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This work is the second part of our survey article on Monge-Ampère
operators. We are concerned here with the theory of complex n-dimensional
capacities generalizing the usual logarithmic capacity in C, and with the
related notions of pluripolar and negligible sets. Decisive progress in the
theory have been made by Bedford-Taylor [B-T1], [B-T2]. The present
exposition, which is an expansion of lectures given in Nice at the Centre
International de Mathématiques Pures et Appliquées (ICPAM) in 1989,
borrows much to these papers. The last section on comparison of capacities
is based on the work of Alexander and Taylor [A-T]. We are indebted to
Z. B locki and D. Coman for pointing out a few mistakes in the original
version. Z. B locki also suggested to derive the improved logarithmic growth
estimate (due independently to H. El Mir and J. Siciak) from our proof of
Josefson’s theorem on the equivalence between locally pluripolar and globally
pluripolar sets.

10. Capacities, Regularity and Capacitability

The goal of this section is to discuss a few fundamental notions and results
of capacity theory. The reader will find a much more complete study in
U. Cegrell’s memoir [Ceg]. All topological spaces occurring here are assumed
to be Hausdorff.

(10.1) Definition. Let Ω be a topological space. A capacity is a set function
c : E 7→ c(E) defined on all subsets E ⊂ Ω with values in [0,+∞], satisfying
the axioms (a,b,c) below:

(a) If E1 ⊂ E2 ⊂ Ω, then c(E1) ≤ c(E2).

(b) If E1 ⊂ E2 ⊂ . . . ⊂ Ω, then c(
⋃
Ej) = limj→+∞ c(Ej).

(c) If K1 ⊃ K2 ⊃ . . . are compact subsets, then c(
⋂
Kj) = limj→+∞ c(Kj).

The capacity c is said to be subadditive if moreover c(∅) = 0 and c satisfies
the further axiom:
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(d) If E1, E2, . . . are subsets of Ω, then c(
⋃
Ej) ≤

∑
j c(Ej).

In our applications, we will have to consider set functions which are
only defined on the collection of Borel subsets. We thus introduce:

(10.2) Definition. A precapacity is a set function c : E 7→ c(E) defined on all
Borel subsets E ⊂ Ω with values in [0,+∞], satisfying axioms 10.1 (a), (b).
The precapacity c is said to be inner regular if all Borel subsets satisfy

(i) c(E) = sup
K compact⊂E

c(K).

Similarly, c is said to be outer regular if all Borel subsets E satisfy

(o) c(E) = inf
G open⊃E

c(G)

When c is a precapacity and E ⊂ Ω is an arbitrary subset, the inner
capacity c⋆(E) and the outer capacity c⋆(E) are defined by

c⋆(E) = sup
K compact⊂E

c(K),(10.3 i)

c⋆(E) = inf
G open⊃E

c(G).(10.3 o)

(10.4) Proposition. Let c be a precapacity. If c is outer regular, then c⋆ is a
capacity. Moreover c⋆ is subadditive as soon as c is subadditive.

Proof. It is clear that c⋆ satisfies 10.1 (a). Moreover, for any set E ⊂ Ω, there

is a countable intersection Ẽ =
⋂
Gℓ of open sets containing E such that

c(Ẽ) = c⋆(E) (take Gℓ ⊃ E with c(Gℓ) < c⋆(E) + 1/ℓ). When E1 ⊂ E2 . . .,

we can arrange that Ẽ1 ⊂ Ẽ2 . . ., after replacing Ẽj by
⋂

k≥j Ẽk if necessary.

Since c satisfies 10.1 (b) for Borel subsets, we conclude that Ẽ =
⋃
Ẽj has

precapacity c(Ẽ) = lim c(Ẽj) = lim c⋆(Ej), hence by the outer regularity

c⋆(E) ≤ c⋆(Ẽ) = c(Ẽ) = lim c⋆(Ej).

The opposite inequality is clear, thus c⋆ satisfies 10.1 (b). Finally, if Kj

is a decreasing sequence of compact sets, any open set G containing their
intersection contains one of the sets Kj , so c(G) ≥ lim c⋆(Kj) and
c⋆(

⋂
Kj) ≥ lim c⋆(Kj). The opposite inequality is again clear, thus c⋆ satis-

fies 10.1 (c). The final assertion concerning subadditivity is easy. ⊓⊔
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(10.5) Example. Let Ω be a separable locally compact space and let (µα)
be a family of positive Radon measures on Ω. Then c(E) = supµα(E)
is a subadditive precapacity; this follows from the standard properties
of measures (countable additivity, monotone convergence theorem). The
precapacity c is called the upper envelope of the family of measures (µα).
In general, c does not satisfy the additivity property

E1, E2 disjoint ⇒ c(E1 ∪E2) = c(E1) + c(E2) ;

for a specific example, consider the measures µ1 = δ0, µ2 = dλ on IR and
the sets E1 = {0}, E2 = ]0, 1] ; then

c({0}) = 1, c(]0, 1]) = 1, c([0, 1]) = 1.

Moreover, the precapacity c = supµα is inner regular because all Radon
measures on a separable locally compact space are inner regular. However, c
need not be outer regular: for instance, take dµα(x) = α−1ρ(x/α)dx on IR,
α > 0, where ρ ≥ 0 is a function with support in [−1, 1] and

∫
IR
ρ(x)dx = 1 ;

then c({0}) = 0 but every neighborhood of 0 has capacity 1. ⊓⊔

(10.6) Definition. Let c be a precapacity on Ω. A set E ⊂ Ω is said to be
c-capacitable if c⋆(E) = c⋆(E).

By definition, the precapacity c is (inner and outer) regular if and only
if all Borel subsets are c-capacitable.

We are now going to prove a general capacitability theorem due to
G. Choquet. Before doing so, we need a few results about K-analytic spaces.

(10.7) Definition. Let X be a topological space. Then

(a) a Fσ subset of X is a countable union of closed subsets of X ;

(b) a Fσδ subset of X is a countable intersection of Fσ subsets of X.

(c) the space X is said to be a Kσ (resp. Kσδ) space if it is homeomorphic
to some Fσ (resp. Fσδ) subset of a compact space W .

(10.8) Properties.

(a) Every closed subset F of a Kσδ space X is a Kσδ space.

(b) Every countable disjoint sum
∐
Xj of Kσδ spaces is a Kσδ space.

(c) Every countable product
∏
Xj of Kσδ spaces is a Kσδ space.
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Proof. (a) Write X =
⋂

ℓ≥1Gℓ and Gℓ =
⋃

m≥1Kℓm where Kℓm are closed

subsets of a compact space W . If F is the closure of F in W , we have

F = X ∩ F =
⋂

ℓ≥1

Gℓ ∩ F , Gℓ ∩ F =
⋃

m≥1

Kℓm ∩ F.

(b) Let (Xj)j≥1 be Kσδ spaces and write for each j

Xj =
⋂

ℓ≥1

Gj
ℓ , Gj

ℓ =
⋃

m≥1

Kj
ℓm

where Kj
ℓm is a closed subspace of a compact space Wj , and let {⋆} be a

one-point topological space. Then
∐
Wj can be embedded in the compact

space W =
∏

(Wj ∐ {⋆}) via the obvious map which sends w ∈ Wj to
(⋆, . . . , ⋆, w, ⋆, . . .) with w in the j-th position. NowX =

∐
Xj can be written

X =
⋂

ℓ≥1

Gℓ, Gℓ =
⋃

m≥1

∐

j≥1

Kj
ℓm.

As Kj
ℓm is sent onto a closed set by the embedding

∐
Wj →W , we conclude

that X is a Kσδ space.

(c) With the notations of (b), write X =
∏
Xj as

X =
⋂

ℓ≥1

Gℓ, Gℓ = G1
ℓ ×G2

ℓ−1 × . . .×Gℓ
1 ×Wℓ+1 × . . .×Wj × . . . ,

Gℓ =
⋃

m1,...,mℓ≥1

K1
ℓ m1

×K2
ℓ−1 m2

× . . .×Kℓ
1 mℓ

×Wℓ+1 × . . .×Wj × . . .

where each term in the union is closed in W =
∏
Wj . ⊓⊔

(10.9) Definition. A space E is said to be K-analytic if E is a continuous
image of a Kσδ space X.

(10.10) Proposition. Let Ω be a topological space and let E1, E2, . . . be K-
analytic subsets of Ω. Then

⋃
Ej and

⋂
Ej are K-analytic.

Proof. Let fj : Xj → Ej be a continuous map from a Kσδ space onto Ej . Set
X =

∐
Xj and f =

∐
fj : X → Ω. Then X is a Kσδ space, f is continuous

and f(X) =
⋃
Ej. Now set

X =
{
x = (x1, x2, . . .) ∈

∏
Xj ; f1(x1) = f2(x2) = · · ·

}
,

f : X → Ω, f(x) = f1(x1) = f2(x2) = · · · .
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Then X is closed in
∏
Xj, so X is a Kσδ space by 10.8 (a,c) and f(X) =⋂

Ej. ⊓⊔

(10.11) Corollary. Let Ω be a separable locally compact space. Then all Borel
subsets of Ω are K-analytic.

Proof. Any open or closed open set in Ω is a countable union of compact
subsets, hence K-analytic. On the other hand, Prop. 10.10 shows that

A = {E ⊂ Ω ; E and Ω \ E are K-analytic}

is a σ-algebra. Since A contains all open sets in E, A must also contain all
Borel subsets. ⊓⊔

Before going further, we need a simple lemma.

(10.12) Lemma. Let E be a relatively compact K-analytic subset of a topolog-
ical space Ω. There exists a compact space T , a continuous map g : T → Ω
and a Fσδ subset Y ⊂ T such that g(Y ) = E.

Proof. There is a compact space W , a Fσδ subset X ⊂W and a continuous
map f : X → E onto E. Let

Y = {(x, f(x)) ; x ∈ X} ⊂ X ×E

be the graph of f and T = Y the closure of Y in the compact space X ×E.
As f is continuous, Y is closed in X ×E, thus Y = T ∩ (X ×E). Now, X is
a Fσδ subset of X , so X ×E is a Fσδ subset of X ×E and Y is a Fσδ subset
of T . Finally E is the image of Y by the second projection g : T → E. ⊓⊔

(10.13) Choquet’s capacitability theorem. Let Ω be a Kσ space and let c be
a capacity on Ω. Then every K-analytic subset E ⊂ Ω satisfies

c(E) = sup
K compact⊂E

c(K).

