

Proof. Take the algebraic metric on F' defined by a basis of sections o1, ... ,on of uF
which vanish at order p(n + s;) 4+ 1 at all points z;. Since we are still free to choose the
homogeneous term of degree p(n + s;) + 1 in the Taylor expansion at x;, we find that
x1, ... ,Tp are isolated zeroes of | aj_l(()). If ¢ is the weight of the metric of F' near z;,
we thus have ¢(z) ~ (n+s; + %) log |z — x| in suitable coordinates. We replace ¢ in a
neighborhood of z; by

¢ (2) = max (p(2) , |2]* = C + (n + s;) log |z — 1)

and leave ¢ elsewhere unchanged (this is possible by taking C' > 0 very large). Then
¢'(2) = |2|*—=C+(n+s;)log|z— ;| near z;, in particular ¢’ is strictly plurisubharmonic
near z;. In this way, we get a metric A’ on F' with semipositive curvature everywhere
on X, and with positive definite curvature on a neighborhood of {zy,...,z,}. The
conclusion then follows directly from Hoérmander’s L? estimates (5.1) and (5.2). O

(7.7) Theorem. Let X be a smooth projective n-fold, and let L be an ample line bundle
over X. Then 2K x + L generates simultaneous jets of order s1, ... , s, at arbitrary points
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Z1, ..., Ty € X provided that the intersection numbers LY of L over all d-dimensional
algebraic subsets Y of X satisfy

LY > ———

2d-1 ((n +1)(dn+2s; 4+ 1) — 2
d
Ln/dj 1<isp

), 1<d<n.
n

Proof. By Lemma 7.6 applied with F' = Kx + L and u = n+1, the desired jet generation
of 2K x + L occurs if (n+1)(K x + L) generates jets of order (n + 1)(n+s;) + 1 at z;. By
Lemma 7.6 again with F'=aKx + (n+ 1)L and p = 1, we see by backward induction
on a that we need the simultaneous generation of jets of order

(n+1)(n+s;)+1+n+1—-a)(n+1)

at x;. In particular, for 2Kx + (n + 1)L we need the generation of jets of order
(n+1)(2n+s; —1) + 1. Theorem 7.4 (b) yields the desired condition. O

We now list a few immediate consequences of Theorem 7.4, in connection with some
classical questions of algebraic geometry.

(7.8) Corollary. Let X be a projective n-fold of general type with Kx ample. Then
mK x is very ample for m > mg = (?’nrjrl) + 4.

(7.9) Corollary. Let X be a Fano n-fold, that is, a n-fold such that —Kx is ample.
Then —mK x is very ample for m > mg = (?’ngrl).

Proof. Corollaries 7.8, 7.9 follow easily from Theorem 7.4 (a) applied to L = £Kx.
Hence we get pluricanonical embeddings ® : X — P such that ®*@(1) = £moKx. The
image Y = ®(X) has degree

deg(Y):/Ycl(@(l))n:/Xcl(:i:mOKX)n:mmK%.

It can be easily reproved from this that there are only finitely many deformation types
of Fano n-folds, as well as of n-folds of general type with Kx ample, corresponding to
a given discriminant |K%| (from a theoretical viewpoint, this result is a consequence
of Matsusaka’s big theorem [Mat72; KoM8&3], but the bounds which can be obtained
from it are probably extremely huge). In the Fano case, a fundamental result obtained
independently by Kollar-Miyaoka-Mori [KoMM92] and Campana [Cam92] shows that the
discriminant K% is in fact bounded by a constant C,, depending only on n. Therefore,
one can find an explicit bound C!, for the degree of the embedding ®, and it follows that
there are only finitely many families of Fano manifolds in each dimension. U

In the case of surfaces, much more is known. We will content ourselves with a brief
account, of recent results. If X is a surface, the failure of an adjoint bundle Kx + L to
be globally generated or very ample is described in a very precise way by the following
result of I. Reider [Rei88].

(7.10) Reider’s Theorem. Let X be a smooth projective surface and let L be a nef
line bundle on X.



72 Analytic Methods in Algebraic Geometry

(a) Assume that L? > 5 and let # € X be a given point. Then Kx + L has a section
which does not vanish at x, unless there is an effective divisor D C X passing through
x such that either
L-D=0 and D?=-1; or

L-D=1 and D?=0.

(b) Assume that L? > 10. Then any two points x,y € X (possibly infinitely near) are
separated by sections of Kx + L, unless there is an effective divisor D C X passing
through x and y such that either

L-D=0 and D?=—-1or —2; or
L-D=1 and D?*=0 or —1; or
L-D=2 and D?*=0.

(7.11) Corollary. Let L be an ample line bundle on a smooth projective surface X.
Then K x + 3L is globally generated and K x +4L is very ample. If L? > 2 then Kx + 2L
15 globally generated and Kx + 3L is very ample.

The case of higher order jets can be treated similarly. The most general result in
this direction has been obtained by Beltrametti and Sommese [BeS93].

(7.12) Theorem ([BeS93]). Let X be a smooth projective surface and let L be a nef line
bundle on X. Let p be a positive integer such that L? > 4p. Then for every 0-dimensional
subscheme Z C X of length h°(Z,@z) < p the restriction

pz : HY(X,0x(Kx + L)) — H°(Z,04(Kx + L))

is surjective, unless there is an effective divisor D C X intersecting the support |Z| such
that

L~D—p<D2<%L~D. O

Proof (Sketch). The proof the above theorems rests in an essential way on the construc-
tion of rank 2 vector bundles sitting in an exact sequence

0—-0x - F—->LRQ.57—0.

Arguing by induction on the length of Z, we may assume that Z is a 0-dimensional
subscheme such that pz is not surjective, but such that pz/ is surjective for every proper
subscheme Z' C Z. The existence of F is obtained by a classical construction of Serre
(unfortunately, this construction only works in dimension 2). The numerical condition
on L? in the hypotheses ensures that c¢1(E)? —4cy(E) > 0, hence E is unstable in the
sense of Bogomolov. The existence of the effective divisor D asserted in Theorems 7.10 or
7.12 follows. We refer to [Rei88], [BeS93] and [Laz97] for details. The reader will find in
[FdB95] a proof of the Bogomolov inequality depending only on the Kawamata-Viehweg
vanishing theorem. O
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(7.13) Exercise. Prove the Fujita conjecture in the case of dimension 1, according to
the following steps.

(a) By using Hodge theory, show that for every smooth function f on a compact Kéhler
manifold (X,w), the equation Au = f has a solution if and only if [ fdV,, = 0.

(b) Derive from (a), by using the local solvability of elliptic operators, that one has a
similar result when f is a distribution.

(¢) If X = C is a compact complex curve and L a positive line bundle, for every pos-
itive measure p on X such that [, pu = deg(L) = [, c1(L), there exists a singular
Hermitian metric h on L such that 5-0,(L) = p (with the obvious identification of
measures and currents of bidegree (1,1)).

(d) Given a finite collection of points z; € C' and integers s; > 0, then K¢+ L generates
jets of order s; at all points z; as soon as deg(L) > >_.(s; +1).

(e) If L is positive on C', then K¢ + 2L is globally generated and K¢ + 3L is very ample.

(7.14) Exercise. The goal of the exercise is to prove the following weaker form of
Theorems 7.10 and 7.12, by a simple direct method based on Nadel’s vanishing theorem:

Let L be a nef line bundle on a smooth projective surface X. Fix points x1, ... , TN
and corresponding multiplicities sy, ...,sny, and set p = > (2 + sj)g. Then
H°(X,Kx + L) generates simultaneously jets of order s; at all points x; provided
that L? > p and L - C > p for all curves C passing through one of the points x;.

(a) Using the Riemann-Roch formula, show that the condition L? > p implies the exis-
tence of a section of a large multiple mL vanishing at order > m(2 + s;) at each of
the points.

(b) Construct a sequence of singular Hermitian metrics on L with positive definite cur-
vature, such that the weights ¢, have algebraic singularities, v(yp,,x;) > 2 + s; at
each point, and such that for some integer m; > 0 the multiplier ideal sheaves satisfy
F(mipuv+1) 2 Fmaipy) if V(F(p,)) is not 0-dimensional near some z;.

Hint: (a) starts the procedure. Fix mg > 0 such that moL — Kx is ample. Use Nadel’s
vanishing theorem to show that

HYX,0((m+mo)L) @ $(Amyp,)) =0  forallg>1,m >0, \e|0,1].

Let D, be the effective Q-divisor describing the 1-dimensional singularities of ¢,. Then
S(Amp,) C @G(—|AmD, |) and the quotient has 0-dimensional support, hence

HY(X,@((m+ mgy)L) ® O(—|AmD,])) =0 forallg>1,m >0, X €[0,1].

By the Riemann-Roch formule again prove that

(%) KO(X,@((m+mo)L) ® @/G(—|AmD,|)) = %Q(QAL . D, — X2D2) + O(m).

As the left hand side of (x) is increasing with A\, one must have D2 < L-D,,. If V(¥(,))
is not 0-dimensional at x;, then the coefficient of some component of D, passing through

x; is at least 1, hence
2L-D,—-D>>L-D,>p+1.
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Show the existence of an integer m; > 0 independent of v such that

W (X, 6((m+mo)L) ® O/O(~|mD, ) > <<

m+mg)(2+s;) + 2)
1<<N

2

for m > my, and infer the existence of a suitable section of (m; + mg)L which is not
in HY(X,@((my + mo)L — [m1D,])). Use this section to construct ¢,,; such that

F(mippy1) 2 F(mip,).



Chapter 8

Holomorphic Morse Inequalities

Holomorphic Morse inequalities were first introduced in [Dem85] to improve Siu’s solution
of the Grauert-Riemenschneider conjecture. They express asymptotic bounds on the
cohomology of tensor bundles of holomorphic line bundles, and appear to be a useful
complement to the Riemann-Roch formula. We present here the main results and several
important applications. The reader is referred to [Dem85b, 91] for the required analytic
details in the spectral theory of operators.

8.A. General Analytic Statement on Compact Complex
Manifolds

Let X be a compact complex manifold, £ a holomorphic vector bundle of rank r and L
a line bundle over X. If L is equipped with a smooth metric h of curvature form Oy, j,
we define the ¢g-index set of L to be the open subset

tive ei 1
(8.1) X(L,h,q) = {x € X ; iOp p(v) has 4 negative elgetiva ues}

n —q positive eigenvalues

for 0 < ¢ < n. Hence X admits a partition X = AUlJ, X(L, h,q) where
A={xe X;det(O(x)) =0}

is the degeneracy set. We also introduce

(8.1) X(L,h,<q) = |J X(L,hj).

(8.2) Morse inequalities ([Dem85b]). For any Hermitian holomorphic line bundle
(L,h) and any holomorphic vector bundle E over a compact complex manifold X, the
cohomology groups HY (X,E ® @(kL)) satisfy the following asymptotic inequalities as
k— 400 :

(a) Weak Morse inequalities

k" i n
1X,0(F 9(kL)) <r— N ™.
h ( ,O(FE) ® O(k )) r o X(L’h’q)( ) (QW@L’h> + o(k™)
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(b) Strong Morse inequalities

ke i n
Lo, h) +o(k™).

S (—1)TR (X, 6(E) @ O(kL)) < re —1>q( ,
n' X(L,h,gq) 2

0<isg

The proof is based on the spectral theory of the complex Laplace operator, using
either a localization procedure or, alternatively, a heat kernel technique. These inequa-
lities are a useful complement to the Riemann-Roch formula when information is needed
about individual cohomology groups, and not just about the Euler-Poincaré characteris-
tic. One of the typical consequences is a solution of the Grauert-Riemenschneider con-
jecture, which was first announced by [Siu84] in the case of a semi-positive line bundle L,
and by [Dem85b] in general.

(8.3) Corollary (solution of the Grauert-Riemenschneider conjecture, [Siu84; Dem85b]).
Let X be a compact compler manifold carrying a holomorphic Hermitian line bundle

(L, h) such that
/ (L@L’h) > 0.
X (L,h,<1) 27

Then L is a big line bundle, and as a consequence, X is a Moishezon manifold, i.e. is
bimeromorphic to a projective manifold.

Proof. In the case ¢ = 1, the strong Morse inequalities yield

n

RO(X, O(KL)) — (X, O(kD)) > / (
X(L,h,<1)

n!

i

QW@L’h>n —o(k™) = ck™, ¢>0,

hence L is big. U

(8.4) Corollary. If X is compact Kdhler and L is nef, then

h1(X,0(F)® O(kL)) = o(k") for all g > 1.
Proof. Let w be a Kahler metric. The nefness of L implies that there exists a smooth
Hermitian metric k. on L such that 5-Or 4. > —ew. On X (L, he, 1) we have exactly

1 negative eigenvalue A\; which is belongs to [—¢,0[ and the other ones A; (j > 2) are
positive. The product Ay - -+ A, satisfies [A1--- A < e[];50(e + Az), hence

1 1 n
H(Lloy,)
n! (27r L:he

By integrating, we find

1
(n—1)!

1 n—1
< ew A (au—l—QLG)L,hE) on X(L,h.1).
7r

i

/ (—@Lyhg) <n5/ oJ/\(cl(L)-l—oJ)”_1
X (L,he,1) 27 X

and the result follows. (Note: when X is non Kéhler, D. Popovici [Pop08| has announced
bounds for the Monge-Ampere masses of Oy, ;,_ which still imply the result, but the proof
is much harder in that case.) u
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8.B. Algebraic Counterparts of the Holomorphic Morse
Inequalities

One difficulty in the application of the analytic form of the inequalities is that the cur-
vature integral is in general quite uneasy to compute, since it is neither a topological nor
an algebraic invariant. However, the Morse inequalities can be reformulated in a more
algebraic setting in which only algebraic invariants are involved. We give here two such
reformulations.

(8.5) Theorem. Let L = F — G be a holomorphic line bundle over a compact Kdihler
manifold X, where F and G are numerically effective line bundles. Then for every
q=20,1,...,n=dim X, there is an asymptotic strong Morse inequality

k" —i(n n—j j n
> (-1)77R (X, kL) < — > (1) 9<j)F I GI 4 o(k™).
0<y<q 0<y<q

Proof. By adding ¢ times a Kéhler metric w to the curvature forms of F and G, € > 0
one can write —@L 0re — 0g,e where 0. = 5-OFp +ew and 0g . = 5-O¢ + cw are
positive deﬁnite Let Ay =2 --- > A, > 0 be the elgenvalues of O . with respect to Op .
Then the eigenvalues of 3 @ r with respect to 0. are the real numbers 1 — A\; and the
set X (L, h, < q) is the set {)\q+1 < 1} of points # € X such that A\j41(z) < 1. The strong
Morse inequalities yield

>y k) < /{ (—1)7 T (1= A0 + (k™).

0<j<q Aat1<l} 1 ggn

On the other hand we have

N\ i ; ; n
<j)9F,€j A Hé,e = U%<)‘) F.e»

where o7 (\) is the j-th elementary symmetric function in A1, ..., A, , hence
> (M) a =t [ Y oo
0<j<q J X o<

Thus, to prove the lemma, we only have to check that

D (D) on () =g, (=D [T =2 =0

0<isn 1<jsn
for all Ay > --- > A\, = 0, where ]1{ 3 denotes the characteristic function of a set.
This is easily done by induction on n (just split apart the parameter A\, and write
I (N =0ol (N +al ) M) O

In the case ¢ = 1, we get an especially interesting lower bound (this bound has been
observed and used by S. Trapani [Tra95] in a similar context).
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(8.6) Consequence. h'(X, kL) — h'(X, kL) > ’%(F” —nF" 1. G) — o(k™).

Therefore some multiple kL has a section as soon as F™ —nF"~1.G > 0.

(8.7) Remark. The weaker inequality

h(X, kL) > k—'(F” —nF"1.GQ) - o(k")

n.

is easy to prove if X is projective algebraic. Indeed, by adding a small ample Q-divisor
to F' and G, we may assume that F', G are ample. Let moG be very ample and let £’
be the smallest integer > k/mg. Then h%(X,kL) > h°(X,kF — k'moG). We select k’
smooth members G;, 1 < j < k' in the linear system |mG| and use the exact sequence

0— HYX,kF - G;) = H'(X,kF) - @ H°(G;, kFg,).

Kodaira’s vanishing theorem yields HY(X, kF) = 0 and H(G}, kF|g,) = 0 for ¢ > 1 and
k > ko. By the exact sequence combined with Riemann-Roch, we get

hO(X, kL) > h°(X,kF =) G))

> %F” _ O(k’n_l) _ Z ( kol Frl 'Gj _ O(kn—Q))

(n—1)!
k’fb n k/mO n—1 n—1
> m(F —n=F -G) — Ok
k’I’L
> (F” _nFnl G) — Ok,
n!
(This simple proof is due to F. Catanese.) O

(8.8) Corollary. Suppose that F' and G are nef and that F is big. Some multiple of
mF — G has a section as soon as

In the last condition, the factor n is sharp: this is easily seen by taking X = P} and
F =0(a,...,a) and G = O(by,...,b,) over PT; the condition of the corollary is then
m > > b;/a, whereas k(mF — G) has a section if and only if m > supb;/a; this shows
that we cannot replace n by n(1 — ¢).

8.C. Asymptotic Cohomology Groups

In order to estimate the growth of individual cohomology groups, it is interesting to
consider appropriate “asymptotic cohomology functions”. We mostly follow here notation
and concepts introduced by A. Kiironya [Kur06; FKL07].
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(8.9) Definition. Let X be a compact complex manifold. One defines the asymptotic
(analytic) q-cohomology function on NSg(X) to be

~ |
h(X,a) = lim sup %hq(X, L)
k— 400, %cl (L)—a
n!
= inf sup —hi(X, L).

e>0,ko>0  pspolide,(L)—al<e K

where the pair (k,L) runs over N* x Pic(X).

From the very definition, h is an upper semi-continuous function on NSg(X) and
it is positively homogeneous of degree n, namely

(8.10) h9(X, Aa) = A\"h9(X, o)

for all & € NSg(X) and all A > 0. In the general case of compact complex manifolds,

the fact that ﬁq(X ,«) is finite follows from spectral theory estimates for the complex
Laplace-Beltrami operators (this will become quite clear from the discussions below).

For a line bundle L, we simply denote h%(X, L) = h%(X, ¢1(L)). In this case, things
become a little bit simpler, and especially, for ¢ = 0, one recovers the usual concept of
volume of a line bundle.

(8.11) Proposition. If X is projective algebraic or ¢ =0, then

~ | |
h9(X, L) = limsup %hq(X,L‘X’k): lim %hq(X,L@)k).

k—+o0 k—+oc0

Moreover, in these cases, the map a /ﬁq(X, a) is (locally) Lipschitz continuous on
NSr(X).

The proof is derived from arguments quite similar to those already developed in
[Kur05]. Actually, let us introduce DNSg(X) C NSg(X) to be the subspace generated
by classes of integral divisors D on X (“divisorial Neron-Severi group”). If X is pro-
jective algebraic then DNSg(X) = NSg(X), but the inclusion can be strict in general
(e.g. on complex 2-tori which only have indefinite integral (1,1)-classes, cf. [BLO4]). If
D = Y p;D; is an integral divisor, we define its norm to be || D| = )_ |p;| Vol,(D;),
where the volume of an irreducible divisor is computed by means of a given Hermitian
metric w on X; in other words, this is precisely the mass of the current of integration [D]
with respect to w. Clearly, since X is compact, we get equivalent norms for all choices of
Hermitian metrics w on X. We can also use w to fix a normalized metric on Hé’é (X, R).
Elementary properties of potential theory show that ||c1(@(D))|| < C||D]| for some con-
stant C' > 0 (but the converse inequality is of course wrong in most cases). Proposition
8.11 is a simple consequence of the more precise cohomology estimates (8.15) which will
be obtained below.

(8.12) Lemma. Let X be a compact complex n-fold. Then for every coherent sheaf F
on X, there is a constant C'y > 0 such that for every holomorphic line bundle L on X
we have

h{(X,F @ Ox(L)) < C5([[er(L)] + 1)



80 Analytic Methods in Algebraic Geometry

where p = dim Supp F.

Proof. We prove the result by induction on p; it is indeed clear for p = 0 since we
then have cohomology only in degree 0 and the dimension of H%(X,F ® @x (L)) does
not depend on L when F has finite support. Let us consider the support Y of F and a
resolution of singularity i : Y — Y of the corresponding (reduced) analytic space. Then
F is an Oy-module for some non necessarily reduced complex structure Oy = Ox /¥ on
J. We can look at the reduced structure Oy ,oq = Ox /¥, $ = /¥, and filter F by J*F,
k > 0. Since 3’“9’/&’“’19’ is a coherent Oy ,.q4-module, we can easily reduce the situation
to the case where Y is reduced and ¥ is an @y-module. In that case the cohomology

HY X, F ©O0x(L))=HU (Y, 7 ©0Oy(Ly))

just lives on the reduced space Y.

Now, we have an injective sheaf morphism F — p,pu*F whose cokernel ‘G has support
in dimension < p. By induction on p, we conclude from the exact sequence that

WX, F @ Ox (L)) — hU(X, o™ F @ O (L))] < Co (flea (L) +1)77.
The functorial morphisms
p o HUY,F @ Oy (Ly)) = HU(Y, 1" F @ O (1 L)y ),
po t HU(Y, 1*F @ Op (L)) = HUY, pups™F @ Oy (Lyy))
yield a composition
psop* s HI(Y, F @ Oy (Lyy)) = HUY, pupt™F @ Oy (L}y))
induced by the natural injection F — p,pu*F. This implies

WY, T @ Oy (Ly)) <Y, 1°F © O (1" Liy)) + Cr(fler (D) + 1P

By taking a suitable modification p' : Y’ — Y of the desingularization 17, we can assume
that (u/)*F is locally free modulo torsion. Then we are reduced to the case where F' =
(1')*F is a locally free sheaf on a smooth manifold Y, and L' = (¢/)*L;y. In this case,
we apply Morse inequalities to conclude that h?(Y', F' ® Oy (L)) < Cao||c1 (L) + 1)P.
Since |lc1(L")]| < Csllei(L)|| by pulling-back, the statement follows easily. O

(8.13) Corollary. For every irreducible divisor D on X, there exists a constant Cp
such that
h*(D,Op(Lip)) < Cp(ller (L) + )"

Proof. 1t is enough to apply Lemma 8.12 with F = (ip).@p where ip : D — X is the
injection. U

(8.14) Remark. It is very likely that one can get an “elementary” proof of Lemma 8.12
without invoking resolutions of singularities, e.g. by combining the Cartan-Serre finiteness
argument along with the standard Serre-Siegel proof based ultimately on the Schwarz
lemma. In this context, one would invoke L? estimates to get explicit bounds for the
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homotopy operators between Cech complexes relative to two coverings U = (B (x5,75)),
W = (B(z;,7;/2)) of X by concentric balls. By exercising enough care in the estimates,
it is likely that one could reach an explicit dependence Cp < C’||D|| for the constant
Cp of Corollary 8.13. The proof would of course become much more technical than the
rather naive brute force approach we have used.

(8.15) Theorem. Let X be a compact compler manifold. Fix a finitely generated
subgroup T' of the group of Z-divisors on X. Then there are constants C', C' depending
only on X, its Hermitian metric w and the subgroup I, satisfying the following properties.

(a) Let L and L' = L ® G(D) be holomorphic line bundles on X, where D € T' is an
integral divisor. Then

|p(X, L) = h?(X, L)| < C(llex (L) + [1DID"HIDII-

(b) On the subspace DNSg(X), the asymptotic q-cohomology function ha satisfies a global
estimate

[R9(X, B) = h(X, )| < C([all + 181)" 1|8 — ol

In particular (without any further assumption on X), h s locally Lipschitz continuous

on DNSg(X).

Proof. (a) We want to compare the cohomology of L and L’ = L ® G(D) on X. For
this we write D = D, — D_, and compare the cohomology of the pairs L and L; =
L ® @(—D_) one one hand, and of L’ and L1 = L’ ® O(—D, ) on the other hand. Since
|lc1(@(D))|| < C||DJ| by elementary potential theory, we see that is is enough to consider
the case of a negative divisor, i.e. L'’ = L @(—D), D > 0. If D is an irreducible divisor,
we use the exact sequence

0=+ L®O(-D)—L—0p®Lp—0
and conclude by Corollary 8.13 that

’hq(Xv L® @(_D)> - hq(X7 L)’ < hq(D7@D ® L|D> + hq_l(D7@D & L\D)
< 20p(ler D) + 1)

For D =) p;D; > 0, we easily get by induction
n—1
h(X, L ®G(-D)) - h(X,L)| <2 p;Cp, (Hcl(L)u + ) ol Vil + 1)
J k

If we knew that Cp < C’||D|| as expected in Remark 8.14, then the argument would be
complete without any restriction on D. The trouble disappears if we fix D in a finitely
generated subgroup I' of divisors, because only finitely many irreducible components
appear in that case, and so we have to deal with only finitely many constants Cp,.
Property 8.15 (a) is proved.

(b) Fix once for all a finite set of divisors (A;)i<;<¢+ providing a basis of DNSg(X)C
Hé’é(X, R). Take two elements a and # in DNSg(X), and fix ¢ > 0. Then 8 — a can
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be e-approximated by a Q-divisor > A\;D;, A\; € Q, and we can find a pair (k, L) with k
arbitrary large such that 7c1(L) is e-close to a and n!/k™h?(X, L) approaches h1(X, a)
by €. Then %L—i—z A;A; approaches 3 as closely as we want. When approximating 8—a,

we can arrange that £); is an integer by taking k large enough. Then 3 is approximated
by 1e1(L') with L' = L ® @3 kA;A;). Property (a) implies

PUX, L) = WX L) > =C (e D]+ | 3 kA, )MH D kAA|
> —Ck"(llaf| +e+ 18 —all +)" (18 - al +e).

We multiply the previous inequality by n!/k™ and get in this way

n! ~ _

DX L) 2 WX ) =& = C ([l + 18]l + )" (18 = all + ).
By taking the limsup and letting ¢ — 0, we finally obtain

RY(X, B) — h1(X,a) = —C"(|lall + |B])" |58 - al.-

Property 8.15 (b) follows by exchanging the roles of o and £. O

8.D. Transcendental Asymptotic Cohomology Functions

Our ambition is to extend the function h? in a natural way to the full cohomology group
H llg’é(X ,R). The main trouble, already when X is projective algebraic, is that the Picard
number p(X) = dimg NSg(X) may be much smaller than dimg Hllg’cl(X, R), namely, there
can be rather few integral classes of type (1,1) on X. It is well known for instance that
p(X) = 0 for a generic complex torus a dimension n > 2, while dimpg Hé’é(X, R) = n?.
However, if we look at the natural morphism

Hy (X, R) — H3R(X,R) ~ H?(X,R)

to de Rham cohomology, then H?(X, Q) is dense in H?(X,R). Therefore, given a class
aceH é’é(X ,R) and a smooth d-closed (1, 1)-form w in «, we can find an infinite sequence
%Lk (k € S C N) of topological Q-line bundles, equipped with Hermitian metrics hj and
compatible connections Vj such that the curvature forms %@vk converge to u. By
using Kronecker’s approximation with respect to the integral lattice H?(X,Z)/torsion C
H?(X,R), we can even achieve a fast diophantine approximation

(8.16) 10y, — kul| < Ck~1/b2
for a suitable infinite subset £ € S C N of multipliers. Then in particular

0,2
193,

= 1697 — 2| < ok,

and we see that (Lg,hr, Vi) is a C°° Hermitian line bundle which is extremely close
to being holomorphic, since (Vg’l)2 = @%i is very small. We introduce the complex

Laplace-Beltrami operator

D = (T + () (V)
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and look at its eigenspaces in L?(X,A%T*X ® L;) with the metric induced by w on
X and hy on Li. In the holomorphic case, Hodge theory tells us that the 0-eigenspace
is isomorphic to HY(X, @(Ly)), but in the “almost holomorphic case” the 0-eigenvalues
deviate from 0, essentially by a shift of the order of magnitude of H@%i | ~ k=1/b2 (see
[Lae02], Chapter 4). It is thus natural to introduce in this case

(8.17) Definition. Let X be a compact complex manifold and o € Hé’é(X, R) an arbi-
trary Bott-Chern (1,1)-class. We define the “transcendental” asymptotic q-cohomology
function to be

O p—

R (X, a)= inf lim sup T (Ug, ke)

uca e—0, k—)-’-OO,Lk,hk,vk,%@vk—)u

where the limsup runs over all 5-tuples (¢, k, L, hi, Vi), and where N(Ek, ke) denotes
the sum of dimensions of all eigenspaces of eigenvalues at most equal to ke for the Laplace-
Beltrami operator Uy, associated with (Ly, hx, Vi) and the base Hermitian metric w.

The word “transcendental” refers here to the fact that we deal with classes a of
type (1,1) which are not algebraic or even analytic. Of course, in the definition, we
could have restricted the limsup to families satisfying a better approximation property
110v, —ul| < Ck~1=1/%2 for some large constant C' (this would lead a priori to a smaller
limsup, but there is enough stability in the parameter dependence of the spectrum for
making such a change irrelevant). The minimax principle easily shows that Definition
8.16 does not depend on w, as the eigenvalues are at most multiplied or divided by
constants under a change of base metric. When a € NSg(X), by restricting our families
{(e,k, Ly, hi,, Vi)} to the case of holomorphic line bundles only, we get the obvious
inequality

(8.18) h(X,0) <hL(X,a), Vo€ NSp(X).

It is natural to raise the question whether this is always an equality. Hopefully, the
calculation of the quantities lim sup k”—,!LN (Lg, ke) is a problem of spectral theory which
is completely understood since a long time. In fact, as a consequence of the techniques
of [Dem85b; Dem91; Lae02], one gets

(8.19) Theorem. With the above notations and assumptions, one has

|
lim sup EN(Dk,ks) = / (=1)%u™,
X(u,q)

1 km
e—0, k_)+OO7Lk7hk7vk7§®Vk_)u
where X (u,q) is the open set of points x € X where u(x) has signature (n — q,q).
Therefore
/}\th]r(Xv a) = inf / (=) (u smooth).
X(u,q)

uco

The first equality follows mainly from Theorems 2.16 and 3.14 of [Dem85b], which
even yield explicitly the limit for any given ¢ outside a countable set (the limit as € — 0
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is then obtained from the calculations of page 224 after Cor. 4.3). One has to observe,
in the case of sequences of “almost holomorphic line bundles” considered here, that the
perturbation indeed goes to 0, and also that all constants involved in the calculations
of [Dem85b| are uniformly bounded; see [Dem91] and [Lae02] for more details on this.
Therefore, we can reformulate more explicitly our previous question in the following
terms.

(8.20) Question. For every a € NSg(X), is it true that

~

h(X,a) = inf/ (—1)%u"™ (u smooth) ?
X(u,q)

ucw

(Note: it follows from the holomorphic Morse inequalities that the inequality < always
holds true).

In general, equality (8.20) seems rather hard to prove. In some sense, this would
be an asymptotic converse of the Andreotti-Grauert theorem [AG62] : under a suitable
g-convexity assumption, the latter asserts the vanishing of related cohomology groups
in degree ¢; here, conversely, assuming a known growth of these groups in degree ¢, we
expect to be able to say something about the ¢g-index sets of suitable Hermitian metrics
on the line bundles under consideration. The only case where we have a positive answer
to Question 8.20 is when X is projective of dimension at most 2 (see 18.31). In the general
setting of compact complex manifolds, we also hope for the following “transcendental”
case of holomorphic Morse inequalities.

(8.21) Conjecture. Let X be a compact complex n-fold and o an arbitrary cohomology
class in Hé’é(X, R). Then the volume, defined as the supremum

(8.22) Vol(a) := sup / T,
0<Tea J X~ Sing(T)

extended to all Kdhler currents T € o with analytic singularities(see Definition 13.15 in
Chapter 13), satisfies

(8.23) Vol(a) > sup/ u”

uea J X (u,0)UX (u,1)
where u runs over all smooth closed (1,1) forms. In particular, if the right hand side is
positive, then o contains a Kahler current.

By the holomorphic Morse inequalities, Conjecture 8.21 holds true in case « is an
integral class. Our hope is that the general case can be attained by the diophantine
approximation technique described earlier; there are however major hurdles, see [Lae02]
for a few hints on these issues.



Chapter 9

Effective Version of Matsusaka’s Big Theorem

An important problem of algebraic geometry is to find effective bounds mg such that
multiples mL of an ample line bundle become very ample for m > mq. From a theoretical
point of view, this problem has been solved by Matsusaka [Mat72] and Kollar-Matsusaka
[KoM83]. Their result is that there is a bound mg = mq(n, L™, L" ™! . Kx) depending
only on the dimension and on the first two coefficients L™ and L™ "' - Kx in the Hilbert
polynomial of L. Unfortunately, the original proof does not tell much on the actual
dependence of mg in terms of these coefficients. The goal of this chapter is to find
effective bounds for such an integer myg, along the lines of [Siu93]. However, one of the
technical lemmas used in [Siu93] to deal with dualizing sheaves can be sharpened. Using
this sharpening of the lemma, Siu’s bound will be here substantially improved. We first
start with the simpler problem of obtaining merely a nontrivial section in mL. The idea,
more generally, is to obtain a criterion for the ampleness of mL — B when B is nef. In
this way, one is able to subtract from m/L any multiple of Kx which happens to get
added by the application of Nadel’s vanishing theorem (for this, replace B by B plus a
multiple of Kx + (n+1)L).

(9.1) Proposition. Let L be an ample line bundle over a projective n-fold X and let B
be a nef line bundle over X. Then Kx +mL — B has a nonzero section for some integer

m such that
Ln—l‘
m < n—e-—+n+ 1.

L
Proof. Let mg be the smallest integer > n LnL_i'B. Then moL — B can be equipped with
a singular Hermitian metric of positive definite curvature. Let ¢ be the weight of this
metric. By Nadel’s vanishing theorem, we have

HY (X, O0(Kx +mL— B)® %(¢)) =0 for ¢ > 1,
thus P(m) = h9(X,0(Kx + mL — B) ® .(¢)) is a polynomial for m > mg. Since

P is a polynomial of degree n and is not identically zero, there must be an integer
m € [mg, mo + n] which is not a root. Hence there is a nontrivial section in

H°(X,0(Kx +mL— B)) D> H(X,0(Kx +mL — B)® %(p))

for some m € [mg, mo + nl, as desired. O
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(9.2) Corollary. If L is ample and B is nef, then mL — B has a nonzero section for

some integer

Ln—l . B+Ln—1 . KX
Ln

m<n< +n+1).

Proof. By Fujita’s result 9.3 (a), Kx + (n + 1)L is nef. We can thus replace B by
B+ Kx + (n+ 1)L in the result of Proposition 9.1. Corollary 9.2 holds. O

(9.3) Remark. We do not know if the above Corollary is sharp, but it is certainly
not far from being so. Indeed, for B = 0, the initial constant n cannot be replaced
by anything smaller than n/2: take X to be a product of curves C; of large genus g;
and B = 0; our bound for L = @(ai[p1]) ® - - - ® O(ay[p,]) to have |mL| # () becomes
m < Y (2g; — 2)/a; + n(n + 1), which fails to be sharp only by a factor 2 when a; =
co=ap,=1and g1 > go > -+ > g, — +00. On the other hand, the additive constant
n + 1 is already best possible when B = 0 and X = P". O

So far, the method is not really sensitive to singularities (the Morse inequalities are
indeed still true in the singular case as is easily seen by using desingularizations of the
ambient variety). The same is true with Nadel’s vanishing theorem, provided that Kx is
replaced by the L? dualizing sheaf wx (according to the notation introduced in Remark
6.22, wx = Kx(0) is the sheaf of holomorphic n-forms u on X,e, such that i"u AT s
integrable in a neighborhood of the singular set). Then Proposition 9.1 can be generalized
as

(9.4) Proposition. Let L be an ample line bundle over a projective n-fold X and let B
be a nef line bundle over X. For every p-dimensional (reduced) algebraic subvariety Y

of X, there is an integer

Lr~1.B.Y
Ty Pt

such that the sheaf wy ® Oy (mL — B) has a nonzero section.

m<p

To proceed further, we need the following useful “upper estimate” about L? dualizing
sheaves (this is one of the crucial steps in Siu’s approach; unfortunately, it has the effect
of producing rather large final bounds when the dimension increases).

(9.5) Proposition. Let H be a very ample line bundle on a projective algebraic mani-
fold X, and let Y C X be a p-dimensional irreducible algebraic subvariety. If 6 = HP - Y
is the degree of Y with respect to H, the sheaf

Hom (wy, Oy ((6 — p — 2)H))

has a nontrivial section.

Observe that if Y is a smooth hypersurface of degree ¢ in (X,H) = (PP*1,@(1)),
then wy = Oy (6 — p — 2) and the estimate is optimal. On the other hand, if YV is
a smooth complete intersection of multidegree (1, ---,4d,) in PP*" then 6 = §; -+,
whilst wy = Oy (dy +---+ 6, — p—1r — 1); in this case, Proposition 9.5 is thus very far
from being sharp.
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Proof. Let X C PY be the embedding given by H, so that H = @x(1). There is a
linear projection P* -+ PPT! whose restriction 7 : ¥ — PPT! to Y is a finite and
regular birational map of Y onto an algebraic hypersurface Y’ of degree 6 in PP*!. Let
s € H9(PPT! @(5)) be the polynomial of degree § defining Y’. We claim that for any
small Stein open set W C PP+ and any L? holomorphic p-form v on Y/ NW, there is a L?
holomorphic (p+1)-form u on W with values in @(9) such that uyAw = uAds. In fact,
this is precisely the conclusion of the Ohsawa-Takegoshi extension theorem [OT87; Ohs88]
(see also [Man93] for a more general version); one can also invoke more standard local
algebra arguments (see Hartshorne [Har77], Theorem III-7.11). As Kpp+1 = O(—p — 2),
the form w can be seen as a section of @(§ — p — 2) on W, thus the sheaf morphism
u — u A ds extends into a global section of Hom(wY/, Oy (0 —p— 2)) The pull-back by
7* yields a section of Hom(m*wy, @y ((§ — p— 2)H)). Since 7 is finite and generically
1:1, it is easy to see that m*wys = wy. The proposition follows. O

By an appropriate induction process based on the above results, we can now improve
Siu’s effective version of the Big Matsusaka Theorem [Siu93]. Our version depends on a
constant A, such that m(Kx +(n+2)L)+ G is very ample for m > A, and every nef line
bundle G. Corollary 7.5 shows that A, < (3”:1) — 2n, and a similar argument involving
the recent results of Angehrn-Siu [AS95] implies A\, < n® —n? —n —1 for n > 2. Of
course, it is expected that \,, = 1 in view of the Fujita conjecture.