Proof. As Ω is an increasing union of compact sets Lj , axiom 10.1 (b)
implies c(E) = limj→+∞ c(E ∩ Lj); we may therefore assume that E is
relatively compact in Ω. Then Lemma 10.12 shows that there is a Fσδ

subset Y in a compact space T and a continuous map g : T → Ω such
that g(Y ) = E. It is immediate to check that the set function g⋆c on T
defined by g⋆c(E) = c(g(E)) is a capacity. Hence we are reduced to proving
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the theorem when Ω is a compact space and E is a Fσδ subset of Ω. We
then write

E =
⋂

ℓ≥1

Gℓ, Gℓ =
⋃

m≥1

Kℓm

where Kℓm is a closed subset of Ω. Without loss of generality, we can arrange
that Kℓm is increasing in m. Fix λ < c(E). Then

E = G1 ∩
⋂

ℓ≥2

Gℓ =
⋃

m≥1

(K1m ∩
⋂

ℓ≥2

Gℓ)

and axiom (b) implies that exists a subset E1 = K1m1
∩

⋂
ℓ≥2Gℓ of

E such that c(E1) > λ. By induction, there is a decreasing sequence
E ⊃ E1 ⊃ . . . ⊃ Es with

Es = K1m1
∩ . . . ∩Ksms

∩
⋂

ℓ≥s+1

Gℓ

and c(Es) > λ. Set K =
⋂
Ksms

=
⋂
Es ⊂ E. Axiom 10.1 (c) implies

c(K) = lim
s→+∞

c
(
K1ms

∩ . . . ∩Ksms

)
≥ lim

s→+∞
c(Es) ≥ λ

and the theorem is proved. ⊓⊔

(10.14) Corollary. Let c be an outer regular precapacity on a separable locally
compact space Ω. Then c is also inner regular and every K-analytic subset
of Ω is c-capacitable.

Proof. By Prop. 10.4, we know that c⋆ is a capacity. Choquet’s theorem 10.13
implies that c⋆(E) = supK compact⊂E c

⋆(K) for every K-analytic set E in Ω.
By the outer regularity we have c⋆(K) = c(K), hence c⋆(E) = c⋆(E) and c
is inner regular. ⊓⊔

11. Monge-Ampère Capacities and Quasicontinuity

Let Ω be a bounded open subset of Cn. We denote by P (Ω) the set of all
plurisubharmonic functions that are 6≡ −∞ on each connected component
of Ω. The following fundamental definition has been introduced in [B-T2].

(11.1) Definition. For every Borel subset E ⊂ Ω, we set
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c(E,Ω) = sup
{∫

E

(ddcu)n ; u ∈ P (Ω), 0 ≤ u ≤ 1
}
.

The Chern-Levine-Nirenberg inequalities show that c(E,Ω) < +∞ as
soon as E ⊂⊂ Ω. If Ω ⊂ B(z0, R), we can choose u(z) = R−2|z − z0|

2 and
we obtain therefore

(11.2) c(E,Ω) ≥
2nn!

πnR2n
λ(E)

where λ is the Lebesgue measure. As a special case of Example 10.5, we see
that c(•, Ω) is the upper envelope of the family of measures µu = (ddcu)n,
u ∈ P (Ω), 0 ≤ u ≤ 1. In particular c(•, Ω) is a subadditive and inner regular
precapacity; it is also outer regular, but this fact is non trivial and will be
proved only in § 14. The set function c(•, Ω), resp. c⋆(•, Ω), is called the
relative Monge-Ampère precapacity, resp. capacity, of Ω. We first compare
capacities associated to different open sets Ω.

(11.3) Proposition. Let Ω1 ⊂ Ω2 ⊂⊂ Cn. Then

(a) c(E,Ω1) ≥ c(E,Ω2) for all Borel subsets E ⊂ Ω1.

(b) Let ω ⊂⊂ Ω1. There exists a constant A > 0 such that for all Borel
subsets E ⊂ ω we have c(E,Ω1) ≤ Ac(E,Ω2).

Proof. Since every plurisubharmonic function u ∈ P (Ω2) with 0 ≤ u ≤ 1
induces a plurisubharmonic function in P (Ω1) with the same property, (a) is
clear.

(b) Use a finite covering of ω by open balls contained in Ω1 and cut E into
pieces. The proof is then reduced to the case when ω ⊂⊂ Ω1 are concentric
balls, say Ω1 = B(0, r) and ω = B(0, r− ε). For every u ∈ P (Ω1) such that
0 ≤ u ≤ 1, set

ũ(z) =

{
max{u(z), λ(|z|2 − r2) + 2} on Ω1,
λ(|z|2 − r2) + 2 on Ω2 \Ω1.

Choose λ so large that λ((r − ε)2 − r2) ≤ −2. Then ũ ∈ P (Ω2) and ũ = u
on ω. Moreover 0 ≤ ũ ≤M for some constant M > 0, thus for E ⊂ ω we get

∫

E

(ddcu)n =

∫

E

(ddcũ)n ≤Mnc(E,Ω2).

Therefore c(E,Ω1) ≤Mnc(E,Ω2). ⊓⊔
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As a consequence of Prop. 11.3, it is in general harmless to shrink the
domain Ω when capacities have to be estimated.

(11.4) Proposition. Let K be a compact subset of Ω and ω ⊂⊂ Ω a
neighborhood of K. There is a constant A > 0 such that for every v ∈ P (Ω)

c
(
K ∩ {v < −m}, Ω

)
≤ A‖v‖L1(ω) ·

1

m
.

Proof. For every u ∈ P (Ω), 0 ≤ u ≤ 1, Prop. 1.11 implies
∫

K∩{v<−m}

(ddcu)n ≤
1

m

∫

K

|v|(ddcu)n ≤
1

m
CK,ω‖v‖L1(ω). ⊓⊔

(11.5) Definition. A set P ⊂ Ω is said to be globally pluripolar in Ω if there
exists v ∈ P (Ω) such that P ⊂ {v = −∞}.

(11.6) Corollary. If P is pluripolar in Ω, then

c⋆(P,Ω) = 0.

Proof. Write P ⊂ {v = −∞} and Ω =
⋃

j≥1Ωj with Ωj ⊂⊂ Ω. Prop. 11.4

shows that there is an open set Gj = Ωj ∩{v < −mj} with c(Gj , Ω) < ε2−j .
Then {v = −∞} ⊂ G =

⋃
Gj and c(G,Ω) < ε. ⊓⊔

(11.7) Proposition. Let vk, v ∈ P (Ω) be locally bounded plurisubharmonic
functions such that (vk) decreases to v. Then for every compact subset
K ⊂ Ω and every δ > 0

lim
k→+∞

c
(
K ∩ {vk > v + δ}, Ω

)
= 0.

Proof. It is sufficient to show that

sup
u∈P (Ω),0≤u≤1

∫

K

(vk − v)(ddcu)n

tends to 0, because this supremum is larger than δ.c(K∩{vk > v+δ}, Ω). By
cutting K into pieces and modifying v, vk, u with the max construction, we
may assume that K ⊂ Ω = B(0, r) are concentric balls and that all functions
v, vk, u are equal to λ(|z|2 − r2) + 2) on the corona Ω \ ω, ω = B(0, r − ε).
An integration by parts yields
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∫

Ω

(vk − v)(ddcu)n = −

∫

Ω

d(vk − v) ∧ dcu ∧ (ddcu)n−1.

The Cauchy-Schwarz inequality implies that this integral is bounded by

A
(∫

Ω

d(vk − v) ∧ dc(vk − v) ∧ (ddcu)n−1
)1/2

where

A2 =

∫

Ω

du ∧ dcu ∧ (ddcu)n−1 ≤

∫

Ω

ddc(u2) ∧ (ddcu)n−1

and this last integral depends only on the constants λ, r. Another integration
by parts yields
∫

Ω

d(vk − v) ∧ dc(vk − v) ∧ (ddcu)n−1 =

∫

Ω

(vk − v)ddc(v − vk) ∧ (ddcu)n−1

≤

∫

Ω

(vk − v)ddcv ∧ (ddcu)n−1.

We have thus replaced one factor ddcu by ddcv in the integral. Repeating
the argument (n− 1) times we get

∫

Ω

(vk − v)(ddcu)n ≤ C
(∫

Ω

(vk − v)(ddcv)n
)1/2n

and the last integral converges to 0 by the bounded convergence theorem.
⊓⊔

(11.8) Theorem (quasicontinuity of plurisubharmonic functions). Let Ω be
a bounded open set in Cn and v ∈ P (Ω). Then for each ε > 0, there is an
open subset G of Ω such that c(G,Ω) < ε and v is continuous on Ω \G.

Proof. Let ω ⊂⊂ Ω be arbitrary. We first show that there exists G ⊂ ω such
that c(G,Ω) < ε and v continuous on ω \ G. For m > 0 large enough, the
set G0 = ω ∩ {v < −m} has capacity < ε/2 by Prop. 11.4. On ω \ G0 we
have v ≥ −m, thus ṽ = max{v,−m} coincides with v there and ṽ is locally
bounded on Ω. Let (vk) be a sequence of smooth plurisubharmonic functions
which decrease to ṽ in a neighborhood of ω. For each ℓ ≥ 1, Prop. 11.7 shows
that there is an index k(ℓ) and an open set

Gk(ℓ) = ω ∩ {vk(ℓ) > ṽ + 1/ℓ}

such that c(Gk(ℓ), Ω) < ε2−ℓ−1. Then G = G0 ∪
⋃
Gk(ℓ) has capacity

c(G,Ω) < ε by subadditivity and (vk(ℓ)) converges uniformly to ṽ = v on
ω \ G. Hence v is continuous on ω \ G. Now, take an increasing sequence
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ω1 ⊂ ω2 ⊂ . . . with
⋃
ωj = Ω and Gj ⊂ ωj such that c(Gj , Ω) < ε2−j and

v continuous on ωj \Gj . The set G =
⋃
Gj satisfies all requirements. ⊓⊔

As an example of application, we prove an interesting inequality for the
Monge-Ampère operator.

(11.9) Proposition. Let u, v be locally bounded plurisubharmonic functions
on Ω. Then we have an inequality of measures

(ddc max{u, v})n ≥ 1l{u≥v}(ddcu)n + 1l{u<v}(ddcv)n.

Proof. It is enough to check that
∫

K

(ddc max{u, v})n ≥

∫

K

(ddcu)n

for every compact set K ⊂ {u ≥ v} ; the other term is then obtained by
reversing the roles of u and v. By shrinking Ω, adding and multiplying
with constants, we may assume that 0 ≤ u, v ≤ 1 and that u, v have
regularizations uε = u⋆ρε, vε = v ⋆ρε with 0 ≤ uε, vε ≤ 1 on Ω. Let G ⊂ Ω
be an open set of small capacity such that u, v are continuous on Ω \G.
By Dini’s lemma, uε, vε converge uniformly to u, v on Ω \ G. Hence for
any δ > 0, we can find an arbitrarily small neighborhood L of K such that
uε > vε − δ on L \ G for ε small enough. As (ddcuε)n converges weakly to
(ddcu)n on Ω, we get

∫

K

(ddcu)n ≤ lim inf
ε→0

∫

L

(ddcuε)n

≤ lim inf
ε→0

( ∫

G

(ddcuε)n +

∫

L\G

(ddcuε)n
)

≤ c(G,Ω) + lim inf
ε→0

∫

L\G

(ddc max{uε + δ, vε})n.

Observe that max{uε + δ, vε} coincides with uε + δ on a neighborhood of
L \G. By weak convergence again, we get

∫

K

(ddcu)n ≤ c(G,Ω) +

∫

L\G

(ddc max{u+ δ, v})n.

By taking L very close to K and c(G,Ω) arbitrarily small, this implies

∫

K

(ddcu)n ≤

∫

K

(ddc max{u+ δ, v})n
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and the desired conclusion follows by letting δ tend to 0. ⊓⊔
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12. Upper Envelopes and the Dirichlet Problem

Let (uα) be a family of upper semi-continuous functions on Ω which is locally
bounded from above. Then the upper envelope

u = sup
α
uα(z)

need not be upper semi-continuous, so we consider its “upper semi-continuous
regularization”

u⋆(z) = lim
ε→0

sup
B(z,ε)

u ≥ u(z).

It is easy to check that u⋆ is upper semi-continuous and that u⋆ is the
smallest upper semi-continuous function ≥ u.

Let B(zj , εj) be a countable basis of the topology of Ω. For each j, let
(zjk) be a sequence in B(zj , εj) such that

sup
k
u(zjk) = sup

B(zj ,εj)

u,

and for each (j, k), let α(j, k, ℓ) be a sequence of indices α such that
u(zjk) = supℓ uα(j,k,ℓ)(zjk). Set

v = sup
j,k,ℓ

uα(j,k,ℓ).

Then v ≤ u and v⋆ ≤ u⋆. On the other hand

sup
B(zj ,εj)

v ≥ sup
k
v(zjk) ≥ sup

k,ℓ
uα(j,k,ℓ)(zjk) = sup

k
u(zjk) = sup

B(zj ,εj)

u.

As every ball B(z, ε) is a union of balls B(zj , εj), we easily conclude that
v⋆ ≥ u⋆, hence v⋆ = u⋆. Therefore:

(12.1) Choquet’s lemma. Every family (uα) has a countable subfamily (uα(j))
whose upper envelope v satisfies v ≤ u ≤ u⋆ = v⋆.

(12.2) Proposition. If all uα are plurisubharmonic, then u⋆ is plurisubhar-
monic and equal almost everywhere to u.

Proof. By Choquet’s lemma we may assume that (uα) is countable. Then
u = supuα is a Borel function. For every (z0, a) ∈ Ω × Cn, uα satisfies the
mean value inequality on circles, hence

u(z0) = sup uα(z0) ≤ sup

∫ 2π

0

uα(z0 + aeiθ)
dθ

2π
≤

∫ 2π

0

u(z0 + aeiθ)
dθ

2π
.
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It follows easily that each convolution u ⋆ ρε also satisfies the mean value
inequality, thus u⋆ρε is smooth and plurisubharmonic. Therefore (u⋆ρε)⋆ρη

is increasing in η. Letting ε tends to 0, we see that u ⋆ ρη in increasing in η.
Since u ⋆ ρε is smooth and u ⋆ ρε ≥ u by the mean value inequality, we also
have u ⋆ ρε ≥ u⋆. By the upper semi-continuity we get limε→0 u ⋆ ρε = u⋆,
in particular u⋆ is plurisubharmonic and coincides almost everywhere with
the L1

loc limit u. ⊓⊔

In the sequel, we need the fundamental result of Bedford-Taylor
[B-T1] on the solution of the Dirichlet problem for complex Monge-Ampère
equations.

(12.3) Theorem. Let Ω ⊂⊂ Cn be a smooth strongly pseudoconvex domain
and let f ∈ C0(∂Ω) be a continuous function on the boundary. Then

u(z) = sup{v(z) ; v ∈ P (Ω) ∩ C0(Ω), v ≤ f on ∂Ω}

is continuous on Ω and plurisubharmonic on Ω, and solves the Dirichlet
problem

(ddcu)n = 0 on Ω, u = f on ∂Ω.

Proof. The main difficulty is to obtain sufficient regularity of u when f is
smooth, so as to be able to analyze the local convexity of u at any point.
The proof given in [B-T1] consists of three steps.

Step 1. The upper envelope u is continuous on Ω and u = f on ∂Ω.

Let g ∈ C2(Ω) be an approximate extension of f such that |g − f | < ε
on ∂Ω and let ψ < 0 be a smooth strongly plurisubharmonic exhaustion
of Ω. Then g − ε + Aψ is plurisubharmonic for A > 0 large enough and
g − ε + Aψ = g − ε ≤ f on ∂Ω, hence g − ε + Aψ ≤ u on Ω. Similarly, for
all v ∈ P (Ω)∩C0(Ω) with v ≤ f on ∂Ω, the function v− g− ε+Aψ equals
v−g−ε ≤ 0 on ∂Ω and is plurisubharmonic for A large, thus v−g−ε+Aψ ≤ 0
on Ω by the maximum principle. Therefore we get u ≤ g + ε − Aψ ; as ε
tends to 0, we see that u = f on ∂Ω and that u is continuous at every point
of ∂Ω. Since g + ε + Aψ = g + ε > f on ∂Ω, there exists δ > 0 such that
u⋆ < g+ ε+Aψ on Ω \Ωδ, where Ωδ = {ψ < −δ}. For η > 0 small enough,
the regularizations of u⋆ satisfy u⋆ ⋆ ρη < g + ε + Aψ on a neighborhood
of ∂Ωδ. Then we let

vε =

{
max{u⋆ ⋆ ρη − 2ε, g − ε+ Aψ} on Ωδ

g − ε+Aψ on Ω \Ωδ.
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It is clear that vε is plurisubharmonic and continuous on Ω and we have
vε = g − ε ≤ f on ∂Ω, thus vε ≤ u on Ω. We get therefore u⋆ ⋆ ρη ≤ u+ 2ε
on Ωδ. As u ≤ u⋆ ≤ u⋆ ⋆ ρη, we see that u⋆ ⋆ ρη converges uniformly to u
on every compact subset of Ω. Hence u is plurisubharmonic and continuous
on Ω.

Step 2. If Ω = B = B(0, 1) ⊂ Cn and f ∈ C1+lip(∂B), then u ∈ C1+lip(B).

Here C1+lip denotes the space of functions admitting Lipschitz continu-
ous first derivatives; such functions have locally bounded second derivatives
almost everywhere by the Lebesgue differentiability theorem. Since we are
going to obtain uniform estimates in terms of ||f ||C2(∂B), it is enough to con-
sider the case when f ∈ C2(∂B), thanks to a regularization argument. The
C0 estimate ||u||C0(B) ≤ ||f ||C0(∂B) is clear by the maximum principle. Now,

there is a C2 extension f̂ of f to 2B such that ||f̂ ||C2(2B) ≤ C||f ||C2(∂B).

After adding or subtracting a sufficiently large multiple of 1 − |z|2 to f̂ , we
get a plurisubharmonic extension f ′ of f to 2B and a plurisuperharmonic
extension f ′′ satisfying similar estimates. Then f ′ ≤ u ≤ f ′′ on B, the se-
cond equality being a consequence of the maximum principle applied to the
plurisubharmonic function u− f ′′. We get a plurisubharmonic extension û of
u to 2B by setting û = u on B and û = f ′ on 2B \B. Then û ≤ max{f ′, f ′′}
on 2B and for all z ∈ ∂B, |h| < 1 we get

û(z + h) ≤ f(z) + max
{
||f ′||C1(2B), ||f

′′||C1(2B)

}
|h|

≤ f(z) + C′||f ||C2(∂B)|h|.

The definition of u as an upper envelope implies

û(z + h) − C′||f ||C2(∂B)|h| ≤ u(z) on B.

By changing h into −h, we conclude that |u(z+h)−u(z)| ≤ C′||f ||C2(∂B)|h|
for z ∈ B and |h| small, thus ||u||C1(B) ≤ C′||f ||C2(∂B).

In order to get the estimate for second derivatives, the idea is to move
u and f by automorphisms of B instead of ordinary translations (this is the
reason why we have to assume Ω = B). Let a = λζ ∈ B with ζ ∈ ∂B and
λ ∈ IR, |λ| < 1. We define an analytic map Φa on B by

Φa(z) =
Pa(z) − a+ (1 − |a|2)1/2Qa(z)

1 − 〈z, a〉

=
(〈z, ζ〉 − λ)ζ + (1 − λ2)1/2(z − 〈z, ζ〉ζ)

1 − λ〈z, ζ〉
,
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where 〈•, •〉 denotes the usual hermitian inner product on Cn, Pa the
orthogonal projection of Cn onto C{a} and Qa = Id−Pa. Easy computations
show that

1 − |Φa(z)|2 =
(1 − λ2)(1 − |z|2)

|1 − λ〈z, ζ〉|2
,

from which it follows that Φa is an automorphism of B (see e.g. [Rud]).
Moreover

Φa(z) =
z − a+O(|a|2)

1 − 〈z, a〉
= z − a+ 〈z, a〉z +O(|a|2)

where O(|a|2) is uniform with respect to (z, ζ) ∈ B×∂B when |a| tends to 0.
Then v = u ◦ Φa + u ◦ Φ−a is plurisubharmonic on B and

v = f ◦ Φa + f ◦ Φ−a ≤ 2f +K|a|2 on ∂B

where K = const ||f ||C2(∂B). As above, we conclude that 1
2 (v −K|a|2) ≤ u

on B, hence with h = a− 〈z, a〉z we get

u(z − h) + u(z + h) ≤ v(z) + C′||u||C1(B)|a|
2 ≤ 2u(z) + C′′||f ||C2(∂B)|a|

2.

The inverse linear map h 7→ a has norm ≤ (1 − |z|2)−1, thus we finally get

u(z − h) + u(z + h) − 2u(z) ≤ C′′(1 − |z|2)−2||f ||C2(∂B)|h|
2.