(9.6) Effective Version of the Big Matsusaka Theorem. Let L and B be nef line
bundles on a projective n-fold X. Assume that L is ample and let H be the very ample
line bundle H = \,,(Kx + (n+2)L). Then mL — B is very ample for

(5"-1_1)/2 (Ln—l (B + H))(B"*1+1)/2(Ln—1 _H>3”*2(n/2—3/4)—1/4

m 2 (2/”) (Ln)anz(n/2_1/4)+1/4

In particular mL is very ample for

n1. KX)3”—2(n/2+3/4)+1/4

m > C, (L) (n +24

with Cp, = (2n)B""=1/2(),,)3" > (n/2+3/4)+1/4,

Proof. We use Proposition 9.4 and Proposition 9.5 to construct inductively a sequence of
(non necessarily irreducible) algebraic subvarieties X =Y, DY,,_1 D --- D Y5 D Y] such
that Y, = Uj Y, ; is p-dimensional, and Y),_; is obtained for each p > 2 as the union of
zero sets of sections

op; € H (Y, ;,0v, ,(my ;L — B))

b,J»

with suitable integers m, ; > 1. We proceed by induction on decreasing values of the
dimension p, and find inductively upper bounds m,, for the integers m,, ;.

By Corollary 9.2, an integer m,, for m,,L — B to have a section o,, can be found with

L" ' (B+Kx+ (n+1)L) <nL“—1~(B+H)
Lm h Lm ’

My <N

Now suppose that the sections o, ---, 0p11,; have been constructed. Then we get
inductively a p-cycle Y, = > p1p ;Y, ; defined by Y, = sum of zero divisors of sections



88 Analytic Methods in Algebraic Geometry
Op+1,5 in Y1 j, where the mutiplicity p, ; on Y, ; C Y,41 1 is obtained by multiplying

the corresponding multiplicity pi,41,% of Y41 ; with the vanishing order of 0,1 along
Y, ;. As cohomology classes, we find

Y, =Y (mpp1kl = B) - (ps1.xYps1.6) < mpa L - Ypyr.
Inductively, we thus have the numerical inequality

Y, <mpyr - -m, L7

Now, for each component Y, ;, Proposition 9.4 shows that there exists a section of wy, ; ®

Oy, ,(myp ;L — B) for some integer
Lr~1.B.Y,
M, <P BLtp+ 1< pmppr - omy L1 Bt p+ 1.
Lr-Yy

Here, we have used the obvious lower bound LP~! - Y,; =1 (this is of course a rather
weak point in the argument). The degree of Y), ; with respect to H admits the upper
bound

Opj = HP - Y, ; <mppq---m, HP - L"7P,

We use the Hovanski-Teissier concavity inequality ([Hov79; Tei79; Tei82])
(Ln p Hp)%(Ln>1—— < Ln—l - H

to express our bounds in terms of the intersection numbers L™ and L™~ ! - H only. We
then get
(Ln—l . H)p
5p,j < mpy1 .. mnw
By Proposition 9.5, there is a nontrivial section in

Hom(wyp,j ’ @Yp,j ((6}9’]' —pP— 2)H)) .

Combining this section with the section in wy, ; ® Oy, . (m, ;L — B) already constructed,
we get a section of Oy, (myp ;L — B+ (0, p 2)H) on Y, ;. Since we do not want H
to appear at this pomt we replace B Wlth B+ (6, —p — 2)H and thus get a section
op,j of Oy, (my ;L — B) with some integer m,, ; such that

pmpi1 - mn L (B+ (85 —p—2)H) +p + 1
PMps1- My b5 L1 (B + H)

o(LVTH)P L
p(mp+1"'mn)WL (B+H).

Mp,j

sJ

N //\

N

Therefore, by putting M =n L™ 1. (B + H), we get the recursion relation

(L Hy

(L)1 (Mpy1 - my)? for2<p<n-1,

my, < M
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with initial value m,, < M/L™. If we let (m,) be the sequence obtained by the same
recursion formula with equalities instead of inequalities, we get m, < m, with m,,_; =

M3(L"1 . H)»=1/(L™)™ and

L’I’L
My = ———— M-, M.
P — Ln—1.H p+1""p+1

for 2 < p < n—2. We then find inductively

gn—p (L1 CH)3 TP (n=3/2)+41/2
(Ln>3n*p*1(n—1/2)+1/2

my, <my, =M

We next show that moL — B is nef for
mo :maX(mQ, ms, -, My, m2_,_ann—1 'B)

In fact, let C C X be an arbitrary irreducible curve. Either C' = Y; ; for some j or
there exists an integer p = 2, --- ,n such that C' is contained in Y}, but not in Y,_;. If
C CY,;~\Y,_1, then o, ; does not vanish identically on C. Hence (m, ;L — B)c has
nonnegative degree and

(moL—B)C> (mp’JL—B)CZO
On the other hand, if C' =Y} ;, then
(moL—B)-C>mo—B-Yy >mg—my--m, L" ' -B>0.

By the definition of A, (and by Corollary 8.6 showing that such a constant exists),
H + G is very ample for every nef line bundle G, in particular H + moL — B is very
ample. We thus replace again B with B + H. This has the effect of replacing M with
M =n(L""'-(B+2H)) and mg with

mo = max (my, , My_1, -+ ,Ma, Mo - my L1 (B+ H)).
The last term is the largest one, and from the estimate on m, , we get

oy (L H)E D082 /() (B 4 H))
(Ln)3"2=1)(n—1/2)/2+(n—2)/2+1
n—1 (B + H))(S"*1+1)/2<Ln—1 _H)3"*2(n/2—3/4)—1/4
(Ln)3"2(n/2=1/4)+1/4 :

mo <

< (2n)(3"_1—1)/2 (L

t

(9.7) Remark. In the surface case n = 2, one can take \,, = 1 and our bound yields
mL very ample for

(L (Kx +4L))?
L? '
If one looks more carefully at the proof, the initial constant 4 can be replaced by 2. In
fact, it has been shown recently by Ferndndez del Busto that mL is very ample for
1 [(L-(Kx +4L)+1)?

m>§ 72 +3,

m =4

and an example of G. Xiao shows that this bound is essentially optimal (see [FdB96]).






Chapter 10

Positivity Concepts for Vector Bundles

In the course of the proof of Skoda’s L? estimates in the next chapter, we will have to
deal with dual bundles and exact sequences of Hermitian vector bundles. The following
fundamental differential geometric lemma will be needed.

(10.1) Lemma. Let E be a Hermitian holomorphic vector bundle of rank r on a complex
n-dimensional manifold X. Then the Chern connections of E and E* are related by

Op+ = —'Of where ! denotes transposition. In other words, the associated Hermitian
forms ©p and O« are related by
~ _ 0
Op(r,7) = E CikALTINT kpa» T = E Ting,. ©
1<), k<n, 1A, p<r A I
é _ — * * 9 *
g (T,7) = — CikpATINT ks T = Tj’A—ﬁz' ® €.
1<), k<n, LKA u<r A /

In particular E >qyir 0 if and only if E* <gyif 0.

Notice that the corresponding duality statement for Nakano positivity is wrong (be-
cause of the twist of indices, which is fortunately irrelevant in the case of decomposable
tensors).

Proof. The Chern connections of F¥ and E* are related by the Leibniz rule
d(o As) = (Dg-o)As+(=1)9% A Dgs

whenever s, o are forms with values in F, E* respectively, and o A s is computed using
the pairing E* ® F — C. If we differentiate a second time, this yields the identity

0= (D%.0) As+ o A D%s,
which is equivalent to the formula O« = —!'©g. All other assertions follow. O
(10.2) Lemma. Let

0—S HE LHQ—0

be an exact sequence of holomorphic vector bundles. Assume that E is equipped with a
smooth Hermitian metric, and that S and @Q are endowed with the metrics (restriction-
metric and quotient-metric) induced by that of E. Then

(10.3) JF®g:E—SoQ, jog-:SeQ — FE



92 Analytic Methods in Algebraic Geometry

are C*° isomorphisms of bundles, which are inverse of each other. In the ‘€ -splitting
E~S&Q, the Chern connection of E admits a matriz decomposition

Ds —5*>

(10.4) zhp:< s Dy

in terms of the Chern connections of S and QQ, where
B e € (X, AYT% @ Hom(S, Q)), B* € € (X, A% T% ® Hom(Q, S)).

The form (3 is called the second fundamental form associated with the exact sequence. It
15 uniquely defined by each of the two formulas

(105) hom(S,E)j = g* © B? j © 5* = _Dﬁom(Q,E)g*'

We have Dﬁom(s,Q)B =0, D/}/Iom(Q,S)ﬁ* =0, and the curvature form of E splits as

@E:<@s—wAﬁ —DEMQ@W>,

10.6 ;
(106) Ditoms,)f  ©q@—BAB

and the curvature forms of S and Q) can be expressed as
(10.7) O©s = Ogis + 5 A B, ©g = Ogo + LA BT,

where Os, Opg stand for j* cOgoj and go O o g*.

Proof. Because of the uniqueness property of Chern connections, it is easy to see that
we have a Leibnitz formula

DF(f A U) - (DHom(E,F)f> ANu+ (_1>degff AN Dgpu

whenever u, f are forms with values in Hermitian vector bundles E and Hom(E, F)
(where Hom(E, F) = E* ® F is equipped with the tensor product metric and f A u
incorporates the evaluation mapping Hom(FE, F') ® E — F'). In our case, given a form
u with values in F, we write u = jus + g*ug where ug = j*u and ug = gu are the
projections of w on S and ). We then get

= (Drom(s,g)j) ANus +j - Dsus + (Dtom(Q,2)9") N ug + 9" - Dqug-

Since j is holomorphic as well as j* o j = Idg, we find D/}/Iom(s,E)j =0 and

ﬁom(s,S) ldg =0= lfllom(E,S)j* ©J.

By taking the adjoint, we see that j* o Dhom(s E)j = 0, hence Dhom(s E)j takes values
in g*@Q and we thus have a unique form [ as in the lemma such that Dﬁom(s E)j =g*op.
Similarly, g and g o g* = Idg are holomorphic, thus

Ditom(@.@)1dQ = 0 = 9 © Dyiom(q,5)9"
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and there is a form v € € (X, A%'T% @Hom(Q, S)) such that Dﬁom(Q ;9" =Jjov. By
adjunction, we get D’Hom(E @9 =7"0J" and D’}’Iom(E @) = 0 implies D’Hom(Q 9 =0.
If we differentiate g o j = 0 we then get

0:Dhom(E,Q)goj+gOD{-Iom(S,E)j:’7* oj* Oj+gog*06:7*+6,
thus v = —3* and Dﬁom(Q 19" = —joB*. Combining all this, we get
Drpu=g¢g"BANus+j-Dsus—jB" Nug +¢g* - Dgoug
= j(DSuS — B A UQ) +g" (ﬂ Nug + DQUQ),

and the asserted matrix decomposition formula follows. By squaring the matrix, we get

D2:< D —B*NB —D505*—5*ODQ).
E DQOﬁ—FﬂODS Dé—ﬂ/\ﬂ*

As DQ of+pBoDg = DHom(S,Q)B and Dgof3* 4+ f3*o DQ = DHom(Q,S)ﬂ* by the Leibniz
rule, the curvature formulas follow (observe, since the Chern curvature form is of type
(1,1), that we must have Dhom(S’Q)ﬁ =0, Dﬁom(Q S)ﬁ* =0). O

(10.8) Corollary. Let 0 - S — E — Q — 0 be an exact sequence of Hermitian vector
bundles. Then

(a) E2ait 0 = Q Zait 0,
(b) E<cuit 0 = 5 <auit 0,
() E<nak 0 = S <nax 0,
and analogous implications hold true for strict positivity.

Proof. Tf 8 is written 3 dz; ® B, 8; € Hom(S, Q), then Formulas (10.7) yield
05 =iOps — » _ dz; A dZ ® BB,
i0g =10p1g + Y _ dz; A dz), @ B ;.
Since - (£ ®s) =3-&;B8; - s and 5* - (£ ® s) = 2,85 - s we get
Os(€®s,6 @s) =Op(E®s,6®8) =D &E(B) 5. 5),
7,k

Os(u,u) = Op(u,u) — |8 ul?,
Ot 5,6 ®s) =Op(E s, ®s)+ Y (B 5.6 -5,

7,k
O0(E®s,E05) =Op(E®s,E@s) =8 - (E@s)% O

Next, we need positivity properties which somehow interpolate between Griffiths and
Nakano positivity. This leads to the concept of m-tensor positivity.
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(10.9) Definition. Let T and E be complez vector spaces of dimensions n, r respectively,
and let © be a Hermitian form onT' ® E.

(a) A tensoru € T® E is said to be of rank m if m is the smallest > 0 integer such that
u can be written

m
UZZ§j®Sj’ ijT, SjEE.
j=1
(b) © is said to be m-tensor positive (resp. m-tensor semi-positive) if O(u,u) > 0 (resp.
O(u,u) = 0) for every tensor u € T ® E of rank < m, u # 0. In this case, we write

0 >,0 (resp. ©>=,,0).

We say that a Hermitian vector bundle E is m-tensor positive if Op >, 0. Griffiths
positivity corresponds to m = 1 and Nakano positivity to m > min(n,r). Recall from
Theorem (5.2) that we have

([1Om Alu,u) = Y D CiranUjs \Tks

|S‘:q_1 j:kJ\’M
for every (n, ¢)-formu = > ug x dziA- - -Adz, NdZg @ey with values in E. Since ujg =0
for j € S, the rank of the tensor (u;s,x);» € C* ® C" is in fact < min{n —¢+1,7}. We
obtain therefore:
(10.10) Lemma. Assume that E >, 0 (resp. E >,, 0). Then the Hermitian operator

[iOg, A] is semipositive (resp. positive definite) on A™IT*X @ E for ¢ > 1 and m >
min{n —q+1,r}.

The Nakano vanishing theorem can then be improved as follows.

(10.11) Theorem. Let X be a weakly pseudoconver Kdihler manifold of dimension n
and let E a Hermitian vector bundle of rank r such that ©g >,, 0 over X. Then

H"(X,E)=0 for ¢=1 and m > min{n —q+1,r}.

We next study some important relations which exist between the various positivity
concepts. Our starting point is the following result of [DSk79].

(10.12) Theorem. For any Hermitian vector bundle E,

EF>qi0 — E®detE >nak 0.

To prove this result, we use the fact that

(10.13) @detE == TI‘E @E
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where Trg : Hom(F, F) — C is the trace map, together with the identity
OkgdetE = Op + Trg(Op) ® Idg,
which is itself a consequence of (10.13) and of the standard formula
Opgr =0 @ldp +1dg ®OF.

In order to prove (10.13), for instance, we differentiate twice a wedge product, according
to the formula

1)degs1—|—-..—|—degsj—131 N ANsj_1 N DESj AR/

-

DApE(Sl /\"'/\Sp> ==
7j=1

The corresponding Hermitian forms on T'x ® E are thus related by
éE@det E=0g+TrgOp® h,

where h denotes the Hermitian metric on £ and Trg 6 g 1s the Hermitian form on T'x

defined by
TrpOp(é,¢) = Y Opl®eri®@ey), T,

1<ALr

for any orthonormal frame (eq, ... ,e,) of E. Theorem 10.12 is now a consequence of
the following simple property of Hermitian forms on a tensor product of complex vector
spaces.

(10.14) Proposition. Let T, E be complex vector spaces of respective dimensions n,r,
and h a Hermitian metric on E. Then for every Hermitian form © on T @ E

O>uir0 —= O4+Trg®® h >Nak O.

We first need a lemma analogous to Fourier inversion formula for discrete Fourier
transforms.

(10.15) Lemma. Let g be an integer > 3, and xx, yu,, 1 < A\, pu < r, be complex
numbers. Let o describe the set U, of r-tuples of q-th roots of unity and put

Z TACN, Yo = Z Yuou, oE€U.

1<Agr Igpsr
Then for every pair (o, 5), 1 < a, B < r, the following identity holds:
ZTa¥p if a#p,

UEU;“
INAY
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T

Proof. The coefficient of x,7,, in the summation ¢=" > ;. Ty 0,03 s given by
q

—r —
q E 0a0R0NT .
JGU;

This coefficient equals 1 when the pairs {a,pu} and {8, A} are equal (in which case
000p0x0, = 1 for any one of the ¢" elements of Uj ). Hence, it is sufficient to prove
that

Z OaO0BONO,, = 0
oeUy
when the pairs {«, u} and {5, \} are distinct.

If {a, u} # {B, A}, then one of the elements of one of the pairs does not belong to the
other pair. As the four indices «, 5, A, u play the same role, we may suppose for example
that « ¢ {3, A}. Let us apply to o the substitution o +— 7, where 7 is defined by

Ta = eQm/qaa, T, =0, for v#a.

We get
o2/ 4 Z if a# u,
;0'&555)\0“ = 2 = 8471-i/q i if aa= .

Since ¢ > 3 by hypothesis, it follows that

Z 0a08010, = 0.

Proof of Proposition. 10.14 Let (t;)i1<j<n be a basis of T, (ex)1<igr an orthonormal
basis of F and £ = Zj ity eT,u= Zj)\ ujrt; ®ex € T'® E. The coefficients ¢, of
© with respect to the basis t; ® ey satisfy the symmetry relation ¢;xy, = ckjux, and we
have the formulas

@(u,u): Z CikApUj AUk p s

j7k7A7/'1/
Tre (6, = Y ¢iranéibe,
BN
O+ Trg© ® h)(u,u) = Z CikApUjAUky + CiRANUj Uk
j’k’A7l‘L

For every o € U (cf. Lemma 10.15), put
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Lemma 10.15 implies

_ ~ ~ o~ ~ _ - _
q " E G(UU X eg,Us & 80) =dq " E CikApUjoUpeONT

oeUy ocUr
= E  Cirapla TRy + E - CkanUp Ty
kAR Joke A,

The Griffiths positivity assumption shows that the left hand side is > 0, hence

(O+TrpO®h)(u,u) > Y Cirartjnles >0
A

with strict positivity if © >air 0 and u # 0. O

We now relate Griffiths positivity to m-tensor positivity. The most useful result is
the following

(10.16) Proposition. Let T' be a complex vector space and (E,h) a Hermitian vector
space of respective dimensions n,r with r > 2. Then for any Hermitian form © on T® FE
and any integer m > 1

O>0it0 = mTrg®®h—-06>,,0.

Proof. Let us distinguish two cases.

(a) m=1. Let u € T® E be a tensor of rank 1. Then u can be written u = & ® e;
with & € T, & # 0, and ey € F, |e;| = 1. Complete e; into an orthonormal basis
(e1, ...,e.) of E. One gets immediately

(Trp® @ h)(u,u) =Trg (&, &) = Y O @ex, & Dey)

1<ALr

> 0(§ ®er, &1 ®er) = O(u,u).

(b) m > 2. Every tensor u € T ® E of rank < m can be written

u = Z 5)\®6)\7 €A€T7

1<A<q

with ¢ = min(m,r) and (ex)i1<agr an orthonormal basis of E. Let F' be the vector
subspace of E generated by (e1, ... ,e,) and Op the restriction of © to T'® F. The first
part shows that

O :=TrrpOr ®h— O >arit 0.
Proposition 10.14 applied to ©" on T ® F yields

O +Trr® @h=qTrrOr @h —OF >, 0.
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Since u € T ® F is of rank < ¢ < m, we get (for u # 0)
O(u,u) =Op(u,u) < ¢(Trr O @ h)(u,u)
=q Z @(ﬁj@)e,\,ﬁj@e,\) ngrEG)@h(u,u). ]

1<),A5q

Proposition 10.16 is of course also true in the semi-positive case. From these facts,
we deduce

(10.17) Theorem. Let E be a Griffiths (semi-)positive bundle of rank r > 2. Then for
any integer m = 1
E*® (det E)™ >, 0 (resp. >, 0).

Proof. We apply Proposition 10.16 to © = —O(E*) = 'Op >qunr 0 on Tx ® E* and
observe that
®detE = TI‘E @E = TI‘E* @

(10.18) Theorem. Let 0 — S — E — @ — 0 be an exact sequence of Hermitian vector
bundles. Then for any m > 1

E>,0 = S®(det@)™ >, 0.

Proof. Formulas 10.7 imply
iOs >, i8NS, 10¢g >, iB A BT,
iOdet @ = Tro(iOq) > Tro(if A B7).
If we write 8 = )_dz; ® f; as in the proof of Corollary 10.8, then
TrQ(iB A B7) = ) idz; A dzi Trq(B;57)
= idz; A dz, Trs(BB;) = Trs(—iB* A B).

Furthermore, it has been already proved that —if* A 8 >na.x 0. By Proposition 10.16
applied to the corresponding Hermitian form © on Tx ® S, we get

m Trs(—i6" A B) @ Idg +i* A 2m 0,
and Theorem 10.18 follows. U
(10.19) Corollary. Let X be a weakly pseudoconver Kdhler n-dimensional manifold, FE
a holomorphic vector bundle of rank r > 2 and m > 1 an integer. Then
(a) E >cit 0= H"(X,E®det E) =0 forq>1,;
(b) E >uis 0= H™4(X, E* @ (det E)™) =0 for ¢ > 1 and m > min{n —q+ 1,7} ;

(c) Let 0 — S — E — Q — 0 be an exact sequence of vector bundles and m = min{n —
q+1,vk S}, g > 1. If E >,, 0 and if L is a line bundle such that L® (det Q)~™ > 0,
then

H™(X,S®L)=0.

Proof. Immediate consequence of Theorem 10.11, in combination with Theorem 10.12
for (a), Theorem 10.17 for (b) and Theorem 10.18 for (c). O



Chapter 11

Skoda’s L2 Estimates
for Surjective Bundle Morphisms

11.A. Surjectivity and Division Theorems

Let (X,w) be a Kéhler manifold, dim X = n, and let g : E — @ a holomorphic morphism
of Hermitian vector bundles over X. Assume in the first instance that g is surjective.
We are interested in conditions insuring that the induced morphisms ¢ : H"*(X, E) —
H™F(X,Q) are also surjective (dealing with (n,e) bidegrees is always easier, since we
have to understand positivity conditions for the curvature term). For that purpose, it is
natural to consider the subbundle S = Ker g C E and the exact sequence

(11.1) 0—S L E25Q—0
where j : S — FE is the inclusion. In fact, we need a little more flexibility to handle the

curvature terms, so we take the tensor product of the exact sequence by a holomorphic
line bundle L (whose properties will be specified later):

(11.2) 0—S®L—E®L Q&L —0.

(11.3) Theorem. Let k be an integer such that 0 < k < n. Set r = vk E, ¢ = rkQ,
s=rkS=r—q and

m = min{n — k, s} = min{n — k,r — ¢}.

Assume that (X,w) possesses also a complete Kdihler metric O, that E >,, 0, and that
L — X is a Hermitian holomorphic line bundle such that

10, — (M + &)iOuet ¢ > 0

for some € > 0. Then for every D" -closed form f of type (n,k) with values in Q @ L
such that || f|| < 400, there exists a D" -closed form h of type (n, k) with values in E® L
such that f = g-h and

IR < (L +m/e) | £I.
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The idea of the proof is essentially due to [Sko78], who actually proved the special
case k = 0. The general case appeared in [Dem82b].

Proof. Let j : S — E be the inclusion morphism, g* : Q — F and j* : E — S the
adjoints of g, j, and the matrix of Dy with respect to the orthogonal splitting £ ~ S® Q)
(cf. Lemma 10.2). Then ¢*f is a lifting of f in F ® L. We will try to find h under the
form

h=g"f+ju, ueLl*(X,A""T%®S®L).

As the images of S and @ in E are orthogonal, we have |h|? = |f|? + |u|? at every point
of X. On the other hand D) f = 0 by hypothesis and D"g* = —jo 8" by (10.5), hence

Digrh=—j(B" N f)+jDsgr = i(Dsgr — B A f).
We are thus led to solve the equation

(11.4) SoLu=B"Af,

and for that, we apply Theorem 6.1 to the (n,k + 1)-form g* A f. One now observes
that the curvature of S ® L can be expressed in terms of 5. This remark will be used to
prove:

(11.5) Lemma. Let Ay = [iOsgr, A] be the curvature operator acting as an Hermitian
operator on the bundle of (n,k + 1)-forms. Then

(AZHB* A ), (B A L)) < (mfe) | f]2.

If the lemma is taken for granted, Theorem 9.4 yields a solution u of (11.4) in
L2(X, AT}, @ S @ L) such that [ul> < (m/e) |f|%. As [[B]2 = | fI* + |[u]]%, the proof
of Theorem 11.3 is complete.

Proof of Lemma 11.5. Exactly as in the proof of Theorem 10.18, the formulas (10.7)
yield
i®g >, iﬁ* A\ 6, i@detQ > TI‘Q(iﬂ A\ 6*) = Tl‘s(—iﬁ* A 6)

Since € (X, AL1T% ® Herm S) 3 © := —if3* A B >quir 0, Proposition 10.16 implies
m Trg(—=if* A B) ® Idg +i8* A B =, 0.
From the hypothesis on the curvature of L we get

1OsgL 2m 105 @ IdL +(m +¢€)1Oget @ ® IdseL
>, (iB* AB+ (m+e) Trs(—if* AB) @ 1ds ) ® Idy,
>, (e/m) (=i AN P) @ Ids @ 1dy, .

For any v € A™**1T% ® S ® L, Lemma 10.10 implies

(11.6) (Agv,v) = (¢/m) (—iB* A B A Av,v),
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because k(S ® L) = s and m = min{n — k,s}. Let (dz, ... ,dz,) be an orthonormal
basis of T'% at a given point o € X and set

B= > dz®pB;, B; €Hom(S,Q).

1<j<n

The adjoint of the operator S* A e = " dz; A 7 e is the contraction operator 5 | e
defined by

Blo=>" a% 1 (Bjv) =Y —idz; AA(Bjv) = —iB A Av.

Consequently, we get (—i3* A B A Av,v) = |3 J v|? and (11.6) implies

[(B* A Foo) P = 1(f. 8 2 o) <IfIP18 2 of* < (m/e){Apv,v) | ]2
This is equivalent to the estimate asserted in the lemma. U

If X has a plurisubharmonic exhaustion function 1, we can select a convex increasing
function y € ‘€*°(R,R) and multiply the metric of L by the weight exp(—yx o) in order
to make the L? norm of f converge. Theorem 11.3 implies therefore:

(11.7) Corollary. Let (X,w) be a weakly pseudoconvex Kdhler manifold, g : E — Q a
surjective bundle morphism with r =1k E, ¢ =1k Q, and L — X a Hermitian holomor-
phic line bundle. We set m = min{n — k,r — q} and assume that E >,, 0 and

0L — (m+¢)iOger g = 0
for some € > 0. Then g induces a surjective map

H" (X, E® L) — H" (X, Q® L).

The most remarkable feature of this result is that it does not require any strict
positivity assumption on the curvature (for instance E can be a flat bundle). A careful
examination of the proof shows that it amounts to verify that the image of the coboundary
morphism

—B*Ne : H" (X, Q® L) — H" " (X,S® L)

vanishes; however the cohomology group H™*+1(X,S ® L) itself does not necessarily
vanish, as it would do under a strict positivity assumption.

We want now to get estimates also when (@) is endowed with a metric given a priori,
that can be distinct from the quotient metric of E by g. Then the map ¢*(gg*) ™ 1:Q — E
is the lifting of @ orthogonal to S = Ker g. The quotient metric | e |" on @ is therefore
defined in terms of the original metric | e | by

[0 = lg*(99") " 0[% = {(99") "0, v) = det(gg) " (9570, v)

where gg* € End(Q) denotes the endomorphism of () whose matrix is the transposed
comatrix of gg*. For every w € det ), we find

[w]” = det(gg") ™" [w]*.
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If Q' denotes the bundle @ with the quotient metric, we get
1O get Q = 1Oget o+ id'd"” log det(gg*).

In order that the hypotheses of Theorem 11.3 be satisfied, we are led to define a new
metric | o |" on L by |u|"? = [u|? (det(gg*))” " . Then

10, =iO(L) + (m+¢)id'd" logdet(gg™) = (m + €) iO4et ¢’ -
Theorem 11.3 applied to (E,Q’, L") can now be reformulated:

(11.8) Theorem. Let X be a complete Kihler manifold equipped with a Kdhler metric w
on X, let E — @) be a surjective morphism of Hermitian vector bundles and let L — X be
a Hermitian holomorphic line bundle. Setr =rk E, g =rk Q and m = min{n—k,r—q},
and assume that E >,, 0 and

10, — (M +€)iOuet g > 0

for some € > 0. Then for every D"-closed form f of type (n,k) with values in Q ® L
such that

1= / (G5 . ) (det gg™) ™1~ AV < +o0,
X

there exists a D" -closed form h of type (n, k) with values in E ® L such that f = g-h
and

/ |h|? (det gg*) "™ dV < (14+m/e) 1. O
X

Our next goal is to extend Theorem 11.8 in the case when ¢ : E — @ is only
generically surjective; this means that the analytic set

Y={reX; g, : E, — Q. is not surjective }

defined by the equation A%g = 0 is nowhere dense in X. Here Alg is a section of the
bundle Hom(A?E, det Q). The idea is to apply the above Theorem 11.8 to X \ Y. For
this, we have to know whether X \'Y has a complete Kahler metric.

(11.9) Lemma. Let (X,w) be a Kdihler manifold, and Y = o~1(0) an analytic subset
defined by a section of a Hermitian vector bundle E — X. If X is weakly pseudoconvex
and exhausted by X. = {x € X ; ¥(x) < ¢}, then X. \Y has a complete Kihler metric
for all c € R. The same conclusion holds for X \Y if (X,w) is complete and if for some
constant C > 0 we have O <grif Cw® (, )g on X.

Proof. Set T =log|o|?. Then d't = {D'c,c}/|c|* and D"D'c = D?c = O o, thus

id'd'+ — i{D’O’, D’U} . i{D’U,U} N {0, D/o'} _ {i@Eo',o'}‘
o lo|4 EiE
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For every ¢ € Tx, we find therefore

_ o2 [D'g - ¢P—[(D'o & 0)P  Op({®a{®o)

o] o2

Hr(£)

by the Cauchy-Schwarz inequality. If C' is a bound for the coefficients of O on the
compact subset X., we get id'd’t > —Cw on X.. Let x € €*(R,R) be a convex
increasing function. We set

=w+idd" (xor)=w+i(x or dd"T+x" 0T dTANd"T).

We thus see that @ is positive definite if x' < 1/2C, and by a computation similar to the
one preceding Theorem 6.2, we check that & is complete near Y = 771(—o00) as soon as

[;¢?®ﬁ=+w

One can choose for example x such that x(¢) = z5(t — log|t]) for ¢ < —1. In order to

obtain a complete Kéhler metric on X, \ Y, we also need the metric to be complete near
0X,.. If @ is not, such a metric can be defined by

iwm¢+jw¢Aww
c—v¢  (c—1)?
> id'log(c —¢) "t Ad"log(c —¢)

O=w+id'd" loglc—) ' =&+

@ is complete on X, \ € because log(c —+)~! tends to +o0o0 on 9X.. O

We also need another elementary lemma dealing with the extension of partial differ-
ential equalities across analytic sets.

(11.10) Lemma. Let 2 be an open subset of C™ and Y an analytic subset of Q). Assume
that v is a (p,q— 1)-form with L2 _ coefficients and w a (p, q)-form with Ll . coefficients

loc loc
such that d"v =w on QY (in the sense of distribution theory). Then d”"v = w on Q.

Proof. An induction on the dimension of Y shows that it is sufficient to prove the result
in a neighborhood of a regular point a € Y. By using a local analytic isomorphism, the
proof is reduced to the case where Y is contained in the hyperplane z; = 0, with a = 0.
Let A € €°°(R,R) be a function such that A(¢) = 0 for ¢t < 1 and A(¢) =1 for t > 1. We
must show that

(11.11) L/wAa:%—DMﬂ/vAJh
Q

Q

for all & € D (Q,A""P"7ITE). Set A.(z) = A(|21|/¢) and replace « in the integral by
Aec. Then Adca € D(QNY, A" P"79T¥) and the hypotheses imply

/ wA e = (—1)p+q/ vAd (Near) = (—1)p+q/ vA(d"Ae N+ Nd ).
Q Q Q
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As w and v have L{ _ coefficients on (2, the integrals of w A Acav and v A A.d” v converge
respectively to the integrals of w A o and v A d”’« as ¢ tends to 0. The remaining term
can be estimated by means of the Cauchy-Schwarz inequality:

2
‘/v/\d”)\e/\oz) </ |v/\oz|2dV/ "N\ |2 dV ;
Q |z1|<e Supp o

2 (), the integral f|z1\<e lv A a]? dV converges to 0 with ¢, whereas

loc

asv € L
/ |d"A\|?dV < gVol(Supp an{|z=| <e}) <.
Supp «

Equality (11.11) follows when ¢ tends to 0. O

(11.12) Theorem. The existence statement and the estimates of Theorem 11.8 remain
true for a generically surjective morphism g : E — @Q, provided that X is weakly pseudo-
convet.

Proof. Apply Theorem 11.8 to each relatively compact domain X, \'Y (these domains
are complete Kéhler by Lemma 11.9). From a sequence of solutions on X. \ Y we can
extract a subsequence converging weakly on X \ Y as ¢ tends to +00. One gets a form
h satisfying the estimates, such that D”h =0 on X \Y and f = ¢g- h. In order to see
that D”h = 0 on X, it suffices to apply Lemma 11.10 and to observe that h has LZ
coefficients on X by our estimates. U

A very special but interesting case is obtained for the trivial bundles £ =  x CT,
Q = Q x C over a pseudoconvex open set {2 C C™. Then the morphism g is given by a
r-tuple (g1, ... ,gr) of holomorphic functions on €. Let us take k =0 and L = Q x C
with the metric given by a weight e~?. If we observe that gg* = Id when rk Q = 1,
Theorem 11.8 applied on X = Q ~\ g~ 1(0) and Lemmas 11.9, 11.10 give:

(11.13) Theorem (Skoda [Sko72b]). Let Q be a complete Kdhler open subset of C",
let ¢ be a plurisubharmonic function and g = (g1, ... ,g.) be a r-tuple of holomorphic
functions on Q. Set m = min{n,r — 1}. Then for every holomorphic function f on Q
such that

I = / |f|2 |g|_2(m+1+5)6_“’ dV < 400,
QN2

where Z = g—1(0), there exist holomorphic functions (hy, ..., h,) on Q such that f =
Zgjhj and
/ |h[? |g] 2 e dV < (14 m/e)l. O
Q\Y

11.B. Applications to Local Algebra: the Briancon-Skoda
Theorem

We now show that Theorem 11.13 can be applied to get deep results concerning ideals
of the local ring @,, = C{z1, ..., 2z,} of germs of holomorphic functions on (C",0). Let
S =(q1,..-,9r) # (0) be an ideal of @,
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(11.14) Definition. Let k € Ry . We associate to ¥ the following ideals:

(a) the ideal 5 of germs u € @, such that |u| < C|g|¥ for some constant C > 0, where
l91* = 191> + - + |gr %

(b) the ideal I*%) of germs u € @, such that
/ Jul? [g|72* ) dV < 400
Q

on a small ball ) centered at 0, if € > 0 is small enough.

(11.15) Proposition. For all k,1 € Ry we have
(a) TN ¢ F®)

b) * c 7 ifk e N;

(c) F*) O - kD :

(d) TP FO ¢ Go,

All properties are immediate from the definitions except (a) which is a consequence
of the integrability of |g|~¢ for ¢ > 0 small (exercise to the reader!). Before stating the
main result, we need a simple lemma.

(11.16) Lemma. If ¥ = (g1, ...,9-) and r > n, we can find elements g1, ... ,gn in
F such that C~tg| < |g] < Clg| on a neighborhood of 0. Each g; can be taken to be a
linear combination

§j:aj.g: Z aikGk; CLjGCT\{O}

1<k<r
where the coefficients ([ai], ... ,[ayn]) are chosen in the complement of a proper analytic
subset of (P™~1H)™.
It follows from the lemma that the ideal ¥ = (g1, ... ,gn) C .¥ satisfies F¥) = Fk)

and ;7“@) = F®) for all k.
Proof. Assume that g € @(Q)". Consider the analytic subsets in Q x (P"~1)" defined by

A= {(27 [’W1], cre [wnD ; Wy - g(Z) = 0}7
A" = Uirreducible components of A not contained in g~ (0) x (P"~1)".

For z ¢ g=1(0) the fiber A, = {([wi], ..., [wn]); wj.g(z) = 0} = A% is a product of
n hyperplanes in P"~! hence AN (Q ~ g71(0)) x (P""1)" is a fiber bundle with base
Q~ g7 1(0) and fiber (P"~2)". As A* is the closure of this set in  x (P"~1)" we have

dim A* =n +n(r —2) =n(r — 1) = dim(P"H)".



106 Analytic Methods in Algebraic Geometry
It follows that the zero fiber

A= A0 ({0} x (P

is a proper subset of {0} x (P"~')". Choose (ai,...,an) € (C" ~\ {0})™ such that
(0,[a1], ... ,[as]) is not in Aj. By compactness the set A*N (B(0,e) x (P7~1)") is
disjoint from the neighborhood B(0,¢) x [[[B(a;,¢)] of (0,[a1], ... ,[ay]) for € small

enough. For z € B(0,¢) we have |a; - g(2)| > €|g(z)| for some j, otherwise the inequality
la; - g(2)| < €|g(z)| would imply the existence of h; € C" with |h;| < € and a; g(z) =
hj g(z). Since g(z) # 0, we would have

(z,[a1 — h1], ..., [an — hy]) € A* N (B(O,e) X (IP”"_l)”),

a contradiction. We obtain therefore

elg(2)] < maxfa; g(2)| < (maxla;|)[g(2)] on B(0,¢). m

(11.17) Theorem (Briangon-Skoda [BSk74]). Set p = min{n — 1,7 — 1}. Then
(a) Gl = § gk) = F §k) for k > p.
(b) T« Go+4p) « F*  for all k € N.

Proof. (a) The inclusions FI®E c FI® < FEHD are obvious thanks to Proposi-
tion 11.15, so we only have to prove that FEED <« F.9() - Assume first that r < n. Let
f e %+ be such that

[ 1819120190y < o,
Q

For £ > p — 1, we can apply Theorem 11.13 with m = r — 1 and with the weight
¢ = (k—m)log|g|*>. Hence f can be written f =Y g;jh; with

/ |h|? |g| 729 qV < 400,
Q

thus h; € F®) and fe Fg*), When r > n, Lemma 11.16 shows that there is an ideal
¥ C .¥ with n generators such that ) = ¥*) We find

Glkt1) ’j(k+1) cq /j(k) C FFE  for k >n—1.

(b) Property (a) implies inductively Ghtp) = g% F®) for all k € N. This gives in
particular .+P) ¢ gk, O

(11.18) Corollary.

(a) The ideal F is the integral closure of ¥, i.e. by definition the set of germs u € @,
which satisfy an equation

wWtaul 4 4a3=0, ase.9%, 1<s<d.
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(b) Similarly, j(k) is the set of germs u € @, which satisfy an equation
w4 au '+ 4ag=0, ase Il 1<s<d,

where [t] denotes the smallest integer > t.