By taking a convolution with a regularizing kernel ρε we infer

uε(z − h) + uε(z + h) − 2uε(z) ≤ C′′
(
1 − (|z| + ε)2

)−2
||f ||C2(∂B)|h|

2

with uε = u ⋆ ρε. A Taylor expansion of degree two of uε at z gives

D2uε(z) · h2 ≤ C′′
(
1 − (|z| + ε)2

)−2
||f ||C2(∂B)|h|

2.

As uε is plurisubharmonic, uε has a semi-positive complex Hessian, that is,
D2uε(z) · h2 +D2uε(z) · (ih)2 ≥ 0. This implies

D2uε(z) · h2 ≥ −D2uε(z) · (ih)2 ≥ −C′′
(
1 − (|z| + ε)2

)−2
||f ||C2(∂B)|h|

2,

thus |D2uε(z)| ≤ C′′
(
1 − (|z| + ε)2

)−2
||f ||C2(∂B). By taking the limit as

ε tends to 0, we infer that the distribution D2u has a L∞
loc density such

that |D2u(z)| ≤ C′′(1 − |z|2)−2||f ||C2(∂B), in particular u ∈ C1+lip(B). By
exercising a little more care in the estimates, one can show in fact that
|D2u(z)| ≤ C(1 − |z|2)−1||f ||C2(∂B) (see A. Dufresnoy [Duf]).

Step 3. The upper envelope u satisfies (ddcu)n = 0 on Ω.
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We first prove the result under the additional assumption u ∈ C1+lip(Ω),
which we know to be true if Ω = B and f ∈ C1+lip(∂Ω). Then D2u
has second partial derivatives almost everywhere. As D2uε converges to
D2u almost everywhere by Lebesgue’s theorem, it is immediately seen by
Th. 1.7 (b) that the Monge-Ampère current (ddcu)n defined in § 1 coincides
with the corresponding L∞

loc form of type (n, n) obtained by a pointwise
computation. The plurisubharmonicity of u implies det(∂2u/∂zj∂zk) ≥ 0. If
the determinant were not equal to 0 almost everywhere, there would exist a
point z0 ∈ Ω, say z0 = 0 for simplicity, at which u would have second deriva-
tives and such that det(∂2u/∂zj∂zk(0)) > 0. Then the Taylor expansion of
u at z0 would give

u(z) = ReP (z) +
∑

cjkzjzk + o(|z|2)

where P is a holomorphic polynomial of degree 2 and (cjk) is a positive
definite hermitian matrix. Hence we would have u > ReP + ε on a small
sphere S(0, r) with B(0, r) ⊂ Ω. The function

v =

{
max{u,ReP + ε} on B(0, r)
u on Ω \B(0, r)

is then continuous on Ω and plurisubharmonic, and satisfies

v = u ≤ f on ∂Ω.

By the definition of u, we thus have u ≥ v on Ω. This is a contradiction
because

v(0) > ReP (0) = u(0).

Therefore we must have (ddcu)n = 0, as desired.

We first get rid of the additional assumption u ∈ C1+lip(Ω) when
Ω = B. Supposing only f ∈ C0(∂B), we select a decreasing of functions
fν ∈ C2(∂B) converging to f . It is then easy to see that the sequence of
associated envelopes uν is decreasing and converges uniformly to u, with
||uν −u||C0(B) ≤ ||fν − f ||C0(B). Theorem 1.7 implies therefore (ddcu)n = 0.
Before finishing the proof for arbitrary strongly pseudoconvex domains Ω,
we infer the following:

(12.5) Corollary. Fix a ball B(z0, r) ⊂ Ω and let g ∈ P (Ω) be locally bounded.
There exists a function g̃ ∈ P (Ω) such that g̃ ≥ g on Ω, g̃ = g on Ω \B(0, r)
and (ddcg̃)n = 0 on B(z0, r). Moreover, for g1 ≤ g2 we have g̃1 ≤ g̃2.

Proof. Assume first that g ∈ C0(Ω). By Th. 12.3 applied on B(z0, r), there
exists a function u, plurisubharmonic and continuous on B(z0, r), with u = g
on S(z0, r) and (ddcu)n = 0 on B(z0, r). Set
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g̃ =

{
u on B(z0, r)
g on Ω \B(z0, r).

By definition of u, we have g̃ = u ≥ g on B(z0, r). Moreover, g̃ is the
decreasing limit of the plurisubharmonic functions

gk =

{
max{u, g + 1

k} on B(z0, r)
g + 1

k near Ω \B(z0, r)

hence g̃ is plurisubharmonic. Also clearly, for g1 ≤ g2 we have u1 ≤ u2, hence
g̃1 ≤ g̃2. For an arbitrary locally bounded function g ∈ P (Ω), write g as a
decreasing limit of smooth plurisubharmonic functions gk = g ⋆ ρ1/k and set
g̃ = limk→+∞ ↓ g̃k. Then g̃ has all required properties. ⊓⊔

End of proof of Step 3 in Theorem 12.3. Apply Cor. 12.5 to g = u on an
arbitrary ball B(z0, r) ⊂ Ω. Then we get a continuous plurisubharmonic
function ũ ≥ u with the same boundary values as u on ∂Ω, so we must
have ũ = u. In particular (ddcu)n = (ddcũ)n = 0 on B(z0, r). ⊓⊔

13. Extremal Functions and Negligible Sets

To study further properties of complex potential theory, it is necessary to
make a much deeper study of upper envelopes.

(13.1) Definition. A negligible set in an open set Ω ⊂ Cn is a set of the form

N = {z ∈ Ω ; u(z) < u⋆(z)}

where u is the upper envelope of a family (uα) of plurisubharmonic functions
which is locally bounded from above on Ω, and where u⋆ is the upper
semicontinuous regularization of u.

(13.2) Proposition. If Ω ⊂ Cn is pseudoconvex, every pluripolar set P =
{v = −∞} in Ω is negligible.

Proof. Let w ∈ P (Ω)∩C∞(Ω) be such that w ≥ v and let uα = (1−α)v+αw,
α ∈ ]0, 1[. Then uα is increasing in α and u = supα uα satisfies

u = −∞ on {v = −∞},
u = w on {v > −∞}.

Hence u⋆ = w and {u < u⋆} = {v = −∞}. ⊓⊔
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Next we consider the extremal function associated to a subset E of Ω :

(13.3) uE(z) = sup{v(z); v ∈ P (Ω), v ≤ −1 on E, v ≤ 0 on Ω}.

Proposition 12.2 implies u⋆
E ∈ P (Ω) and −1 ≤ u⋆

E ≤ 0. We prove the
following three fundamental results by a simultaneous induction on n.

(13.4) Proposition. Let u, uj ∈ P (Ω) be locally bounded functions such that
uj increases to u almost everywhere. Then the measure (ddcuj)n converges
weakly to (ddcu)n on Ω.

(13.5) Proposition. Let Ω be a strongly pseudoconvex smooth open set in Cn.
If K ⊂ Ω is compact, then

(a) (ddcu⋆
K)n = 0 on Ω \K.

(b) c(K,Ω) =
∫

K
(ddcu⋆

K)n =
∫

Ω
(ddcu⋆

K)n.

(13.6) Proposition. If a Borel set N ⊂ Ω is negligible, then c(N,Ω) = 0.

The proof is made in three inductive steps.

Step 1: (13.4) in Cn ⇒ (13.5) in Cn.
Step 2: (13.5) in Cn ⇒ (13.6) in Cn.
Step 3: (13.4) and (13.6) in Cn ⇒ (13.4) in Cn+1.

In the case n = 1, Prop. 13.4 is a well-known fact of distribution theory:
uj converges to u in L1

loc(Ω), thus ddcuj converges weakly to ddcu. By the
inductive argument, Prop. 13.4, 13.5, 13.6 hold in all dimensions.

Proof of Step 1. By Choquet’s lemma, there is a sequence of functions
vj ∈ P (Ω) such that vj ≤ 0 on Ω, vj ≤ −1 on K and v⋆ = u⋆

K . If we replace
vj by max{−1, v1, . . . , vj}, we see that we may assume vj ≥ −1 for all j and
vj increasing. Then fix an arbitrary ball B(z0, r) ⊂ Ω \K and consider the
increasing sequence ṽj given by Cor. 12.5. We still have ṽj ≤ 0 on Ω and
ṽj ≤ −1 on K, thus vj ≤ ṽj ≤ uK and ṽ = lim ṽj satisfies v⋆ = ṽ⋆ = u⋆

K , in
particular lim ṽj = lim vj = u⋆

K almost everywhere. Since (ddcṽj)n = 0 on
B(z0, r), we conclude by 13.4 that (ddcu⋆

K)n = 0 on B(z0, r) and 13.5 (a) is
proved.

To prove 13.5 (b), we first observe that −1 ≤ u⋆
K ≤ 0 on Ω, hence

c(K,Ω) ≥
∫

K
(ddcu⋆

K)n by definition of the capacity. If ψ < 0 is a smooth
strictly plurisubharmonic exhaustion function of Ω, we have Aψ ≤ −1 on K
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for A large enough. We can clearly assume vj ≥ Aψ on Ω ; otherwise replace
vj by max{vj , Aψ}. Now, let w ∈ P (Ω) be such that 0 ≤ w ≤ 1 and set

w′ = (1 − ε)w − 1 + ε/2, wj = max{w′, vj}.

Since −1 + ε/2 ≤ w′ ≤ −ε/2 on Ω, we have wj = vj as soon as Aψ > −ε/2,
whereas wj = w′ ≥ −1 + ε/2 > vj on a neighborhood of K. Hence for δ > 0
small enough Stokes’ theorem implies

∫

Ωδ

(ddcvj)n =

∫

Ωδ

(ddcwj)n ≥

∫

K

(ddcwj)n = (1 − ε)n

∫

K

(ddcw)n.

By 13.4 (ddcvj)n converges weakly to (ddcu⋆
K)n and we get

lim sup
j→+∞

∫

Ωδ

(ddcvj)n ≤

∫

Ωδ

(ddcu⋆
K)n =

∫

K

(ddcu⋆
K)n.

Therefore
∫

K
(ddcw)n ≤

∫
K

(ddcu⋆
K)n and c(K,Ω) ≤

∫
K

(ddcu⋆
K)n. ⊓⊔

Proof of Step 2. Let N = {v < v⋆} with v = sup vα. By Choquet’s lemma, we
may assume that vα is an increasing sequence of plurisubharmonic functions.
The theorem of quasicontinuity shows that there exists an open set G ⊂ Ω
such that all functions vα and v⋆ are continuous on Ω \G and c(G,Ω) < ε.
Write

N ⊂ G ∪ (N ∩ (Ω \G)) = G ∪
⋃

δ,λ,µ∈Q

Kδλµ

where δ > 0, λ < µ and

Kδλµ =
{
z ∈ Ωδ \G ; v(z) ≤ λ < µ ≤ v⋆(z)

}
.

As v⋆ is continuous and v lower semi-continuous on Ω \G, we see that Kδλµ

is compact. We only have to prove that c(Kδλµ, Ω) = 0. Set K = Kδλµ for
simplicity and take an open set ω ⊂⊂ Ω. By subtracting a large constant,
we may assume v⋆ ≤ 0 on ω.

Multiplying by another constant, we may set λ = −1. Then all vα satisfy
vα ≤ 0 on ω and vα ≤ v ≤ −1 on K. We infer that the extremal function
uK on ω satisfies uK ≥ v, u⋆

K ≥ v⋆, in particular u⋆
K ≥ µ > −1 on K. By

Prop. 11.9 we obtain

c(K,ω) =

∫

K

(ddcu⋆
K)n ≤

∫

K

(ddc max{u⋆
K , µ})n ≤ |µ|nc(K,ω)

because −1 ≤ |µ|−1 max{u⋆
K , µ} ≤ 0. As |µ| < 1, we infer that c(K,ω) = 0,

hence c(K,Ω) = 0. ⊓⊔
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Proof of Step 3. We have to show that if Ω ⊂ Cn+1,

lim
j→+∞

∫

Ω

χ(ddcuj)n+1 =

∫

Ω

χ(ddcu)n+1

for all test functions χ ∈ C∞
0 (Ω). That is,

(13.7) lim
j→+∞

∫

Ω

uj(ddcuj)n ∧ γ =

∫

Ω

u(ddcu)n ∧ γ

with γ = ddcχ. As all (1, 1)-forms γ can be written as linear combinations
of forms of the type iα ∧ α, α ∈ Λ1,0(Cn)⋆, it is sufficient, after a change
of coordinates, to consider forms of the type γ = i

2χ(z)dzn+1 ∧ dzn+1 with
χ ∈ C∞

0 (Ω). In this case, for any locally bounded plurisubharmonic function
v on Ω, the Fubini theorem yields

∫

Ω

v(ddcv)n ∧ γ =

∫

C

dλ(zn+1)

∫

Ω(zn+1)

χ(•, zn+1)(ddcv(•, zn+1))n

where Ω(zn+1) = {z ∈ Cn; (z, zn+1) ∈ Ω} and f(•, zn+1) denotes the
function z 7→ f(z, zn+1) on Ω(zn+1). Indeed, the result is clearly true if
v is smooth. The general case follows by taking smooth plurisubharmonic
functions vj decreasing to v. The convergence of both terms in the equality is
guaranteed by Th. 1.7 (a), combined with 1.3 and the bounded convergence
theorem for the right hand side.

In order to prove (13.7), we thus have to show

(13.8) lim
j→+∞

∫

ω

χuj(ddcuj)n =

∫

ω

χu(ddcu)n

for ω ⊂ Cn, χ ∈ C∞
0 (ω) and uj ∈ P (ω) ∩ L∞

loc(ω) increasing to u ∈ P (ω)
almost everywhere. To prove (13.8), we can clearly assume 0 ≤ χ ≤ 1 and
0 ≤ uj ≤ u ≤ 1 on Ω. By our inductive hypothesis 13.4, (ddcuj)n converges
weakly to (ddcu)n. As uj ≤ u ≤ uε = u ⋆ ρε, we get

lim sup
j→+∞

∫

ω

χuj(ddcuj)n ≤ lim
ε→0

lim
j→+∞

∫

ω

χuε(ddcuj)n

= lim
ε→0

∫

ω

χuε(ddcu)n =

∫

ω

χu(ddcu)n.

To prove the other inequality, let ε > 0 and choose an open set G ⊂ ω
such that c(G, ω) < ε and u, uj are all continuous on ω \G. Let v = sup uj .
Then v⋆ = u because v⋆ and u are plurisubharmonic and coincide almost
everywhere. Let ũj be a continuous extension of uj |ω\G to ω such that
0 ≤ ũj ≤ 1. For j ≥ k we have uj ≥ uk, hence
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∫

ω

χuj(ddcuj)n ≥

∫

ω\G

χũk(ddcuj)n

≥

∫

ω

χũk(ddcuj)n −

∫

G

(ddcuj)n.

The last integral on the right is ≤ c(G, ω) < ε. Taking the limit as j tends
to +∞, we obtain

lim inf
j→+∞

∫

ω

χuj(ddcuj)n ≥

∫

ω

χũk(ddcu)n − ε

≥

∫

ω

χuk(ddcu)n − 2ε.

The second term ε comes from
∫

G
(ddcu)n ≤ c(G, ω) < ε. Now let k → +∞

and ε→ 0 to get

lim inf
j→+∞

∫

ω

χuj(ddcuj)n ≥

∫

ω

χv(ddcu)n.

Moreover, the Borel set N = {v < u = v⋆} is negligible and the inductive
hypothesis 13.6 implies c(N,ω) = 0. Therefore

∫

ω

χ(u− v)(ddcu)n ≤

∫

N

(ddcu)n = 0

and the proof is complete. ⊓⊔

(13.9) Theorem. For each j = 1, . . . , q, let uk
j be an increasing sequence of

locally bounded plurisubharmonic functions such that uk
j converges almost

everywhere to uj ∈ P (Ω). Then

(a) ddcuk
1 ∧ . . . ∧ ddcuk

q → ddcu1 ∧ . . . ∧ dd
cuq weakly.

(b) uk
1dd

cuk
2 ∧ . . . ∧ ddcuk

q → u1dd
cu2 ∧ . . . ∧ dd

cuq weakly.

Proof. (a) Without loss of generality, we may assume q = n, otherwise we
complete with additional stationary sequences uk

q+1 = uq+1, . . . , u
k
n = un

where uq+1, . . . , un are chosen arbitrarily in P (Ω) ∩ C∞(Ω). Now apply
Prop. 13.4 to uk = λ1u

k
1 + · · · + λnu

k
n, λj > 0, and consider the coefficient

of λ1 . . . λn in (ddcuk)n.

(b) Same proof as for (13.8). ⊓⊔

(13.10) Example. Let Ω = B(0, R) and K = B(0, r). The corresponding
extremal function uK is
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uK(z) =
(

log
R

r

)−1

max
{

log
|z|

R
, log

r

R

}
.

In fact, for any v ∈ P (Ω) with v ≤ −1 on K and v ≥ 0 on Ω, the convexity
of log ρ 7→ supB(0,ρ) v shows that v ≤ uK . Formula 13.5 (b) then gives

c(K,Ω) =

∫

Ω

(ddcuK)n =
(

log
R

r

)−n

where (ddcuK)n is a unitary invariant measure supported on the sphere
S(0, r) (see example (4.3)). ⊓⊔

Next we quote a few elementary properties of the extremal functions
u⋆

E for arbitrary sets E ⊂ Ω.

(13.11) Properties.

(a) if E1 ⊂ E2 ⊂ Ω, then u⋆
E1

≥ u⋆
E2

.

(b) if E ⊂ Ω1 ⊂ Ω2, then u⋆
E,Ω1

≥ u⋆
E,Ω2

.

(c) if E ⊂ Ω, then u⋆
E = uE = −1 on E0 and (ddcu⋆

E)n = 0 on Ω \ E ;
hence (ddcu⋆

E)n is supported by ∂E.

(d) one has u⋆
E ≡ 0 if and only if there exists v ∈ P (Ω), v ≤ 0 such that

E ⊂ {v = −∞}.

(e) if E ⊂⊂ Ω and if Ω is strongly pseudoconvex with exhaustion ψ < 0,
then u⋆

E ≥ Aψ for some A > 0.

Proof. (a), (b) are obvious from Def. (13.3); (e) is true as soon as Aψ ≤ −1
on E ; the equality (ddcu⋆

E)n = 0 on Ω \ E in (c) is proved exactly in the
same way as 13.5 (a) in Step 1.

(d) If E ⊂ {v = −∞}, v ∈ P (Ω), v ≤ 0, then for every ε > 0 we have
εv ≤ uE , hence uE = 0 on Ω \ {v = −∞} and u⋆

E = 0.

Conversely, Choquet’s lemma shows that there is an increasing sequence
vj ∈ P (Ω), −1 ≤ vj ≤ uE , converging almost everywhere to u⋆

E . If u⋆
E = 0,

we can extract a subsequence in such a way that
∫

Ω
|vj |dλ < 2−j . As vj ≤ 0

and vj ≤ −1 on E, the function v =
∑
vj is plurisubharmonic ≤ 0 and

v = −∞ on E. ⊓⊔

(13.12) Proposition. Let Ω ⊂⊂ Cn and let K1 ⊃ K2 ⊃ . . ., K =
⋂
Kj be

compact subsets of Ω. Then
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(a)
(

lim
j→+∞

↑ u⋆
Kj

)⋆
= u⋆

K.

(b) lim c(Kj , Ω) = c(K,Ω).

(c) c⋆(K,Ω) = c(K,Ω).

Proof. We have lim ↑ u⋆
Kj

≤ u⋆
K by 13.11 (a). On the other hand, let

v ∈ P (Ω) be such that v ≤ 0 on Ω and v ≤ −1 on K. For every ε > 0
the open set {v < −1 + ε} is a neighborhood of K, thus K ⊂ {v < −1 + ε}
for j large. We obtain therefore v − ε ≤ u⋆

Kj
and uK = sup{v} ≤ limu⋆

Kj
,

whence equality (a). Property (b) follows now from Prop. 13.4 and 13.5 (b),
and (c) is a consequence of (b) when the Kj’s are neighborhoods of K. ⊓⊔

(13.13) Corollary. Every negligible set N ⊂ Ω satisfies c⋆(N,Ω) = 0.

Proof. By Choquet’s lemma every negligible set is contained in a Borel
negligible set N = {v < v⋆} with v = sup vj . In Step 2 of the proof of
Prop. 13.4, 13.5 and 13.6, we already showed that N ⊂ G ∪

⋃
Kδλµ with G

open, c(G,Ω) < ε and c(Kδλµ, Ω) = 0. By definition c⋆(G,Ω) = c(G,Ω),
and by 13.12 (c) we also have c⋆(Kδλµ, Ω) = 0, therefore c⋆(N,Ω) < ε for
every ε > 0. ⊓⊔

We finally extend the basic formula 13.5 (b) to arbitrary relatively
compact subsets E ⊂⊂ Ω. We first need a lemma.