As the ideal j(k) is finitely generated, property (b) shows that there always exists a
rational number [ > k such that ¥ = Fk)

Proof. (a) If u € O, satisfies a polynomial equation with coefficients as € .¥°, then clearly
las| < Cslg|® and the usual elementary bound

roots| < 2 max |as|'/®

<s<d

for the roots of a monic polynomial implies |u| < C'|g|.

Conversely, assume that v € .¥. The ring @, is Noetherian, so the ideal @) has
a finite number of generators vy, ... ,vy. For every j we have uv; € .¥. JP = ¥ f(p)
hence there exist elements b;, € .¥ such that

Z bjkvk.

1<kEN

The matrix (ud;r — bji) has the non zero vector (v;) in its kernel, thus u satisfies the
equation det(ud;r — bjr) = 0, which is of the required type.

(b) Observe that vy, ...,vx satisfy simultaneously some integrability condition
Jo lvj| 7208 < 400, thus @) = F@+n for n € [0,e[. Let u € F*). For every in-
teger m € N we have

umy; € F Gt ¢ Glmtn+p)

If £ ¢ Q, we can find m such that d(km + ¢/2,Z) < ¢/2, thus km + n € N for some
n €10,e[. If k € Q, we take m such that km € N and n = 0. Then

uv; € GNP — N G with N =km+n €N,

and the reasoning made in (a) gives det(u™d;5 — bj) = 0 for some b;, € SV, This is an
equation of the type described in (b), where the coefficients as vanish when s is not a
multiple of m and a,,s € .FV° C Flkmsl O

Let us mention that Briangon and Skoda’s result 11.17 (b) is optimal for k = 1. Take
for example ¥ = (g1, ... ,g,) with g;(z) = 2], 1 < j < r, and f(2) = 21---2,. Then
|f| < Clg| and 11.17 (b) yields f" € .%; however it is easy to verify that f*~! ¢ .. The
theorem also gives an answer to the following conjecture made by J. Mather.

(11.19) Corollary. Let f € G, and J§ = (210f/0z1, ... ,2,0f/0z,). Then f € Fy,
and for every integer k >0, fktn—1 ¢ Y’;

The Corollary is also optimal for k£ = 1 : for example, one can verify that the function
f(2)= (2122 + 27"+ + 2271 is such that f*~! ¢ ;.
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Proof. Set gj(z) = z; 0f/0zj, 1 < j < n. By 11.17 (b), it suffices to show that |f| < C|g].
For every germ of analytic curve C St (t), v # 0, the vanishing order of fo~(t) at
t = 0 is the same as that of

SIS M(t)gi( (t)).

1< <n

We thus obtain

of
Forwi <ot | M0 <o S paol [9L ()] < culgo )
1<j<n /
and conclude by the following elementary lemma. O
(11.20) Curve selection lemma. Let f,g1,...,9, € O, be germs of holomorphic

functions vanishing at 0. Then we have |f| < Clg| for some constant C if and only
if for every germ of analytic curve vy through 0 there exists a constant C, such that

[f oyl < Cylgoyl.

Proof. If the inequality |f| < Clg| does not hold on any neighborhood of 0, the germ of
analytic set (A4,0) C (C™*",0) defined by

gj(z) = f(z)zn+j7 I1<y<,

contains a sequence of points (z,,¢;(2,)/f(2,)) converging to 0 as v tends to +oo,
with f(z,) # 0. Hence (A,0) contains an irreducible component on which f # 0 and
there is a germ of curve ¥ = (7, vn+;) : (C,0) — (C™*",0) contained in (A, 0) such that
foy#0. Weget gj oy = (f ©v)¥n+j, hence |goy(t)| < C|t||f o v(t)| and the inequality
|f o] < C,|g o] does not hold. U



Chapter 12

The Ohsawa-Takegoshi L? Extension Theorem

The Ohsawa-Takegoshi theorem addresses the following extension problem: let Y be a
complex analytic submanifold of a complex manifold X ; given a holomorphic function f
on Y satisfying suitable L? conditions on Y, find a holomorphic extension F of f to X,
together with a good L? estimate for F' on X. The first satisfactory solution has been
obtained in the fundamental papers [OT87; Ohs88]. We follow here a more geometric
approach due to Manivel [Man93|, which provides a generalized extension theorem in
the general framework of vector bundles. As in Ohsawa-Takegoshi’s fundamental paper,
the main idea is to use a modified Bochner-Kodaira-Nakano inequality. Such inequalities
were originally introduced in the work of Donnelly-Fefferman [DF83] and Donnelly-Xavier
[DX84].

12.A. The Basic a Priori Inequality

The main a priori inequality we are going to use is a simplified (and slightly extended)
version of the original Ohsawa-Takegoshi a priori inequality, along the lines proposed by
Ohsawa [Ohs95].

(12.1) Lemma (Ohsawa [Ohs95]). Let E be a Hermitian vector bundle on a complex
manifold X equipped with a Kdhler metric w. Let n, A > 0 be smooth functions on X.
Then for every form u € U (X, APITy @ E) with compact support we have

|(n% +A2)D"ul® + |ln? D"ul|* + ||A2 D'ul]” + 2||A~Zd'n A u|)*
> ([ni®@p —id'd"n —ix"td'n Ad'n, Alu,u)).

Proof. Let us consider the “twisted” Laplace-Beltrami operators

D/nD/* +D/*7]D/ — n[D/,D/*] + [D/,n]D/* + [D/*,n]D/
=nA"+ (d'n)D" — (d'n)"D’,
D//nD//* + D//*/),/D// — n[DH,DH*] + [DH,T]]DH* + [DH*,T]]DH
— UA// + (d//n)D//* _ (d//n)*D//,

where n, (d'n), (d"n) are abbreviated notations for the multiplication operators ne, (d'n)A
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e, (d'n) N e. By subtracting the above equalities and taking into account the Bochner-
Kodaira-Nakano identity A” — A’ = [i@g, A], we get
DHTIDH* + D//*/),/D// _ D//),/D/* _ D/*T]D/
(12.2) =1[i®p, Al + (d"n) D" — (d"n)* D" + (d'n)* D" — (d'n)D".
Moreover, the Jacobi identity yields
[Dllv [d/777 A” - [d/nv [A7 DH]] + [A7 [Duv dl??“ =0,

whilst [A, D"”] = —1D"* by the basic commutation relations 4.5. A straightforward com-
putation shows that [D”, d'n] = —(d'd"n) and [d'n, A] = i(d"n)*. Therefore we get

i[DH, (d//n)*] + i[d/n, D/*] _ [A, (d/d//n)] — O,
that is,
[id/d//n,A] — [D//, (d//n)*] _|_ [D/*,d/n] — D//(d//n)* _|_ (d//n)*D// + D/*(d/n) _|_ (d/n)D/*
After adding this to (12.2), we find
DHTIDH* + D//*/),/D// _ D//),/D/* _ D/*T]D/ + [i d/d//n,A]
— n[i@E,A] + (d//n)D//* + D//(d//n)* _|_ (d/n)*D/ + D/*(d/n)

We apply this identity to a form v € U (X, AP9T% @ E) and take the inner bracket
with u. Then )
<<(D//nD//*)u, u>> — <<T]D”*'U,, D//*u>> — |’n5D//*uH2,

and likewise for the other similar terms. The above equalities imply
1 1 1 1
192 D" u||* + |92 D"ul* — [n% D'u|* — ||n= D"u|®
= ([ni®p —id'd"n, AJu,u)) + 2Re (D" u, (d"n)*u)) + 2Re {(D'u, d'n A u)).
By neglecting the negative terms — ||z D'u||? — |92 D"*u||? and adding the squares
IAZD"ul]? + 2Re (D"*u, (d"n)"u)) + | A2 (d"n)"ull* >0,
IAZD'u|? + 2Re (D'u, d'n Au)) + |[A"2d'n Aul|? >0
we get
|07 + A2)D" ull? + 2 D"ul® + A2 D'ul|? + A==y Aull® + | A~ (d"n) ul|?
> (110 — id'd"n, Alu, u)).
Finally, we use the identities
(d'n)*(d'n) — (d"n)(d"n)" = i[d"n, A](d'n) +i(d"n)[d'n, A] = [id"n A d'n, A],
IN"2dn Aull® = A3 (d ) ul|? = — (AT A dn, AJu,u)),

The inequality asserted in Lemma 12.1 follows by adding the second identity to our last
inequality. U

In the special case of (n, ¢)-forms, the forms D'u and d'nAw are of bidegree (n+1, q),
hence the estimate takes the simpler form

(12.3) [|(n? + A2)D"ul®> + |n? D"ul®> = ([niOg — id'd"n —iXN""d'n A d'n, Nu, ).
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12.B. Abstract L? Existence Theorem for Solutions of
0-Equations
Using standard arguments from functional analysis — actually just basic properties of

Hilbert spaces along the lines already explained in section 5 — the a priori inequality
(12.3) implies a very strong L? existence theorem for solutions of d-equations.

(12.4) Proposition. Let X be a complete Kdhler manifold equipped with a (non neces-
sarily complete) Kdhler metric w, and let E be a Hermitian vector bundle over X . Assume
that there are smooth and bounded functions n, A > 0 on X such that the (Hermitian)
curvature operator

B =Byl =[niOg—iddn—ix"'d'nAd'n, Al

s positive definite everywhere on A™IT5 ® E, for some ¢ > 1. Then for every form
g € L*(X,A"T% ® E) such that D"g = 0 and [ (B~ 'g,g)dV,, < 400, there exists
feLl*(X, A 1T @ E) such that D" f = g and

/ (n+ NPV, <2 / (B~1g, ) dV.
X X

Proof. The proof is almost identical to the proof of standard L? estimates for 9 (see
Theorem 5.1), except that we use (12.3) instead of (4.7). Assume first that w is complete.
With the same notation as in 7.4, we get for every v = v + vy € (Ker D”) @ (Ker D”)~+
the inequalities

|<g,v>\2=\<g,v1>\2</X<B‘1g,g>de/X<Bv1,v1>de,

and
/ (Bui,v1) dV, < [|(92 + A2)D" 01 [|* + [l D"ua|* = | (n* + A3)D"* o]
X
provided that v € Dom D”*. Combining both, we find
_ 1 1 »
(9.0 < ([ (B 0u0) VL) + 28D
This shows the existence of an element w € L?(X, A™9T% ® FE) such that
ul? < [ (B lg.gpav,  and
X

(v, g) = ((n? +A2)D"™v,w) Vg € Dom D" N Dom D"*.
As (N2 4 X2)2 < 2(n+ N), it follows that f = (p/2+ A2 )w satisfies D’ f = g as well as
the desired L? estimate. If w is not complete, we set w. = w + €& with some complete

Kéhler metric . The final conclusion is then obtained by passing to the limit and using
a monotonicity argument (the integrals are monotonic with respect to ¢). U
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(12.5) Remark. We will also need a variant of the L?-estimate, so as to obtain
approximate solutions with weaker requirements on the data: given 6 > 0 and g €
L*(X,A™T% ® E) such that D”g = 0 and [, ((B + 6I)"'g,g)dV,, < o0, there
exists an approximate solution f € L*(X,A™%!'T% ® E) and a correcting term h €
L*(X,A™T% ® E) such that D" f + §'/2h = g and

/ (n+ N2V, + / PV, < 2 / (B +60)"g, g) dV..
X X X

The proof is almost unchanged, we rely instead on the estimates

g, o) < /X (B +81)"g, g} V., /X (B + 6101, v1) Vi,

and

/ (B +dT)vr,v1) Ve < [[(n2 + A7) D" 0||” + 4o, m
X

12.C. The L? Extension Theorem

According to a concept already widely used in Chapter 5, a (non necessarily compact)
complex manifold will be said to be weakly pseudoconvex if it possesses a smooth weakly
plurisubharmonic exhaustion function.

(12.6) Theorem. Let X be a weakly pseudoconver complex m-dimensional manifold
possessing a Kdhler metric w, and let L (resp. E) be a Hermitian holomorphic line
bundle (resp. a Hermitian holomorphic vector bundle of rank r over X), and s a global
holomorphic section of E. Assume that s is generically transverse to the zero section,
and let

Y ={z€X; s(z)=0,Ads(z) # 0}, p=dmY =n—r.

Moreover, assume that the (1,1)-form 1O +rid'd" log|s|? is semi-positive and that there

1s a continuous function o = 1 such that the following two inequalities hold everywhere
on X :

(a) iOp +rid'd"log|s|* > ofl%,
s
(b) |s] <e™@.

Then for every smooth D"-closed (0,q)-form f over Y with values in the line bundle
A"T% ® L (restricted to Y'), such that [, |f|*|A"(ds)|~2dV,, < +oo, there exists a D"-
closed (0,q)-form F over X with values in A"T% ® L, such that F' is smooth over
X ~{s=A"(ds) = 0}, satisfies Fyy = f and

/ |F|2 dVx o, <C / LCﬂ/vy
x s (=log|s])* ™ y [AT(ds)]?

where C,. 1s a numerical constant depending only on r.
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Observe that the differential ds (which is intrinsically defined only at points where
s vanishes) induces a vector bundle isomorphism ds : T'x /Ty — E along Y, hence a non
vanishing section A" (ds), taking values in

AT(Tx/Ty)* ®det E C ATT)*( ® det F.

The norm |A"(ds)| is computed here with respect to the metrics on A"T% and det E
induced by the Kéahler metric w and by the given metric on E. Also notice that if
hypothesis (a) is satisfied for some «, one can always achieve (b) by multiplying the
metric of £ with a sufficiently small weight e=X°¥ (with 1 a psh exhaustion on X and x
a convex increasing function; property (a) remains valid after we multiply the metric of
L by e~ ("0 )xo% where ag = infpex o).

Proof. Let us first assume that the singularity set ¥ = {s = 0} N {A"(ds) = 0} is empty,
so that Y is closed and nonsingular. We claim that there exists a smooth section

Foo € €X°(X,AT% @ L) = €°(X, A%T% @ A"T5% ® L)

such that

(a) F coincides with f in restriction to Y,
(b) |Fo| = | f| at every point of Y,

(c) D"F =0 at every point of Y.

For this, consider coordinates patches U; C X biholomorphic to polydiscs such that
UinNY ={z¢€U;; z1 =---=2 =0}
in the corresponding coordinates. We can certainly find a section
f e €=(X,A\"T% ® L)

which achieves (a) and (b), since the restriction map (A%97T% )y — A%9T5 can be viewed
as an orthogonal projection onto a “€>-subbundle of (A%97T%)y. It is enough to extend
this subbundle from U; NY to U; (e.g. by extending each component of a frame), and
then to extend f globally via local smooth extensions and a partition of unity. For any
such extension f we have

(D" flyy = (D" fry)=D"f=0.

It follows that we can divide D" f = Y icaer 9ia(2) Adzy on U; NY, with suitable
smooth (0, g)-forms g; » which we also extend arbitrarily from U; N'Y to U;. Then

Fooi=f— Z 0;(z) Z Zxgj(2)

1<AKr

coincides with J?on Y and satisfies (c). Since we do not know about F,, except in an
infinitesimal neighborhood of Y, we will consider a truncation F. of F, with support in
a small tubular neighborhood [s| < € of Y, and solve the equation D"u. = D" F. with
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the constraint that u. should be 0 on Y. As codimY = r, this will be the case if we can
guarantee that |u|?|s|=2" is locally integrable near Y. For this, we will apply Proposition

12.4 with a suitable choice of the functions n and ), and an additional weight |s|~2" in
the metric of L.
Let us consider the smooth strictly convex function xo : ] — 00,0] — | — o0, 0]

defined by xo(t) =t — log(1 — ¢) for ¢ < 0, which is such that xo(¢) <¢, 1 < x( < 2 and
Xo(t) =1/(1 —t)%. We set

o. = log(|s|* + &%), Ne =€ — xo(oe).
As |s| < e @ <e!, we have 0. < 0 for ¢ small, and
Ne 2 € — 0. 2e—log(e > +&7).

Given a relatively compact subset X. = {¢p < ¢} CC X, we thus have 1. > 2a for
e < g(c) small enough. Simple calculations yield

. i{D’'s, s}
1d0€—m,
i{D's,D's} i{D’s,s} N{s,D's} {iOgs, s}
Is)2+e2 (|s2+e2)2 [s]2+e?
- e® i{D's,s} A{s,D's} {iOps,s}
Tl (sl +e2)? |5 + €2

2

€7 . 1" {iG)ESVS}
>W1d05/\d UE—W,

L TN 174
idd'o. =

thanks to Lagrange’s inequality i{D’s,s} A {s, D’'s} < |s|?i{D’s, D’s}. On the other
hand, we have d'n. = —x{(0c)do. with 1 < x{(0:) < 2, hence
—id'd"n. = x((0e)id'd" o + x((0e)id o Nd" o,
S ( 1L &2 xgloo)
xo(oe) Is*  xp(02)?

{i®gs, s}
SEter

)id/ne A d//ne - X6 (0'5)

We consider the original metric of L multiplied by the weight |s|~2". In this way, we get
a curvature form _

_1{i©®gs, s}
S+ &2

by hypothesis (a), thanks to the semipositivity of the left hand side and the fact that
%Xg(ae)m < # As n. > 2a on X, for € small, we infer

1
10, + rid'd" log|s|? > 5)(6(05)04

" 2
XO(UE) - 1 € .
idn-Nd'n. > ———i
Xoloe)2 ™ " I COIEE

on X.. Hence, if \. = x{(0-)?/x4(02), we obtain

e (101 + id'd" log|s|?) —id'd"n. — d'ne A d'"ne

B. = [n.(101 +id'd" log|s|*) — id'd"n. — A\Z"id'n. Ad"n. , Al
2 2

-d/ /\ d// A] — € d// d// *

1 776 7757 X/O(O'g)‘SP( 776)( 776)

£

> [ GeomE
P
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as an operator on (n, q)-forms (see the proof of Lemma 12.1).

Let 0 : R — [0, 1] be a smooth cut-off function such that 6(t) = 1 on | — 00, 1/2],
Suppf C ] —oo,1[ and || < 3. For € > 0 small, we consider the (n,q)-form F. =
0(c2|s|?) Fs and its D"-derivative

ge = D"F. = (14+¢72|s]?)0' (¢ 7%|s|*)d" 0. A Foo + 0(c2|5|>) D" Fy

_2\s|2 -2 o

(as is easily seen from the equality 1+ ¢ = ¢ “e?¢ ). We observe that g. has its
support contained in the tubular neighborhood |s| < €; moreover, as ¢ — 0, the second
term in the right hand side converges uniformly to 0 on every compact set; it will therefore
produce no contribution in the limit. On the other hand, the first term has the same
order of magnitude as d”o. and d”’n., and can be controlled in terms of B.. In fact, for
any (n,q)-form u and any (n,q + 1)-form v we have

[{d"ne Au,v) P = [(u, (d"ne)*0)[* < [uf?](d"ne) o]

. "o2)]s|?
= (" )0, ) < 2N 2 )

This implies
X6(05)|8|2 |u|2

(B d"ne A, (@ A w)) < X0

The main term in g. can be written

gl = (L7215 (6725 xp(02) M e A Frc.
On Supp ggl) C {|s| < e}, since x{(oc) = 1, we thus find

(B9l glV) < (L+e72s)?)2 0/ (72 |s[*)?| P

Instead of working on X itself, we will work rather on the relatively compact subset
XcNY,, where Y. =Y NX,. =Y N{yY <c} Weknow that X, \ Y, is again complete
Kahler by a standard lemma (see [Dem82b], Theorem 1.5). In this way, we avoid the
singularity of the weight |s|~2" along Y. We find

/' <ng5>¢”ﬂﬂ”wwu</" |Foo |2 (1 + 725[%)20/ (e 725 [?)2|s| ~2"dV,..
X N\Y,

X N\Y,

Now, we let ¢ — 0 and view s as “transverse local coordinates” around Y. As F.
coincides with f on Y, it is not hard to see that the right hand side converges to
¢r [y |fI?|A"(ds)|~2dVy,, where ¢, is the “universal” constant

i A" (dz) A AT (dZ)

|Z|27"

qz/ (14 [22)20(|2[2)? < too
z€Cr, |z|<1

depending only on r. The second term

g§2) — 0(8_2|8|2)d//F00
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in g. satisfies Supp(gs (2 )) C {|s| < e} and |g§2)\ = O(|s|) (just look at the Taylor expansion
of d’F near Y). From this we easily conclude that

/ (B9, ) |s| > dVx., = O(),
X . \Y,

provided that B. remains locally uniformly bounded below near Y (this is the case for
instance if we have strict inequalities in the curvature assumption (a)). If this holds true,
we apply Proposition 12.4 on X.\ Y, with the additional weight factor |s|~2". Otherwise,
we use the modified estimate stated in Remark 12.5 in order to solve the approximate
equation D"u + 6'/2h = g. with § > 0 small. This yields sections u = Uces, P =hees
such that

/ (7 + Xe) ™ utge 5 2|52 AV, + / (hore sl 2" V.,
X NY, X NY,

<2/ (B.+61)Yg., g.)|s| 2 dVL,
X . \Y,

and the right hand side is under control in all cases. The extra error term §'/?h can
be removed at the end by letting ¢ tend to 0. Since there is essentially no additional
difficulty involved in this process, we will assume for Simplimty of exposmon that we do
have the required lower bound for B. and the estimates of gc/ and g6 as above. For
d = 0, the above estimate provides a solution u. . of the equation D"u.. = g. = D"F,
on X. \Y,, such that

/ (0 + Ae) Mt 28| dVi < 2 / (B=ge, g.) |s| 2 dVx.
X N\Y, XeNYe

i

Here we have
= log(]s|* +¢%) <log(e™** +¢%) < —2a + O(¢?) < =2+ O(?),
ne =& — xo(os) < (1+0(e))o?

Xo(Us)2 — (1 —0.)2 Y o2
(2] =(l-0)"+(1—-0) <B+0(e))o:

Mo+ A < (44 0(€)0? < (4+ 0(e)) ( —log(|s]* +£))”.

A =

As F. is uniformly bounded with support in {|s| < e}, we conclude from an obvious
volume estimate that

/ |Fe|?dVx . o Const
x. (Is? +e2)r(—log(|s[* +¢2))? ~ (loge)?’

Therefore, thanks to the usual inequality |t +u|? < (1 +k)[t|? + (1 + k7 1)|u|? applied to
the sum Fi. . = f6 uc,e with k = |loge|, we obtain from our previous estimates

‘ch‘QdVXw / ‘f‘QdVYw —1
’ ’ < 8¢, ———= 4+ 0O(|loge .
/XC\YC (S + 227 (~Tog(Js[? + 2))2 v [Arasye  Otosel™)
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In addition to this, we have d”"F,.. = 0 by construction, and this equation can be seen
to extend from X. \ Y, to X, by the L? estimate ([Dem82b], Lemma 6.9).

If ¢ = 0, then u. . must also be smooth, and the non integrability of the weight |s
along Y shows that u. . vanishes on Y, therefore

Foory =Foy = Fory = f.

|—27"

The theorem and its final estimate are thus obtained by extracting weak limits, first as
e — 0, and then as ¢ — +oo. The initial assumption that ¥ = {s = A"(ds) = 0} is
empty can be easily removed in two steps: i) the result is true if X is Stein, since we can
always find a complex hypersurface Z in X such that ¥ C YNZ C Y, and then apply the
extension theorem on the Stein manifold X \ Z, in combination with L? extension; ii)
the whole procedure still works when ¥ is nowhere dense in Y (and possibly nonempty).
Indeed local L? extensions E still exist by step i) applied on small coordinate balls Uj ;
we then set Fiopo = ij; and observe that | D" F..|?|s| 72" is locally integrable, thanks to
the estimate ij |E|2\s|_27“(log |s|)72dV < +oo and the fact that | > d"6; /\f;| = 0(|s]%)
for suitable § > 0 [as follows from Hilbert’s Nullstensatz applied to f; — ﬁ at singular
points of Y |.

When g > 1, the arguments needed to get a smooth solution involve more delicate
considerations, and we will skip the details, which are extremely technical and not very
enlightening.

(12.7) Remarks.

(a) When g = 0, the estimates provided by Theorem 12.6 are independent of the Kéhler
metric w. In fact, if f and F' are holomorphic sections of A"T% ® L over Y (resp. X),
viewed as (n,0)-forms with values in L, we can “divide” f by A"(ds) € A"(TX/TY)* ®
det E to get a section f/A"(ds) of APTy ® L @ (det E)™! over Y. We then find

|F[?dVx ., =" {F, F},

/17

Ve = U/ (ds), J/7(ds)),

where {e, o} is the canonical bilinear pairing described in (3.3).

(b) The Hermitian structure on E is not really used in depth. In fact, one only needs E
to be equipped with a Finsler metric, that is, a smooth complex homogeneous function
of degree 2 on E (or equivalently, a smooth Hermitian metric on the tautological bundle
Op(g)(—1) of lines of E over the projectivized bundle P(E), see (4.12)). The section s
of E induces a section [s] of P(E) over X \ s7!(0) and a corresponding section s of the
pull-back line bundle [s]*@p(g)(—1). A trivial check shows that Theorem 12.6 as well as
its proof extend to the case of a Finsler metric on F, if we replace everywhere {iOgs, s}
by {iOs]«@p ) (~1)5, s } (especially in hypothesis 12.6 (b)). A minor issue is that [A"(ds)|
is (a priori) no longer defined, since no obvious Hermitian norm exists on det E. A
posteriori, we have the following ad hoc definition of a metric on (det F)* which makes
the L? estimates work as before: for x € X and £ € A"E*, we set

i"ENE

|Z|2r

1
€17 = —/ (14 [2])%6"(|2]*)?
Cr J:eE

T
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where |z| is the Finsler norm on E, [the constant ¢, is there to make the result agree
with the Hermitian case; it is not hard to see that this metric does not depend on the
choice of 6].

(c) Even when ¢ = 0, the regularity of u. . s requires some explanations, in case 6 > 0.
In fact, the equation
D//uc,s,(s + 51/2hc,5,6 =9 = D//Fs

does not immediately imply smoothness of u. . s (since h. . 5 need not be smooth in gene-
ral). However, if we take the pair (e s, hec.s) to be the minimal L? solution orthogonal
to the kernel of D” @§'/21d, then it must be in the closure of the image of the adjoint ope-
rator D”* @ 6'/21d, i.e. it must satisfy the additional condition D"*hees = 51/2uc’6’5,
whence (A” + 01d)hees = (D"D"* + §1d)hees = §1/2D"F., and therefore hees is
smooth by the ellipticity of A”. O

We now present a few interesting corollaries. The first one is a surjectivity theorem
for restriction morphisms in Dolbeault cohomology.

(12.8) Corollary. Let X be a projective algebraic manifold and E a holomorphic vec-
tor bundle of rank r over X, s a holomorphic section of E which is everywhere trans-
verse to the zero section, Y = s~1(0), and let L be a holomorphic line bundle such that
F=LY"®E* s Griffiths positive (by this, we just mean formally that
%i@L ®Idg —iOp >Guir 0). Then the restriction morphism

HYY(X,A"T% @ L) — H>(Y,A\"T% @ L)

is surjective for every q = 0.

Proof. A short computation gives

D/
id'd" log |s|? = id’(u)

|s|?
({D's,D's} {D's,s} N{s,D's} {s,Ops} {i®gs, s}
= — > VYRS OS
(S R ¥ R

thanks to Lagrange’s inequality and the fact that ©p is antisymmetric. Hence, if § is a
small positive constant such that

1
—i0p + -0 ® Idg Z2arir 0w ® Idg > 0,
T

we find
i0r +rid'd" log|s|* > réw.

The compactness of X implies iOp < Cw ® Idg for some C' > 0. Theorem 12.6 can thus
be applied with o = rd/C and Corollary 12.8 follows. By Remark 12.7 (b), the above
surjectivity property even holds if L'/" @ E* is just assumed to be ample (in the sense
that the associated line bundle 7* LY ® @ p(g)(1) is positive on the projectivized bundle
7m: P(E) — X of lines of E). O
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Another interesting corollary is the following special case, dealing with bounded
pseudoconvex domains 2 CC C™. Even this simple version retains highly interesting
information on the behavior of holomorphic and plurisubharmonic functions.

(12.9) Corollary. Let Q2 C C" be a bounded pseudoconver domain, and let Y C X be a
nonsingular complex submanifold defined by a section s of some Hermitian vector bundle
E with bounded curvature tensor on . Assume that s is everywhere transverse to the
zero section and that |s| < e~! on Q. Then there is a constant C' > 0 (depending only
on E), with the following property: for every psh function ¢ on €, every holomorphic
function f on'Y with [, |f]*|A"(ds)|"?e”¥dVy < +oo, there exists an extension F of f

to Q such that
I / |f|2 .
d e PdVs .
/Q S (—logls2t VeSO Ar@sEe Y

Proof. We apply essentially the same idea as for the previous corollary, in the specizal case
when L = Q x C is the trivial bundle equipped with a weight function e~¢~4l?I". The
choice of a sufficiently large constant A > 0 guarantees that the curvature assumption

12.6 a) is satisfied (A just depends on the presupposed bound for the curvature tensor
of E). O

(12.10) Remark. The special case when Y = {2} is a point is especially interesting. In
that case, we just take s(z) = (ediam Q)1 (z — 2¢), viewed as a section of the rank r = n
trivial vector bundle Q x C™ with |s| < e™!. We take a = 1 and replace |s|*"(—log|s|)?
in the denominator by |s|2("~¢), using the inequality

1 1
—log|s| = glog|s|_E < g|s|_5, Ve > 0.

For any given value fy, we then find a holomorphic function f such that f(z¢) = fo and

PG R— Cn 2 o(z
/Q |2_20‘2(n_6)e () qVa < 62(diamQ)2(”_5)|fO‘ e—¥(20)

12.D. Skoda’s Division Theorem for Ideals of Holomorphic
Functions

Following a strategy inpired by T. Ohsawa [Ohs02; Ohs04], we reprove here a version of
Skoda’s division theorem for ideals of holomorphic functions, by reducing it to an exten-
sion problem. Our approach uses Manivel’s version of the extension theorem presented
above, and leads to results very close to those of Skoda [Sko80], albeit somewhat weaker.

Let (X,w) be a Kdhler manifold, dim X = n, and let g : £ — @ a holomorphic
morphism of Hermitian vector bundles over X. Assume for a moment that g is everywhere
surjective. Given a holomorphic line bundle . — X, we are interested in conditions
insuring that the induced morphism g : H*(X,Kx  E® L) - H'(X,Kx @ Q® L) is
also surjective (as is observed frequently in algebraic geometry, it will be easier to twist
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by an adjoint line bundle Kx ® L than by L alone). For that purpose, it is natural to
consider the subbundle S = Ker g C E and the exact sequence

(12.11) 0—S 1 E 25Q—0

where 7 : S — FE is the inclusion, as well as the dual exact sequence
(12.11) 0— Q" LB L9 o,

which we will twist by suitable line bundles. The main idea of [Ohs02; Ohs04] is that
finding a lifting of a section by g is essentially equivalent to extending the related section
on Y = P(Q*) =P(Q) to X = P(E*) = P(E), using the obvious embedding Y C X of
the projectivized bundles. In fact, if rg = rg —rq are the respective ranks of our vector
bundles, we have the classical formula

(12.12) Ky = Kpgy = 7" (Kx @ det E) ® Opgy(—7s)

where 7 : P(E) — X is the canonical projection. Therefore, since E coincides with the
direct image sheaf m,Opg)(1), a section of H°(X,Kx ® E® L) can also be seen as a
section of

(12.13) HY (%, Ky ® Oy(rsg +1) @ n*(L @ det E7Y)).

Now, since @y (1) cy = Oy(1) = Op(g)(1), the lifting problem is equivalent to extending
to % a section of the line bundle (Ky ® &) where &£ = Oy (rs+1) @ 7*(L @ det E~1).
As a submanifold, Y is the zero locus of the bundle morphism

Oppy(—1) = 7" E* = n*(E*/Q") = 7" 5",
hence it is the (transverse) zero locus of a naturally defined section
(12.14) s€ HO(%,€) where € := 775" ® Op(g)(1).

Let us assume that F is endowed with a smooth Hermitian metric h such that ©g j, is
Griffiths semi-positive. We equip @ with the quotient metric and S, Opg)(1), det E,
€ (...) with the induced metrics. A sufficient curvature condition needed to apply the
Ohsawa-Takegoshi-Manivel extension theorem is

O s,
10y + rgid'd" log |s|* > e%
s

for ¢ > 0 small enough (i.e. in some range ¢ € [0,5¢], €0 < 1). Since id'd” log|s|? >

—iBap(r) (1) — %, we obtain the sufficient condition

{iOr+g+s, s}

(1215) 7T*i@L®det E-1 + (1 — €)i@@P(E)(1) — (7’5‘ + 6) ‘S|2

= 0, €€ [0, 80].
The assumption that E is Griffiths semi-positive implies iOget g = 0, i@@ﬂz,( g1 =0 and
also

{iOr+g+s, s}

12.16

< iOget Q-
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In fact this is equivalent to proving that S ®det ) is Griffiths semi-positive, but we have
in fact S®detQ = S®detS™! ® det E = A™5~18* ® det E, which is a quotient of
A"sTIE* @ det E = A"#~"sT1E > (0. This shows that (12.15) is implied by the simpler
condition

(12.17) iO7 > 1O4et £ + (7‘5 + 80)i@detQ,

in particular L = det E ® (det Q)¥, k > rg, satisfies the curvature condition. We derive
from there:

(12.18) Theorem. Assume that (X,w) is a Kdhler manifold possessing a complete
Kdhler metric 0, and let g : E — Q be a surjective morphism of holomorphic vector bun-
dles, where (E, hg) is a Griffiths semi-positive Hermitian bundle. Consider a Hermitian
holomorphic line bundle (L,hy) such that

i@L—(Ts-i-e)i@detQ—i@detE20, rs =Tg —TrQ, e>0.

Then for every L? holomorphic section f € H*(X, Kx ® Q ® L) there exists a L* holo-
morphic section h € H'(X, Kx ® E® L) such that f = g-h and ||h]|*> < Chrp.ell fI*

Proof. We apply Theorem 12.6 with respect to the data (%,%Y,€,<£) and o = 71,
r = rg. Since |s| < 1, we have to multiply s by d = exp(—1/¢) to enforce hypothesis
12.6 (b). This affects the final estimate only as far as the term log|s| is concerned,
since both |s|>” and |A"(ds)|> = 1 are multiplied by §%". Finally, we apply Fubini’s
theorem to reduce integrals over X or Y to integrals over X, observing that all fibers of
X = P(F) — X are isometric and therefore produce the same fiber integral. Theorem
12.18 follows. By exercising a little more care in the estimates, one sees that the constant
Ch.rp.c 18 actually bounded by C,, ,e~2, where the e72 comes from the term (—log |s|)?,
after s has been multiplied by exp(—1/e). O

Skoda’s original method is slightly more accurate. It shows that one can take
Chrp.e =€ ', and, more importantly, replaces the curvature hypothesis by the weaker
one

(12 19) 97, — (k’ + 5)i@detQ —iOget g = 0,
' where k = min(rg,n), r¢ =rg —rg, n=dimX, >0,

which does not seem so easy to obtain with the present method. It is however possible to
get estimates also when () is endowed with a metric given a priori, that can be distinct
from the quotient metric of E by g. Then the map g*(gg*)~! : Q — E is the lifting of
Q orthogonal to S = Ker g. The quotient metric | ® |" on @ is therefore defined in terms
of the original metric | o | by

0] = |g"(99") " 0[? = ((gg") v, v) = det(gg™) ! (gg*v, v)

where gg}; € End(Q) denotes the endomorphism of ) whose matrix is the transposed
comatrix of gg*. For every w € det @, we find

[w]” = det(gg") ™" [w]*.
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If Q' denotes the bundle @ with the quotient metric, we get
1O get Q = 1Oget o+ id'd"” log det(gg*).

In order that the hypotheses of Theorem 12.18 be satisfied, we are led to define a new
metric | e |" on L by |u|? = |ul? (det(gg*))_m_g. Then

10 =101 + (m +¢)id'd" logdet(gg*) = (m + €) 1Oget ¢'-
Theorem 12.18 applied to (E,Q’, L") can now be reformulated:

(12.20) Theorem. Let X be a weakly pseudoconvexr manifold equipped with a Kdhler
metric w, let E — @ be a generically surjective morphism of Hermitian vector bundles
with E Griffiths semi-positive, and let L — X be a Hermitian holomorphic line bundle.
Assume that

107, — (rg +€)iOget @ — 1Oget £ = 0, rs=rg—rqg, €>0.

Then for every holomorphic section f of Kx ® QQ ® L such that
I= [ @3 1.1) (@etgg) T eV <
there exists a holomorphic section of Kx ® E ® L such that f = g-h and
/X [h]? (det gg*) TS 77 dV < Crrp e 1.

In case Q) is of rank 1, the estimate reduces to

J Rl A < G [ 1Pl v

Proof. if Z C X is the analytic locus where g : E — @ is not surjective and X, = {¢) < ¢}
is an exhaustion of X by weakly pseudoconvex relatively compact open subsets, we exploit
here the fact that X, \ Z carries a complete metric (see [Dem82b]). It is easy to see that
the L? conditions forces a section defined a priori only on X \ Z to extend to X. U

The special case where E = @’gp and Q = @q are trivial bundles over a weakly
pseudocovex open set 2 C C” is already a quite substantial theorem, which goes back to
[Sko72b]. In this case, we take L to be the Hermitian line bundle (@g, e~%) associated
with an arbitrary plurisubharmonic function ¢ on (2.

(12.21) Corollary (Skoda’s division theorem). Let f, g1,...,gp be holomorphic func-
tions on a weakly pseudoconvex open set  C C" such that

/ |f|2|g|_2(p+1)_256_“”dV < 400
Q

for some plurisubharmonic function p. Then there exist holomorphic functions hj, 1 <
J < p, such that f =) g;h; on Q, and

/ |h|2 |g| 2P D22 gV < Oy pe / |f|? |g| 2P~ 2% aV.
X X



Chapter 13

Approximation of Closed Positive Currents
by Analytic Cycles

13.A. Approximation of Plurisubharmonic Functions Via
Bergman kernels

We prove here, as an application of the Ohsawa-Takegoshi extension theorem, that every
psh function on a pseudoconvex open set {2 C C" can be approximated very accurately
by functions of the form clog |f|, where ¢ > 0 and f is a holomorphic function. The main
idea is taken from [Dem92]. For other applications to algebraic geometry, see [Dem93b]
and Demailly-Kollar [DKO1]. Recall that the Lelong number of a function ¢ € Psh(Q2)
at a point zg is defined to be

p(2)

su
(13.1) v(p,xp) = liminf ————— = lim M_
z—zo log |Z — x0| r—04 logr

In particular, if ¢ = log |f| with f € O(2), then v (¢, xg) is equal to the vanishing order
ord,, (f) = sup{k € N D*(z0) = 0, V]a| < k}.