(13.14) Lemma. Let Ω ⊂⊂ Cn and let u, v ∈ P (Ω) be locally bounded
plurisubharmonic functions such that u ≤ v ≤ 0 and lim

z→∂Ω
u(z) = 0. Then

∫

Ω

(ddcv)n ≤

∫

Ω

(ddcu)n.

Moreover
∫

Ω
(ddcu)n = 0 if and only if u = 0.

Proof. As max{u+ ε, v} = u+ ε near ∂Ω, we get
∫

Ω

(ddcu)n =

∫

Ω

(ddc max{u+ ε, v})n.

Let ε tend to 0, and observe that the integrand on the right hand side
converges weakly to (ddcv)n by Th. 1.7. The asserted inequality follows.

Now, assume that u(z0) < 0 at some point. Then

v(z) = max{u(z), ε2|z|2 − ε}



24 Potential Theory in Several Complex Variables

coincides with u near ∂Ω and with ε2|z|2 − ε on a neighborhood ω of z0. We
get therefore

∫

Ω

(ddcu)n =

∫

Ω

(ddcv)n ≥

∫

ω

(ddcv)n > 0. ⊓⊔

(13.15) Proposition. Let Ω ⊂⊂ Cn be strongly pseudoconvex. If E ⊂⊂ Ω is
an arbitrary subset, then

c⋆(E,Ω) =

∫

Ω

(ddcu⋆
E)n.

Proof. We first show that

(13.16) c(G,Ω) =

∫

G

(ddcu⋆
G)n =

∫

Ω

(ddcu⋆
G)n

for every open set G ⊂⊂ Ω. Let K1 ⊂ K2 ⊂ . . . be compact subsets of
G with Kj ⊂ K0

j+1 and
⋃
Kj = G. Then u⋆

Kj
= −1 on K0

j ⊃ Kj−1 and
lim ↓ u⋆

Kj
= −1 on G. Therefore u⋆

G ≤ limu⋆
Kj

≤ uG ≤ u⋆
G and Th. 1.7,

13.5 (b), 13.11 (c) imply the above equality (13.16).

Now, let E ⊂⊂ Ω be given and let ψ < 0 be a strictly plurisubharmonic
exhaustion function on Ω. For every open set G ⊃ E with G ⊂⊂ Ω, we have
u⋆

G ≥ Aψ and u⋆
E ≥ u⋆

G by 13.11. Lemma 13.14 implies
∫

Ω

(ddcu⋆
E)n ≤

∫

Ω

(ddcu⋆
G)n = c(G,Ω),

thus
∫

Ω
(ddcu⋆

E)n ≤ c⋆(E,Ω).

Conversely, Choquet’s lemma shows that there exists an increasing
sequence vj ∈ P (Ω) with −1 ≤ vj ≤ 0, vj ≥ Aψ on Ω and lim vj = uE

almost everywhere. If

Gj = {z ∈ Ω; (1 + 1/j)vj(z) < −1}

then Gj ⊃ E, Gj is decreasing and (1 + 1/j)vj ≤ uGj
. Thus lim ↑ u⋆

Gj
= u⋆

E

almost everywhere and Th. 13.4 gives

lim
j→+∞

∫

Ω

(ddcu⋆
Gj

)n =

∫

Ω

(ddcu⋆
E)n. ⊓⊔

(13.17) Corollary. Let Ω ⊂⊂ Cn be strongly pseudoconvex. If E ⊂⊂ Ω, then
c⋆(E,Ω) = 0 if and only if u⋆

E = 0. ⊓⊔



Outer Regularity and Pluripolar Sets 25

14. Outer Regularity of Monge-Ampère Capacities and

Characterization of Pluripolar and Negligible Sets

We first check that the outer Monge-Ampère capacity c⋆ is actually a
capacity.

(14.1) Theorem. Let Ω ⊂⊂ Cn be strongly pseudoconvex. Then the outer
capacity c⋆(•, Ω) is a capacity in the sense of Def. 10.1.

Proof. Axiom 10.1 (a) is clear, and 10.1 (c) is a consequence of 13.12. To
prove 10.1 (b), we only have to show that c⋆(

⋃
Ej , Ω) ≤ limj→+∞ c⋆(Ej, Ω).

It is no loss of generality to assume that Ej ⊂⊂ Ω. Let Nj be the negligible
set Nj = {uEj

< u⋆
Ej

} and G0 an open subset of Ω with G0 ⊃
⋃
Nj and

c(G0, Ω) < ε (such an open set exists by Cor. 13.13). Consider the open
sets defined by Vj = {u⋆

Ej
< −1 + η} and Gj = G0 ∪ Vj ⊃ Ej . Then

(1 − η)−1u⋆
Ej

≤ u⋆
Vj

≤ 0 and Lemma 13.14 implies

c(Gj , Ω) ≤ ε+ c(Vj , Ω) = ε+

∫

Ω

(ddcu⋆
Vj

)n

≤ ε+ (1 − η)−n

∫

Ω

(ddcu⋆
Ej

)n = ε+ (1 − η)−nc⋆(Ej, Ω),

thanks to Prop. 13.15. Further Ej ⊂ Gj and G1 ⊂ G2 ⊂ . . . since u⋆
Ej

is

decreasing. Thus G =
⋃
Gj ⊃ E =

⋃
Ej and

c(G,Ω) = lim
j→+∞

c(Gj , Ω) ≤ ε+ (1 − η)−n lim
j→+∞

c⋆(Ej, Ω).

Letting ε, η → 0 we get the desired inequality

c⋆(E,Ω) ≤ lim
j→+∞

c⋆(Ej, Ω). ⊓⊔

(14.2) Corollary. If Ω ⊂⊂ Cn is strongly pseudoconvex, then c(•, Ω) is outer
regular and every K-analytic subset (in particular every Borel subset) of Ω
is capacitable.

Proof. Choquet’s capacitability theorem combined with 13.12 (c) implies
that every K-analytic subset E ⊂ Ω satisfies

c⋆(E,Ω) = sup
K compact⊂E

c⋆(K,Ω) = sup
K compact⊂E

c(K,Ω) = c⋆(E,Ω). ⊓⊔
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Now, we prove an important result due to Josefson [Jo]. A set P in Cn is
said to be locally pluripolar if for each z ∈ P there is an open neighborhood
Ω of z and v ∈ P (Ω) such that P ∩Ω ⊂ {v = −∞}.

(14.3) Theorem (Josefson). If P ⊂ Cn is locally pluripolar, there exists
v ∈ P (Cn) with P ⊂ {v = −∞}, i.e. P is globally pluripolar in Cn.
Moreover, v can be taken to have logarithmic growth at infinity, such that
v(z) ≤ log+ |z|.

Proof. By the definition of locally pluripolar, we can find sets Pj , Ωj with Ωj

open and strictly pseudoconvex, Pj ⊂⊂ Ωj ⊂⊂ Cn,
⋃

j≥1 Pj = P and such
that Pj is contained in the −∞ poles of a single plurisubharmonic function
in Ωj . By 13.11 (d) and 13.15, we have c⋆(Pj , Ωj) = 0.

Let Bk be the ball of center 0 and radius e2
k

in Cn and let j(k)
be a sequence of integers such that each integer is repeated infinitely
many times and Ωj(k) ⊂ Bk. By the comparison result (11.3) we have
c⋆(Pj(k), Bk+1) = 0, hence the extremal function u⋆

Pj(k)
in Bk+1 is zero and

we can find vk ∈ P (Bk+1) with −1 ≤ vk ≤ 0, vk = −1 on Pj(k) and∫
Bk

|vk|dλ < 2−k. Now set

ṽk(z) =





vk(z) on Bk

max{vk(z), 2−k log |z| − 2} on Bk+1 \Bk

2−k log |z| − 2 on Cn \Bk+1.

As ṽk ≤ 0 on Bk and
∫

Bk
|ṽk|dλ < 2−k, the series v =

∑
ṽk converges to

a global plurisubharmonic function v 6≡ −∞ on Cn. Moreover ṽk = −1 on
Pj(k) and each Pj is repeated infinitely many times, therefore

v = −∞ on
⋃
Pj = P.

Finally, we have v(z) ≤
∑

2−k log+ |z| ≤ log+ |z| (the logarithmic growth
estimate was first obtained by H. El Mir [E-M1] and J. Siciak [Sic]).

(14.4) Corollary. Let Ω ⊂ Cn and P ⊂ Ω. Then P is pluripolar in Ω if and
only if c⋆(P,Ω) = 0.

Proof. That P is pluripolar implies c⋆(P,Ω) = 0 was proved in Cor. 11.6.
Conversely, if c⋆(P,Ω) = 0 then c⋆(P ∩ ω′, ω) = 0 for all concentric balls
ω′ ⊂⊂ ω ⊂⊂ Ω and Cor. 13.17 combined with 13.11 (d) shows that P ∩ ω′

is pluripolar in ω. Josefson’s theorem implies that P is globally pluripolar
in Cn. ⊓⊔
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(14.5) Corollary. Negligible sets are the same as pluripolar sets.

Proof. We have already seen that pluripolar sets are negligible (by Prop. 13.2
applied in Cn). Conversely, a negligible set N ⊂ Ω satisfies c⋆(N,Ω) = 0 by
Cor. 13.13, hence N is pluripolar. ⊓⊔

15. Siciak Extremal Functions and Alexander Capacity

We work here on the whole space Cn rather than on a bounded open
subset Ω. In this case, the relevant class of plurisubharmonic functions to
consider is the set Plog(Cn) of plurisubharmonic functions v with logarithmic
growth at infinity, i.e. such that

(15.1) v(z) ≤ log+ |z| + C

for some real constant C. Let E be a bounded subset of Cn. We consider
the global extremal function introduced by Siciak [Sic]:

(15.2) UE(z) = sup{v(z) ; v ∈ Plog(Cn), v ≤ 0 on E}.

(15.3) Theorem. Let E be a bounded subset of Cn. We have U⋆
E ≡ +∞ if

and only if E is pluripolar. Otherwise, U⋆
E ∈ Plog(Cn) and U⋆

E satisfies an
inequality

log+(|z|/R) ≤ U⋆
E(z) ≤ log+ |z| +M

for suitable constants M,R > 0. Moreover U⋆
E = 0 on E0,

(ddcU⋆
E) = 0 on Cn \ E,

∫

E

(ddcU⋆
E)n = 1.