(13.2) Theorem. Let ¢ be a plurisubharmonic function on a bounded pseudoconvez open
set Q@ C C™. For every m > 0, let #Hq(me) be the Hilbert space of holomorphic functions
[ on Q such that [, |f[?e™?™?d\ < 400 and let o, = 5-log " |og|* where (o4) is an
orthonormal basis of Hq(mey). Then there are constants C1,Co > 0 independent of m
such that

C 1 C

(a) ¢(2)— — < om(2) < sup @(C)+—log — for every z € Q and r < d(z,09). In
m [¢—2|<r meooorn

particular, @., converges to ¢ pointwise and in Li, . topology on Q when m — +o0

and

(b) v(p,2)— n < v(pm,z) < v(p,z) for every z € Q.
m

Proof. (a) Note that > |oy(2)|? is the square of the norm of the evaluation linear form
ev, : [ — f(2) on Hq(mey), since o4(z) = ev,(oy) is the ¢-th coordinate of ev, in the
orthonormal basis (0/). In other words, we have

Y loe(2)P = sup |f(2)]?

feB()
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where B(1) is the unit ball of #(m¢) (The sum is called the Bergman kernel associated
with #q(mp)). As @ is locally bounded from above, the L? topology is actually stronger
than the topology of uniform convergence on compact subsets of 2. It follows that the
series Y |oy|? converges uniformly on 2 and that its sum is real analytic. Moreover, by
what we just explained, we have

1
om(z) = sup —log|f(z)].
feB(1) M

For zp € Q and r < d(z9, 09), the mean value inequality applied to the psh function |f|?
implies
feP < —g [ If@PAA)
’ h ﬂ-nTZn/n! |z—z—0|<r

1
= np2n /p)

exp (Qm sup gp(z))/ﬂ|f|26_2m‘pd)\.

|z—zo|<r

If we take the supremum over all f € B(1) we get

1 1

om(20) < sup  @(z) + 5—log —nan
2= 20| <r 2m 7 wnr2n/n)

and the second inequality in (a) is proved — as we see, this is an easy consequence of the
mean value inequality. Conversely, the Ohsawa-Takegoshi extension theorem (Corollary
12.9) applied to the 0-dimensional subvariety {zo} C {2 shows that for any a € C there
is a holomorphic function f on  such that f(z9) = a and

/ ‘f‘Ze—Qm@d)\ < C’3|a\26_2m”(20),
Q

where C3 only depends on n and diam 2. We fix a such that the right hand side is 1.
Then || f|| < 1 and so we get

log 03

1 1
Pmlz0) > —log|f(20)| = — logla] = p(2) — = 2.

The inequalities given in (a) are thus proved. Taking r = 1/m, we find that
limy— 400 SUP|¢_ 5 <1/m P(C) = ©(z) by the upper semicontinuity of ¢, and therefore
lim ¢y, (2) = (), since lim - log(Com™) = 0.

(b) The above estimates imply

Cl 1 02
sup @(2) — — < sup @p(2) < sup  p(2) + —log —.
|z—zo|<r m |z—zo|<T |z—z0|<2r m rn

After dividing by logr < 0 when r — 0, we infer

C C
SUP |z —z|<2r @(Z) + % log 7«_3 < SUDP |z —z|<r me(Z) < SUDP |z —z|<r QD(Z) - El
log r = logr = logr

)
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and from this and definition (13.1), it follows immediately that

n
V(cp,x)—aéu(cpm,z)éu(cp,z) O

Theorem 13.2 implies in a straightforward manner the deep result of [Siu74] on the
analyticity of the Lelong number upperlevel sets.

(13.3) Corollary ([Siu74]). Let ¢ be a plurisubharmonic function on a complex mani-
fold X. Then, for every ¢ > 0, the Lelong number upperlevel set

E.(p) = {z € X;vipz) = c}

is an analytic subset of X.

Proof. Since analyticity is a local property, it is enough to consider the case of a psh
function ¢ on a pseudoconvex open set 2 C C". The inequalities obtained in Theorem
13.2 (b) imply that

Ec(p) = ﬂ EC—n/m((’Om>'

m>=mo

Now, it is clear that E.(¢,,) is the analytic set defined by the equations aéa) (z) = 0 for all

multi-indices « such that |a| < me. Thus E.(¢) is analytic as a (countable) intersection
of analytic sets. O

(13.4) Remark. It can be easily shown that the Lelong numbers of any closed positive
(p, p)-current coincide (at least locally) with the Lelong numbers of a suitable plurisub-
harmonic potential ¢ (see [Sko72a]). Hence Siu’s theorem also holds true for the Lelong
number upperlevel sets E.(T') of any closed positive (p, p)-current 7.

13.B. Global Approximation of Closed (1,1)-Currents on a
Compact Complex Manifold

We take here X to be an arbitrary compact complex manifold (no Kéhler assumption is
needed). Now, let T" be a closed (1, 1)-current on X. We assume that 1" is almost positive,
i.e. that there exists a (1, 1)-form ~ with continuous coefficients such that 7" > ~ ; the
case of positive currents (v = 0) is of course the most important.

(13.5) Lemma. There exists a smooth closed (1,1)-form a representing the same 90-
cohomology class as T and an almost psh function ¢ on X such that T = o + %agcp,
(We say that a function ¢ is almost psh if its complex Hessian is bounded below by a
(1, 1)-form with locally bounded coefficients, that is, if i00yp is almost positive).

Proof. Select an open covering (U;) of X by coordinate balls such that T = %85% over
Uj, and construct a global function ¢ = )_#,¢; by means of a partition of unity {6,}
subordinate to U;. Now, we observe that ¢ — ¢, is smooth on Uy because all differences
©; — ¢k are smooth in the intersections U; NUy and ¢ — ¢ = > 0,(p; — k). Therefore
a:=T-— %654,0 is smoth. t
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By replacing T" with T'—« and 7y with 7 —«, we can assume without loss of generality
that {T} = 0, i.e. that T = ~90¢ with an almost psh function ¢ on X such that

L00¢p = .

Our goal is to approximate 71" in the weak topology by currents 71;, = T;”ia&pm
such their potentials ¢,, have analytic singularities in the sense of Definition 1.10, more
precisely, defined on a neighborhood V,, of any point o € X in the form ¢,,(z) =

cm log Ej |o;.m|* + O(1), where ¢,, > 0 and the o, are holomorphic functions on V.

We select a finite covering (W,) of X with open coordinate charts. Given § > 0, we
take in each W, a maximal family of points with (coordinate) distance to the boundary
> 30 and mutual distance > §/2. In this way, we get for 6 > 0 small a finite covering
of X by open balls U; of radius § (actually every point is even at distance < /2 of
one of the centers, otherwise the family of points would not be maximal), such that
the concentric ball U; of radius 26 is relatively compact in the corresponding chart W,.
Let 7; : U; — B(a;,20) be the isomorphism given by the coordinates of W,. Let
£(6) be a modulus of continuity for v on the sets U;, such that lims_,oe(d) = 0 and
Yo — Yo < 2e(8)wy for all z,2" € U;. We denote by v; the (1,1)-form with constant
coefficients on B(aj,2d) such that 777; coincides with v — e(d) w at Tj_l(aj). Then we
have

(13.6) 0<y—777<2(0)w on Uj

for 6 > 0 small. We set ¢; = po Tj_l on B(a;,20) and let ¢; be the homogeneous
quadratic function in z — a; such that %85% = ~; on B(a;,26). Finally, we set

(13.7) ¥i(2) = @j(z) —q;(2)  on B(ay,20).
Then 1; is plurisubharmonic, since

1= * *
;aa(¢j07j):T_Tj7j zy—1;7 2 0.

We let Ui cC U} CC U; be concentric balls of radii 4, 1.54, 20 respectively. On each
open set U; the function ¢; := ¢ — ¢; o 7; defined in (13.7) is plurisubharmonic, so
Theorem 13.2 applied with {2 = U; produces functions

1 .
(13.8) Yjm = o logz 0e?,  (0j.) = basis of Hy,(m;).
¢

These functions approximate v; as m tends to +oo and satisfy the inequalities

o 1. G
(13.9) Pj(x) — P Yjm(z) < KE‘;&MO +—log .

The functions v; ., + ¢; o 7; on U; then have to be glued together by a partition of
unity technique. For this, we rely on the following “discrepancy” lemma, estimating the
variation of the approximating functions on overlapping balls.
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(13.10) Lemma. There are constants C; i, independent of m and § such that the almost
psh functions w; m, = 2m(;jm + qj 0 7;), i.e.

wjm(z) =2mgqjoi(x) + logz }aj,g(x)IQ, T € U]'-’,
¢

satisfy
(W) m — Wem| < Cj(log s 4 m5(5)52) on U/ NUy.

Proof. The details will be left as an exercise to the reader. The main idea is the following;:
for any holomorphic function f; € #Hy, (my;), a 0 equation du = 9(0f;) can be solved
on Uy, where ¢ is a cut-off function with support in U} N U}/, on a ball of radius < §/4,
equal to 1 on the ball of radius §/8 centered at a given point zo € U;'NU;/. We apply the
L? estimate with respect to the weight (n + 1) log |z — zo|? + 2ma)y, where the first term
is picked up so as to force the solution v to vanish at xg, in such a way that Fj, = u—0f;
is holomorphic and Fj,(z9) = f;(20). The discrepancy between the weights on U} and
U/ is

(@) = Pr(z) = = (g5 0 75(2) — i © 7k (w))

and the 90 of this difference is O(£(6)), so it is easy to correct the discrepancy up to a
O(£(6)4?) term by multiplying our functions by an invertible holomorphic function G .

In this way, we get a uniform L? control on the L? norm of the solution f; = Gj,Fy =
Gjr(u — 0f;) of the form

/ |fk|28—2m1/)k < ijk(s—Qn—4emO(s(5)52) / |f3 |26—2mwj )
Uy, i

J

The required estimate follows, using the fact that

Vi@ =N o ()] = sup f(2)]*  on Uy,
; ey, (mu)), £l <1

and the analogous equality on Uy. U

Now, the actual glueing of our almost psh functions is performed using the following
elementary partition of unity calculation.

(13.11) Lemma. Let U; CC U}’ be locally finite open coverings of a complexr manifold X
by relatively compact open sets, and let 6; be smooth nonnegative functions with support
m Uj’.’, such that 6; <1 on UJ’.’ and 0; =1 on U;. Let A; > 0 be such that

1(9J659] - 89] /\59]') 2 —Ajw on UJ// AN U]/

for some positive (1,1)-form w. Finally, let w; be almost psh functions on U; with the
property that i(‘)gwj > v for some real (1,1)-form v on M, and let C; be constants such
that
wi(z) <Cj+ sup  wp(xz) on Ui \Uj.
k#3,U, >z
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Then the function w = log (Z 932.6“’7‘) is almost psh and satisfies

100w >~ — 2(2 nU;,\U;AjeOQM.
J

Proof. If we set a; = 0;0w; + 200;, a straightforward computation shows that

Z(O?@w] + 29j89j)ewj _ Z Qjewjo_/j
Z 0?6wi Z Q?ewj ’
Z(O&j VAN aj+9]2-65’w]‘+29j650j—289j/\50j)8wj B Zj,k Qjewj 0 ek ;A\
> 05evi (EQJQ.er)Z
S enlOian—Ora;Peviens 3 02¢i00w; 3 (260,000;—200,790,) "
- 20072 S e S 6%,
(X 03es) i j

ow =

DOw =

by using the Legendre identity. The first term in the last line is nonnegative and the
second one is > 7. In the third term, if = is in the support of 6;000; — 00; A 06;, then
x € U/ \U; and so wj(z) < Cj +wi () for some k # j with U;, > x and 0 (z) = 1. This
gives

ZZ (29]8503 — 2603 A\ 593')6“’3’
> 0]2.ewj

The expected lower bound follows. U

C.
> =2 E HU;/\UJ/_G JAjw.
J

We apply Lemma 13.11 to functions w; ,,, which are just slight modifications of the
functions wj ,, = 2m(vy; n + ¢; o 7;) occurring in (13.10) :

_ C
@jan (@) = W () + 2m (=E + Co(0)(6%/2 = |75()]?) )
_ G 2 2
= 2m(jn(@) + 45 0 75(@) + = + Coe(0)(8%/2 = |75 ()] )
where x — z = 7;(z) is a local coordinate identifying U; to B(0,24§), C} is the constant

occurring in (13.9) and Cj3 is a sufficiently large constant. It is easy to see that we can
take A; = C4672 in Lemma 13.11. We have

~ C
Wj,m = Wj,m + 2C1 + m735(5)52 on B(z;,6/2) C U,
since |7(x)| < /2 on B(zj,0/2), while
?:L}j’m < Wi m + 20 — m035(5)52 on U]// N U]/

For m > mg(8) = (logd~1'/(£(6)6?), Lemma 13.10 implies |w; m — wi,m| < Csme(8)d?
on U/ NU;!. Hence, for C3 large enough, we get

W,m () < sup Wi () < sup  wrm(z) on U \Uj,
k;é]a B($k75/2)9‘r k#]: U]/QS:E
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and we can take C; = 0 in the hypotheses of Lemma 13.11. The associated function
w = log (Y 9?6““7*”) is given by

C
w = logZ@? exp (Qm(@/;j,m +qjoT; + El + Cse(8)(62/2 — |7'j|2))>.
J

If we define ¢, = ﬁw, we get

o(0) = S (0) > Uy () + g 075(0) 4 &

o + —=¢(9)6" > ¢(x)

m 4

in view of (13.9), by picking an index j such that x € B(x;,6/2). In the opposite
direction, the maximum number N of overlapping balls U; does not depend on §, and
we thus get

C, C
w < log N + Qm(max {thjm(x) +qj omi(x)} + El + 735(5)62)
j

By definition of ¢; we have sup|c_,|<, ¥;(¢) < supjc_z (<, () — g; o 7j(x) + C5r thanks
to the uniform Lipschitz continuity of ¢; o 7;, thus by (13.9) again we find

log N C; 1 Cy (s

L g 24 22 2 .
- +|£1;I|3<T<P(O+ —+ —log "+ —e(0)0” + Csr

om(T) <

By taking for instance r = _l/ﬂz and § = §,, — 0, we see that ¢, converges to ¢. On the
other hand (13.6) implies -90q; o 7j(x) = 7/v; > v — 2¢(d)w, thus

%65@j7m > 2m(y — Cse(d)w).

Lemma 13.11 then produces the lower bound

L 9w > 2m(’y — 065(5)w) — C70 2w,

7

whence .
%c‘ﬁcpm >y — Cse(d)w

for m > mo(8) = (logd=1)/((6)6%). We can fix § = §,, to be the smallest value of
d > 0 such that mgy(d) < m, then J,, — 0 and we have obtained a sequence of quasi psh
functions ¢,, satisfying the following properties.

(13.12) Theorem. Let ¢ be an almost psh function on a compact complex manifold
X such that %859@ > v for some continuous (1,1)-form ~. Then there is a sequence of
almost psh functions p,, such that ¢, has the same singularities as a logarithm of a sum
of squares of holomorphic functions and a decreasing sequence €,, > 0 converging to 0
such that

@ ¢) <o) < s o0+ C(E 4 t2)

with respect to coordinate open sets covering X. In particular, ¢,, converges to ¢
pointwise and in L'(X) and
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(b) Ue,2) = = < Upm ) < v(px) for everyz € X ;
m

(c) %Gggom =y — EqWw.

In particular, we can apply this to an arbitrary positive or almost positive closed
(1,1)-current T' = a + ~90¢p.

(13.13) Corollary. Let T be an almost positive closed (1,1)-current on a compact

complex manifold X such that T > = for some continuous (1,1)-form ~. Then there

is a sequence of currents T,, whose local potentials have the same singularities as 1/m

times a logarithm of a sum of squares of holomorphic functions and a decreasing sequence
> 0 converging to 0 such that

(a) T, converges weakly to T,
(b) v(T,x)— n Sv(Thp,x) <v(T,x) for every x € X
m

(¢) T 27— emw.

We say that our currents T, are approzimations of T possessing logarithmic poles.

By using blow-ups of X, the structure of the currents 7},, can be better understood.
In fact, consider the coherent ideals ¥,, generated locally by the holomorphic functions

p ( ) ) on Uy, in the local approximations
Ph,m OgZ oy 2+ O(1)

of the potential ¢ of T' on Ug. These ideals are in fact globally defined, because the local
ideals j (k) = ( ]( 731) are integrally closed, and they coincide on the intersections U N Uy
as they have the same order of vanishing by the proof of Lemma 13.10. By Hironaka
[Hir64], we can find a composition of blow-ups with smooth centers i, : X,, — X such
that p’ ¥, is an invertible ideal sheaf associated with a normal crossing divisor D,,

Now, we can write

. 1 N
HinPhsm = Ph,m © Hm = — log 15D, | + Pk,m

where sp, is the canonical section of @G(—D,,) and @, is a smooth potential. This
implies

1
(13.14) o T = —[Dm] + B
m

where [D,,] is the current of integration over D,, and S, is a smooth closed (1, 1)-form
which satisfies the lower bound 3, > u! (v — emw). (Recall that the pull-back of a
closed (1,1)-current by a holomorphic map f is always well-defined, by taking a local
plurisubharmonic potential ¢ such that T = i00¢ and writing f*T = i09(¢ o f)). In the
remainder of this section, we derive from this a rather important geometric consequence,
first appeared in [DP04]). We need two related definitions.
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(13.15) Definition. A Kdhler current on a compact complex space X is a closed positive
current T of bidegree (1,1) which satisfies T > ew for some € > 0 and some smooth
positive Hermitian form w on X.

(13.16) Definition. A compact complex manifold is said to be in the Fujiki class “€) if
it is bimeromorphic to a Kdhler manifold (or equivalently, using Hironaka’s desingular-
ization theorem, if it admits a proper Kdhler modification).

(13.17) Theorem. A compact complex manifold X is bimeromorphic to a Kéihler mani-
fold (i.e. X € €) if and only if it admits a Kdhler current.

Proof. 1f X is bimeromorphic to a Kahler manifold Y, Hironaka’s desingularization
theorem implies that there exists a blow-up Y of Y (obtained by a sequence of blow-ups
with smooth centers) such that the bimeromorphic map from Y to X can be resolved

into a modification y : Y — X. Then Y is Kihler and the push-forward 7" = p,w of a
Kéhler form w on Y provides a Kahler current on X. In fact, if w is a smooth Hermitian
form on X, there is a constant C' such that p*w < Cw (by compactness of Y'), hence

T =y > po (C i w) = C .

Conversely, assume that X admits a Kéhler current 7' > ew. By Theorem 13.13 (c),
there exists a Kéhler current T = T}, > Sw (with m > 1 so large that £, < £/2) in
the same 90-cohomology class as T', possessing logarithmic poles. Observation (13.14)
implies the existence of a composition of blow-ups p : X — X such that

wT=[D|+5 onX,

where D is a Q-divisor with normal crossings and 5 a smooth closed (1,1)-form such
that 8 > Spu*w. In particular 3 is positive outside the exceptional locus of p. This is not

enough yet to produce a Kéhler form on X , but we are not very far. Suppose that X is
obtained as a tower of blow-ups

X:XN—)XN_1—>-'-—)X1—)X0:X,

where X is the blow-up of X; along a smooth center Y; C X;. Denote by ;11 C X411
the exceptional divisor, and let p; : X411 — X; be the blow-up map. Now, we use the
following simple

(13.18) Lemma. For every Kdhler current T; on X, there exists 5,1 > 0 and a
smooth form w;y1 in the 00-cohomology class of [Ej41] such that

*
Tjrr = w51 — €111
is a Kahler current on X;4.

Proof. The line bundle O(—FE;11)|[Ej41 is equal to Op(y,)(1) where N; is the normal
bundle to Y; in X;. Pick an arbitrary smooth Hermitian metric on Nj, use this metric
to get an induced Fubini-Study metric on Op( Nj)(l), and finally extend this metric as
a smooth Hermitian metric on the line bundle O(—FE;;1). Such a metric has positive
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curvature along tangent vectors of X;,; which are tangent to the fibers of F;;; =
P(N;) — Y;. Assume furthermore that 7; > J;w; for some Hermitian form w; on X;
and a suitable 0 < §; < 1. Then

* *
Ty — gjprujrr = 05 p5w5 — €j41Uj41

where pfw; is semi-positive on X4, positive definite on X1 \ F;11, and also positive
definite on tangent vectors of Ty, ,|g,,, which are not tangent to the fibers of E; 1 — Yj.
The statement is then easily proved by taking ;41 < §; and by using an elementary
compactness argument on the unit sphere bundle of T, , associated with any given
Hermitian metric. O

End of proof of Theorem 13.17. If u; is the pull-back of u; to the final blow-up )Z', we
conclude inductively that p*T — > ¢;u; is a Kahler current. Therefore the smooth form

W= 6 — Zejﬂj = ,u*T— Z{-fjﬂj — [D]
is Kédhler and we see that X is a Kihler manifold. O

(13.19) Remark. A special case of Theorem 13.16 is the following characterization
of Moishezon varieties (i.e. manifolds which are bimeromorphic to projective algebraic
varieties or, equivalently, whose algebraic dimension is equal to their complex dimension):

A compact complex manifold X is Moishezon if and only if X possesses a Kahler current
T such that the De Rham cohomology class {T'} is rational, i.e. {T} € H*(X,Q).

In fact, in the above proof, we get an integral current 7' if we take the push forward
T = p.w of an integral ample class {w} on Y, where p: Y — X is a projective model
of Y. Conversely, if {T'} is rational, we can take the ¢’s to be rational in Lemma 3.5.
This produces at the end a Kahler metric w with rational De Rham cohomology class
on X. Therefore X is projective by the Kodaira embedding theorem. This result was
already observed in [JS93] (see also [Bon93; Bon98] for a more general perspective based
on a singular version of holomorphic Morse inequalities).

13.C. Global Approximation by Divisors

We now translate our previous approximation theorems into a more algebro-geometric
setting. Namely, we assume that 7" is a closed positive (1, 1)-current which belongs to
the first Chern class ¢ (L) of a holomorphic line bundle L, and we assume here X to be
algebraic (i.e. projective or at the very least Moishezon).

Our goal is to show that 7" can be approximated by divisors which have roughly the
same Lelong numbers as T'. The existence of weak approximations by divisors has already
been proved in [Lel72] for currents defined on a pseudoconvex open set @ C C™ with
H?(Q,R) = 0, and in [Dem92, 93b] in the situation considered here (cf. also [Dem8&2b],
although the argument given there is somewhat incorrect). We take the opportunity to
present here a slightly simpler derivation.

Let X be a projective manifold and L a line bundle over X. A singular Hermitian

metric h on L is a metric such that the weight function ¢ of h is L{_ in any local
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trivialization (such that Ly ~ U x C and ||¢]|, = |¢]e=?®), € € L, ~ C). The curvature
of L can then be computed in the sense of distributions

T = L@L,h = laggﬁ,
27 s

and L is said to be pseudo-effective if L admits a singular Hermitian metric h such that
the curvature current 7' = ﬁ@ L.h 1s semi-positive [The weight functions ¢ of L are thus
plurisubharmonic]. In what follows, we sometimes use an additive notation for Pic(X),
i.e. kL is meant for the line bundle L®*.

We will also make use of the concept of complex singularity exponent, following e.g.
[Var82, 83], [ArGV85] and [DKO1]. A quasi-plurisubharmonic (quasi-psh) function is
by definition a function ¢ which is locally equal to the sum of a psh function and of a
smooth function, or equivalently, a locally integrable function ¢ such that i0dyp is locally
bounded below by —Cw where w is a Hermitian metric and C' a constant.

(13.20) Definition. If K is a compact subset of X and ¢ is a quasi-psh function defined
near K, we define

(a) The complex singularity exponent ck () to be the supremum of all positive numbers
c such that e=2¢% is integrable in a neighborhood of every point zy € K, with respect
to the Lebesgue measure in holomorphic coordinates centered at zy. In particular

ck () = inf ek (@)

(b) The concept is easily extended to Hermitian metrics h = e~2% by putting cx(h) =
ck (), to holomorphic functions f by cx(f) = cx(log|f|), to coherent ideals ¥ =

(91,---.9n) by cx(F) = ck(p) where ¢ = Slog |g;|?. Also for an effective R-
divisor D, we put cx (D) = cx(log|op|) where op is the canonical section.

The main technical result of this chapter can be stated as follows, in the case of big line
bundles (cf. Proposition 6.14 (f)).

(13.21) Theorem. Let L be a line bundle on a compact complex manifold X possessing
a singular Hermitian metric h with O > ew for some ¢ > 0 and some smooth positive
definite Hermitian (1,1)-form w on X. For every real number m > 0, consider the space
Ho = HO (X, L®™ @ F(h™)) of holomorphic sections o of L™ on X such that

/ |0|%Ldew :/ |0|26_2m"0de < 400,
X X

where dV,, = %wm is the Hermitian volume form. Then for m > 1, #H,, is a non zero

finite dimensional Hilbert space and we consider the closed positive (1,1)-current
i —/ 1 i =71
—90( 5.~ log Ek |9,k —90( 5 -log Ek |9m.klh | +OLn

where (gm k) 1<k<N(m) 5 an orthonormal basis of #p,. Then :

(a) For every trivialization Ly ~ U x C on a cordinate open set U of X and every
compact set K C U, there are constants C1,Cs > 0 independent of m and ¢ such
that

1 1 Cy
—_ < = — 2 < J—
(:0(2) m 77Z}m(2) m log Ek |gm,k(2)| sup CP(CL’) + m log o

lz—z|<r
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for every z € K and r < %d(K, oU). In particular, 1, converges to ¢ pointwise
and in L . topology on Q when m — +oo, hence T,, converges weakly to T = Oy, 5.

(b) The Lelong numbers v(T, z) = v(p, z) and v(Ty, z) = v(¢m, 2) are related by

v(T,z)— % Sv(Thm,z) <v(T,z) for every z € X.

(c) For every compact set K C X, the complex singularity exponents of the metrics
given locally by h = e=2? and h,, = e~ 2Y™ satisfy

CK(h)_l - < CK(hm)_l < CK(h)_l.

1
m

Proof. The major part of the proof is a variation of the arguments already explained in
Section 13.A.

(a) We note that > |gm x(2)|? is the square of the norm of the evaluation linear form
o o(z) on H,,, hence

1
UYm(z) = sup —log|o(2)]
ceB(1) M

where B(1) is the unit ball of #,,,. For r < %d(K , 002), the mean value inequality applied
to the plurisubharmonic function |o|? implies

1
< - 2
= 7rn7n2n/n! /x—z|<r |O-(:E)| d)\(CL’)

1
exp <2m sup cp(m))/ lo|2e M.
Q

X
2
o n/nl lz—z|<r

o (2)]”

If we take the supremum over all o € B(1) we get

1

m(2) < —log ————
Yn(2) S sup () + 5 —log ——an Tl

|z—z|<r 2m

and the right hand inequality in (a) is proved. Conversely, the Ohsawa-Takegoshi exten-
sion theorem [OhT87], [Ohs88] applied to the 0-dimensional subvariety {z} C U shows
that for any a € C there is a holomorphic function f on U such that f(z) = a and

/ ‘f‘Ze—chpd)\ < Cg|a‘26—2m<p(z),
U

where C'5 only depends on n and diamU. Now, provided a remains in a compact set
K C U, we can use a cut-off function § with support in U and equal to 1 in a neighborhood
of a, and solve the J-equation dg = J(0f) in the L? space associated with the weight
2mep + 2(n 4 1)|log |z — al, that is, the singular Hermitian metric h(z)™|z — a|~2(*+1)
on L®™. For this, we apply the standard Andreotti-Vesentini-Hérmander L? estimates
(see e.g. [Dem82b] for the required version). This is possible for m > mg thanks to the
hypothesis that ©r, ;, > ew > 0, even if X is non Kahler (X is in any event a Moishezon
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variety from our assumptions). The bound mg depends only on ¢ and the geometry of
a finite covering of X by compact sets K; C Uj;, where U; are coordinate balls (say);
it is independent of the point a and even of the metric h. It follows that g(a) = 0 and
therefore 0 = 0f — g is a holomorphic section of L®™ such that

[ Volinav = [ IoPemeav, < € [ (feneav, < Colape ),

b's X U

in particular o € #,, = H°(X, L™ @ .¥(h™)). We fix a such that the right hand side
is 1. This gives the inequality

_log G5
2m

1
Yin(2) = —loglal = ¢(2)
which is the left hand part of statement (a).

(b) The first inequality in (a) implies v(¢,, 2) < v(g, z). In the opposite direction,

we find .
sup () < sup  p(x) +

~ log —2
|e—z|<r |z—z|<2r m T

Divide by logr < 0 and take the limit as r tends to 0. The quotient by logr of the

supremum of a psh function over B(z,r) tends to the Lelong number at z. Thus we

obtain
n

V(¢m7ﬁli) 2 V(907£E) - E

(c) Again, the first inequality (in (a) immediately yields h,, < Cgh, hence cx (hy,) >
ci (h). For the converse inequality, since we have

CUK; (h> - II]]lIl CK; (h>7
we can assume without loss of generality that K is contained in a trivializing open patch
U of L. Let us take ¢ < ¢k (¥,). Then, by definition, if V' C X is a sufficiently small
open neighborhood of K, the Holder inequality for the conjugate exponents p = 1+mec~*

and ¢ = 1 + m~!c implies, thanks to equality }l? = qu,

1/p —c/mgq
/ e=2m/PP gy, — / (3 dgmalPe® ) (X gmal) v
v Vo 1<k<N(m) 1<k<N (m)
1/p 1/q
—c/m
< / Z ‘gm’k‘Ze—ngode /( Z ‘gm,k‘z) de
X 1<k<N(m) Vo 1<k<N(m)
1/q
—c/m
N [ (% Jaal?) L) <oe,

1<k<N (m)

From this we infer cx (h) = m/p, ie., cx(h)™! <p/m=1/m+c7t. Asc < cx(Ym) was
arbitrary, we get cx(h)™! < 1/m+ cg(hy,) ™! and the inequalities of (c) are proved. [J
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(13.22) Remark. The proof would also work, with a few modifications, when X is a
Stein manifold and L is an arbitrary holomorphic line bundle.

(13.23) Corollary. Let L — X be a holomorphic line bundle and T = ﬁGL,h the
curvature current of some singular Hermitian metric h on L.

(a) If L is big and O > cw > 0, there exists a sequence of holomorphic sections
hs € HY(X, q,L) with lim q, = +o00 such that the Q-divisors Dy = qidiv(hs) satisfy
T = lim D, in the weak topology and sup,cx |v(Ds,z) — v(T,x)] = 0 as s = 4o00.

(b) If L is just pseudo-effective and ©r, , > 0, for any ample line bundle A, there exists
a sequence of non zero sections hy € H(X, psA—l—qsL) with ps, qs > 0, limgs = 400
and limp,/qs = 0, such that the divisors Dy = - le(hs) satisfy T = lim Dy in the
weak topology and sup,cx |v(Ds,x) — v(T, x)| 50 as s — +oo.

Proof. Part (b) is a rather straightforward consequence of part (a) applied to mL + A
and T, m@mL+A b, =1 + L @A ha — 1" when m tends to infinity. Therefore, it
suffices to prove (a).

(a) By Theorem 13.20, we can find sections gi,...,gxy € H°(X,mL) (omitting the
index m for simplicity of notation), such that

T, = %65(% log Z \g]ﬁl) +Orn = %85<% log Z ‘gj‘2>

1N 1N

converges weakly to 1" and satisfies v(T,x) — n/m < v(T,,x) < v(T,x). In fact, since
the number N of sections grows at most as O(m"), we can replace >,y lg;]% by
maxi<j<n |gj]?, as the difference of the potentials tends uniformly to 0 with the help of
the renormalizing constant ﬁ Hence, we can use instead the approximating currents

~ 1
= — m m —1
(93u U - oglglang lg;]-

Now, as L is big, by the proof of (6.17b) we can write kgL = A+ D where A is an ample
divisor and D is an effective divisor, for some ky > 0. By enlarging kg, we can even
assume that A is very ample. Let op be the canonical section of D and let hy,...,hy
be sections of HY(X, A). We get a section of H°(X, (mf + ko)L) by considering

Upm = (gihy + -+ ghhn)op

By enlarging N if necessary and putting e.g. g; = gy for j > N, we can assume that the
sections h; generate all 1-jets of sections of A at every point (actually, one can always
achieve this with n+ 1 sections only, so this is not really a big demand). Then, for almost

every N-tuple (hi, ... ,hy), Lemma 13.24 and the weak continuity of 99 imply that
| S 1
DNpm = %%f)ﬁlog [ue,m| = y div(ue,m)

converges weakly to fm = %65um as ¢ tends to +oo, and that

1 +1
v(T, ) < y(ﬁ—mAg,m,x) <v(T,z)+ MKT’
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where p = max,¢cx ord,(op). This, together with the first step, implies the proposition
for some subsequence D, = Ay s, £(s) > s > 1. We even obtain the more explicit
inequality

n w1
R - ™ < o(h B ) < T+ A5 :
vT ) m tm" vT,z) + Im
(13.24) Lemma. Let Q be an open subset in C"* and let g1, ... ,gny € H°(Q,0q) be

non zero functions. Let S C H°(Q, @q) be a finite dimensional subspace whose elements
generate all 1-jets at any point of Q). Finally, set u = logmax; |g;| and

g = gthi + -+ ghhw, hj € S~ {0}.

Then for all (hy, ... ,hy) in (SN{0})" except a set of measure 0, the sequence § log |uy|
converges to u in L, (Q) and

1 1
V(U,$)<V<Zlog|u@|> <V(U,CL’)+Z, Vee X, Vl>1

Proof. The sequence % log |ug| is locally uniformly bounded above and we have

o1
Jim - log |us(2)] = u(z)

at every point z where all absolute values |g;(z)| are distinct and all h;(z) are nonzero.
This is a set of full measure in  because the sets {|g;|* = |@i|?, j # [} and {h; = 0}
are real analytic and thus of zero measure (without loss of generality, we may assume
that € is connected and that the g;’s are not pairwise proportional). The well-known
uniform integrability properties of plurisubharmonic functions then show that 4 log |uy|
converges to u in L{ (). It is easy to see that v(u, z) is the minimum of the vanishing
orders ord;(g;), hence

v(log |uel|, x) = ord,(us) = v (u, x).
In the opposite direction, consider the set & of all (N + 1)-tuples
(z,hy, ..., hy) € QA x SV

for which v(log |ue|, ) = £v(u,z) + 2. Then & is a constructible set in Q x SV: it has a
locally finite stratification by analytic sets, since

U( U {z; D%g,(x %O}XSN)U ﬂ {(z, ); DPuy(z ) =0}.

520  j,|a|=s |B|<ls+1
The fiber & N ({z} x SN) over a point x € Q where v(u,z) = minord;(g;) = s is

the vector space of N-tuples (h;) € SV satisfying the equations Dﬁ(nghj (z)) =0,
|B] < ¢s+ 1. However, if ord;(g;) = s, the linear map

(0, -+ ,0,75,0, ..., 0) = (D?(g5h;(2))) 5 <pasr
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has rank n+ 1, because it factorizes into an injective map J3h; — Jﬁsﬂ(gfhj). It follows
that the fiber & N ({2} x S) has codimension at least n + 1. Therefore

dim & < dim(Q x SY) — (n+ 1) = dim S~ — 1

and the projection of & on SV has measure zero by Sard’s theorem. By definition
of &, any choice of (hy, ... ,hy) € SV~ U1 pr(&e) produces functions u, such that
v(log |ug|,z) < fv(u,z)+ 1 on . O

(13.25) Exercise. When L is ample and h is a smooth metric with 7' = 5-0p,; > 0,
show that the approximating divisors can be taken smooth (and thus irreducible if X is
connected).

Hint. In the above proof of Corollary 13.23, the sections g; have no common zeroes and
one can take op = 1. Moreover, a smooth divisor A in an ample linear system is always
connected, otherwise two disjoint parts A’, A” would be big and nef and A’ - A” =0
would contradict the Hovanskii-Teissier inequality when X is connected.

(13.26) Corollary. On a projective manifold X, effective Q-divisors are dense in the
weak topology in the cone P;ISl (X) of closed positive (1,1)-currents T whose cohomology
class {T'} belongs to the Neron-Severi space NSg(X).

Proof. We may add e times a Kéahler metric w so as to get 7'+ cw > 0, and then
perturb by a small combination ) d;a; of classes a; in a Z-basis of NS(X) so that
O =T+ew+ Y djo; > 5w and {6} € H*(X,Q). Then O can be approximated by
Q-divisors by Corollary (13.23), and the conclusion follows. u

(13.27) Comments. We can rephrase the above results by saying that the cone of
closed positive currents P&’SI(X ) is a completion of the cone of effective Q-divisors. A
considerable advantage of using currents is that the cone of currents is locally compact
in the weak topology, namely the section of the cone consisting of currents 7' of mass
S < T'A w"™! = 1 is compact. This provides a very strong tool for the study of the
asymptotic behavior of linear systems, as required for instance in the Minimal Model
Program of Kawamata-Mori-Shokurov. One should be aware, however, that the cone of
currents is really huge and contains objects which are very far from being algebraic in
any reasonable sense. This occurs very frequently in the realm of complex dynamics. For
instance, if Pp,(z,c) denotes the m-th iterate of the quadratic polynomial z — 22 + ¢,
then P,,(z,c) defines a polynomial of degree 2™ on C2, and the sequence of Q-divisors
Dy, = 2199dlog|P,,(z,c)| which have mass 1 on C* C PZ can be shown to converge to
a closed positive current 7' of mass 1 on PZ. The support of this current 7' is extremely
complicated : its slices ¢ = cg are the Julia sets J, of the quadratic polynomial z — 22 +c,
and the slice z = 0 is the famous Mandelbrot set M. Therefore, in general, limits of
divisors in asymptotic linear systems may exhibit a fractal behavior. U

13.D. Singularity Exponents and log Canonical Thresholds

The goal of this section to relate “log canonical thresholds” with the « invariant intro-
duced by G. Tian [Tia87] for the study of the existence of Kiahler-Einstein metrics. The
approximation technique of closed positive (1, 1)-currents introduced above can be used
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to show that the a invariant actually coincides with the log canonical threshold (see also
[DKO1]; [JKO01]; [BGKO05]; [Dem08]).

Usually, in these applications, only the case of the anticanonical line bundle L =
—Kx is considered. Here we will consider more generally the case of an arbitrary line
bundle L (or Q-line bundle L) on a complex manifold X, with some additional restrictions
which will be stated later. We introduce a generalized version of Tian’s invariant «, as

defined in [T1a87] (see also [Siu88]).