Proof. If E is pluripolar, Th. 14.3 shows that there exists v ∈ Plog(Cn) such
that v = −∞ on E. Then v + C ≤ 0 on E for every C > 0 and we get
UE = +∞ on Cn

\ v−1(−∞), thus U⋆
E ≡ +∞. Conversely, if U⋆

E ≡ +∞,
there is a point z0 in the unit ball B ⊂ Cn such that UE(z0) = +∞.
Therefore, there is a sequence of functions vk ∈ Plog(Cn) with vk ≤ 0 on
E and Mk = supB vk → +∞. By taking a suitable subsequence we may
assume Mk ≥ 2k+1. We claim that w =

∑
k∈IN 2−k−1(vk − Mk) satisfies

w = −∞ on E (obvious), w ∈ Plog(Cn) and w 6≡ −∞ ; this will imply
that E is actually pluripolar. In fact, if v is plurisubharmonic on Cn, we
have supB(0,r) v = χ(log r) where χ is a convex increasing function, and the
condition v ∈ Plog(Cn) implies χ′ ≤ 1 on IR ; therefore
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χ(log r) ≤ χ(log r0) + log r/r0 for r ≥ r0.

In our case, by taking v = vk−Mk and r0 = 1, we find vk(z)−Mk ≤ log+ |z|,
thus w(z) ≤ log+ |z| and w ∈ Plog(Cn). Moreover, by the maximum
principle, there is a point zk ∈ ∂B at which vk(zk) −Mk = 0. The Harnack
inequality for subharmonic functions applied to the nonpositive function
v = vk −Mk − log 2 on B(0, 2) ⊂ IR2n shows that

0 ≥

∫

S(0,2)

(vk(z) −Mk − log 2) dσ(z)

=

∫

S(0,2)

v(z) dσ(z) ≥ −C v(zk) = −C log 2

where C = (1+1/2)2n/(1−1/4) > 0 and dσ is the unit invariant measure on
the sphere. Hence

∫
S(0,2)

w(z) dσ(z) > −∞, w 6≡ −∞, and E is pluripolar.

Now, assume that E is not pluripolar. The above arguments show that
there must exist a uniform upper bound supB v ≤ M for all functions
v ∈ Plog(Cn) with v ≤ 0 on E, thus v(z) ≤ log+ |z| + M and U⋆

E(z) =
(sup{v})⋆ ≤ log+ |z| + M . This implies that U⋆

E ∈ Plog(Cn). On the other

hand, E is contained in a ball B(0, R) so log+ |z|/R ≤ 0 on E and we get

UE(z) ≥ log+ |z|/R. The equality (ddcU⋆
E)n = 0 on Cn \E is verified exactly

in the same way as 12.8 (a). The value of the integral of (ddcU⋆
E)n over E is

obtained by the following lemma. ⊓⊔

(15.4) Lemma. Let v ∈ Plog(Cn) be such that

log+ |z| − C1 ≤ v(z) ≤ log+ |z| + C2

for some constants. Then
∫
Cn(ddcv)n = 1.

Proof. It is sufficient to check that
∫

Cn

(ddcv1)n ≤

∫

Cn

(ddcv2)n

when v1, v2 are two such functions. Indeed, we have
∫

Cn

(ddc log+ |z|)n =

∫

Cn

(ddc log |z|)n = 1

by Stokes’ theorem and remark 3.10, and we only have to choose v1(z) or
v2(z) = log+ |z| and the other function equal to v. To prove the inequality,
fix r, ε > 0 and choose C > 0 large enough so that (1 − ε)v1 > v2 − C on
B(0, r). As the function u = max{(1 − ε)v1, v2 − C} is equal to v2 − C for
|z| = R large, we get
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(1−ε)n

∫

B(0,r)

(ddcv1)n =

∫

B(0,r)

(ddcu)n ≤

∫

B(0,R)

(ddcu)n =

∫

B(0,R)

(ddcv2)n

and the expected inequality follows as ε→ 0 and r → +∞. ⊓⊔

(15.5) Theorem. Let E,E1, E2, . . . ⊂ B(0, R) ⊂ Cn.

(a) If E1 ⊂ E2, then U⋆
E1

≥ U⋆
E2

.

(b) If E1 ⊂ E2 ⊂ . . . and E =
⋃
Ej, then U⋆

E = lim ↓ U⋆
Ej

.

(c) If K1 ⊃ K2 ⊃ . . . and K =
⋂
Kj, then U⋆

K = (lim ↑ U⋆
Kj

)⋆.

(d) For every set E, there exists a decreasing sequence of open sets Gj ⊃ E
such that U⋆

E = (lim ↑ U⋆
Gj

)⋆.

Proof. (a) is obvious and the proof of (c) is similar to that of 13.12 (a).

(d) By Choquet’s lemma, there is an increasing sequence vj ∈ Plog(Cn) with
U⋆

E = (lim vj)⋆ and vj(z) ≥ log+ |z|/R. Set Gj = {vj < 1/j} and observe
that U⋆

Gj
≥ vj − 1/j.

(b) Set v = lim ↓ U⋆
Ej

. Then v ∈ Plog(Cn) and v = 0 on E, except on the

negligible set N =
⋃
{UEj

< U⋆
Ej

}. By Josefson’s theorem 14.3, there exists

w ∈ P (Cn) such that N ⊂ {w = −∞} and w(z) ≤ log+(|z|/R), in particular
w ≤ 0 on E. We set

vj(z) =
(

1 −
1

j

)
v(z) +

1

j
w(z).

Then vj ∈ Plog(Cn) and vj ≤ 0 everywhere on E. Therefore

U⋆
E ≥ UE ≥ vj =

(
1 −

1

j

)
v +

1

j
w on Cn

and letting j → +∞ we get U⋆
E ≥ v. The converse inequality U⋆

E ≤ lim ↓ U⋆
Ej

is clear. ⊓⊔

Now, we show that the extremal function of a compact set can be
computed in terms of polynomials. We denote by Pd the space of polynomials
of degree ≤ d in C[z1, . . . , zn].

(15.6) Theorem. Let K be a compact subset of Cn. Then
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UK(z) = sup
{1

d
log |P (z)| ; d ≥ 1, P ∈ Pd, ‖P‖L∞(K) ≤ 1

}
.

Proof. For any of the polynomials P involved in the above formula, we clearly
have 1

d log |P | ∈ Plog(Cn) and this function is ≤ 0 on K. Hence

1

d
log |P | ≤ UK .

Conversely, fix a point z0 ∈ Cn and a real number a < UK(z0). Then there
exists v ∈ Plog(Cn) such that v ≤ 0 on K and v(z0) > a. Replacing v by
v ⋆ ρδ − ε with δ ≪ ε ≪ 1, we may assume that v ∈ Plog(Cn) ∩ C∞(Cn),
v < 0 on K and v(z0) > a. Choose a ball B(z0, r) on which v > a, a smooth
function χ with compact support in B(z0, r) such that χ = 1 on B(z0, r/2)
and apply Hörmander’s L2 estimates to the closed (0, 1)-form d′′χ and to
the weight

ϕ(z) = 2dv(z) + 2n log |z − z0| + ε log(1 + |z|2).

We find a solution f of d′′f = d′′χ such that

∫

Cn

|f |2e−2dv|z − z0|
−2n(1 + |z|2)−εdλ

≤

∫

B(z0,r)

|d′′χ|2e−2dv|z − z0|
−2n(1 + |z|2)2−εdλ ≤ C1e

−2da.

We thus have f(z0) = 0 and F = χ − f is a holomorphic function on Cn

such that F (z0) = 1. In addition we get

∫

Cn

|F |2e−2dv(1 + |z|2)−2n−2εdλ ≤ C2e
−2da

where C1, C2 > 0 are constants independent of d. As v(z) ≤ log+ |z| + C3,
it follows that F ∈ Pd. Moreover, since v < 0 on a neighborhood of K, the
mean value inequality applied to the subharmonic function |F |2 gives

sup
K

|F |2 ≤ C4e
−2da.

The polynomial P = C
−1/2
4 edaF ∈ Pd is such that ‖P‖K = 1 and we have

log |P (z0)| ≥ da− C5, whence

sup
{1

d
log |P (z0)| ; d ≥ 1, P ∈ Pd, ‖P‖L∞(K) ≤ 1

}
≥ a.

As a was an arbitrary number < UK(z0), the proof is complete. ⊓⊔
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Now, we introduce a few concepts related to extremal polynomials. Let
B be the unit ball of Cn and K a compact subset of B. The Chebishev
constants Md(K) are defined by

(15.7) Md(K) = inf
{
‖P‖L∞(K) ; P ∈ Pd, ‖P‖L∞(B) = 1

}
.

It is clear that Md(K) ≤ 1 and that Md(K) satisfies

Md+d′(K) ≤Md(K)Md′(K).

The Alexander capacity is defined by

(15.8) T (K) = inf
d≥1

Md(K)1/d.

It is easy to see that we have in fact T (K) = limd→+∞Md(K)1/d : for any
integer δ ≥ 1, write δ = qd+ r with 0 ≤ r < d and observe that

Mδ(K)1/δ ≤Mqd(K)1/(qd+r) ≤Md(K)q/(qd+r) ;

letting δ → +∞ with d fixed, we get

T (K) ≤ lim inf
δ→+∞

Mδ(K)1/δ ≤ lim sup
δ→+∞

Mδ(K)1/δ ≤Md(K)1/d,

whence the equality. Now, for an arbitrary subset E ⊂ B, we set

(15.9) T⋆(E) = sup
K⊂E

T (K) , T ⋆(E) = inf
G open⊃E

T⋆(G).

(15.10) Siciak’s theorem. For every set E ⊂ B,

T ⋆(E) = exp(− sup
B
U⋆

E).

Proof. The main step is to show that the equality holds for compact subsets
K ⊂ B, i.e. that

(15.11) T (K) = exp(− sup
B
U⋆

K).

Indeed, it is clear that supB U
⋆
K = supB UK and Th. 15.6 gives

sup
B
UK = sup

{1

d
log ‖P‖L∞(B) ; d ≥ 1, P ∈ Pd, ‖P‖L∞(K) = 1

}

= sup
{
−

1

d
log ‖P‖L∞(K) ; d ≥ 1, P ∈ Pd, ‖P‖L∞(B) = 1

}
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after an obvious rescaling argument P 7→ αP . Taking the exponential, we
get

exp(− sup
B
U⋆

K) = inf
d≥1

inf
{
‖P‖

1/d
L∞(K) ; P ∈ Pd, ‖P‖L∞(B) = 1

}

= inf
d≥1

Md(K)1/d = T (K).