(13.28) Definition. Assume that X is a compact manifold and that L is a pseudo-
effective line bundle, i.e. L admits a singular Hermitian metric hg with ©r p, > 0. If K
1s a compact subset of X, we put

L) = inf h
ar (L) {h’@)lilvo}cK( )

where h runs over all singular Hermitian metrics on L such that O 5 > 0.
In algebraic geometry, it is more usual to look instead at linear systems defined by

a family of linearly independent sections oq, 01, ...,0n € H°(X, L®™). We denote by X
the vector subspace generated by these sections and by

13| := P(X) C |mL| := P(H(X, L®™))

the corresponding linear system. Such an (/N +1)-tuple of sections o = (0;)o<;<n defines
a singular Hermitian metric h on L by putting in any trivialization

[ 1
(3, los(z)2) ™ lo )P

€5 = ¢cL,,

hence h(z) = |o(2)|~%/™ with p(z) = Lloglo(z)| = 5 log > |oj(2)]? as the associated
weight function. Therefore, we are interested in the number cg (|o|~2/™). In the case
of a single section o (corresponding to a one-point linear system), this is the same as
the log canonical threshold let g (X, L D) = cx (L D) of the associated divisor D, in the
notation of Section 1 of [CS08]. We will also use the formal notation cx (= |¥|) in the
case of a higher dimensional linear system |X| C |mL|. The main result of this section is

(13.29) Theorem. Let L be a big line bundle on a compact complex manifold X. Then
for every compact set K in X we have

1
ag(L)= inf cg(h)= inf inf CK<—D>.
{h,©1 =0} me€Zso DE|mL| m

Proof. Observe that the inequality

1
inf inf cg (—D) > inf  ckx(h)

=
meZso DE|mL]| m {h,©L =0}

is trivial, since any divisor D € |mL| gives rise to a singular Hermitian metric h.
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The converse inequality will follow from the approximation techniques discussed
above. Given a big line bundle L on X, there exists a modification p : X — X of X
such that X is projective and pu*L = O(A + FE) where A is an ample divisor and F an
effective divisor with rational coefficients. By pushing forward by p a smooth metric
h 4 with positive curvature on A, we get a singular Hermitian metric h; on L such that
Or.h, = 1+Oah, = cwon X. Then for any § > 0 and any singular Hermitian metric h
on L with ©r 5 > 0, the interpolated metric hs = h‘lshl_‘S satisfies O, p, = dew. Since
hy is bounded away from 0, it follows that cx(h) > (1 — §)ck (hs) by monotonicity. By
Theorem 13.21(C) applied to hg, we infer

CK(h(;) = ml—l>r—|r—loo CK(h5,m)7

and we also have ]
CK(h5,m) 2 CK(_D5,m)
m

for any divisor Ds,,,, associated with a section o € H(X, L™ ®.f(h}")), since the metric
hsm is given by hsm = (D4 |gm.k 2)_1/ ™ for an orthornormal basis of such sections. This
clearly implies

1 1
¢k (h) = liminf liminf cK(—Dg’m> > inf inf cK<—D). O
6—0 m—+oo m mEZso DE|mL)| m

In the applications, it is frequent to have a finite or compact group G of auto-
morphisms of X and to look at G-invariant objects, namely G-equivariant metrics on
G-equivariant line bundles L ; in the case of a reductive algebraic group G we simply
consider a compact real form GF instead of G itself.

One then gets an « invariant ag (L) by looking only at G-equivariant metrics in
Definition 13.28. All contructions made are then G-equivariant, especially #,, C |mL|
is a G-invariant linear system. For every G-invariant compact set K in X, we thus infer

1
13.30 L):= inf h) = inf inf (—2).
( ) aK’G( ) {h G—equilxrll.,@L,h2O} CK( ) mIGIlZ>0 \E|C|mllrll|, YG—_3 K m| |

When G is a finite group, one can pick for m large enough a G-invariant divisor Ds
associated with a G-invariant section o, possibly after multiplying m by the order of G.
One then gets the slightly simpler equality

1
13.31 L) = inf h)= inf = inf (D)
( ) aK,G( ) (h G-equil\Ill., Or.n>0} CK< ) mlerlZ>0 D€1|I;LL|G oK m

In a similar manner, one can work on an orbifold X rather than on a non singular
variety. The L? techniques work in this setting with almost no change (L? estimates are
essentially insensitive to singularities, since one can just use an orbifold metric on the
open set of regular points).

The main interest of Tian’s invariant aex, ¢ (and of the related concept of log canonical
threshold) is that it provides a neat criterion for the existence of Kéhler-Einstein metrics
for Fano manifolds (see [Tia87], [Siu88], [Nad89], [DKO01]).
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(13.32) Theorem. Let X be a Fano manifold, i.e. a projective manifold with —K x am-
ple. Assume that X admits a compact group of automorphisms G such that ax q(Kx) >
n/(n+1). Then X possesses a G-invariant Kdihler-Einstein metric.

We will not give here the details of the proof, which rely on very delicate C*-estimates
(successively for kK = 0,1,2,...) for the Monge-Ampere operator. In fine, the required
estimates can be shown to depend only on the boundedness of the integral [ < e~ 27¢ for
a suitable constant v € |25, 1], where ¢ is the potential of the Kihler metric w € ¢;(X)
(also viewed as the weight of a Hermitian metric on Kx). Now, one can restrict the
estimate to G-invariant weights ¢, and this translates into the sufficient condition of
Theorem 13.32. The approach explained in [DKO01] simplifies the analysis developed in
earlier works by proving first a general semi-continuity theorem which implies the desired
a priori bound under the assumption of Theorem 13.32. The semi-continuity theorem
states as

(13.33) Theorem ([DKO1]). Let K be a compact set in a complex manifold X. Then the
map ¢ + ci (@)1 is upper semi-continuous with respect to the weak ( = L. ) topology on
the space of plurisubharmonic functions. Moreover, if v < cx (), then [ le=27Y —e= 277
converges to 0 when ¢ converges to ¢ in the weak topology.

Sketch of proof. We will content ourselves by explaining the main points. It is convenient
to observe (by a quite easy integration argument suggested to us by J. McNeal) that
¢k (p) can be calculated by estimating the Lebesgue volume pp({¢ < logr} of tubular
neighborhoods as r — 0 :
(13.34)

cx(p) =sup{c > 0; 7 *°uy({p < logr}) is bounded as r — 0, for some UDK }.

The first step is the following important monotonicity result, which is a straightforward
consequence of the L? extension theorem.

(13.35) Proposition. Let ¢ be a quasi-psh function on a complex manifold X, and let

Y C X be a complex submanifold such that oy #Z —oo on every connected component
of Y. Then, if K is a compact subset of Y, we have

cx (@) < cx(p).

(Here, of course, ci () is computed on X, i.e., by means of neighborhoods of K in X).

We need only proving monotonicity for c,(¢)y) when 2o is a point of Y. This is done
by just extending the holomorphic function f(z) =1 on B(zp, ) NY with respect to the
weight e~?7% whenever v < ¢, (¢y ).

(13.36) Proposition. Let X, Y be complex manifolds of respective dimensions n, m,
let ¥ C Ox, § C @y be coherent ideals, and let K C X, L C'Y be compact sets. Put
SO F =priS+pr5f COxyy. Then

cex (@ F) =crx () +cr(¥).
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Proof. 1t is enough to show that c(, ,\(J © J) = cu(F) + cy(F) at every point (z,y) €
X x'Y. Without loss of generality, we may assume that X C C", Y C C™ are open sets
and (z,y) = (0,0). Let g = (g1, - .. , gp), resp. h = (hq, ... , hy), be systems of generators
of .¥ (resp. ¥) on a neighborhood of 0. Set

p=1log> lgil, w=log» |l

Then . & ¥ is generated by the p 4+ g-tuple of functions

g®&h=(91(x), ..., 9p(x), h1(y), ..., hg(¥))

and the corresponding psh function ®(z,y) = log (> |g;(x)| + > |hk(y)|) has the same
behavior along the poles as ®'(z,y) = max(p(z),¥(y)) (up to a term O(1) < log2).
Now, for sufficiently small neighborhoods U, V' of 0, we have

pusv ({ max(o(z), ¥(y)) <logr}) = pu ({e <logr} x py ({v <logr}),

and one can derive from this that
017*2(‘3“/) < uUXv({ max(p(x), ¥ (y)) < log r}) < CQT2(6+C/) | log r\”_Hm_l
with ¢ = ¢o(p) = ¢o(-¥) and ¢ = ¢o(v)) = co(F). We infer
con( I F)=c+c =co(F)+co(¥). O

(13.37) Proposition. Let f, g be holomorphic on a complex manifold X. Then, for
every x € X,
cz(f+9) < ca(f) + ca(g)-

More generally, if ¥ and ¥ are coherent ideals, then

oS+ F) <cp(F) +cx(F).

Proof. Let A be the diagonal in X x X. Then .¥ + ¥ can be seen as the restriction of
J @ ¥ to A. Hence Propositions 13.35 and 13.36 combined imply

Since (f +g) C (f) + (g), we get
cx(f +9) < ex((f) +(9) < calf) + () O

Now we can explain in rough terms the strategy of proof of Theorem 13.33. We start
by approximating psh singularities with analytic singularities, using Theorem 13.21. By
the argument of Corollary 13.23, we can even reduce ourselves to the case of invertible
ideals (f) near zy = 0, and look at what happens when we have a uniformly convergent
sequence f, — f. In this case, we use the Taylor expansion of f at 0 to write f = py+sn
where py is a polynomial of degree N and sy (2) = O(|z|¥T1). Clearly co(sy) < n/(N+
1), and from this we infer |co(f) — co(Pn)| < n/(N + 1) by Proposition 13.37. Similarly,
we get the uniform estimate [co(f,) — co(Py,n)| < n/(N + 1) for all indices v. This
means that the proof of the semi-continuity theorem is reduced to handling the situation
of a finite dimensional space of polynomials. This case is well-known — one can apply
Hironaka’s desingularization theorem, in a relative version involving the coefficients of
our polynomials as parameters. The conclusion is obtained by putting together carefully
all required uniform estimates (which involve a lot of L? estimates). u
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13.E. Hodge Conjecture and approximation of (p,p)-
currents

Let X be a complex n-dimensional manifold. We study here the approximation in the
weak topology of a given closed (p, p)-current T" by a sequence of real (or rational) analytic
cycles, i.e. by locally finite sums of the form ) | A\;[Z;] where Z; C X is a (closed) analytic
set of pure codimension p, and \; are real or rational coefficients. The discussion of this
section is based on ideas of [Dem82c| (although the main result of Section 7 of [Dem82c]
suffers from an incorrect proof of Lemma 7.5 — fortunately all statements are entirely
salvaged by the results previously explained in chapter 13).

We will concentrate ourselves on the case where X is projective, although the problem
is interesting in other contexts, e.g. for Stein manifolds. We know that the map
T € DL, (X) = {T} € H(X,C)
is continuous in the weak topology.  Since the cohomology class {[Z]} of an
irreducible codimension p cycle lies in the set of integral (p,p) classes, i.e. in

HPP(X,R) N H?P(X,7)/ tors, the approximation is possible only when the cohomology
class {T'} lies in the Hodge group Hdgk (X) defined by

(13.38)  Hdgk(X) = K®z (HPP(X,R) N H?**(X,Z)/ tors), K=R or K=Q.

(13.39) Notation. We denote by QL/}fd’g(X) the set of closed real (p, p)-currents T whose
cohomology class {T'} belongs to the Hodge group Hdgh (X)) : this is a closed subspace of
9D'PP(X) in the weak topology.

The celebrated Hodge conjecture asserts that for every X projective algebraic and
every p=0,1,...,n = dim¢ X, the group Hdg%(X ) is generated over Q by cohomology
classes of algebraic codimension p cycles [Z] of X (since we are working in finite dimen-
sional vector spaces and since rationals are dense in the reals, the analogous statement
over R is completely equivalent to the statement over Q).

(13.40) Theorem. Let X be a projective n-dimensional manifold. The following pro-
perties are equivalent :

(a) The Hodge conjecture holds true in codimension p, namely Hdga(X) is generated by
codimension p algebraic cycles.

(b) Ewvery closed current T € QL/}fég(X) is a weak limit of algebraic cycles Y \;[Z;] of
codimension p with rational coefficients.

Proof. 1t is clear that (b) implies (a), hence it is enough to show that (a) = (b).

Fix a current 17" € QLgd’}g? (X). Assumption (a) implies that there exists a codimension
p cycle Ty = > AJ[Z]] with real coefficients such that the cohomology classes of T" and

Ty coincide. By the 90-lemma, we conclude that there exists a real (p — 1, p — 1)-current
U such that
T — 1Ty =ddU.

Now, we can approximate the coefficients of Tj by rational numbers and U by a smooth
(p— 1,p — 1)-form (just use a partition of unity with respect to coordinate charts, and
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apply a convolution in each chart). It is therefore sufficient to prove the following lemma.
O

(13.41) Lemma. Let X be a projective n-dimensional manifold and T = dd°U be a
closed (p,p)-current with zero cohomology class on X, with U and T smooth. Then
T is a weak limit of algebraic codimension p cycles with rational coefficients and zero
cohomology class. In that case, one can even take the approxrimating cycles to be of the
form 321 <i<n AjlZ;] where Z; C X are non singular algebraic subvarieties and N = d,,
depends only on dimension.

Proof. A standard polarization trick shows that the space of (k, k)-forms on C” is gene-
rated by decomposable forms of the type

dde|zX 2 A - Adde|zg P

for a suitable family of linear coordinate systems z%* = (2¢,...,2%), 1 < a < (Z)2 In
particular, in every coordinate patch of X, we can write U in a unique way

U=> @odd|zf> A Adde|z5_, |,

Now, by using a partition of unity, we see that it is enough to prove the result when U
and T can be written under the form

U=@i Addps A Ndd®p,, T =ddU=ddp1 Addpy A~ Addp,

with certain global smooth functions ¢; on X. The number of such terms needed to
generate a given smooth (p — 1,p — 1) form U depends only on dimension; in fact this
follows by an easy argument based on the topological dimension of X, if we allow non
connected coordinate open sets consisting of unions of disjoint balls. Fix a positive line
bundle (L, h) on X and a multiple m;L such that S; = m;0O ; + dd°p; > 0 for every j.
Now we simply write dd“p; = S; — ©;, where ©; = m;0, j, and we use Corollary 13.23
to approximate both (1,1) forms S; > 0 and ©; > 0 by divisors coming from sections of
¢m;L, {> 1. As L is ample, we can even perturb these divisors a little bit to get them
non singular. In this way, we show by induction on £k = 1,2,...,p that each product

dd®p1 N dd°pa N -+ A dd€pg

is a weak limit of rational cycles generated by smooth irreducible components Z; C X,
and more precisely that

(13.42) dd®p1 N\ -+ - NddCpy, = zEEloo Z el Z;.0l, Zj ¢ smooth.
1<j<2*

This is true for £ = 1 by what we have just explained. If the result holds true for k£ — 1,
we write

ddp1 N --- NddCpy = , lim Z )\j’g[ng] A ddpy

— 400
1<j<2k-1

= lim Z )\j’g[Zjig] A (Sk — O).

£—~+00
1< g2kt
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By Corollary 13.23 applied to each algebraic submanifold Z; , C X and to the restriction
of myL to Z; 4, equipped respectively with the metrics A™*e™#* and h™*, we find non
singular Q-divisors qieD},év qieD}ié on Zj, which approximate respectively [Z; ] A Sk
and [Z; ¢] A O. This implies

c c . >‘j,€ / 1"
ddo1 A -+ A ddCopy, :EE?OO E m {l j,e] — [Dj,e])~
1< 2k~

Assertion (13.42) follows by induction, and the lemma is proved. O

(13.43) Remark. The above proof gives absolutely no control on the sign of coefficients
Aj in the approximating cycles > ; A;[Z;]. When the current T' is strongly positive (in
the sense that for ||7'||-almost every = the value T'(x) lies in the convex cone generated by
positive decomposable (p, p)-forms), it would be interesting to know whether the cycles
>~ AjlZ;] can be taken to be positive. This is true for p = 1 by Corollary 13.23, but
seems to be a very hard problem in general, except for the trivial cases p = 0, p = n.
The answer is not even known to be true locally, e.g. for closed strongly positive (p, p)-
currents on the unit ball of C" (and p # 0,1,7n). We however expect that one can always
take N = 2 in 13.41 (with possibly mixed signs), assuming of course that the Hodge
conjecture holds true. U

(13.44) Remark. It is well known that the Hodge conjecture holds true for (p,p)
classes if and only if it holds for (n — p,n — p) classes. In fact, if w = © 4 > 0 is the
curvature form of a very ample divisor A, the Hard Lefschetz theorem shows that there
are isomorphisms

e AW HPP(X,R) — H" P P(X,R),  Hdgf(X)— Hdgy "(X),
where the right hand isomorphism comes from the fact that {w} is an integral class.

In particular, both statements 13.40 (a) and 13.40 (b) hold true for the border cases
p=0,1,n—1,n. O






Chapter 14

Subadditivity of Multiplier Ideals
and Fujita’s Approximate Zariski Decomposition

The goal of this chapter is to compare the multiplier ideal sheaf .¥(¢ + 1) of a sum of
subharmonic functions to each of the multiplier ideal sheaves .¥(¢), .¥(1)). We first notice
the following basic restriction formula for multiplier ideals, which is just a rephrasing of
the Ohsawa-Takegoshi extension theorem.

(14.1) Restriction Formula. Let ¢ be a plurisubharmonic function on a complex
manifold X, and let Y C X be a submanifold. Then

F(opy) C o)y

Thus, in some sense, the singularities of ¢ can only get worse if we restrict to a sub-
manifold (if the restriction of ¢ to some connected component of Y is identically —oo,
we agree that the corresponding multiplier ideal sheaf is zero). The proof is straight-
forward and just amounts to extending locally a germ of function f on Y near a point
Yo € Y to a function f on a small Stein neighborhood of yo in X, which is possible by
the Ohsawa-Takegoshi extension theorem. As a direct consequence, we get:

(14.2) Subadditivity Theorem.

(a) Let Xy, Xo be complex manifolds, m; : X1 x Xo — X;, i = 1,2 the projections, and
let p; be a plurisubharmonic function on X;. Then

F(p1 oM + w2 0ma) = 7 F(p1) - 5 F(p2).

(b) Let X be a complex manifold and let p, 1 be plurisubharmonic functions on X. Then

F( + 1) C F(p) - F()

Proof. (a) Let us fix two relatively compact Stein open subsets U; C X;, Us C Xo.
Then #%(Uy x Us, 1 0 T1 + g 0 mo, mjdV) ® w5dVa) is the Hilbert tensor product of
H2(Ur, ¢1,dV1) and H?(Us, p2,dVs), and admits (f, X f/') as a Hilbert basis, where ()
and (f]’) are respective Hilbert bases. Since .¥(¢1 o 71 + @2 0 M)y, xv, is generated as
an Oy, xu, module by the (f, X f/") (Proposition 5.7), we conclude that (a) holds true.
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(b) We apply (a) to X1 = X3 = X and the restriction formula to Y = diagonal of X x X.
Then
S +1¢)=I((pom +vom)y) C J(pom —|—¢o7r2)|y

O
S GEGELY(D) =) IW).

(14.3) Proposition. Let f : X — Y be an arbirary holomorphic map, and let ¢ be a
plurisubharmonic function on'Y. Then F(po f) C f*¥(p).

Proof. Let
I'r={(z,f(x);z e X} CXxY

be the graph of f,and let 7x : X XY — X, 7y : X XY — Y be the natural projections.
Then we can view ¢ o f as the restriction of p o my to I'y, as mx is a biholomorphism
from I'y to X. Hence the restriction formula implies

Hpof)=I((pomy)r,) C Hpomy)r, = (73-5(¢)) p, = ["H(p). O

As an application of subadditivity, we now reprove a result of Fujita [Fuj93], relating
the growth of sections of multiples of a line bundle to the Chern numbers of its “largest
nef part”. Fujita’s original proof is by contradiction, using the Hodge index theorem
and intersection inequalities. The present method arose in the course of joint work with
R. Lazarsfeld [Laz99].

(14.4) Lemma. The line bundle L is big if and only if there is a multiple moL such
that mgL = E + A, where E is an effective divisor and A an ample divisor.

Proof. If the condition is satisfied, the decomposition kmgL = kE + kA gives rise to
an injection H°(X,kA) — H°(X, kmoL), thus Vol(L) > mg™ Vol(A) > 0. Conversely,
assume that L is big, and take A to be a very ample nonsingular divisor in X. The exact

sequence
0 — Ox(kL — A) — Ox (kL) — Oa(kLj4) — 0

gives rise to a cohomology exact sequence
0— H°(X,kL— A) — H°(X,kL) — H°(A, kL),

and h°(A,kLj4) = O(k" ') since dimA = n — 1. Now, the assumption that L is big
implies that h?(X, kL) > ck™ for infinitely many k, hence H°(X, moL — A) # 0 for some
large integer mq. If E is the divisor of a section in HY(X, moL—A), we find mgL—A = E,
as required. O

(14.5) Lemma. Let G be an arbitrary line bundle. For every € > 0, there exists a
positive integer m and a sequence £, T +0o such that
ormn

K (X, 0, (mL—G)) > —

(Vol(L) —¢),

in other words, Vol(mL — G) = m™(Vol(L) — €) for m large enough.
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Proof. Clearly, Vol(mL — G) > Vol(mL — (G + E)) for every effective divisor E. We can
take E so large that G+ FE is very ample, and we are thus reduced to the case where G is
very ample by replacing G with G + E. By definition of Vol(L), there exists a sequence

k, T 400 such that
kl €
0 > v —_ ).
hO(X, k,L) > (Vol(L) 2)

n!

We take m > 1 (to be precisely chosen later), and ¢, = [%’}, so that k, = {,m + r,,
0<r, <m. Then
,(mL —G)=k,L—(r,L+1,G).

Fix a constant a € N such that aG — L is an effective divisor. Then r,L < maG (with
respect to the cone of effective divisors), hence

R (X, 6,(mL —G)) = h° (X, k,L — (£, + am)G).

We select a smooth divisor D in the very ample linear system |G|. By looking at global
sections associated with the exact sequences of sheaves

0 — G(—(j + 1)D) ® O(k,L) = O(~jD) ® O(k, L) — Op(k,L — jD) — 0,
0 < j < s, we infer inductively that

hO(X, kL —sD) > hO(X,k,L) — Y h°(D,0p(k,L - jD))
0<ji<s

> h%(X,k,L) — sh®(D,k,Lp)

> k—g(vol(m - g) _ sCE!

n!

where C' depends only on L and G. Hence, by putting s = ¢, + am, we get

n

R (X, 6, (mL —G)) > % (Vol(L) — g) —C(l, +am)kt

KTL n
> (Vol(L) - g) —C(by + am) (L, + 1) I
n!
and the desired conclusion follows by taking £, > m > 1. U

We are now ready to prove Fujita’s decomposition theorem, as reproved in [DELOO].

(14.6) Theorem (Fujita). Let L be a big line bundle. Then for every e > 0, there exists

a modification p: X — X and a decomposition u*L = E + A, where E is an effective
Q-divisor and A an ample Q-divisor, such that A™ > Vol(L) — .

(14.7) Remark. Of course, if p*L = E + A with E effective and A nef, we get an
injection

HY(X,kA) < HY(X,kE + kA) = H*(X, ku*L) = H*(X, kL)

for every integer k which is a multiple of the denominator of E, hence A™ < Vol(L). O
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(14.8) Remark. Once Theorem 14.6 is proved, the same kind of argument easily shows

that |
T no
Vol(L) = kEI—ll—loo k”h (X, kL),

because the formula is true for every ample line bundle A.

Proof of Theorem 14.6. 1t is enough to prove the theorem with A being a big and nef
divisor. In fact, Proposition 14.4 then shows that we can write A = E' + A’ where E’ is
an effective Q-divisor and A’ an ample Q-divisor, hence

E+A=FE+cE +(1—-e)A+cA

where A” = (1 —e)A 4+ A’ is ample and the intersection number A" approaches A™
as closely as we want. Let G be as in Theorem 6.22 (Siu’s theorem on uniform global
generation). Lemma 14.5 implies that Vol(mL — G) > m™(Vol(L) — ¢) for m large. By
Theorem 6.8 on the existence of analytic Zariski decomposition, there exists a Hermitian
metric h,, of weight ¢,, on mL — G such that

H(X, ¢(mL — G)) = H* (X, {(mL — G) ® $(lpy,))
for every ¢ > 0. We take a smooth modification p : X — X such that
P I (pm) = Ox(—F)

is an invertible ideal sheaf in @%. This is possible by taking the blow-up of X with
respect to the ideal .¥(¢,,) and by resolving singularities [Hir64]. Theorem 6.22 applied
to L' = mL — G implies that @(mL) ® ¥(¢.,) is generated by its global sections, hence
its pull-back O(m p*L — E) is also generated. This implies

mu'L=E+A
where FE is an effective divisor and A is a nef (semi-ample) divisor in X. We find

HO(X,0A) = HY (X, ((mp*L — E))
> HO(X, 7 (6(tmL) © (om)"))
> HY(X, 5" (G(¢mL) @ F(bpm))),
thanks to the subadditivity property of multiplier ideals. Moreover, the direct image
W™ (L) coincides with the integral closure of .¥({yp,,), hence with .¥(¢p,,), because
a multiplier ideal sheaf is always integrally closed. From this we infer
HO(X,0A) > H(X,6(mL) @ $(lp,))
O H(X,6(((mL — G)) @ F(lomm))
= H%(X,6(/(mL — Q))).

By Lemma 14.5, we find

n

hO(X,LA) > Z—m”(Vol(L) —¢)

n!
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for infinitely many ¢, therefore Vol(A) = A™ > m™(Vol(L) — ). Theorem 14.6 is proved,
up to a minor change of notation E +— %E, A %A. O

We conclude by using Fujita’s theorem to establish a geometric interpretation of the
volume Vol(L). Suppose as above that X is a smooth projective variety of dimension 7,
and that L is a big line bundle on X. Given a large integer £ > 0, denote by By C X
the base-locus of the linear system |kL|. The moving self-intersection number (kL)I™ of
|kL| is defined by choosing n general divisors Dy, ..., D, € |kL| and putting

(kL) = #(D1 N...0DyN (X — Bk)>.

In other words, we simply count the number of intersection points away from the base
locus of n general divisors in the linear system |kL|. This notion arises for example in
Matsusaka’s proof of his “big theorem”. We show that the volume Vol(L) of L measures
the rate of growth with respect to k of these moving self-intersection numbers:

(14.9) Proposition. One has

)]
Vol(L) = lim sup (kL) .

k— o0 kn

Proof. We start by interpreting (kL)M™ geometrically. Let uy : X — X be a modifica-
tion of |kL| such that p;|kL| = |Vi| + F), where

is generated by sections, and H(X,O@x (kL)) = Vi = HY(X,Ox, (Py)), so that By =
pr(F). Then evidently (kL)™ counts the number of intersection points of n general
divisors in Py, and consequently

(kL) = ()"

Since then Py is big (and nef) for & > 0, we have Vol(FPy) = (Px)". Also, Vol(kL) >
Vol(Py) since P, embeds in pj(kL). Hence

Vol(kL) > (kL)  Vk>> 0.

On the other hand, an easy argument in the spirit of Lemma 14.5 shows that Vol(kL) =
k™ - Vol(L) (cf. also [ELN96], Lemma 3.4), and so we conclude that

(k;L)[”]
ko

(14.10) Vol(L) >

for every k> 0.

For the reverse inequality we use Fujita’s theorem. Fix ¢ > 0, and consider the
decomposition p*L = A+ E on p : X — X constructed in Fujita’s theorem. Let k
be any positive integer such that kA is integral and globally generated. By taking a
common resolution we can assume that X; dominates X, and hence we can write

p,;';k‘L ~ A + Ej
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with Ay globally generated and
(A)" = k" - (Vol(L) — ¢).

But then Ay embeds in Py and both @(Ay) and @(P) are globally generated, conse-
quently
(Ap)" < (P)" = (RL)I

Therefore

(kL)

14.11
( ) kn

> Vol(L) —e.

But (14.11) holds for any sufficiently large and divisible k, and in view of (14.10) the
proposition holds. O



Chapter 15

Hard Lefschetz Theorem
with Multiplier Ideal Sheaves

15.A. A Bundle Valued Hard Lefschetz Theorem

The goal of this section is to prove the following surjectivity theorem, which can be
seen as an extension of the hard Lefschetz theorem for sections of pseudo-effective line
bundles. We closely follow the exposition of [DPS00].

(15.1) Theorem. Let (L,h) be a pseudo-effective line bundle on a compact Kdhler
manifold (X,w) of dimension n, let O > 0 be its curvature current and .¥(h) the
associated multiplier ideal sheaf. Then, the wedge multiplication operator w? A e induces
a surjective morphism

ol HY(X, QY " ®@ L@ J(h) — HY(X,Q% @ L ® F(h)).

The special case when L is nef is due to Takegoshi [Take97]. An even more special case
is when L is semi-positive, i.e. possesses a smooth metric with semi-positive curvature.
In that case the multiple ideal sheaf .¥(h) coincides with @x and we get the following
consequence already observed by Mourougane [Mou99].

(15.2) Corollary. Let (L,h) be a semi-positive line bundle on a compact Kdhler mani-
fold (X,w) of dimension n. Then, the wedge multiplication operator w? A e induces a
surjective morphism

®1: HY (X, 0% "® L) — HI(X, 0% ® L).

It should be observed that although all objects involved in Theorem 15.1 are algebraic
when X is a projective manifold, there are no known algebraic proof of the statement; it
is not even clear how to define algebraically .f(h) for the case when h = h,,;, is a metric
with minimal singularity. However, even in the special circumstance when L is nef, the
multiplier ideal sheaf is crucially needed (see Section 15.E for a counterexample).
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The proof of Theorem 15.1 is based on the Bochner formula, combined with a use
of harmonic forms with values in the Hermitian line bundle (L, k). The method can be
applied only after h has been made smooth at least in the complement of an analytic set.
However, we have to accept singularities even in the regularized metrics because only a
very small incompressible loss of positivity is acceptable in the Bochner estimate (by the
results of [Dem92], singularities can only be removed at the expense of a fixed loss of
positivity). Also, we need the multiplier ideal sheaves to be preserved by the smoothing
process. This is possible thanks to a suitable “equisingular” regularization process.

15.B. Equisingular Approximations of Quasi Plurisubhar-
monic Functions

Let ¢ be a quasi-psh function. We say that ¢ has logarithmic poles if ¢ is locally bounded
outside an analytic set A and has singularities of the form

p(z) = clog Y |gwl* +O(1)
k

with ¢ > 0 and g, holomorphic, on a neighborhood of every point of A. Our goal is to
show the following

(15.3) Theorem. Let T = o +i00¢ be a closed (1,1)-current on a compact Hermitian
manifold (X,w), where a is a smooth closed (1,1)-form and ¢ a quasi-psh function. Let
v be a continuous real (1,1)-form such that T' > ~y. Then one can write ¢ = lim,_, ;o @y
where

a) o, is smooth in the complement X \ Z,, of an analytic set Z,, C X ;
b) {¢.} is a decreasing sequence, and Z, C Z,41 for all v;

(
(
(c) fX (e72% — e=29v)dV,, is finite for every v and converges to 0 as v — +00;
(d) H(pv) = F(p) for all v ( “equisingularity”) ;

(

e) T, =a+ 168<py satisfies T, — eyw, where limy,_, €, = 0.

(15.4) Remark. It would be interesting to know whether the ¢, can be taken to have
logarithmic poles along Z,. Unfortunately, the proof given below destroys this property
in the last step. Getting it to hold true seems to be more or less equivalent to proving
the semi-continuity property

lim F((1+¢)p) = H(p).

€—>O+

Actually, this can be checked in dimensions 1 and 2, but is unknown in higher dimensions
(and probably quite hard to establish).

Proof of Theorem 15.3. Clearly, by replacing T' with 7' — « and v with v — a;, we may
assume that a« = 0 and T' =100y > . We divide the proof in four steps.

Step 1. Approzimation by quasi-psh functions with logarithmic poles.
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By [Dem92], there is a decreasing sequence (1,,) of quasi-psh functions with logarithmic
poles such that ¢ = lim1, and 1001, > v — e,w. We need a little bit more information
on those functions, hence we first recall the main techniques used for the construction
of (1,). For ¢ > 0 given, fix a covering of X by open balls B; = {|2V)| < r;} with

coordinates z() = (z%j), ey zflj)), such that

(15.5) 0<vy+¢i00)29 2 < ew on Bj,

for some real number ¢;. This is possible by selecting coordinates in which v is diago-
nalized at the center of the ball, and by taking the radii r; > 0 small enough (thanks
to the fact that v is continuous). We may assume that these coordinates come from
a finite sample of coordinates patches covering X, on which we perform suitable linear
coordinate changes (by invertible matrices lying in some compact subset of the complex
linear group). By taking additional balls, we may also assume that X = |J B} where

1 /

are concentric balls B} = {129)] < ri =r;/2}, Bj = {120)] < ri =r;/4}. We define

2 _¢j|2D)? on B

VE

1
(15.6) Vg = 5108 D fu

keN

where (f, jk)ren is an orthonormal basis of the Hilbert space #, ; of holomorphic func-
tions on B; with finite L? norm

Jull? = [ e et a0,

J

(The dependence of v, ,, ; on € is through the choice of the open covering (B;)). Observe
that the choice of ¢; in (15.5) guarantees that ¢ + ¢;|2()|? is plurisubharmonic on B,
and notice also that

(15.7) Yolfg@P = sup  [f(2)f

kEN fe#y 4, IIFII<1

is the square of the norm of the continuous linear form #, ; — C, f — f(z). We claim
that there exist constants C;, i = 1,2, ... depending only on X and  (thus independent
of € and v), such that the following uniform estimates hold:

(15.8) 100, .5 > —c; 100|292 > v — ew on Bj (B} CC By),

C
(159 @(2) Svewy(x) < sup @(Q)+ - log—

— + Cyr? Vz€ B, r<rj—r;
I¢—z|<r r

27
C :
(15.10)  [¥ep; — Vel < 73 + Cye(min(r;, rk))2 on B;N By.

Actually, the Hessian estimate (15.8) is obvious from (15.5) and (15.6). As in the proof
of ([Dem92], Prop. 3.1), (15.9) results from the Ohsawa-Takegoshi L? extension theorem
(left hand inequality) and from the mean value inequality (right hand inequality). Finally,
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as in ([Dem92], Lemma 3.6 and Lemma 4.6), (15.10) is a consequence of Hérmander’s L?
estimates. We briefly sketch the idea. Assume that the balls B; are small enough, so that
the coordinates z9) are still defined on a neighborhood of all balls B}, which intersect B i
(these coordinates can be taken to be linear transforms of coordinates belonging to a
fixed finite set of coordinate patches covering X, selected once for all). Fix a point
zo € B’ N By.. By (15.6) and (15.7), we have

1 ‘
for some holomorphic function f on B; with || f|| = 1. We consider the weight function
O(z) =2v(p(z) + Ck;|2(k)|2) + 2nlog |Z(k;) B zék)|,

on both B; and By. The trouble is that a priori we have to deal with different weights,
hence a comparison of weights is needed. By the Taylor formula applied at zp, we get

cx| 2™ — Z(()k)|2 - Cj|Z(j) — z(()j)|2’ < C’e(min(rj,rk))2 on B; N By,
[the only nonzero term of degree 2 has type (1,1) and its Hessian satisfies
—ew < i00(c| 2™ 2 = ¢; 129 |?) < ew
by (15.5); we may suppose 7; < ¢ so that the terms of order 3 and more are negligible].
By writing |2()]? = |20) — z(()j)|2 + |z(()j)|2 + 2Re(2\) — z(()j), z(()j)>, we obtain
er 2P = ¢j]29 |2 = 2¢;, Re(z®) — zék), z(()k)> — 2¢; Re(z() — z(()j), z(()j)>
+ Ck|zék)|2 — cj|z(()j)|2 + Ce(min(rj, rx,))>.

We use a cut-off function 6 equal to 1 in a neighborhood of zy; and with support in
B; N By; as 29 € B;- N Bj,, the function € can be taken to have its derivatives uniformly

bounded when zy varies. We solve the equation Ou = 9(0fe’9) on By, where g is the
holomorphic function

9(2) = enfz® — 207 2) — ¢ (2 — 7 7).
Thanks to Hormander’s L? estimates [Hor66], the L? solution for the weight ® yields a
holomorphic function f' = 6fe"9 — u on By such that f/(z9) = f(z9) and

| e etz gy () < C'/ |F 29|62 (orerl= 1) gy (00

By, BjﬂBk

< O exp 2v(enlzf” P —¢; |27 P+ Ce(min(r;, 70))?))

/ |f|2e—2v(etes B D an(zD).
B.

J

Let us take the supremum of Llog|f(z0)| = < log|f’(z0)| over all f with | f|| < 1. By
the definition of 1. , 1 ((15.6) and (15.7)) and the bound on || f'||, we find

log C’

Ve v i(20) < Yo j(20) + + Ce(min(r;, rx))?,



15 Hard Lefschetz theorem with multiplier ideal sheaves 157

whence (15.10) by symmetry. Assume that v is so large that C3/v < Cye(inf; r;)?. We
“glue” all functions 1), , ; into a function v, , globally defined on X, and for this we set

Ges2) = sup (ep(2) +12Cus(r2 = 292)) o X.

7 B;.Bz

Every point of X belongs to some ball B}/, and for such a point we get
2 (k)2 2 12 2 Cs : 2
12 Cue(ry — |2Y)7) 2 12Che(ry — 1) > 2Cyry > ~ + Cye(min(r;, rg))”.

This, together with (15.10), implies that in 1., (%) the supremum is never reached for
indices j such that z € 88}, hence 1., is well defined and continuous, and by standard
properties of upper envelopes of (quasi)-plurisubharmonic functions we get

(15.11) 1001, , > v — Crew

for v > 1y(e) large enough. By inequality (15.9) applied with » = e~ V¥, we see that
lim, 4 oo ¥e 1 (2) = p(2). At this point, the difficulty is to show that 1. , is decreasing
with v — this may not be formally true, but we will see at Step 3 that this is essentially
true. Another difficulty is that we must simultaneously let € go to 0, forcing us to change
the covering as we want the error to get smaller and smaller in (15.11).

Step 2. A comparison of integrals.
We claim that

X

for every ¢ € ]1,v] and a € R. In fact

I< / e 2°dV, = / 2= Ne=2te gy
{o< 75 e v 4a} {o<i5 v} +a
£
< eQ(Z—l)a/ 62€(¢a,y—¢)de < C(/ 62V(ws,u—<p)de> v
X X

by Holder’s inequality. In order to show that these integrals are finite, it is enough, by
the definition and properties of the functions v, , and v, j, to prove that

J

By the strong Noetherian property of coherent ideal sheaves (see e.g. [GR84]), we know
that the sequence of ideal sheaves generated by the holomorphic functions

vik(2)fuik(W))k<k, on B; X B, is locally stationary as kg increases, hence indepen-
5T 5T MO J J y y
dant of ky on B; X B; CC Bj x Bj for ko large enough. As the sum of the series

Zk fv.j.k(2) fu.j.1(W) is bounded by

<Z EROlIDY |f%j,k(m>|2)1/2
g k

+oo
2w ) = / (D 1snl?)em22dn < oo,
B
i k=0

’
J
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and thus uniformly covergent on every compact subset of B; x Bj, and as the space
of sections of a coherent ideal sheaf is closed under the topology of uniform conver-
gence on compact subsets, we infer from the Noetherian property that the holomorphic
function 32,55 £, k(2) foj k(W) is a section of the coherent ideal sheaf generated by

{fv..k(2) fu 5.6 (W) <k, over B} x B, for ko large enough. Hence, by restricting to the
conjugate diagonal w = Z, we get

+o0 ko
S 1firHDP<CI fin() on B
k=0 k=0

This implies

/<+§|fu,j,k|2)e_2(pd)\<c/ (kzo‘fugk
i k=0 B} k=0

J

2) e 204\ = Cko + 1).

(15.12) is proved.

Step 3. Subadditivity of the approzimating sequence . .

We want to compare ¢y, 41, and ¢ ., Ve, for every pair of indices vy, v, first when
the functions are associated with the same covering X = |JB,;. Consider a function
f € %Vrl-l/z,j with

/B ‘f(z)‘26—2(u1+u2)%‘(2)d)\<2) <1, 0;(2) = o(z) + cj\z(j)|2.

J

We may view f as a function f(z, z) defined on the diagonal A of Bj x B;. Consider the
Hilbert space of holomorphic functions u on B; x B; such that

/ lu(z, w)|2e=21%i () =220 (W) g\ (2)d A (w) < +oc.
Bj XBj

By the Ohsawa-Takegoshi L? extension theorem [OT87], there exists a function f(z,w)

on Bj x Bj such that f(z,z) = f(z) and

[ fewpe s @ s @iw)
Bj XBj

< Cy / |f(2)[Pe7 2 tr2)ei (R g)(2) = Cr,
B

J

where the constant C7 only depends on the dimension n (it is actually independent of
the radius r; if say 0 < r; < 1). As the Hilbert space under consideration on B; x Bj is
the completed tensor product #,, ; ® #,, ;, we infer that

],CV(ZJU) = Z Ckl,’@f”l,j,kl (Z)fl/2,j,k2(w)

k1,k2
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with Y7, [k, &, |* < C7. By restricting to the diagonal, we obtain

|f<2)|2 = |f(272)‘2 < Z ‘Ckhkz‘zz |fu1,j,k1<2)|22 ‘fl/z,j,kz(z)‘z'
k2

kl,kz kl
From (15.5) and (15.6), we get

lOg 07 %1 1)
+ w&l’hj + U wal/z,j?
2

V1 +vy vty v +

¢63V1+V23j ~N

in particular
Cs
Ve ov j < Peov—1;+ o

and we see that . ov + Cs27" is a decreasing sequence. By Step 2 and Lebesgue’s
monotone convergence theorem, we infer that for every ¢,6 > 0 and a < a9 < 0 fixed,
the integral

IE’(;’V :/ (6—2<P _ 6—2max(cp,(1+6)(w2u’g—|—a)))de
X

converges to 0 as v tends to 400 (take £ = % +1 and 2¥ > ¢ and ag such that dsupyx ¢ +
ap < 0; we do not have monotonicity strictly speaking but need only replace a by
a+ Cs277 to get it, thereby slightly enlarging the integral).

Step 4. Selection of a suitable upper envelope.

For the simplicity of notation, we assume here that sup y ¢ = 0 (possibly after subtracting
a constant), hence we can take ag = 0 in the above. We may even further assume that
all our functions 1. ,, are nonpositive. By Step 3, for each § = ¢ = 27 we can select an
index v = p(k) such that

(15.13) Ik o—k pk) :/ (6—2<p _ 6—2maX(ﬁpa(l-l-Q*k)"/’sz’zp(k)))de <2k,
X

By construction, we have an estimate i85¢27k’2p(k) > ~v — 052 %w, and the functions
Yok op(k) are quasi-psh with logarithmic poles. Our estimates (especially (15.9)) imply

that limg_ e Pk 9p (2) = @(z) as soon as 27P*) log (1/inf; r;(k))
— 0 (notice that the r;’s now depend on € = 27%). We set

(15.14) o, (z) =sup(l + 2_]“)1#249’2;,(@(2).

k>v
By construction {¢,} is a decreasing sequence and satisfies the estimates

Y, = max (cp, (1+ 2_”)1/12_1,721)(”)), 2'85% >~y —Cs527"w.
Inequality (15.13) implies that

+oo
/ (€72 — e 2¢)dV, < Z 27k = gl=v,
b's

k=v
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Finally, if Z, is the set of poles of ¥9-v 9pw), then Z, C Z, 1 and ¢, is continuous
on X \ Z,. The reason is that in a neighborhood of every point zy € X \ Z,, the term
(14 27%)thg—k ooy contributes to ¢, only when it is larger than (1 + 27")1y-v 9p)-
Hence, by the almost-monotonicity, the relevant terms of the sup in (15.14) are squeezed
between (1 + 27)0y—v 9oy and (1 4+ 27%) (g0 9oy + C5277), and therefore there is
uniform convergence in a neighborhood of zy. Finally, condition (c¢) implies that

/ IfI2(e72% — e2%)dV, < 40
U

for every germ of holomorphic function f € G(U) at a point © € X. Therefore both in-
tegrals [, |f[?e™*#dV,, and [, |f|?e*#dV,, are simultaneously convergent or divergent,
ie. F(p) = F(py). Theorem 15.3 is proved, except that ¢, is possibly just continuous
instead of being smooth. This can be arranged by Richberg’s regularization theorem
[Ri68], at the expense of an arbitrary small loss in the Hessian form. g

(15.15) Remark. By a very slight variation of the proof, we can strengthen condition
(c) and obtain that for every ¢ > 0

/ (e72t% — 729 )qV/,
X

is finite for v large enough and converges to 0 as v — +o0o. This implies that the sequence
of multiplier ideals .¥(tp, ) is a stationary decreasing sequence, with .¥(tp, ) = .f(tp) for
v large.

15.C. A Bochner Type Inequality

Let (L,h) be a smooth Hermitian line bundle on a (non necessarily compact) Kéhler

manifold (Y,w). We denote by | | =| |, the pointwise Hermitian norm on A”97T3 ® L
associated with w and h, and by || | =] ||w.x the global L? norm
2 2 w"
lul|* = [ |u|*dV, where dV, = —

We consider the @ operator acting on (p, ¢)-forms with values in L, its adjoint 52 with

respect to h and the complex Laplace-Beltrami operator A} = %2 + 525 Let v be a
smooth (n — ¢,0)-form with compact support in Y. Then u = w? A v satisfies

(15.16) Bul? + Byl = @l + [ 3 (0l
YorJg = jeJ

where A\; < --- < A, are the curvature eigenvalues of Oy, j, expressed in an orthonormal
frame (0/0z1,...,0/0z,) (at some fixed point zy € V), in such a way that

Weo =1 Y dzi ANdZj,  (Opp)s, =100p., =1 Y Ajdz; A dz;.

1<j<n 1<j<n
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The proof of (15.16) proceeds by checking that
(15.17) (5:, 0+ 55:,)(11 Aw?) — (5: ) Aw? = qiddp Awi™t A,

taking the inner product with v = w? A v and 1ntegrat1ng by parts 111 the left hand side.
In order to check (15.16), we use the identity QD = e?) (e ¥0) =08 +V%p le. Let
us work in a local trivialization of L such that ¢(xzg) = 0 and Vp(zo) = 0. At ¢ we
then find

(0,04 00,) (W Av) —w? A (9, 0v)

=[(@0+99 )W Av) —wi A (@ )] + (Ve I (w! Av)).

However, the term [---] corresponds to the case of a trivial vector bundle and it is well
known in that case that [A” w? A e] =0, hence [---] = 0. On the other hand

VOJ(‘D ] (WQ/\,U) — Q(VOJ(‘D ] (U) /\wq—l Ay = —qi@gp/\wq_l Av,

and so

(0,0 +00,)(w? Av) —wi A (D, 0v) = qiddp Aw?™" Av.

Our formula is thus proved when v is smooth and compactly supported. In general, we
have:

(15.18) Proposition. Let (Y,w) be a complete Kdhler manifold and (L,h) a smooth
Hermiatian line bundle such that the curvature possesses a uniform lower bound ©r, j =
—Cw. For every measurable (n — q,0)-form v with L* coefficients and values in L such

that u = w9 A v has differentials Ou, 9 u also in L?, we have

[9ul® + [[Bull® = [[@v]* + /Z ZA Jurs|?

JjeJ
(here, all differentials are computed in the sense of distributions).

Proof. Since (Y,w) is assumed to be complete, there exists a sequence of smooth forms v,,
with compact support in Y (obtained by truncating v and taking the convolution with a
regularizing kernel) such that v, — v in L? and such that u, = w? A v, satisfies u,, — u,
Ou, — Ou, 9 u, — 0 wuin L2 By the curvature assumption, the final integral in the
right hand side of (15.16) must be under control (i.e. the integrand becomes nonnegative
if we add a term C|lu/|? on both sides, C' > 0). We thus get the equality by passing to
the limit and using Lebesgue’s monotone convergence theorem. U

15.D. Proof of Theorem 15.1

To fix the ideas, we first indicate the proof in the much simpler case when (L,h) is
Hermitian semi-positive, and then treat the general case.

(15.19) Special Case. (L, h) is (smooth) Hermitian semi-positive.

Let {8} € H1(X,Q% ® L) be an arbitrary cohomology class. By standard L? Hodge
theory, {5} can be represented by a smooth harmonic (0, ¢)-form S with values in Q% ®
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L. We can also view ( as a (n,q)-form with values in L. The pointwise Lefschetz
isomorphism produces a unique (n — ¢,0)-form « such that § = w? A a. Proposition
15.18 then yields

ol + | 57 (S0 laasF = IBSIF + 123517 =

JjeJ

and the curvature eigenvalues \; are nonnegative by our assumption. Hence Oa = 0 and
{a} € HY(X,Q% ?® L) is mapped to {8} by ®! , =wiANe.

(15.20) General Case.

There are several difficulties. The first difficulty is that the metric A is no longer
smooth and we cannot directly represent cohomology classes by harmonic forms. We
circumvent this problem by smoothing the metric on an (analytic) Zariski open subset
and by avoiding the remaining poles on the complement. However, some careful estimates
have to be made in order to take the error terms into account.

Fix ¢ = ¢, and let h. = h., be an approximation of h, such that h. is smooth on
X N Z. (Z. being an analytic subset of X), Op . > —ew, he < h and F(h.) = J(h).
This is possible by Theorem 15.3. Now, we can find a family

w575:w+5(i85¢5+w), 6>0

of complete Kdhler metrics on X ~\ Z., where 1. is a quasi-psh function on X with
Y. = —00 on Z., 1. on X \ Z. and i00y. +w > 0 (see e.g. [Dem82b], Théoreme 1.5).
By construction, w. s > w and lims_,ow. s = w. We look at the L? Dolbeault complex
K'5 of (n,e)-forms on X \ Z., where the L? norms are induced by we s on differential
forms and by h. on elements in L. Specifically

Kg,a = {U:X N Ze— AT © L /X(‘ghxn dwe s@he T |Oul 3, 4+ s@h. A }

Let H? s be the corresponding sheaf of germs of locally L? sections on X (the local L?
condltlon should hold on X, not only on X \ Z.!). Then, for all ¢ > 0 and § > 0,
(/{3’5,5) is a resolution of the sheaf Q0% ® L ® J(h.) = Q% ® L ® .¥(h). This is because
L? estimates hold locally on small Stein open sets, and the L? condition on X \ Z. forces
holomorphic sections to extend across Z. ([Dem82b], Lemma 6.9).

Let {#} € HY(X,Q% ® L ® .¥(h)) be a cohomology class represented by a smooth
form with values in Q% ® L ® .¥(h) (one can use a Cech cocycle and convert it to an
element in the “€>° Dolbeault complex by means of a partition of unity, thanks to the
usual De Rham-Weil isomorphism). Then

<1812 = /X BB aandVes < 450,

The reason is that |3 |/2\n,qw® ,dV,, decreases as w increases. This is just an easy calculation,
shown by comparing two metrics w, w’ which are expressed in diagonal form in suitable co-
ordinates; the norm |3 |?w,qw on turns out to decrease faster than the volume dV, increases;

see e.g. [Dem82b], Lemma 3.2; a special case is ¢ = 0, then [5]3nygn,dVie = i BAB



15 Hard Lefschetz theorem with multiplier ideal sheaves 163

with the identification L ® L ~ C given by the metric h, hence the integrand is even
independent of w in that case.

By the proof of the De Rham-Weil isomorphism, the map a — {a} from the cocycle
space Z4(H? ;) equipped with its L? topology, into H4(X, Q2% ® L®.¥(h)) equipped with
its finite vector space topology, is continuous. Also, Banach’s open mapping theorem
implies that the coboundary space BY(H?2 ;) is closed in Z9(H?2 5). This is true for all
§ > 0 (the limit case 6 = 0 yields the strongest L? topology in bidegree (n, q)). Now, £ is
a O-closed form in the Hilbert space defined by we,s on X N\ Z, so there is a w. s-harmonic
form u. s in the same cohomology class as (3, such that

£,0 < ||6

||u€,5 £,0-

(15.21) Remark. The existence of a harmonic representative holds true only for 6 > 0,
because we need to have a complete Kahler metric on X ~\ Z.. The trick of employing
we,s instead of a fixed metric w, however, is not needed when Z. is (or can be taken to
be) empty. This is the case if (L, h) is such that .f¥(h) = Ox and L is nef. Indeed, in that
case, from the very definition of nefness, it is easy to prove that we can take the ¢,’s
to be everywhere smooth in Theorem 15.3. However, we will see in Section 15.E that
multiplier ideal sheaves are needed even in case L is nef, when .¥(h) # Ox.

Let v, 5 be the unique (n — ¢, 0)-form such that u. 5 = v. 5 A wgﬁ (ve 5 exists by the
pointwise Lefschetz isomorphism). Then

||Us,6 £,0 — ||u5,6 £,0 < ||6||5,6 < ||6||

As > jed Aj = —qe by the assumption on Oy, j_, the Bochner formula yields

[0ve,s

26 < aellueslZs < gellB)*.

These uniform bounds imply that there are subsequences u. 5, and v, s, with J, — 0,
possessing weak-L? limits u, = lim,_,, Ue,5, and v, = lim, 4 o e 5,. The limit u, =
lim, s oo Ue,s, is with respect to L?(w) = L?(w. ). To check this, notice that in bidegree
(n — ¢,0), the space L?(w) has the weakest topology of all spaces L?(w. s); indeed, an
easy calculation as in ([Dem82b], Lemma 3.2) yields

‘f‘?\n—q,%@hde < |f|?\n_q,Q%ﬁ(g,hcl‘/%’(S if f is of type (n —¢,0).

On the other hand, the limit v, = lim, ;o ve s, takes place in all spaces L*(w; s), d > 0,
since the topology gets stronger and stronger as 6 | 0 [possibly not in L?(w), though,
because in bidegree (n,q) the topology of L?(w) might be strictly stronger than that of
all spaces L?(w. s)]|. The above estimates yield

loel2 = /X 0 a0, AV < (1812,

19ve 112 0 < aellBIIZ o,

ue =wi ANv. = in H1(X,Q% ® L ® $(he)).
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Again, by arguing in a given Hilbert space LZ(_hEO), we find L? convergent subsequences
Ue — U, Ve = v as € — 0, and in this way get dv = 0 and

ol < 118117,
u=wiNv=p in H1(X,Q% ® L ® $(h)).

Theorem 15.1 is proved. Notice that the equisingularity property .¥(h.) = .¥(h) is crucial
in the above proof, otherwise we could not infer that © = 3 from the fact that u. = .
This is true only because all cohomology classes {u.} lie in the same fixed cohomology
group H4(X,Q% @ L ® .¥(h)), whose topology is induced by the topology of L?(w) on
0O-closed forms (e.g. through the De Rham-Weil isomorphism). O

15.E. A Counterexample

In view of Corollary 15.2, one might wonder whether the morphism ®Z would not still
be surjective when L is a nef vector bundle. We will show that this is unfortunately not
so, even in the case of algebraic surfaces.

Let B be an elliptic curve and let V' be the rank 2 vector bundle over B which is
defined as the (unique) non split extension

0—>0p -V — @ — 0.
In particular, the bundle V' is numerically flat, i.e. ¢;(V) = 0, co(V) = 0. We consider
the ruled surface X = P(V'). On that surface there is a unique section C' = P(Op) C X

with C? = 0 and
Ox(C) = Opey)(1)

is a nef line bundle. It is easy to see that
h2(X, Opvy(m)) = h(B,S™V) =1
for all m € N (otherwise we would have mC = aC + M where aC is the fixed part

of the linear system |mC| and M # 0 the moving part, thus M? > 0 and C - M > 0,
contradiction). We claim that

h(X, Q% (kC)) = 2
for all £ > 2. This follows by tensoring the exact sequence
O—>Q§(|C—>Q§(—>w*9};:@c—>0
by Ox (kC) and observing that
Qo = Kx = 0x(—20).
From this, we get

0— HYX,0x((k—-2)0)) = H'(X,Q%0(kC)) — H°(X,Ox(kC))
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where h%(X, Ox ((k—2)C)) = h%(X,@x (kC)) = 1 for all k > 2. Moreover, the last arrow
is surjective because we can multiply a section of H°(X, @x (kC)) by a nonzero section
in HO(X, 7*QL) to get a preimage. Our claim follows. We now consider the diagram

HO(X,0L20) DY HY(X,Kx(20))

-| Is

HO(X, QL (30)) /\7‘”> HY(X, Kx(30)).

Since Kx(2C) ~ Ox and Kx(3C) ~ Ox (C), the cohomology sequence of
0— Kx(2C) = Kx(3C) - Kx(3C)|C ~Oc — 0

immediately implies ¢ = 0 (notice that h'(X,Kx(2C)) = hY(X,Kx(3C)) = 1,
since h'(B,0p) = h'(B,V) = 1), and h*(X, Kx(2C)) = h?(B,@g) = 0). Therefore
the diagram implies ¥ = 0, and we get:

(15.22) Proposition. L = Op(y/(3) is a counterample to (15.2) in the nef case.

By Corollary 15.2, we infer that @x(3) cannot be Hermitian semi-positive and we thus
again obtain — by a quite different method — the result of [DPS94], example 1.7.

(15.23) Corollary. Let B be an elliptic curve, V' the vector bundle given by the unique
non-split extension
00—V =0 —0.

Let X = P(V). Then L = @x(1) is nef but not Hermitian semi-positive (nor does any
multiple, e.g. the anticanonical line bundle —K x = Ox(—2) is nef but not semi-positive).






Chapter 16

Invariance of Plurigenera of Projective Varieties

The goal of this chapter is to give a proof of the following fundamental result on the
invariance of plurigenera, which has been proved by Y.T. Siu [Siu98| in the case of
varieties of general type (in which case the proof has been translated in a purely algebraic
form by Y. Kawamata [Kaw99]), and by [Siu00] in general. Let us recall that X is said
to be of general type if k(Kx) =n = dim X.

(16.1) Theorem (Siu). Let X — S be a proper holomorphic map defining a family of
smooth projective varieties of general type on an irreducible base S. Then the plurigenus
pm(Xt) = hY(Xy,mKx,) of fibers is independent of t for all m > 0.

The proof somehow involves taking “limits” of divisors as m — 400, and therefore
transcendental methods are a strong contender in this circle of ideas, because currents
provide a natural compactification of the space of divisors. Quite recently, M. Paun
obtained a very short and elegant proof of Theorem 16.1 based merely on the Ohwawa-
Takegoshi extension theorem, and we are going to sketch his arguments below (see also
M. Paun [Pau07], B. Claudon [Cla07] and S. Takayama
[Taka07]). In fact, following Paun, one can prove more general results valid for cohomol-
ogy with twisted coefficients. Remarkably enough, no algebraic proof of these results are
known at this point, in the case of varieties of nonnegative Kodaira dimension which are
not of general type.

Notice that by connecting any two points of S by a chain of analytic disks, it is
enough to consider the case where S = A is a disk.

(16.2) Theorem (generalized version of Paun’s theorem). Let 7 : X — A be a smooth
projective family over the unit disk, and let (Lj, h;)o<j<m—1 be (singular) Hermitian line
bundles with semi-positive curvature currents iOrp, p, = 0 on X. Assume that

(a) the restriction of h; to the central fiber X is well defined (i.e. not identically +00).
(b) the multiplier ideal sheaf $(hj x,) is trivial for 1 <j <m — 1.

Then any section o of O(mKy + ) Lj)|x, ® $(ho|x,) over the central fiber Xy extends
to X.

The invariance of plurigenera is just the case when all line bundles L; and their
metrics h; are trivial. Since the dimension ¢ — h°(X;, mKx,) is always upper semicon-
tinuous and since Theorem 16.2 implies the lower semicontinuity, we conclude that the
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dimension is constant along analytic disks (hence along any irreducible base S, by joining
any two points through a chain of analytic disks).

In order to prove Theorem 16.2, we first state the technical version of the Ohsawa-
Takegoshi L? extension theorem needed for the proof, which is a special case of the
Ohsawa-Takegoshi Theorem — the reader is invited to check that the statement indeed
follows from Theorem 12.6.

(16.3) Lemma. Letm: X — A be as before and let (L, h) be a (singular) Hermitian line
bundle with semi-positive curvature current iOr p, = 0 on X. Let w be a global Kdhler
metric on X, and dVy, dVx, the respective induced volume elements on Xo and X.
Assume that hx, is well defined. Then any holomorphic section u of O(Ky+L)®.%(h|x,)
extends into a section U over X satisfying an L? estimate

[ Nl enave < 6o [ fulZendvs,,
X Xo

where Cy = 0 is some universal constant (independent of X, L, ...).

Proof of Theorem (16.2). We write h; = e~ %/ in terms of local plurisubharmonic weights.
Fix an auxiliary line bundle A (which will later be taken to be sufficiently ample), and
define inductively a sequence of line bundles F}, by putting F, = A and

F,=F, 1.+ Ky+L, ifp=mqg+r, 0<r<m-—1.
By construction we have Fj,1,, = F, + mKy + Zj L; and
FO :A, F1 :A—i—K‘g{/—FLl, ,Fp:A—l—pK,(—i—Ll—l——l—Lp, 1 <p<m—1
The game is to construct inductively families of sections, say {ﬂ;p ) bi=t1,..., N, of F}, over
&, together with ad hoc L? estimates, in such a way that
(a) for p=0,...,m —1, F}, is generated by its sections {ﬂ;p)}j:h__,Np ;

(b) we have the m-periodicity relations N1, = N, and u

(r) . ~(r)
j . — U/]|XO,

gp ) is an extension of ugp ) .=

aqu§r) over X for p = mq + r, where u 0<r<m-—1.

Property (a) can certainly be achieved by taking A ample enough so that Fp, ...,

F,,_1 are generated by their sections, and by choosing the flg-p ) appropriately for the first

m indices p = 0,...,m — 1. Now, by induction, we equip F,_; with the tautological
metric |£]2/ > |fl§-p_1)(:v)|2, and F, — Ky = F,_1 + L, with that metric multiplied by
h, = e~%" ; it is clear that these metrics have semi-positive curvature currents (the

metric on F), itself if obtained by using a smooth Kéahler metric w on %). In this setting,

we apply the Ohsawa-Takegoshi theorem to the line bundle Fj,_; + L, to extend ug-p ) into

a section ﬂ;p ) over ¥. By construction the pointwise norm of that section in Fj,x, in a

local trivialization of the bundles involved is the ratio

|u§}?) |2

——€
S luP 2

—Pr
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up to some fixed smooth positive factor depending only on the metric induced by w
on K. However, by the induction relations, we have

Sl

Pr for =m —|—7‘ O<7’<m—1
(p)2 r—1 p 4 ’ h ’
Me—w _ ) 2 ‘ué (o))|2
p—1)9 u; 2
S %' offe™ for p=0modm.
ALY,

Since the sections {ugr)} generate their line bundle, the ratios involved are positive func-
tions without zeroes and poles, hence smooth and bounded [possibly after shrinking the
base disc A, as is permitted]. On the other hand, assumption (b) and the fact that o
has coefficients in the multiplier ideal sheaf .¥(hg|x,) tell us that e=%7, 1 < r < m and
|U|26_“00 are locally integrable on X. It follows that there is a constant C; > 0 such

that
Z | (p) ‘2

1
Xo Eé ‘u(p )|2

for all p > 1 (of course, the integral certainly involves finitely many trivializations of the
bundles involved, whereas the integrand expression is just local in each chart). Induc-

or de < Cl

tively, the L? extension theorem produces sections ﬂ;p ) of F, over X such that
~(p)
> [P
~(p—1
* 3 g )|2

The next idea is to extract the limits of p-th roots of these sections to get a singular
Hermitian metric on mKy + > L;. As the functions e=% are locally bounded below (¢,
being psh), the Holder inequality implies that

[ () ar <

The mean value inequality for plurisubharmonic functions shows a fortiori that the se-

e PrdV, < Cy = C()Cl.

quence of psh functions % log > ; |ﬂ§p ) |2 is locally uniformly bounded from above. These
functions should be thought of as weights on the Q-line bundles

1 1
“(A Ky +Y L) +Li+-+1L, ing to Ky +— > L; s oo,
p( +q(mKy + j)+Li+---+L,) converging to Ky + p” j asp— +oo

and thus they are potentials of currents in a bounded subset of the Kahler cone. Moreover,

~(p)

the sections u; extend oc%u” on Xy, and so we have in particular
] 07

lim -1 I 24 (0))2 1 2 Xo.
p—}gloop ogZ|u |2 = lm . og (o] Z|u ?) oglo|® # —oc0 on X
Therefore, by well known facts of potential theory, the sequence + logz |u(p )|2 must

have some subsequence which converges in L{ _ topology to the potentlal Y of a current
in the first Chern class of Ky + -~ Ly L;, in the form of an upper regularized limit

Y(z) = limsup hm — logz |u(p”

(oz Vrtoo Py
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which is such that ¢(z) > + log|o|? on X,. Hence mKy + Y L; possesses a Hermitian
metric H = e~™¥, and we have by construction ||o||z < 1 and ©x > 0. In order to
conclude, we equip the bundle

G=(m-1)Ky+)» L;
1/m

with the metric v = H'=Y/™ ] h;"", and mKy +3_ Lj = Ky + G with the metric w ®-.
Clearly v has a semi-positive curvature current on X and in a local trivialization we have

ot < Clon (<= £ <o TT)

on Xo. Since |g?e”%° and e”#r, 7 > 0 are all locally integrable, we see that [o]|2,

is also locally integrable on X, by the Hélder inequality. A new (and final) application
of the L? extension theorem to the Hermitian line bundle (G, ) implies that o can be
extended to X. Theorem 16.2 is proved. O



Chapter 17

Numerical Characterization of the Kahler Cone

The main goal of this Chapter is to describe a structure theorem for the Kéahler cone
of any compact Kéhler manifold, first obtained in [DP04]. The result can be seen as
the Kahler generalization of the Nakai-Moishezon criterion for ample line bundles on
projective varieties.

17.A. Positive Classes in Intermediate (p, p)-bidegrees

We first discuss some general positivity concepts for cohomology classes of type (p,p),
although we will not be able to say much about these. Recall that we have a Serre duality
pairing

(17.1) HP1(X,C) x H" "4 X C) — C, (a, B) >—)/ aANpeC.
X

In particular, if we restrict to real classes, this yields a duality pairing

(17.2) HPP(X,R) x H" P"P(X,R) — R, (a,B) — / aApelR.
X

Now, one can define HEY (X, R) to be the closure of the cone of classes of d-closed strongly
positive smooth (p, p)-forms (a (p, p)-form in APPT% is by definition strongly positive if
it is in the convex cone generated by decomposable (p, p) forms iug ATy A -+ Adu, AT,
where the u; are (1,0)-forms). Clearly, Héijl(X, R) = J and the cup product defines a
multilinear map

(17.3) Hx - x K — HEP(X,R)
on the p-fold product of the Kéahler cone and its closure. We also have HEY (X, R)C

HZJ(X,R) where HYJ(X,R) is the cone of classes of d-closed weakly positive currents
of type (p,p), and the Serre duality pairing induces a positive intersection product

(17.4) HEP(X,R) x HXP" P(X,R) — Ry, (a,T) — / a AT € Ry
X

(notice that if « is strongly positive and 7' > 0, then o A T is a positive measure).
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If ‘€ is a convex cone in a finite dimensional vector space F, we denote by ‘€ the dual
cone, i.e. the set of linear forms u € E* which take nonnegative values on all elements
of ‘€. By the Hahn-Banach theorem, we always have ‘€¥¥ = “€. A basic problem would
be to investigate whether HEZ' (X, R) and HI """ "(X,R) are always dual cones, and
another even harder question, which somehow encompasses the Hodge conjecture, would
be to relate these cones to the cones generated by cohomology classes of effective analytic
cycles. We are essentially unable to address these extremely difficult questions, except
in the special cases p = 1 or p = n — 1 which are much better understood and are the
main target of the following sections.

17.B. Numerically Positive Classes of Type (1,1)

We describe here the main results obtained in [DP04]. The upshot is that the Kéhler cone
depends only on the intersection product of the cohomology ring, the Hodge structure
and the homology classes of analytic cycles. More precisely, we have:

(17.5) Theorem. Let X be a compact Kdihler manifold. Let % be the set of real (1,1)
cohomology classes {a} which are numerically positive on analytic cycles, i.e. such that
fY aof > 0 for every irreducible analytic set' Y in X, p =dimY. Then the Kdhler cone
H of X is one of the connected components of 9.

(17.6) Special Case. If X is projective algebraic, then K = %P.

These results (which are new even in the projective case) can be seen as a general-
ization of the well-known Nakai-Moishezon criterion. Recall that the Nakai-Moishezon
criterion provides a necessary and sufficient criterion for a line bundle to be ample: a
line bundle L — X on a projective algebraic manifold X is ample if and only if

Lp-Y:/ 1 (L)P > 0,
Y

for every algebraic subset Y C X, p=dimY .

It turns out that the numerical conditions fY aoP > 0 also characterize arbitrary
transcendental Kahler classes when X is projective: this is precisely the meaning of the
Special Case 17.6.

(17.7) Example. The following example shows that the cone % need not be connected
(and also that the components of % need not be convex, either). Let us consider for
instance a complex torus X = C"/A. It is well-known that a generic torus X does not
possess any analytic subset except finite subsets and X itself. In that case, the numerical
positivity is expressed by the single condition [ @ > 0. However, on a torus, (1,1)-
classes are in one-to-one correspondence with constant Hermitian forms o on C™. Thus,
for X generic, % is the set of Hermitian forms on C” such that det(a) > 0, and Theorem
17.5 just expresses the elementary result of linear algebra saying that the set H of positive
definite forms is one of the connected components of the open set & = {det(a) > 0} of
Hermitian forms of positive determinant (the other components, of course, are the sets
of forms of signature (p,q), p+ ¢ = n, q even. They are not convex when p > 0 and
g >0).
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Sketch of proof of Theorems 17.5 and 17.6. By Definition 13.15, a Kdhler current is a
closed positive current T of type (1, 1) such that 7' > ew for some smooth K&hler metric
w and € > 0 small enough. The crucial steps of the proof of Theorem 17.5 are contained
in the following statements.

(17.8) Proposition (Paun [Pau98a, 98b]). Let X be a compact complex manifold (or
more generally a compact complex space). Then

(a) The cohomology class of a closed positive (1,1)-current {T'} is nef if and only if
the restriction {1}z is nef for every irreducible component Z in any of the Lelong
sublevel sets E.(T).

(b) The cohomology class of a Kdhler current {T'} is a Kdhler class (i.e. the class of a
smooth Kdhler form) if and only if the restriction {1} is a Kdihler class for every
irreducible component Z in any of the Lelong sublevel sets E.(T).

The proof of Proposition 17.8 is not extremely hard if we take for granted the fact
that Kahler currents can be approximated by Kahler currents with logarithmic poles,
a fact which was first proved in Section 13.B (see also [Dem92]). Thus in (b), we may
assume that 7' = o +100¢p is a current with analytic singularities, where ¢ is a quasi-psh
function with logarithmic poles on some analytic set Z, and ¢ smooth on X \ Z. Now,
we proceed by an induction on dimension (to do this, we have to consider analytic spaces
rather than with complex manifolds, but it turns out that this makes no difference for
the proof). Hence, by the induction hypothesis, there exists a smooth potential ¢ on Z
such that o)z + 100y > 0 along Z. It is well known that one can then find a potential

17; on X such that a + i@g{ﬂv > 0 in a neighborhood V' of Z (but possibly non positive
elsewhere). Essentially, it is enough to take an arbitrary extension of ¢ to X and to add a
large multiple of the square of the distance to Z, at least near smooth points; otherwise,
we stratify Z by its successive singularity loci, and proceed again by induction on the
dimension of these loci. Finally, we use a a standard gluing procedure : the current
T = a+imax.(p,1 — C), C > 1, will be equal to a +i99¢ > 0 on X \ V, and to a
smooth Kahler form on V. O

The next (and more substantial step) consists of the following result which is remi-
niscent of the Grauert-Riemenschneider conjecture ([Siu84; Dem85b], cf. Corollary 8.3).

(17.9) Theorem ([DP04]). Let X be a compact Kihler manifold and let {a} be a nef
class (i.e. {a} € K). Assume that [, &™ > 0. Then {a} contains a Kdhler current T,

0o

in other words {a} € €°.

Step 1. The basic argument is to prove that for every irreducible analytic set ¥ C X
of codimension p, the class {a}? contains a closed positive (p,p)-current © such that
© > §]Y] for some § > 0. For this, we use in an essential way the Calabi-Yau theorem
[Yau78] on solutions of Monge-Ampere equations, which yields the following result as a
special case:

(17.10) Lemma ([Yau78]). Let (X,w) be a compact Kdhler manifold and n = dim X .
Then for any smooth volume form f > 0 such that fX f= fX w", there exists a Kdhler

metric @ = w + 100y in the same Kdihler class as w, such that @" = f. O
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We exploit this by observing that o + cw is a Kahler class. Hence we can solve the
Monge-Ampere equation

(17.10a) (a+ew +i00p. )" = C.w!

where {w.} is a family of K&hler metrics contained in the Kéhler class {w} chosen such
that a fixed fraction of their volume is concentrated in an e-tubular neighborhood V. of
Y; these metrics w, can be easily constructed by adding to w the 99 of a potential of the
form of Y — in X and V. := {3 0.]g;.«|*> < €%}. Here we take.

Jx (a4 ew)™ S [x "

Ce= fan - fan

> 0.

Let us put a. := a + ew + 100p. and denote by
A(z) <o < An(2)

the eigenvalues of a.(z) with respect to w.(z), at every point z € X (these functions are
continuous with respect to z, and of course depend also on €). The equation (17.10 a) is
equivalent to the fact that

(17.10b) M(z) - A(2) = C:

is constant, and the most important observation for us is that the constant C. is bounded
away from 0, thanks to our assumption f ya">0.

Fix a regular point xg € Y and a small neighborhood U (meeting only the irreducible
component of zy in Y'). By the. choice of w., we have (exercise!) a uniform lower bound

(17.10¢) / WEAW'TP = 6,(U) > 0.
Unv.

Now, by looking at the p smallest (resp. (n—p) largest) eigenvalues \; of . with respect
to we, we find

(17.104) al = A1 Apwh,

(17.10€) al P Aw

R

1
n!

> = Ap1 s An Wl

The last inequality (17.10¢) implies

/)\p+1-~-)\nw§<n!/ o/;_p/\wg:n!/(a—l—aw)”_p/\wng
X X X

for some constant M > 0 (we assume ¢ < 1, say). In particular, for every § > 0, the
subset E5 C X of points z such that A,41(2) -+ Ap(2) > M/ satisfies fE(s wl < 6, hence

(17.10 f) / wg Aw' P < Qn_p/ w? < 27PS.
Es

Es
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The combination of (17.10¢) and (17.10f) yields
/ WEAW"TP = 6,(U) —2"7P6.
(UﬂVE)\E(;

On the other hand (17.10b) and (17.10d) imply

wP on (UNV.)\ Es.

From this we infer

C C
(17.10 g) / al Nw"TP > —E/ WP AW > ——(6,(U) —2"7P§) > 0
Unv. M/ Jwav.)~ ks M/6"

provided that § is taken small enough, e.g. § = 2=(»=P+1§ (U). The family of (p,p)-
forms a? is uniformly bounded in mass since

/ ol NP = / (a4 ew)? Aw" P < Const.
X bl

Inequality (17.10 g) implies that any weak limit © of (a?) carries a positive mass on UNY'.
By Skoda’s extension theorem [Sko82], 1y © is a closed positive current with support in
Y, hence 1y© = ) ¢;[Y;] is a combination of the various components Y; of Y with
coefficients ¢; > 0. Our construction shows that © belongs to the cohomology class
{a}P. Step 1 of Theorem 17.9 is proved.

Step 2. The second and final step consists in using a “diagonal trick”: for this, we apply
Step 1 to

X=X x X, ?:diagonalAC)z, a = pria + pria.

It is then clear that & is nef on X and that

/g(a)% _ (2:) (/Xa”>2 >0,

It follows by Step 1 that the class {a}™ contains a Kéhler current © of bidegree (n,n)
such that © > 6[A] for some ¢ > 0. Therefore the push-forward

T := (pr1)«(© A praw)
is a positive (1, 1)-current such that
T = 6(pry )« ([A] A prow) = dw.

It follows that 7' is a Kéhler current. On the other hand, T' is numerically equivalent to
(pry)«(a™ A priw), which is the form given in coordinates by

x> /eX (o) + oz(y))n Aw(y) = Calz)



176 Analytic Methods in Algebraic Geometry

where C' = n [, a(y)" ' Aw(y). Hence T = Ca, which implies that {a} contains a
Kahler current. Theorem 17.9 is proved. U

End of Proof of Theorems 17.5 and 17.6. Clearly the open cone K is contained in 9,
hence in order to show that K is one of the connected components of %, we need only
show that J is closed in %, i.e. that KNP C K. Pick a class {a} € HNP. In particular
{a} is nef and satisfies [, o > 0. By Theorem 17.9 we conclude that {a} contains a
Kahler current T'. However, an induction on dimension using the assumption fy aP for
all analytic subsets Y (we also use resolution of singularities for Y at this step) shows
that the restriction {a}y is the class of a Kahler current on Y. We conclude that {a}
is a Kéhler class by Proposition 17.8 (b), therefore {a} € K, as desired. O

The Projective Case 17.6 is a consequence of the following variant of Theorem 17.5.

(17.11) Corollary. Let X be a compact Kihler manifold. A (1,1) cohomology class {a}
on X is Kdhler if and only if there exists a Kdahler metric w on X such that fY akf AwP~F >
0 for all irreducible analytic sets Y and all k =1,2,...,p=dimY.

Proof. The assumption clearly implies that

/Y(oz+tw)p>0

for all t € R, hence the half-line a + (R )w is entirely contained in the cone % of
numerically positive classes. Since a + tow is Kahler for ¢y large, we conclude that the
half-line in entirely contained in the connected component K, and therefore « € K. [

In the projective case, we can take w = ¢1(H) for a given very ample divisor H, and
the condition fY ok A wP=F > 0 is equivalent to

>0

/ o
YAHN--NHp

for a suitable complete intersection Y N Hy N ---N Hyp_y, H; € |H|. This shows that
algebraic cycles are sufficient to test the Kahler property, and the special case 17.6 follows.
On the other hand, we can pass to the limit in Corollary 17.11 by replacing a by o + ew,
and in this way we get also a characterization of nef classes.

(17.12) Corollary. Let X be a compact Kdhler manifold. A (1,1) cohomology class {a}
on X is nef if and only if there exists a Kdahler metric w on X such that fY o AwP=F >0
for all irreducible analytic sets Y and all k =1,2,...,p=dimY.

By a formal convexity argument, one can derive from Corollary 17.11 or 17.12 the
following interesting consequence about the dual of the cone K.

(17.13) Theorem. Let X be a compact Kdhler manifold.

(a) A (1,1) cohomology class {a} on X is nef if and only for every irreducible analytic
setY in X, p=dim X and every Kdahler metric w on X we have fY aAwP~l >0.
(Actually this numerical condition is needed only for Kdhler classes {w} which belong
to a 2-dimensional space R{a} + R{wo}, where {wo} is a given Kdihler class).
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(b) The dual of the nef cone K is the closed convex cone in H""~1(X,R) generated
by cohomology classes of currents of the form [Y] AwP~™! in H*~Ln=1(X R), where
Y runs over the collection of irreducible analytic subsets of X and {w} over the set
of Kdahler classes of X. This dual cone coincides with Hgo_l’n_l(X, R).

Proof. (a) Clearly a nef class {a} satisfies the given numerical condition. The proof of
the converse is more tricky. First, observe that for every integer p > 1, there exists a
polynomial identity of the form

(17.14) (y —o0x)? — (1 —0)Pal = (y — o) /0 Ap(t,0) (1 —t)z + ty)p_l dt

where A,(t,6) = > gcmep @m(t)0™ € Q[t,0] is a polynomial of degree < p — 1 in ¢
(moreover, the polynomial A, is unique under this limitation for the degree). To see
this, we observe that (y —dx)P — (1 —§)PzP vanishes identically for x = y, so it is divisible
by y — x. By homogeneity in (z,y), we have an expansion of the form

(y — 6z)P — (1 — 6)PaP = (y — z) Z b mty? =L -l6m

0<l<p—1,0<m<p

in the ring Z[z,y, §]. Formula (17.14) is then equivalent to

(17.14") bom = /0 1am(t)( 21)(1 — )Pt .

Since (U, V) — fol U(t)V (t)dt is a non degenerate linear pairing on the space of polyno-
mials of degree < p — 1 and since ((’71)(1 — )P~ 1Y) o<pcp—1 is a basis of this space,
(17.147) can be achieved for a unique choice of the polynomials a,,(t). A straightforward
calculation shows that A,(¢,0) = p identically. We can therefore choose dp € [0, 1] so

small that A,(¢,6) > 0 for all t € [0,1], 6 € [0,p] and p=1,2,...,n.

Now, fix a Kéhler metric w such that w’ = a+w yields a Kéhler class {w’} (just take
a large multiple w = kwq, k > 1, of the given K&hler metric wy to initialize the process).
A substitution z = w and y = w’ in our polynomial identity yields

(a+ (1 —0)w)? — (1 —0)PwP = /01 Ap(t,0) an ((1—tw+ tw')p_ldt.

For every irreducible analytic subset Y C X of dimension p we find

/Y(a+(1—5)w)p—(1—5)pfywp:/01,4p(t,5)dt</yaA((1—t)w+tw’)p_1).

However, (1 — t)w + tw’ is a Kéhler class (contained in R{a} + R{wp}) and therefore
[y an ((1—t)w—i—tw’)p_1 > 0 by the numerical condition. This implies [, (a4(1—8)w)? >
0 for all 0 € [0,0p]. We have produced a segment entirely contained in % such that one
extremity {a+w} isin K, so the other extremity {a+(1—dp)w} is also in K. By repeating
the argument inductively after replacing w with (1—dg)w, we see that {a+(1—4§p)"w} € K
for every integer v > 0. From this we infer that {a} is nef, as desired.
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(b) Part (a) can be reformulated by saying that the dual cone K  is the closure of
the convex cone generated by (n — 1,n — 1) cohomology classes of the form [Y] A wP™L.

Since these classes are contained in H;al’”_l(X, R) which is also contained in F by
(17.6), we infer that
F=HL V"X, R) = Cone({[Y] A wP=T}). O

17.C. Deformations of Compact Kahler Manifolds

Our main Theorem 17.5 also has an important application to the deformation theory of
compact Kahler manifolds.

(17.16) Theorem. Let w: X — S be a deformation of compact Kihler manifolds over
an irreducible base S. Then there exists a countable union S" =J S, of analytic subsets
S, C S, such that the Kihler cones #; C HY'(Xy,C) of the fibers X; = m1(t) are
invariant over S ~\.S" under parallel transport with respect to the (1,1)-projection V1! of
the Gauss-Manin connection V in the decomposition of

v2,0 % 0
V= = Vb«
0 x V02

on the Hodge bundle H?> = H*>? @ HY! @ HY2.

We moreover conjecture that for an arbitrary deformation X — S of compact com-
plex manifolds, the Kahler property is open with respect to the countable Zariski topology
on the base S of the deformation.

Let us recall the general fact that all fibers X; of a deformation over a connected
base S are diffeomorphic, since X — S is a locally trivial differentiable bundle. This
implies that the cohomology bundle

S>tw HYX,,C)

is locally constant over the base S. The corresponding (flat) connection of this bundle
is called the Gauss-Manin connection, and will be denoted here by V. As is well known,
the Hodge filtration

FP(H*(X,,C)) = EB H"™(X4,C)

r+s=k,r>p

defines a holomorphic subbundle of H*(X;, C) (with respect to its locally constant struc-
ture). On the other hand, the Dolbeault groups are given by

HP(X,,C) = FP(H"(X,C)) N FF-P(H*(X,,C)),  k=p+q,

and they form real analytic subbundles of H*(X;, C). We are interested especially in the
decomposition

H*(X,;,C) = H**(X;,C) ® H"*(X;,C) @ H*?(X,,C)
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and the induced decomposition of the Gauss-Manin connection acting on H?

V20 * *
vV = * Vl’l *
* * AVAUR

Here the stars indicate suitable bundle morphisms — actually with the lower left and
upper right stars being zero by Griffiths’ transversality property, but we do not really
care here. The notation VP-? stands for the induced (real analytic, not necessarily flat)
connection on the subbundle ¢ — HP( X, C).

Sketch of Proof of Theorem 17.16. The result is local on the base, hence we may assume
that S is contractible. Then the family is differentiably trivial, the Hodge bundle ¢t —
H?(X4,C) is the trivial bundle and t — H?(X,Z) is a trivial lattice. We use the existence
of a relative cycle space CP(*/S) C CP(X) which consists of all cycles contained in the
fibres of m: X — S. It is equipped with a canonical holomorphic projection

mp : CP(X/)S) — S.

We then define the S, ’s to be the images in S of those connected components of C?(%X/5)
which do not project onto S. By the fact that the projection is proper on each component,
we infer that S, is an analytic subset of S. The definition of the S,’s imply that the
cohomology classes induced by the analytic cycles {[Z]}, Z C X;, remain exactly the
same for all ¢ € S~ S’. This result implies in its turn that the conditions defining
the numerically positive cones %; remain the same, except for the fact that the spaces
HY (X, R) C H?(X;,R) vary along with the Hodge decomposition. At this point, a
standard calculation implies that the %, are invariant by parallel transport under V1!,
This is done as follows.

Since S is irreducible and S’ is a countable union of analytic sets, it follows that
S\ S’ is arcwise connected by piecewise smooth analytic arcs. Let

v:[0,1] = S\ 9, urt=y(u)

be such a smooth arc, and let a(u) € HY (X, (), R) be a family of real (1, 1)-cohomology

classes which are constant by parallel transport under V1!, This is equivalent to assum-
ing that
V(a(u» S HQ’O(X'y(u)a C) @ HO’Q(X'y(u)a C)

for all u. Suppose that a(0) is a numerically positive class in X, y. We then have

a(0? - {12)} = [ a@)p >0
z
for all p-dimensional analytic cycles Z in X, (o). Let us denote by
Cz(t) € H*(Xy,Z),  q=dimX,—p,
the family of cohomology classes equal to {[Z]} at ¢ = v(0), such that V{z(t) = 0 (i.e.

constant with respect to the Gauss-Manin connection). By the above discussion, (z(t)
is of type (q,q) for all t € S, and when Z C X (o) varies, (z(t) generates all classes of
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analytic cycles in X; if t € S\ S’. Since (7 is V-parallel and Va(u) has no component
of type (1,1), we find

d

T (@) G (y(w) = pa(u) ™" - Va(u) - G (v(w) = 0.

We infer from this that a/(u) is a numerically positive class for all w € [0, 1]. This argument
shows that the set %; of numerically positive classes in H''!(X;, R) is invariant by parallel
transport under V! over S\ 9.

By a standard result of Kodaira-Spencer [KS60] relying on elliptic PDE theory, every
Kahler class in X;, can be deformed to a nearby Kahler class in nearby fibres X;. This
implies that the connected component of %; which corresponds to the Kéhler cone K,
must remain the same. The theorem is proved. O

As a by-product of our techniques, especially the regularization theorem for currents,
we also get the following result for which we refer to [DP04].

(17.17) Theorem. A compact complexr manifold carries a Kdhler current if and only
if it is bimeromorphic to a Kdhler manifold (or equivalently, dominated by a Kdhler

manifold).

This class of manifolds is called the Fujiki class ‘€. If we compare this result with
the solution of the Grauert-Riemenschneider conjecture 8.3, we are led to the following
statement, which is a weaker form of Conjecture 8.21.

(17.18) Conjecture. Let X be a compact complex manifold of dimension n. Assume
that X possesses a cohomology class {a} of type (1,1) such that fX(u,<1) u™ > 0 for some

smooth representative u € ae. Then {a} contains a Kdihler current and X is in the Fujiki
class ‘€.

In the case where « is nef and the assumption is replaced by [ a™ > 0, Conjec-
ture 17.18 has been recently confirmed by D. Popovici [Pop08] (with a highly technical
proof). We want also to mention that most of the above results were already known in
the cases of complex surfaces (i.e. in dimension 2), thanks to the work of N. Buchdahl
[Buc99, 00] and of A. Lamari [Lam99a, 99b].

Shortly after the original [DP04] manuscript appeared in April 2001, Daniel Huy-
brechts [HuyO1] informed us that Theorem 17.5 can be used to calculate the Kéahler
cone of a very general hyperkéhler manifold: the Kéahler cone is then equal to a suitable
connected component of the positive cone defined by the Beauville-Bogomolov quadratic
form. In the case of an arbitrary hyperkdhler manifold, S.Boucksom [Bou02] later showed
that a (1,1) class {«a} is Kéhler if and only if it lies in the positive part of the Beauville-
Bogomolov quadratic cone and moreover |, o @ > 0 for all rational curves C' C X (see also

[Huy99]).



Chapter 18

Structure of the Pseudo-effective Cone
and Mobile Intersection Theory

18.A. Classes of Mobile Curves and of Mobile
(n — 1,n — 1)-currents

We introduce various positive cones in H"~5"~1(X R), some of which exhibit certain
“mobility” properties, in the sense that they can be more or less freely deformed. Am-
pleness is clearly such a property, since a very ample divisor A can be moved in its
linear system |A| so as to cover the whole ambient variety. By extension, a K&hler class
{w} € HY(X,R) is also considered to be mobile, as illustrated alternatively by the
fact that the Monge-Ampere volume form (w + i09p)" of a Kihler metric in the same
cohomology class can be taken to be equal to an arbitrary volume form f > 0 with
Jx f =[x w" (thanks to Yau’s theorem [Yau78]).

(18.1) Definition. Let X be a smooth projective variety.

(a) One defines NE(X) to be the conver cone generated by cohomology classes of all
effective curves in H"~ 1"~ 1(X,R)

(b) We say that C is a mobile curve if C = Cy, is a member of an analytic family
{Ci}ies such that | J,cg Ct = X and, as such, is a reduced irreducible 1-cycle. We
define the mobile cone ME(X), to be the convex cone generated by all mobile curves.

(¢) If X is projective, we say that an effective 1-cycle C' is a strongly mobile if we have
C=p(AN---NA,_)

for suitable very ample divisors Ej on X’, where p : X > Xisa modification. We
let ME®(X) be the conver cone generated by all strongly mobile effective 1-cycles
(notice that by taking Zj general enough these classes can be represented by reduced
irreducible curves; also, by Hironaka, one could just restrict oneself to compositions
of blow-ups with smooth centers).

Clearly, we have

ME?*(X) € ME(X) c NE(X).
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The cone NE(X) is contained in the analogue of the Neron-Severi group for (n — 1,n — 1)-
classes, namely

NSHE_I(X) — (Hn—l,n—1<X7 R) N HQH_Q(X, Z)/tOI’S) Q7 R

(sometimes also denoted Np(X) in the literature). We wish to introduce similar concepts
for cones of non necessarily integral classes, on arbitrary compact Kahler manifolds. The
relevant definition is as follows.

(18.2) Definition. Let X be a compact Kdhler manifold.

(a)

(b)

We define N = H;El’n_l(X, R) to be the (closed) convexr cone in H" 1~ 1(X R)
generated by classes of positive currents T' of type (n — 1,n — 1), i.e., of bidimension
(1,1).

We define the cone M C H" 1"~ 1(X R) of strongly mobile classes to be the closure
of the convexr cone generated by classes of currents of the form

(@01 A+ A Wpq)

where | : X — X is an arbitrary modification, and the w; are Kdhler forms on X.

We define the cone Ml C H" 5"~1(X,R) of mobile classes to be the closure of the
convex cone generated by classes of currents of the form

we([Tigl ABLA -+ ATyor)

where | : X — X is an arbitrary modification, the w; are Kdhler forms on X and
(Yi)tes is an analytic family of effective p-dimensional analytic cycles covering X
such that Yy, is reduced and irreducible, with p running over all {1,2,...,n}.

Clearly, we have

M C M N
For X projective, it is also immediately clear from the definitions that
NE(X) C Nys := NNNSEH(X),
(18.3) ME(X) C JMyg := M NNSEH(X)

ME®(X) C M%g := M* N NS~ (X).

The upshot of these definitions lie in the following easy observation.

(18.

4) Proposition. Let X be a compact Kéihler manifold. The Serre duality pairing

HY(X, R)x H"™ " 1(X R) — R, (a, B) — /Xa/\ﬁ

takes nonnegative values

(a) for all pairs (o, B) € K x N;
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(b) for all pairs (o, B) € € x M.

Proof. (a) is obvious. In order to prove (b), we may assume that 8 = p.([Yz,] A @1 A
.-+ Awp_1) for some modification p : X — X, where {a} = {T'} is the class of a positive
(1,1)-current on X and w; are Kahler forms on X. Then for ¢t € S generic

(18.5) /aAﬁ:/TAM*([SZ]A@/\~-~A¢TJP_1)
X X
:/M*TA[}Z]/\@/\-~-A&},_1
X

:/g(“*T)r?t Nwi A+ ANwp—1 =0
t

provided that we show that the final integral is well defined and that the formal calcu-
lations involved in (18.5) are correct. Here, we have used the fact that a closed positive
(1,1)-current 17" always has a pull-back p*T', which follows from the observation that if
T = a+i00¢ with a smooth and ¢ quasi-psh, we may always set p*T = p*a+idd(pou),
with ¢ o u quasi-psh and not identically —oo on X. Similarly, we see that the restriction
(u*T) 5, 1s a well defined positive (1, 1)-current for ¢ generic, by putting

(WT)y3, = (e, +100((p o) 5,)

and choosing ¢ such that ﬁ is not contained in the pluripolar set of —oo poles of ¢ o
(this is possible thanks to the assumption that Y; covers X; locally near any given point
we can modify « so that a = 0 on a small neighborhood V', and then ¢ is psh on V).
Finally, in order to justify the formal calculations we can use a regularization argument
for T, writing T = lim T}, with T}, = a + 100y, and a decreasing sequence of smooth
almost plurisubharmonic potentials ¢y | ¢ such that the Levi forms have a uniform lower
bound 109y, > —Cw (such a sequence exists by [Dem92]). Then (,u*Tk)rg;t — (u*T) 7
in the weak topology of currents. U

Proposition 18.4 leads to the natural question whether the cones (K, N') and ('€, M)
are dual under Serre duality, The second part of the question is addressed in the next
section. The results proved in Chapter 17 yield a complete answer to the first part —
even in the general Kahler setting.

(18.6) Theorem. Let X be a compact Kdhler manifold. Then

(a) H and N are dual cones.

(b) If X is projective algebraic, then Fng = Nef(X) and N'ns = NE(X) and these cones
are dual.

Proof. (a) is a weaker version of Theorem 17.13 (b).

(b) The equality Hng = Nef(X) has already been discussed and is a consequence of the
Kodaira embedding theorem. Now, we know that

NE(X) C Nns C Fng = Nef(X)",
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where the second inclusion is a consequence of Proposition 18.4(a). However, it is already
well-known that NE(X) and NE(X) are dual cones (see [Har70]), hence the inclusions
are equalities (we could also obtain a self-contained proof by reconsidering the arguments
used for Theorem 17.13 (a) when a and wy are rational classes; one sees by the density of
the rationals that the numerical condition for « is needed only for elements of the form
[Y] A wP™! with w € Q{a} + Q{wy} a rational class, so [Y] A wP™! is then a Q-effective
curve). O

18.B. Zariski Decomposition and Mobile Intersections

Let X be compact Kéhler and let o € ‘€° be in the interior of the pseudo—effective cone.
In analogy with the algebraic context such a class « is called “big”, and it can then be
represented by a Kdhler current T', i.e. a closed positive (1, 1)-current T" such that T > dw
for some smooth Hermitian metric w and a constant § < 1. We first need a variant of
the approximation theorem proved in Section 13.B.

(18.7) Regularization Theorem for Currents. Let X be a compact complex manifold
equipped with a Hermitian metric w. Let T = o +i00p be a closed (1,1)-current on X,
where o 1s smooth and ¢ is a quasi-plurisubharmonic function. Assume that T > ~
for some real (1,1)-form v on X with real coefficients. Then there exists a sequence
T = a +i00¢,, of closed (1,1)-currents such that

(a) @m (and thus T,,) is smooth on the complement X \ Z,,, of an analytic set Z,,, and
the Z,,’s form an increasing sequence

o C 4y C---Chy C---C X

(b) There is a uniform estimate T,, > v — dppw with lim | 6,, = 0 as m tends to +oo.

(c) The sequence (¢y,) is non increasing, and we have lim | ¢, = ¢. As a consequence,
T, converges weakly to T' as m tends to +oo.

(d) Near Z,,, the potential @, has logarithmic poles, namely, for every xg € Z,,, there
is a neighborhood U of xo such that ¢m(z) = A\ 10g >, |gm.e|*> + O(1) for suitable
holomorphic functions (gm.¢) on U and A, > 0. Moreover, there is a (global) proper

modification py, @ X, — X of X, obtained as a sequence of blow-ups with smooth
centers, such that ¢,, o p,, can be written locally on X,, as

om © tim(w) = A (D nelog [Gel* + f(w))

where (§; = 0) are local generators of suitable (global) divisors Dy on X,, such
that > Dy has normal crossings, ng are positive integers, and the f’s are smooth

functions on X,,.

Sketch of proof. We essentially repeat the proofs of Theorems 13.2 and 13.12 with addi-
tional considerations. One fact that does not follow readily from these proofs is the mono-
tonicity of the sequence ,, (which we will not really need anyway). For this, we can take
m = 2" and use the subadditivity technique already explained in Step 3 of the proof of
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Theorem 15.3 (b). The map u,, is obtained by blowing-up the (global) ideals ¥,, defined
by the holomorphic functions (g;,.,) in the local approximations ¢,, ~ ﬁ log Zj |g5.ml?.
By Hironaka [Hir64], we can achieve that u}, ¥,, is an invertible ideal sheaf associated
with a normal crossing divisor. U

(18.8) Corollary. If T is a Kdhler current, then one can write T = limT,, for a
sequence of Kahler currents T, which have logarithmic poles with coefficients in %Z, i.e.
there are modifications i, : X, — X such that

H:me = [Em] + Bm

where E,, is an effective Q-divisor on X,, with coefficients in %Z (the “fixed part”) and
Bm s a closed semi-positive form (the “mobile part”).

Proof. We apply Theorem 18.7 with 7 = ew and m so large that §,, < ¢/2. Then T, has
analytic singularities and T, > Sw, so we get a composition of blow-ups p,, : X, — X
such

where E,, is an effective Q-divisor and 3,, > Su;,,w. In particular, 3, is strictly positive
outside the exceptional divisors, by playing with the multiplicities of the components
of the exceptional divisors in F,,, we could even achieve that f3,, is a Kéhler class on
X . Notice also that by construction, pu., is obtained by blowing-up the multiplier ideal
sheaves .¥(mT') = .¥(my) associated to a potential ¢ of T'. O

The more familiar algebraic analogue would be to take o = ¢;(L) with a big line
bundle L and to blow-up the base locus of |[mL|, m > 1, to get a Q-divisor decomposition

o, L~ Epy + Dy, E,, effective, D,, free.
Such a blow-up is usually referred to as a “log resolution” of the linear system |mL|, and

we say that F,, + D,, is an approximate Zariski decomposition of L. We will also use
this terminology for Kéahler currents with logarithmic poles.

NSk (X,) o

Hns

NExs\ /_/
K a=pno=[Ey]+ Bn

In analogy with the concept of volume of a line bundle, we introduce the following
more general definition, which was already briefly mentioned in the statement of Con-
jecture 8.21.
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(18.9) Definition. We define the volume, or mobile self-intersection of a class o €

HY X R) to be
Vol(a) = sup/ sup/ g" >0,
Tex X\Sing(T) Tex

where the supremum is taken over all Kahler currents T € o with logarithmic poles, and
w*T = [E] + B with respect to some modification p : X — X. Correspondingly, we set

Vol(a) =0 if a ¢ €°.

By Theorem 14.6, if L is a big line bundle, we have

Vol(e1 (L)) = lim Dy, lim —hO(X mL),

m—+oo m—>+oo mn

and in these terms, we get the following statement.

(18.10) Proposition. Let L be a big line bundle on the projective manifold X. Let
e > 0. Then there exists a modification p : X — X and a decomposition p*(L) = E +
with E an effective Q-divisor and 8 a big and nef Q-divisor such that

Vol(L) — e < Vol(B) < Vol(L).

It is very useful to observe that the supremum in Definition 18.9 is actually achieved
by a collection of currents whose singularities satisfy a filtering property. Namely, if
T = o+ i85g01 and Th = o + 185@2 are two Kahler currents with logarithmic poles in
the class of «, then

(18.11) T=a+i80p, ¢ =max(p1,p2)

is again a Kahler current with weaker singularities than 77 and 75. One could define as
well

— 1
(18.11") T = a +i00y, =75 log (21 + 2me2),

where m = lem(my, m2) is the lowest common multiple of the denominators occuring in
Ty, T,. Now, take a simultaneous log-resolution p,, : X,, — X for which the singularities
of T and T are resolved as Q-divisors E; and E5. Then clearly the associated divisor in
the decomposition p! T = [E]+ f is given by F = min(FE1, F3). By doing so, the volume
f X, B™ gets increased, as we shall see in the proof of Theorem 18.12 below.

(18.12) Theorem (Boucksom [Bou02]). Let X be a compact Kdhler manifold. We

denote here by Hg’éc(X) the cone of cohomology classes of type (k,k) which have non-
negative intersection with all closed semi-positive smooth forms of bidegree (n —k,n—k).

(a) For each integer k = 1,2,...,n, there exists a canonical “mobile intersection prod-
uct”
© © k,k
E X0 x é—>H>O(X), (a1,...,ak) = (@1 - ag. - .ap—1 - )
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such that Vol(a) = (a™) whenever « is a big class.

(b) The product is increasing, homogeneous of degree 1 and superadditive in each arqu-
ment, i.e.

<O{1'(O{;+O{;/>'Oék> 2 <051"‘Of‘/j"‘ak>+<Oél“‘0€;/“‘ak>.

It coincides with the ordinary intersection product when the a; € T are nef classes.

(¢c) The mobile intersection product satisfies the Teissier-Hovanskii inequalities

(a1 - ag. - wan) = ({af) ™ ()™ (with (o) = Vol(ay) ).

n

(d) For k =1, the above “product” reduces to a (non linear) projection operator
€ — €1, a— (a)

onto a certain convex subcone €1 of € such that ¥ C ‘€1 C ‘€. Moreover, there is
a “divisorial Zariski decomposition”

a = {N(@)} + (o)

where N («) is a uniquely defined effective divisor which is called the “negative diviso-
rial part” of a. The map o — N(«) is homogeneous and subadditive, and N(a) =0
if and only if a € €.

(e) The components of N(«) always consist of divisors whose cohomology classes are
linearly independent, especially N(«) has at most p = ranky NS(X) components.

Proof. We essentially repeat the arguments developped in [Bou02], with some simplifi-
cations arising from the fact that X is supposed to be Kéhler from the start.

(a) First assume that all classes «; are big, i.e. o; € €°. Fix a smooth closed
(n — k,n — k) semi-positive form v on X. We select Kahler currents T; € «; with

logarithmic poles, and a simultaneous log-resolution pu : X — X such that
p Ty = [Ej] + Bj.

We consider the direct image current ju,. (81 A--- A By) (which is a closed positive current
of bidegree (k, k) on X) and the corresponding integrals

/~61/\---/\6k/\,u*u>0.
X

If we change the representative 7T with another current Tj{ , we may always take a si-
multaneous log-resolution such that p*T; = [E%] + 8}, and by using (18.11") we can
always assume that £ < E;. Then D; = E; — E; is an effective divisor and we find
[Ej] + B; = [E}] + B}, hence 8} = B; + [D;]. A substitution in the integral implies

/Nﬂj/\ﬁg/\---AﬁkAu*u
X
:/NﬁlA52A~-A5kw*u+/~w1]AﬁzAmAﬂkAmU
X

X

>/~51/\52/\"-/\5k/\,u*u.
X
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Similarly, we can replace successively all forms 3; by the 5}, and by doing so, we find

/~51A5§A-~-A52Au*u>/~51A/32A-~-A5kw*u-
X X

We claim that the closed positive currents p. (81 A --- A Bg) are uniformly bounded in
mass. In fact, if w is a Kahler metric in X, there exists a constant C; > 0 such that
Ci{w} — a; is a Kéhler class. Hence Cjw — T; = ; for some Kéhler form v; on X. By
pulling back with p, we find Cju*w — ([E;] + 8;) = p*;, hence

Bi = Cipw — ([Ej] + 1™ ;).

By performing again a substitution in the integrals, we find

/~61/\---/\Bk/\,u*u<C’1---Ck/N,u*wk/\u*u:Cl---C’k/ WA
X X X

and this is true especially for u = w™*. We can now arrange that for each of the

integrals associated with a countable dense family of forms u, the supremum is achieved
by a sequence of currents (ftym )«(B1,m A+ - A Br,m) obtained as direct images by a suitable
sequence of modifications u,, : X,,, — X. By extracting a subsequence, we can achieve
that this sequence is weakly convergent and we set

(- ag. - ap) = Hm T {(pm )« (Brm A Bam A== A Brm) }

m——+400

(the monotonicity is not in terms of the currents themselves, but in terms of the integrals
obtained when we evaluate against a smooth closed semi-positive form u). By evaluating
against a basis of positive classes {u} € H"*"=*(X) we infer by Serre duality that
the class of (ay - ag.---.ag) is uniquely defined (although, in general, the representing
current is not unique).

(b) It is indeed clear from the definition that the mobile intersection product is
homogeneous, increasing and superadditive in each argument, at least when the «;’s are
in ‘€°. However, we can extend the product to the closed cone ‘€ by monotonicity, by
setting

<041 Qe Oék> = h;ilol,«al + 5w) . (O_/Q + 5&)) oo .(O_/k + 5w))
for arbitrary classes a; € € (again, monotonicity occurs only where we evaluate against
closed semi-positive forms u). By weak compactness, the mobile intersection product
can always be represented by a closed positive current of bidegree (k, k).

(c) The Teissier-Hovanskii inequalities are a direct consequence of the fact that they
hold true for nef classes, so we just have to apply them to the classes ;,, on X,, and
pass to the limit.

(d) When k£ = 1 and o € €°, we have

a=lm {(gm)Tm} = Hm (pm)e[Em] +{(m)«Om}

m—r—+400 m——+400
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and (o) = limy, 4+ 0o{ (tm)«Bm } by definition. However, the images Fy,, = (ftm )«

F,,, are effective Q-divisors in X, and the filtering property implies that F;, is a decreasing
sequence. It must therefore converge to a (uniquely defined) limit F' = lim F},, := N(«)
which is an effective R-divisor, and we get the asserted decomposition in the limit.

Since N(a) = a — («) we easily see that N(«) is subadditive and that N(«a) = 0 if
« is the class of a smooth semi-positive form. When « is no longer a big class, we define

(a):%iﬁ)li(a-i—&)% N(oz):%iﬁ)lTN(a-l—dw)

(the subadditivity of N implies N(a + (0 + ¢)w) < N(a + éw)). The divisorial Zariski
decomposition follows except maybe for the fact that N(a) might be a convergent count-
able sum of divisors. However, this will be ruled out when (e) is proved. As N(.) is
subadditive and homogeneous, the set ‘€, = {a € € ; N(a) = 0} is a closed convex
conne, and we find that o — () is a projection of ‘€ onto €; (according to [Bou02], €,
consists of those pseudo-effective classes which are “nef in codimension 1”).

(e) Let a € €°, and assume that N(a) contains linearly dependent components F).
Then already all currents 7' € « should be such that p*T" = [E] 4+ 8 where F' = p.FE
contains those linearly dependent components. Write F' = > A\;F}, A; > 0 and assume

that
Z c;F; =0
jed

for a certain non trivial linear combination. Then some of the coefficients ¢; must be
negative (and some other positive). Then E is numerically equivalent to

E/EE—FtM*(Z)\]F]),

and by choosing ¢t > 0 appropriate, we obtain an effective divisor E’ which has a zero
coefficient on one of the components p* Fj,. By replacing £ with min(E, E’) via (18.11'),
we eliminate the component p*F},. This is a contradiction since N(a) was supposed to
contain Fj,. U

(18.13) Definition. For a class « € H"(X,R), we define the numerical dimension
nd(a) to be nd(a) = —c0 if « is not pseudo-effective, and

nd(a) = max{p € N; (a?) # 0}, nd(a) € {0,1,...,n}

if a is pseudo-effective.

By the results of [DP04], a class is big (o € €°) if and only if nd(a) = n. Classes of
numerical dimension 0 can be described much more precisely, again following Boucksom
[Bou02].

(18.14) Theorem. Let X be a compact Kdhler manifold. Then the subset g of
irreducible divisors D in X such that nd(D) = 0 is countable, and these divisors are rigid
as well as their multiples. If o € € is a pseudo-effective class of numerical dimension 0,

then a is numerically equivalent to an effective R-divisor D = ZjeJ A;jDj, for some finite
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subset (Dj)jes C Do such that the cohomology classes {D;} are linearly independent and
some \j > 0. If such a linear combination is of numerical dimension 0, then so is any
other linear combination of the same divisors.

Proof. It is immediate from the definition that a pseudo-effective class is of numerical
dimension 0 if and only if (o) = 0, in other words if @« = N(a). Thus a = > \;D;
as described in 18.14, and since \;(D;) < (a), the divisors D; must themselves have
numerical dimension 0. There is at most one such divisor D in any given cohomology
class in NS(X)N€ C H?(X,Z), otherwise two such divisors D = D’ would yield a blow-
up v : X — X resolving the intersection, and by taking min(p* D, u*D’) via (18.11'), we
would find p*D = E + 5, f # 0, so that {D} would not be of numerical dimension 0.
This implies that there are at most countably many divisors of numerical dimension 0,
and that these divisors are rigid as well as their multiples. U

(18.15) Remark. If L is an arbitrary holomorphic line bundle, we define its numerical
dimension to be nd(L) = nd(ci(L)). Using the canonical maps @,z and pulling-back
the Fubini-Study metric it is immediate to see that nd(L) > k(L) (which generalizes the
analogue inequality already seen for nef line bundles, see (6.18)).

The above general concept of numerical dimension leads to a very natural formulation
of the abundance conjecture for Kahler varieties.

(18.16) Generalized Abundance Conjecture. Let X be an arbitrary compact Kdhler
manifold X .

(a) The Kodaira dimension of X should be equal to its numerical dimension: k(Kx) =
nd(Kx) .

(b) More generally, let A be a Q-divisor which is kit (Kawamata log terminal, i.e. such
that cx (A) > 1). Then k(Kx + A) =nd(Kx + A).

This appears to be a fairly strong statement. In fact, already in the case A = 0, it is
not difficult to show that the generalized abundance conjecture would contain the C,, ,,
conjectures.

(18.17) Remark. It is obvious that abundance holds in the case nd(Kx) = —oo (if L
is not pseudo-effective, no multiple of L can have sections), or in the case nd(Kx) =n
which implies K x big (the latter property follows e.g. from the solution of the Grauert-
Riemenschneider conjecture in the form proven in [Dem85b], see also [DP04]).

In the remaining cases, the most tractable situation is the case when nd(Kx) = 0. In
fact Theorem 18.14 then gives Kx = ) A;D; for some effective divisor with numerically
independent components, nd(D;) = 0. It follows that the \; are rational and therefore

(%) Kx ~Y XNDj+F  where \; € Q, nd(D;) =0 and F € Pic’(X).

If we assume additionally that ¢(X) = h®!(X) is zero, then mK x is linearly equivalent to
an integral divisor for some multiple m, and it follows immediately that x(X) = 0. The
case of a general projective manifold with nd(K x) = 0 and positive irregularity ¢(X) > 0
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has been solved by Campana-Peternell [CP04], Proposition 3.7. It would be interesting
to understand the Kéahler case as well.

18.C. The Orthogonality Estimate

The goal of this section is to show that, in an appropriate sense, approximate Zariski
decompositions are almost orthogonal.

(18.18) Theorem. Let X be a projective manifold, and let o = {T'} € €Xg be a big
class represented by a Kahler current T'. Consider an approximate Zariski decomposition

:ujnTm = [Em] + [Dm]
Then
(D! Ep)? <20 (Cw)"(Vol(a) — DY)

where w = ¢1(H) is a Kdhler form and C > 0 is a constant such that +a is dominated
by Cw (i.e., Cw + « is nef). In other words, E,, and D,, become “more and more
orthogonal” as D] approaches the volume.

Proof. For every t € [0,1], we have
Vol(a) = Vol(E,,, + Dyy,) = Vol(tE,, + Dyy,).
Now, by our choice of C, we can write F,, as a difference of two nef divisors

E,=pa—-D, =u (a+Cw)— (D, +Cu,w). O

(18.19) Lemma. For all nef R-divisors A, B we have
Vol(A— B) > A" —nA""'.B
as soon as the right hand side is positive.

Proof. In case A and B are integral (Cartier) divisors, this is a consequence of the
holomorphic Morse inequalities 7.4 (see [Dem01]); one can also argue by an elementary
estimate of to HY(X, mA — By — ... — B,;,) via the Riemann-Roch formula (assuming A
and B very ample, By, ..., By, € |B| generic). If A and B are Q-Cartier, we conclude by
the homogeneity of the volume. The general case of R-divisors follows by approximation
using the upper semi-continuity of the volume [Bou02, 3.1.26]. U

(18.20) Remark. We hope that Lemma 18.19 also holds true on an arbitrary Kéhler
manifold for arbitrary nef (non necessarily integral) classes. This would follow from Con-
jecture 8.21 generalizing holomorphic Morse inequalities to non integral classes, exactly
by the same proof as Theorem 8.5.

(18.21) Lemma. Let 31,...,03, and 81, ..., B, be nef classes on a compact Kdihler man-

ifold X such that each difference ﬁ} — Bj is pseudo-effective. Then the n-th intersection
products satisfy



192 Analytic Methods in Algebraic Geometry

Proof. We can proceed step by step and replace just one 3; by 5'j = 8; +T; where T is
a closed positive (1,1)-current and the other classes 8, = S, k # j are limits of Kéhler
forms. The inequality is then obvious. U

End of proof of Theorem 18.18. In order to exploit the lower bound of the volume, we
write

tEy + D, = A — B, A=Dy, +tu,(a+Cw), B=t(D,+Curw).

By our choice of the constant C', both A and B are nef. Lemma 18.19 and the binomial
formula imply

Vol(tE,,4+D,,) > A" —nA""1. B

n

= D! +nt Dbk C tk
ot DR (o Cw) o+ (k

k=2
—nt D"t (D, + Cuk,w)

)i s Co

n—1
—1
— nt? Z th1 <n i )D;Z_l_k k(a4 Cw)k - (Dyy + Cut,w).
k=1

Now, we use the obvious inequalities
Dy < g (Cw), pi (a4 Cw) < 247, (Cw), Dy + Cpigyw < 2p,, (Cw)

in which all members are nef (and where the inequality < means that the difference of
classes is pseudo-effective). We use Lemma 18.21 to bound the last summation in the
estimate of the volume, and in this way we get

n—1
—1
Vol(tEy, + D) = Dy, + ntDp b - Epy —nt? Y~ 2FH1k1 (n } )(Cw)”.
k=1

We will always take ¢ smaller than 1/10n so that the last summation is bounded by
4(n —1)(1+1/5n)"2 < 4ne'/® < 5n. This implies

Vol(tE,, + D,,) = D" +nt D™ 1. E,, — 5n*t*(Cw)".
Now, the choice t = 5= (D! - Ep,)((Cw)™) ! gives by substituting

1 (D1 E,,)2
—————— < Vol(E,,, + Dy,,) — D;,, < Vol(a) — D},
20 (CUJ)TL o ( ) m Y (Oé) m

(and we have indeed ¢ < -1~ by Lemma 18.21), whence Theorem 18.18. Of course, the

) ; = 10n VY
constant 20 is certainly not optimal. U

(18.22) Corollary. If a € €éng, then the divisorial Zariski decomposition « = N(a) +
(av) is such that
("1 . N(a) =0.
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Proof. By replacing a with a + dcq (H), one sees that it is sufficient to consider the case
where « is big. Then the orthogonality estimate implies

(bm )« (D) = (ptm) s B = Dy () (im )+ B
<Dl B, < C(Vol(a) — D)2

Since (a™™1) = lim ()« (D21, N(a) = lim(pm )« Ey and lim D7, = Vol(«), we get the
desired conclusion in the limit. 0

18.D. Dual of the Pseudo-effective Cone

The following statement was first proved in [BDPP04].

(18.23) Theorem. If X is projective, the cones ‘€ns = Eff (X) and ME®*(X) are dual.

In other words, a line bundle L is pseudo-effective if (and only if) L -C > 0 for
all mobile curves, i.e., L - C > 0 for every very generic curve C' (not contained in a
countable union of algebraic subvarieties). In fact, by definition of ME®(X), it is enough
to consider only those curves C' which are images of generic complete intersection of
very ample divisors on some variety X, under a modification p: X — X. By a standard
blowing-up argument, it also follows that a line bundle L on a normal Moishezon variety
is pseudo-effective if and only if L - C' > 0 for every mobile curve C.

Proof. By Propsition 18.4 (b) we have in any case
Ens C (ME*(X))".

If the inclusion is strict, there is an element a € 9 €ng on the boundary of ‘€yng which is
in the interior of ME®(X)".

NSgr(X) HY (X, R) Hn=Ln=l(X R) (X)

Let w = ¢1(H) be an ample class. Since a € 0€ys, the class o + dw is big for every
d > 0, and since o € ((ME?*(X))¥)° we still have @ — ew € (ME®*(X))" for £ > 0 small.
Therefore

(18.24) a-I'>ew-T
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for every strongly mobile curve I', and therefore for every I' € ME®(X). We are going to
contradict (18.24). Since a + dw is big, we have an approximate Zariski decomposition

ws (o + dw) = E5 + Ds.
We pick T' = (15)«(Dy ") € ME®(X). By the Hovanskii-Teissier concavity inequality
w T 3 (W@"/n(Dp)=D/m,
On the other hand

a-T'=a-(us)(Dy )
= psa- DYt < pi(a+ dw) - Dy !
= (Es; + Ds) - Dy ' = Dy + Dy - Es.

By the orthogonality estimate, we find

o T _ Df + (20(Ce)" (Vol(a + &) — D))

w-T > (wn>1/n(DgL>(n—1)/n

Vol(a + dw) — D})1/?
(D7)

< C/(ng>1/n + Cl/(

However, since o € 9'€éyg, the class a cannot be big so

lim D§ = Vol(a) = 0.
6—0

We can also take Ds to approximate Vol(a+dw) in such a way that (Vol(a+dw) —DF)1/2
tends to 0 much faster than DJ. Notice that Dj > ¢"w", so in fact it is enough to take

Vol(a + 6w) — DF < §°",
which gives (a-T')/(w-T) < (C" + C”)d. This contradicts (18.24) for ¢ small. O

(18.25) Conjecture. The Kahler analogue should be :
For an arbitrary compact Kdhler manifold X, the cones ‘€ and M are dual.

duality m

NSg(X) HYW(X,R)  H" b 1(X R) NSEH(X)
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If holomorphic Morse inequalities were known also in the Kéhler case (cf. Conjecture
8.21), we would infer by the same proof that “a not pseudo-effective” implies the existence
of a modification : X — X and a Kéhler metric @ on X such that a - . (@)" < 0.
In the special case when @ = Kx is not pseudo-effective, we would expect the Kéhler
manifold X to be covered by rational curves. The main trouble is that characteristic p
techniques are no longer available. On the other hand it is tempting to approach the
question via techniques of symplectic geometry :

(18.26) Question. Let (M,w) be a compact real symplectic manifold. Fiz an almost
complex structure J compatible with w, and assume that c1 (M, J) - w™ 1 > 0 (the condi-
tion does not depend on the choice of J, but only on w). Does it follow that M is covered
by rational J-pseudoholomorphic curves ¢

The relation between the various cones of mobile curves and currents in Definitions
18.1 and 18.2 is now a rather direct consequence of Theorem 18.23. In fact, using ideas
hinted in [DPS96], one can say a little bit more. Given an irreducible curve C' C X, we
consider its normal “bundle” No = Hom(.¥/.%%, @), where . is the ideal sheaf of C. If
C' is a general member of a covering family (C}), then N¢ is nef. By [DPS96], the dual
cone of the pseudo-effective cone of X contains the closed cone spanned by curves with
nef normal bundle, which in turn contains the cone of mobile curves. In this way we get :

(18.27) Theorem. Let X be a projective manifold. Then the following cones coincide:

a) the cone Mys = MNNSE 1 (X);
b) the cone Mg = M5 NNSEH(X);

(
(
(c) the closed cone ME®(X) of strongly mobile curves;
(
(

d) the closed cone ME(X) of mobile curves;

e) the closed cone MEyt(X) of curves with nef normal bundle.

Proof. We have already seen that
ME*(X) C ME(X) C ME¢(X) C (éns)”

and
ME®(X) C Mg(X) C Mns C (éng)”

by 18.4 (c¢). Now Theorem 18.23 implies (Mng)Y = ME®*(X), and 18.27 follows. O

(18.28) Corollary. Let X be a projective manifold and L a line bundle on X .

(a) L is pseudo-effective if and only if L - C > 0 for all curves C with nef normal
sheaf N¢ .

(b) If L is big, then L-C > 0 for all curves C with nef normal sheaf N¢.
Corollary 18.28 (a) strenghthens results from [PSS99]. It is however not yet clear

whether Mg is equal to the closed cone of curves with ample normal bundle (although
we certainly expect this to be true). An important special case of Theorem 18.23 is
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(18.29) Theorem. If X is a projective manifold, then Kx is pseudo-effective (i.e.
Kx € €ng), if and only if X is not uniruled (i.e. not covered by rational curves).

Proof. If X is covered by rational curves CY, then it is well-known that the normal bundle

N¢, is nef for a general member CY, thus

Kx -Ci=Kc¢, -Ci — Ng, - Cy < -2,

and K x cannot be pseudo-effective. Conversely, if Kx ¢ ‘€xNg, Theorem 18.23 shows that
there is a mobile curve C; such that K x -C; < 0. The standard “bend-and-break” lemma
of Mori theory then produces a covering family I'; of rational curves with Kx - I'; < 0,
so X is uniruled. O

The generalized abundance conjecture 18.16 would then yield the stronger result :

(18.30) Conjecture. Let X be a projective manifold. If X is not uniruled, then Kx is
a Q-effective divisor and k(X) =nd(Kx) > 0.

18.E. A Volume Formula for Algebraic (1,1)-Classes on
Projective Surfaces

As a further application, we give here a positive answer to Question 8.20, in the case
where X is a projective surface.

(18.31) Theorem. Let (X,w) be a compact complex n-fold. Then for every class
a € Hé’é(X, R) we have

(a) Vol(a) = Sup/ T" < 10 (X, o) = inf / (T
X~ Sing(T) X (u,0)

TcEo uco

where the supremum runs over all Kahler currents T' € o with analytic singularities,
and the infimum runs over all smooth closed (1,1)-forms u € a.

(b) Equality holds in (a) if X is a projective surface and o € NSg(X).

The following result has been proved in [BmDO09] (cf. Theorem 1.4 and Corollary 2.5);
we will not give details here — the proof relies again in an essential way on regularization
techniques ([Dem94a] especially).

(18.32) Lemma. Assume that o € HY1(X,R contains a Kdihler current Ty, and let

Zy be the analytic set of poles of Ty. Fix a smooth representative u € o and consider a
current with minimal singularities

T =u+i00p >0
where

(18.33) o(z) :=sup {¢(z); ¥ <0 and u+i0dY > 0 on X},
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and the supremum is taken over all quasi-psh functions 1 satisfying the conditions
P <0 and u+100y > 0. Then ¢ is continuous with locally bounded second derivatives
0?/0z;0zy, on X \ Zy. Moreover, if S is the set of points z € X \ Zy where ¢(z) = 0,
then S C {z;u(z) > 0} and

(18.34) Vol(a):/Su”:/X\ZO(quia&p)”.

Since S C {z;u(z) > 0}, we immediately conclude from these equalities that

Vol(«) g/ u” :/ u” :/ u”,
{z;u(2)=>0} {z;u(2)>0} X (u,0)

and Theorem 18.31 (a) follows.

Proof of 18.31 (b). Let T € a be a Kéhler current. Take a blow-up x: X — X such that
p*T = [E] + 8 where E is a normal crossing divisor on X and 8 > 0 smooth. Until now,
this is valid for an arbitrary compact complex manifold X. If moreover X is projective
and a € NSg(X), the orthogonality estimate (18.18) yields

1/2

(18.35) ] gt = /Eﬁn—l < O(Vol(a) - 6"

Our method consists of approaching [E]+ 3 by smooth closed (1, 1)-forms u. in the same
00-cohomology class as [F] + 3, in such a way that

o
X (ue,0)

will not be substantially larger than the volume [ 5 B". For this, we select a Hermitian
metric h on G(F) and put
i

W@ElogﬂaE\,% -+ 82) + @@’(E),h +

where o € H(X,G(E)) is the canonical section and O¢(k),n» the Chern curvature form.
Clearly,by the Lelong-Poincaré equation, u. converges to [E] + 8 in the weak topology
as € — 0. Straightforward calculations yield

i €2D}1L’00E A D}L’OUE 2
2r (2 +|ogl?)? % +|og

Ue = sOrn+ 0.

The first term converges to [E] in the weak topology, while the second, which is close
to ©p ) near E, converges pointwise everywhere to 0 on X \ E. A simple asymptotic
analysis shows that

. 1,0 1,0
( i €2Dh ocpND) oR g2

p
p—1
21 (€2 + |op[?)? 2 + \UE|2@E7h) = [EIA Ok,
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in the weak topology for p > 1, hence
(18.37) lim u? 5“+Z() [ A Oh A BT

In arbitrary dimension, the signature of u. is hard to evaluate, and it is also non trivial
to decide the sign of the limiting measure limu”. However, when n = 2, we get the
simpler formula

;g%ug = B>+ 2[E]AB+ [E]AOg.p.

In this case, E can be assumed to be an exceptional divisor (otherwise some part of it
would be nef and could be removed from the poles of T'). Hence the matrix (E; - Ey) is
negative definite and we can find a Hermitian metric h on G(E) such that (©g )|z < 0.
Then [E]AOg p,, which is the limit of the product of the first two terms in u2, contributes
negatively to the limit; all other terms are nonnegative or have a mass converging to 0.
From this, one can easily infer by (18.35) that

lim sup /~ u? < /~ B2 +2[E] A B < Vol(a) + 2C(Vol(a) — gH)1/2,
e—0 X (us,0) X

This is arbitrary close to Vol(a) when 32 approaches the volume, and so Theorem
18.31 (b) is proved in dimension 2. Obviously the n-dimensional case would require
a deeper analysis of “higher order” orthogonality relations. U



Chapter 19

Super-canonical Metrics and Abundance

A very fundamental fact of the theory of compact Riemann surfaces is the existence of
metrics with constant curvature, which is in this case a consequence of the uniformiza-
tion theorem. In general, “invariant” or “canonical” metrics, such as the Kobayashi and
Kobayashi-Eisenman metrics, play an important role in analytic geometry. We intro-
duce here still another way of constructing such “canonical” metrics, following ideas of
Narasimhan-Simha [NS68] which have been recently generalized by Tsuji [Tsu07a, 07b].

19.A. Construction of Super-canonical Metrics

Let X be a compact complex manifold and (L, hr, ) a holomorphic line bundle over X
equipped with a singular Hermitian metric hy, , = e 7hy with satisfies [e™7 < +o0
locally on X, where hy, is a smooth metric on L. In fact, we can more generally consider
the case where (L, h, ) is a “Hermitian R-line bundle”; by this we mean that we have
chosen a smooth real d-closed (1,1) form oy, on X (whose dd® cohomology class is equal
to c1(L)), and a specific current T}, representing it, namely 77, = ar + dd®y, such
that v is a locally integrable function satisfying [e™7 < 4oo. An important special
case is obtained by considering a klt (Kawamata log terminal) effective divisor A. In
this situation A = ) ¢;A; with ¢; € R, and if g; is a local generator of the ideal
sheaf @O(—A;) identifying it to the trivial invertible sheaf g;@, we take v = Y ¢; log |g;|?,
Tr =Y ¢j[Aj] (current of integration on A) and «, given by any smooth representative
of the same dd°-cohomology class; the klt condition precisely means that

(19.1) /6_7:/ lg;17%% < +o0
% VH ’

on a small neighborhood V' of any point in the support |A| = ([JA; (condition (19.1)
implies ¢; < 1 for every j, and this in turn is sufficient to imply A klt if A is a normal
crossing divisor; the line bundle L is then the real line bundle @G(A), which makes sens
as a genuine line bundle only if ¢; € Z). For each klt pair (X, A) such that Kx + A
is pseudo-effective, H. Tsuji [Tsu07a, 07b] has introduced a “super-canonical metric”
which generalizes the metric introduced by Narasimhan and Simha [NS68] for projective
algebraic varieties with ample canonical divisor. We take the opportunity to present here
a simpler, more direct and more general approach.
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We assume from now on that Kx + L is pseudo-effective, i.e. that the class ¢ (Kx )+
{ar} is pseudo-effective, and under this condition, we are going to define a “super-
canonical metric” on Kx + L. Select an arbitrary smooth Hermitian metric w on X.
We then find induced Hermitian metrics hx, on Kx and hx, 41 = hg,hy on Kx + L,
whose curvature is the smooth real (1,1)-form

= ®KX+L7hKX+L - @KX7W +ar.

A singular Hermitian metric on Kx + L is a metric of the form hx, 41, = e Phr 41
where ¢ is locally integrable, and by the pseudo-effectivity assumption, we can find quasi-
psh functions ¢ such that o + dd“p > 0. The metrics on L and Kx + L can now be
“subtracted” to give rise to a metric

—1 — P -1 — P TR — e

on Ky' = A"Tx, since h;(i( = dV,, is just the Hermitian (n,n) volume form on X.
Therefore the integral [ < h L’,yhl_(; VL has an intrinsic meaning, and it makes sense to
require that

(19.2) / hoahice 1., :/ e 1dV, < 1
X ' X

in view of the fact that ¢ is locally bounded from above and of the assumption

/e"y < +00.

Observe that condition (19.2) can always be achieved by subtracting a constant to ¢.
Now, we can generalize Tsuji’s super-canonical metrics on klt pairs (cf. [Tsu07b]) as
follows.

(19.3) Definition. Let X be a compact complex manifold and let (L, hy) be a Hermitian
R-line bundle on X associated with a smooth real closed (1,1) form «p. Assume that
Kx + L s pseudo-effective and that L s equipped with a singular Hermaitian metric
hr~ = e 7hr such that fe_'y < 400 locally on X. Take a Hermaitian metric w on X
and define a = @KX+L,hKX+L = Oy ,w+ar. Then we define the super-canonical metric
hean of Kx + L to be

hKX+L,can = lgf th+L,<,D 1.€. hKX+L,Can = 6_<‘Ocar’hKX_|_L, where

Yean () = sup p(x) for all ¢ with o+ dd°p > 0, / ¥ 7dV, < 1.
¢ X

In particular, this gives a definition of the super-canonical metric on Kx + A for
every klt pair (X, A) such that Ky + A is pseudo-effective, and as an even more special
case, a super-canonical metric on Kx when K x is pseudo-effective.

In the sequel, we assume that v has analytic singularities, otherwise not much can
be said. The mean value inequality then immediately shows that the quasi-psh func-
tions ¢ involved in Definition 19.3 are globally uniformly bounded outside of the poles
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of 7, and therefore everywhere on X, hence the envelopes pcan = sup, ¢ are indeed
well defined and bounded above. As a consequence, we get a “super-canonical” current
Tean = @+ ddpean = 0 and hgy 41, can satisfies

(194) / hL”YhI_(;—FL can — / egocan_’}/de < +OO
X ’ X

It is easy to see that in Definition 19.3 the supremum is a maximum and that @c., =
(pcan)™ everywhere, so that taking the upper semicontinuous regularization is not needed.
In fact if o € X is given and we write

(@can)™ (o) = imsup @ean () = lim @ean(z,) = lim @, (z,)

T—To v—4oo v——+4o0

with suitable sequences z,, — xo and (¢, ) such that [ + e?v77dV, < 1, the well-known
weak compactness properties of quasi-psh functions in L! topology imply the existence
of a subsequence of (y,) converging in L' and almost everywhere to a quasi-psh limit
. Since [ €77 7dV,, < 1 holds true for every v, Fatou’s lemma implies that we have
S  €¥77dV, < 1 in the limit. By taking a subsequence, we can assume that ¢, — ¢ in
L'(X). Then for every & > 0 the mean value TB(z, <) v satisfies

][ ¢ = lim oo = lim o, (z,) = (Pcan)*(T0),
B(wo,E)

v—+o0 B(xl,,s) v——+00

hence we get p(zo) = lime_,q UCB(xo ¥ > (Yean) (20) = @ean(To), and therefore the sup
is a maximum and @ean = @r,,. By elaborating on this argument, one can infer certain
regularity properties of the envelope.

(19.5) Theorem ([BmD09]). Let X be a compact complex manifold and (L,hr) a
holomorphic R-line bundle such that Kx + L is big. Assume that L is equipped with a
singular Hermitian metric hr, , = e~ Vhy, with analytic singularities such that [e™7 <
+o0 (klt condition). Denote by Zy the set of poles of a singular metric hg = e ¥ hy . 41,
with analytic singularities on Kx + L and by Z., the poles of v (assumed analytic). Then
the associated super-canonical metric heay is continuous on X \ (Zy U Zy).

In fact, using the regularization techniques of [Dem94al, it is shown in [BmDO09] that
hcan possesses some computable logarithmic modulus of continuity. In order to shorten
the exposition, we will only give a proof of the continuity in the algebraic case, using
approximation by pluri-canonical sections.

(19.6) Algebraic Version of the Super-canonical Metric. Since the klt condition
is open and K x + L is assumed to be big, we can always perturb L a little bit, and after
blowing-up X, assume that X is projective and that (L, hr, ) is obtained as a sum of
Q-divisors

L=G+A

where A is kIt and G is equipped with a smooth metric hg (from which hy, - is inferred,
with A as its poles, so that Or x, = Og,r, + [A]). Clearly this situation is “dense”
in what we have been considering before, just as QQ is dense in R. In this case, it is
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possible to give a more algebraic definition of the super-canonical metric @cay,, following
the original idea of Narasimhan-Simha [NS68] (see also H. Tsuji [TsuO7a]) — the case
considered by these authors is the special situation where G = 0, hg = 1 (and moreover
A =0 and Kx ample, for [NS68]). In fact, if m is a large integer which is a multiple of
the denominators involved in G and A, we can consider sections

oc H'(X,m(Kx + G+ A)).

We view them rather as sections of m(Kx + G) with poles along the support |A| of our
divisor. Then (o A7) ™hg is a volume form with integrable poles along |A| (this is the
klt condition for A). Therefore one can normalize o by requiring that

/ (o A7) ™he = 1.
X

Each of these sections defines a singular Hermitian metric on Kx + L = Kx + G + A,
and we can take the regularized upper envelope

1 *
alg __ - 2
(197 oth = (sup Lioglofty )

m,o

of the weights associated with a smooth metric hg,r. It is clear that ¢ < pean
since the supremum is taken on the smaller set of weights ¢ = %log |a\i7£ o and the
X

equalities

e?TVdV, = |a|i{£; ¢ AV, = (0 A9 e Thy = (0 AB)Y ey = (0 AT) " he

imply [  €¥77dV, < 1. We claim that the inequality 08 < pean is an equality. The
proof is an immediate consequence of the following statement based in turn on the

Ohsawa-Takegoshi theorem and the approximation technique of [Dem92].

(19.8) Proposition. With L =G+ A, w, & = Ok 1L hyx ., 7 s above and Kx + L
assumed to be big, fir a singular Hermitian metric e~ Yhg . +1 of curvature a+ddp > 0,
such that fX e?~7dV,, < 1. Then ¢ is equal to a regularized limit

@ ={ limsu —1 log | |2 '
1m g m
m—>S—|—oop m 08 [Tm th+L

for a suitable sequence o, € HO(X,m(Kx + G + A)) with [ (0 ATm)Y™hg < 1.

Proof. By our assumption, there exists a quasi-psh function ¢y with analytic singularity
set Zy such that
a+dd®po > eqw > 0

and we can assume [ e*°7dV,, < 1 (the strict inequality will be useful later). For
m > p > 1, this defines a singular metric exp(—(m — p)p — po)h ,p on m(Kx + L)
with curvature > pegw, and therefore a singular metric

hr = exp(—(m - p)‘P - P¢0>h%X+LhI_(L
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on L' = (m — 1)Kx 4+ mL, whose curvature O, > (peo — Co)w is arbitrary large if p
is large enough. Let us fix a finite covering of X by coordinate balls. Pick a point xy and
one of the coordinate balls B containing xy. By the Ohsawa-Takegoshi extension theorem
applied on the ball B, we can find a section op of Kx + L' = m(Kx + L) which has norm
1 at x¢ with respect to the metric hg, 4 and fB ‘O'B|%LK +L,de < (C for some uniform
constant C depending on the finite covering, but indepeﬁdent of m, p, o . Now, we use
a cut-off function §(z) with #(x) = 1 near x to truncate op and solve a J-equation for
(n, 1)-forms with values in L to get a global section ¢ on X with |o(zo)|n, ,,, =1. For
this we need to multiply our metric by a truncated factor exp(—2nf(z) log |z — x¢|) so as
to get solutions of 0 vanishing at xy. However, this perturbs the curvature by bounded
terms and we can absorb them again by taking p larger. In this way we obtain

(19.9) / {7 :/ |a\i?X+Le—<m—p>@—W0de < Co.
X X

m

Taking p > 1, the Holder inequality for congugate exponents m, 5 implies

/(aAE)%hGZ/ o]0 eV,
X b'e x+k

:/ <|U|%Lm e_(m_p)‘/’_WO)E(8(1—%)¢+%w0—7)de
X X

m—1

< 02% </ (e(l—%)wﬁ-%wo—v)mde) "
X
1 m—p p p—1 mle
<Cy (/ (ew—v)m (eﬁ(wo—v)> m_lde)
X

p—1

< 02% </ eﬁ(wo—’ﬂde) o
X

using the hypothesis [  €¥77dV, < 1 and another application of Holder’s inequality.
Since klt is an open condition and

lim e 1 (Po=Nqy = / eodV, < 1,

p——+o00 X X

we can take p large enough to ensure that
/ er 1o Ngy, < Oy < 1.
X

Therefore, we see that

1 1 p—1
X
for p large enough. On the other hand
@0, = loao) iy (PR bl
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thus

(19.10) “togloaolliy ., = (1- L) e(o) + Lun(ro)

+L
and, as a consequence

1
—1 2 =
m 0og |0($0)\hKX @(wo)

—+L
whenever m — +oo, 2 — 0, as long as ¥g(x9) > —oo. In the above argument, we
can in fact interpolate in finitely many points zi, x2, ... ,z, provided that p > Cuq.

Therefore if we take a suitable dense subset {z,} and a “diagonal” sequence associated
with sections o, € H*(X,m(Kx + L)) with m > p = p,, > ¢ = ¢, — +00, we infer
that

1 *
(19.11) <lim sup — log |0 () ]2 m ) > limsup ¢(zq) = ¢(z)
m

m——+o00 Kx+L Tq—T

(the latter equality occurring if {x,} is suitably chosen with respect to ¢). In the other
direction, (19.9) implies a mean value estimate

1 C

2 5 (m—p)p+pio
— lo(2)]7m dz < —— sup e
w2 [n) /B(x,r) Kx+L 72" Bz.r)

on every coordinate ball B(z,r) C X. The function |am|%;? s plurisubharmonic after
x+

we correct the non necessarily positively curved smooth metric hx, 4+ by a factor of the
form exp(Cs|z — z|?), hence the mean value inequality shows that

+L

1 C m m
< —logTi-i—Cgrz—l- sup (1—]3—)4,0-1—]3—1/)0.
m r m m

1
~log o, (x)|?m
— loglom(e) 2y s

By taking in particular r = 1/m and letting m — +oo, p;/m — 0, we see that the
opposite of inequality (19.9) also holds. O

(19.12) Remark. We can rephrase our results in slightly different terms. In fact, let
us put

1
alg __ 2 0
oy —sgp—log\a|h?X+L, o€ H'(X,m(Kx + G+ A)),

with normalized sections o such that [, (o0 A7) ™hg = 1. Then ¢&# is quasi-psh (the
supremum is taken over a compact set in a finite dimensional vector space) and by passing
to the regularized supremum over all o and all ¢ in (19.10) we get

Qean = P8 > (1 — £>90can(x) + ﬁwo@).
m m

AS pcan is bounded from above, we find in particular
alg ¢
0<<,0can—<Pm < E(W}O(xﬂ—i_l)

This implies that (¢28) converges uniformly to (., on every compact subset of X C Zo,
and in this way we infer again (in a purely qualitative manner) that .., is continuous
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on X N\ Zy. Moreover, we also see that in (19.7) the upper semicontinuous regularization
is not needed on X \ Zj; in case Kx + L is ample, it is not needed at all and we have
uniform convergence of (¢28) towards (ean on the whole of X. Obtaining such a uniform
convergence when Kx + L is just big looks like a more delicate question, related e.g. to
abundance of Kx + L on those subvarieties Y where the restriction (Kx + L)y would
be e.g. nef but not big.

(19.13) Generalization. In the general case where L is a R-line bundle and Kx + L
is merely pseudo-effective, a similar algebraic approximation can be obtained. We take
instead sections

o€ H'(X,mKx + |mG| + [mA] + p,, A)

where (A, ha) is a positive line bundle, © 4., > eow, and replace the definition of 218
by

1 *
alg __ : - 2
(19.14) Pean = (lﬁiiﬁg sup mlogla|hmkx+mcj+pm) )
_\2,1
(19.15) /X(U/\a)mhf;nGJermA <1,

where m > p,,, > 1 and ht{n Tré | is chosen to converge uniformly to hq.

We then find again (e, = 98, with an almost identical proof — though we no
longer have a sup in the envelope, but just a limsup. The analogue of Proposition
(19.8) also holds true in this context, with an appropriate sequence of sections o, €

HY(X,mKx + |mG| + |mA| + pnA).

(19.16) Remark. It would be nice to have a better understanding of the super-canonical
metrics. In case X is a curve, this should be easier. In fact X then has a Hermitian
metric w with constant curvature, which we normalize by requiring that [ yw =1, and
we can also suppose fX e Yw = 1. The class A = ¢;(Kx + L) > 0 is a number and we
take a = Adw. Our envelope is ¢can = sup ¢ where Aw + ddp > 0 and fX e’ Tw<l If
A = 0 then ¢ must be constant and clearly pcan = 0. Otherwise, if G(z,a) denotes the
Green function such that [, G(z,a)w(z) = 0 and dd°G(z,a) = 0, — w(z), we find

©Yean(Z) = sup ()\G(z,a) — log/

ewz,a)_yu)w(z))
aceX zeX

by taking already the envelope over ¢(z) = AG(z, a) — Const. It is natural to ask whether
this is always an equality, i.e. whether the extremal functions are always given by one of
the Green functions, especially when v = 0.

19.B. Invariance of Plurigenera and Positivity of Curvature
of Super-canonical Metrics

The concept of super-canonical metric can be used to give a very interesting result on
the positivity of relative pluricanonical divisors, which itself can be seen to imply the
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invariance of plurigenera. The main idea is due to H. Tsuji [Tsu07al, and some important
details were fixed by Berndtsson and Paun [BnP09], using techniques inspired from their
results on positivity of direct images [Bnd06; BnP08].

(19.17) Theorem. Let m: X — S be a deformation of projective algebraic manifolds
over some irreducible complex space S (m being assumed locally projective over S). Let
L — X be a holomorphic line bundle equipped with a Hermitian metric he ~ of weight
such that i©y p, > 0 (i.e. 7y is plurisubharmonic), and the_V < 400, i.e. we assume
the metric to be kit over all fibers X, = m=1(t). Then the metric defined on Ky + £ as
the fiberwise super-canonical metric has semi-positive curvature over ‘X. In particular,
t— h%( Xy, m(Kx, + L x,)) is constant for all m > 0.

Once the metric is known to have a plurisuharmonic weight on the total space of ¥,
the Ohsawa-Takegoshi theorem can be used exactly as at the end of the proof of Lemma
16.3. Therefore the final statement is just an easy consequence. The cases when &£ = O
is trivial or when £,x, = O(A;) for a family of klt Q-divisors are especially interesting.

Proof (Sketch). By our assumptions, there exists (at least locally over S) a relatively
ample line bundle % over . We have to show that the weight of the global super-
canonical metric is plurisubharmonic, and for this, it is enough to look at analytic disks
A — S. We may thus as well assume that S = A is the unit disk. Consider the super-
canonical metric hcan,o over the fiber X(y. The approximation argument seen above (see
(19.9) and Remark (19.12)) show that hcan,0 has a weight ¢can,0 which is a regularized
upper limit .
alg . 1 2
Pean0 = (hmsup - log |om| )

m——+oo

defined by sections o, € H%(Xo,m(Kx, + £x,) + Pm|x,) such that

/ |O—|26_(m_pm)ﬂpcan,0_pm¢0de < CQ-
Xo

with the suitable weights. Now, by the proof of the invariance of plurigenera (Chapter
16), these sections extend to sections o, defined on the whole family ¥, satisfying a
similar L? estimate (possibly with a slightly larger constant C% under control). If we set

o = (limsup llog|5m\2) )
m—+oco M

then ® is plurisubharmonic by construction, and @¢., > ® by the defining property of

the super-canonical metric. Finally, we also have @can,0 = ®x, from the approximation

technique. It follows easily that ¢.,, satisfies the mean value inequality with respect to

any disk centered on the central fiber X(. Since we can consider arbitrary analytic disks

A — S, the plurisubharmonicity of ¢, follows. O

19.C. Tsuji’s Strategy for Studying Abundance

H. Tsuji [TsuO7c] has recently proposed the following interesting prospective approach
of the abundance conjecture.
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(19.18) Conjecture/question. Let (X, A) be a kit pair such that Kx + A is pseudo-
effective and has numerical dimension nd(Kx + A) > 0. Then for every point x € X
there exists a closed positive current T,, € c1(Kx + A) such that the Lelong number at x
satisfies v(T,,x) > 0.

It would be quite tempting to try to produce such currents e.g. by a suitable modifi-
cation of the construction of super-canonical metrics, trying to enforce singularities of the
metric at any prescribed point x € X. A related procedure would be to enforce enough
vanishing of sections of A+ m(Kx + A) at point x, where A is a sufficiently ample line
bundle. The number of these sections grows as em? where p = nd(Kx + A). Hence, by
an easy linear algebra argument, one can prescribe a vanishing order s ~ ¢/m?/™ of such
a section o, whence a Lelong number ~ ¢/m= ! for the corresponding rescaled current
of integration T' = -[Z,] on the zero divisor. Unfortunately, this tends to 0 as m — +oco
whenever p < n. Therefore, one should use a more clever argument which takes into
account the fact that, most probably, all directions do not behave in an “isotropic way”,
and vanishing should be prescribed only in certain directions.

Assuming that (19.18) holds true, a simple semi-continuity argument would imply
that there exists a small number ¢ > 0 such that the analytic set Z, = E.(T,) contains
x, and one would expect conjecturally that these sets can be reorganized as the generic
fibers of a reduction map f: X ---> Y, together with a kit divisor A’ on Y such that (in
first approximation, and maybe only after replacing X, Y by suitable blow-ups), one has
Kx + A= f"(Ky + A"+ Ry) + 8 where Ry is a suitable orbifold divisor (in the sense
of Campana [Cam04]) and S a suitable pseudo-effective class. The expectation is that
dimY =p=nd(Kx + A) and that (Y, A’) is of general type, i.e. nd(Ky + A’) = p.






Chapter 20

Siu’s Analytic Approach and Paun’s
Non Vanishing Theorem

We describe here briefly some recent developments without giving much detail about
proofs. Recall that given a pair (X, A) where X is a normal projective variety and A
an effective R-divisor, the transform of (X, A) by a birational morphism px : X = X of
normal varieties is the unique pair (X, A) such that Ks+ A=p"(Kx +A)+E where
E is an effective p-exceptional divisor (we assume here that Kx + A and K + A are
R-Cartier divisors).

In [BCHMOG6|, Birkar, Cascini, Hacon and McKernan proved several fundamental
conjectures which had been expected for more than two decades, concerning the exis-
tence of minimal models and the finiteness of the canonical ring for arbitrary projective
varieties. The latter result was also announced independently by Siu in [Siu06]. The
main results can be summarized in the following statement.

(20.1) Theorem. Let (X,A) be a kit pair where A is big.

(a) If Kx + A is pseudo-effective, (X, A) has a log-minimal model, i.e. there is a bi-
rational transformation (X,A) with X Q-factorial, such that K5 + A is nef and
satisfies additionally strict inequalities for the discrepancies of u-exceptional divi-
sors.

(b) If Kx + A is not pseudo-effective, then (X,A) has a Mori fiber space, i.e. there
exists a birational transformation (X,A) and a morphism ¢ : X — Y such that
—(K5 + A) is p-ample.

(¢) If moreover A is a Q-divisor, the log-canonical ring €D, HO(X,m(Kx + A)) is
finitely generated.

The proof, for which we can only refer to [BCHMO06], is an extremely subtle induc-
tion on dimension involving finiteness of flips (a certain class of birational transforms
improving positivity of Kx + A step by step), and a generalization of Shokurov’s non
vanishing theorem [Sho85]. The original proof of this non vanishing result was itself
based on an induction on dimension, using the existence of minimal models in dimension
n — 1. Independently, Y.T. Siu [Siu06] announced an analytic proof of the finiteness of
canonical rings P,,>o H Y%(X,mKx), along with an analytic variant of Shokurov’s non
vanishing theorem; in his approach, multiplier ideals and Skoda’s division theorem are
used in crucial ways. Let us mention a basic statement in this direction which illustrates



210 Analytic Methods in Algebraic Geometry

the connection with Skoda’s result, and is interesting for two reasons : i) it does not re-
quire any strict positivity assumption, ii) it shows that it is enough to have a sufficiently
good approximation of the minimal singularity metric hy;, by sections of sufficiently
large linear systems |pKx|.

(20.2) Proposition. Let X be a projective n-dimensional manifold with Kx pseudo-
effective. Let hyin = e~ ¥min be a metric with minimal singularity on Kx (e.g. the super-
canonical metric), and let ¢ > 0 be the log canonical threshold of Ymin, i.e. hi?i;‘s =
e~ (co=0)¢min ¢ I1 for § > 0 small. Assume that there exists an integer p > 0 so that the
linear system |pK x| provides a weight 1, = % log >~ |o;|* whose singularity approximates

Ymin sufficiently well, namely
1+c¢—90
n

Then @m>0H®(X,mKx) is finitely generated, and a set of generators is actually pro-
vided by a basis of sections of Do<menp+1H (X, mKx).

hy = (1 + )gpmin +0(1) for some 6 > 0.

Proof. A simple argument based on the curve selection lemma (see e.g. [Dem01], Lemma
11.16) shows that one can extract a system g = (g1, - - -, g») of at most n sections from ()
in such a way that the singularities are unchanged, i.e. C; log|o| < log|g| < Cslog|a|.
We apply Skoda’s division (11.8), (11.12) with E = @™, Q = O(pKx) and L = @((m —
p—1)Kx) [so that Kx ®Q®L = Ox(mKx)|, and with the metric induced by A, on Kx.
By definition of a metric with minimal singularities, every section f in H*(X,mKx) =
H°(X,Kx ® Q ® L) is such that |f|? < Ce™#min. The weight of the metric on Q ® L
is (m — 1)@min. Accordingly, we find

FPlgl 22 e = Demin < Cexp (mpmin — p(n +€) (Y — Gmin) — (M—1)min
< Cexp (= (co — 6/2)¢Pmin)

for ¢ > 0 small, thus the left hand side is in L. Skoda’s theorem implies that we can write
f=g-h=> g;h; withh; € H*(X,Kx®L) = H°(X, (m—p)Kx). The argument holds
as soon as the curvature condition m —p —1 > (n — 1 + ¢)p is satisfied, i.e. m > np + 2.
Therefore all multiples m > np + 2 are generated by sections of lower degree m — p, and
the result follows. O

Recently, Paun [Pau08] has been able to provide a very strong Shokurov-type analytic
non vanishing statement, and in the vein of Siu’s approach [Siu06], he gave a very detailed
independent proof which does not require any intricate induction on dimension (i.e. not
involving the existence of minimal models).

(20.3) Theorem (Paun [Pau08]). Let X be a projective manifold, and let oy, € NSgp(X)
be a cohomology class in the real Neron-Severi space of X, such that :

(a) The adjoint class c1(Kx) + ar is pseudoeffective, i.e. there exist a closed positive
current

@KX+L - Cl(Kx) +ar;

(b) The class o, contains a Kdihler current O, (so that ay, is big), such that the respec-
tive potentials w1 of O and pi+1 of O, 1 salisfy

e(I+e)(Prx+—¢L) ¢ Llloc
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where € 1s a positive real number.

Then the adjoint class c1(Kx) + o contains an effective R-divisor.

The proof is a clever application of the Kawamata-Viehweg-Nadel vanishing the-
orem, combined with a perturbation trick of Shokurov [Sho85] and with diophantine
approximation to reduce the situation to the case of Q-divisors. Shokurov’s trick allows
to single out components of the divisors involved, so as to be able to take restrictions
and apply induction on dimension. One should notice that the poles of ¢; may help
in achieving condition 20.3 (b), so one obtains a stronger condition by requiring (b’)
exp((1+¢&)pry+1) € Ll for € > 0 small, namely that ¢ (Kx )+« is klt. The resulting
weaker statement then makes sense in a pure algebraic setting. In [BrP09], Birkar and
Paun announced a relative version of Theorem 20.3, and they showed that this can be
used to reprove a relative version of Theorem 20.1. The notes of Mihai Paun [Pau09] give
a fairly precise account of these techniques, and incorporate as well some ideas of Ein-
Lazarsfeld-Mustata-Nakamaye-Popa [E-P06] and of A. Corti and V. Lazi¢ (see [Lzc09)]).
A similar purely algebraic approach has been described by C. Hacon in his Oberwolfach
lectures [Hac08].
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