Next, let G be an open subset of B and Kj an increasing sequence of
compact sets such that G =

⋃
Kj and T⋆(G) = limT (Kj). Then 15.5 (b)

implies U⋆
G = lim ↓ U⋆

Kj
, hence

lim
j→+∞

sup
B
U⋆

Kj
= sup

B
U⋆

G = sup
B

U⋆
G

by Dini’s lemma. Taking the limit in (15.11), we get

T⋆(G) = exp(− sup
B
U⋆

G).

Finally, 15.5 (d) shows that there exists a decreasing sequence of open sets
Gj ⊃ E such that U⋆

E = (lim ↑ U⋆
Gj

)⋆. We may take Gj so small that

T ⋆(E) = limT⋆(Gj). Theorem 15.9 follows. ⊓⊔

(15.12) Corollary. The set function T ⋆ is a capacity in the sense of Def. 10.1
and we have T ⋆(E) = T⋆(E) for every K-analytic set E ⊂ B.

Proof. Axioms 10.1 (a,b,c) are immediate consequences of properties 15.5
(a,b,c) respectively. In addition, formulas 15.10 and 15.11 show that we have
T ⋆(K) = T (K) for every compact set K ⊂ B. The last statement is then a
consequence of Choquet’s capacitability theorem. ⊓⊔

To conclude this section, we show that 1/| logT ⋆| is not very far from
being subadditive. We need a lemma.

(15.13) Lemma. For every P ∈ Pd, one has

log ‖P‖L∞(B) − cnd ≤

∫

∂B

log |P (z)|dσ(z) ≤ log ‖P‖L∞(B)

where dσ is the unit invariant measure on the sphere and cn a constant such
that cn ∼ log(2n) as n→ +∞.

Proof. Without loss of generality, we may assume that ‖P‖L∞(B) = 1. Since
1
d log |P | ∈ Plog(Cn), the logarithmic convexity property already used implies
that
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sup
B(0,r)

1

d
log |P | ≥ log r for r < 1.

The Harnack inequality for the Poisson kernel now implies

sup
B(0,r)

log |P | ≤
1 − r2

(1 + r)2n

∫

∂B

log |P |dσ,

∫

∂B

log |P |dσ ≥
1 + r2n

1 − r2
log r.d.

The lemma follows with

cn = inf
r∈]0,1[

(1 + r)2n

1 − r2
log

1

r
;

the infimum is attained approximately for r = 1/(2n log 2n). ⊓⊔

(15.14) Corollary. For Pj ∈ Pdj
, 1 ≤ j ≤ N ,

‖P1 . . . PN‖L∞(B) ≥ e−cn(d1+···+dN )‖P1‖L∞(B) . . . ‖PN‖L∞(B).

Proof. Apply Lemma 15.13 to each Pj and observe that
∫

∂B

log |P1 . . . PN |dσ =
∑

1≤j≤N

∫

∂B

log |Pj|dσ. ⊓⊔

(15.15) Theorem. For any set E =
⋃

j≥1Ej, one has

1

cn − logT ⋆(E)
≤

∑

j≥1

1

| logT ⋆(Ej)|
.

Proof. It is sufficient to check the inequality for a finite union K =
⋃
Kj of

compacts sets Kj ⊂ B, 1 ≤ j ≤ N . Select Pj ∈ Pdj
such that

‖Pj‖L∞(B) = 1, ‖Pj‖L∞(Kj) = Mdj
(Kj),

and set P = P1 . . . PN , d = d1 + · · · + dN . Then Cor. 15.14 shows that
‖Pj‖L∞(B) ≥ e−cnd, thus

Md(K) ≤ ecnd‖P‖L∞(K).

If z ∈ K is in Kj , then |P (z)| ≤ |Pj(z)| ≤ ‖Pj‖L∞(Kj) because all other
factors are ≤ 1. Thus
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Md(K) ≤ ecnd max{‖Pj‖L∞(Kj)},

T (K) ≤Md(K)1/d ≤ ecn max{Mdj
(K)1/dj ·dj/d}.

Take dj = [kαj] with arbitrary αj > 0 and let k → +∞. It follows that

T (K) ≤ ecn max{T (Kj)αj/α}

where α =
∑
αj. The inequality asserted in Th. 15.15 is obtained for the

special choice αj = 1/| logT (Kj)| > 0 which makes all terms in max{. . .}
equal. ⊓⊔

16. Comparison of Capacities and El Mir’s Theorem

We first prove a comparison theorem for the capacities c(•, Ω) and T , due
to Alexander and Taylor [A-T].

(16.1) Theorem. Let K be a compact subset of the unit ball B ⊂ Cn. Then

(a) T (K) ≤ exp(−c(K,B)−1/n).

For each r < 1, there is a constant A(r) such that

(b) T (K) ≥ exp(−A(r) c(K,B)−1) when K ⊂ B(0, r).

(16.2) Remark. Both set functions c⋆(•, Ω) and T ⋆ are capacities in the sense
of 10.1. Hence, the estimates of the theorem also hold for all K-analytic sets,
in particular all Borel sets.

(16.3) Remark. The inequalities are sharp, at least as far as the exponents
on c(K,B) are concerned. For if K = B(0, ε), then it is easy to check that
T (K) = ε and example 13.10 gives c(K,B) = (log 1/ε)−n. Hence, equality
holds in 16.1 (a). On the other hand, if K is a small polydisc

K = {(z1, . . . , zn) ∈ Cn ; |z1| ≤ δ, |zj | ≤ 1/n, 1 < j ≤ n}

and δ ≤ 1/n, then T (K) ≤ δ, while c(K,B) ≥ C(log 1/δ)−1. To check this
last inequality (which shows the optimality of 16.1 (b)), put

u(z) =
(

log
1

δ

)−1

log+

|z1|

δ
+ (logn)−1

n∑

j=2

log+(n|zj |).
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Then u = 0 and u ≤ n on B, hence

c(K,B) ≥

∫

B

( 1

n
ddcu

)n

=
n!

nn
(logn)−(n−1)(log 1/δ)−1

because all measures ddc log+(|zj |/r) have total mass 1 in C.

Proof of Theorem 16.1. If K is pluripolar then U⋆
K ≡ +∞, hence c(K,B) =

T (K) = 0 and the inequalities are satisfied. We thus assume that K is not
pluripolar.

Proof of 16.1 (a). Set M = supB U
⋆
K ; then T (K) = e−M by Siciak’s theorem.

Since u = U⋆
K/M ∈ P (B) and 0 ≤ u ≤ 1 on B, we get

c(K,B) ≥M−n

∫

K

(ddcU⋆
K)n = M−n

by Th. 15.3. This inequality is equivalent to 16.1 (a). ⊓⊔

Proof of 16.1 (b). Let u⋆
K be the extremal function for K relative to the ball

B′ = B(0, e) ⊃⊃ B. For any v ∈ Plog(Cn) such that v ≤ 0 on K, we have
v ≤ U⋆

K ≤M + 1 on B′, hence the function

w =
v −M − 1

M + 1

satisfies w ≤ 0 on B′ and w ≤ −1 on K. We infer w ≤ u⋆
K ; by taking the

supremum over all choices of v, we get

u⋆
K ≥

U⋆
K −M − 1

M + 1
.

Now, there is a point z0 ∈ B such that U⋆
K(z0) = M , thus

u⋆
K(z0) ≥ −

1

M + 1
.

As u⋆
K ≤ 0 on B′, the mean value and Harnack inequalities show that

u⋆
K(z0) ≤ C1

∫

B′

u⋆
Kdλ =⇒ ‖u⋆

K‖L1(B′) ≤ −
1

C1
u⋆

K(z0) ≤
C2

M
.

The Chern-Levine-Nirenberg inequalities 1.3 and 1.4 (a) imply now

c(K,B′) =

∫

B

(ddcu⋆
K)n ≤ C3‖u

⋆
K‖L1(B′) ‖u

⋆
K‖n−1

L∞(B′) ≤
C4

M
.

As K ⊂ B(0, r) ⊂⊂ B, Prop. 11.3 (b) gives
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c(K,B) ≤ C5(r)c(K,B′) ≤ A(r)M−1

and inequality 16.1 (b) follows. ⊓⊔

We now prove El Mir’s theorem [E-M1]. This result is an effective
version of Josefson’s theorem: given a plurisubharmonic function in the ball,
a subextension can be found with prescribed singularities of poles and slow
growth at infinity.

(16.4) El Mir’s theorem. Let v ∈ P (B) with v ≤ −1, ε ∈ ]0, 1/n[ and r < 1.

Then there exists u ∈ Plog(Cn) such that u ≤ −|v|
1
n
−ε on B(0, r).

Proof. For t ≥ 1, set Gt = {z ∈ B(0, r); v(z) < −t} and let U⋆
t ∈ Plog(Cn)

be the Siciak extremal function of Gt. Since Gt is open, we have U⋆
t = 0 on

Gt. We set M(t) = supB U
⋆
t and

u(z) = ε−1

∫ +∞

1

t−1−ε(U⋆
t (z) −M(t))dt.

Proposition 11.4 shows that c(Gt, B) ≤ C1/t, therefore

M(t) = − logT ⋆(Gt) ≥ c(Gt, B)−1/n ≥ C2t
1/n

by inequality 16.1 (a). As U⋆
t −M(t) ≤ 0 onB, we get U⋆

t (z)−M(t) ≤ log+ |z|
by logarithmic convexity, thus

u(z) ≤ log+ |z|.

For z ∈ B(0, r) we have U⋆
t (z) = 0 as soon as Gt ∋ z, i.e. t < −v(z). Hence

u(z) ≤ −ε−1

∫ |v(z)|

1

t−1−εM(t)dt ≤ −C3

∫ |v(z)|

1

t−1−ε+ 1
n dt = −C4|v(z)|

1
n
−ε.

Starting if necessary with a smaller value of ε and subtracting a constant
to u, we can actually get

u ≤ −|v|
1
n
−ε on B(0, r).

It remains to check that u is not identically −∞. By logarithmic convexity
again, we have

sup
B(0,1/2)

U⋆
t ≥M(t) − log 2

and there exists z0 ∈ S(0; 1/2) such that U⋆
t (z0) − M(t) ≥ − log 2. The

Harnack inequality shows that
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1 − 1/4

(1 + 1/2)2n

∫

∂B

(
U⋆

t (z) −M(t)
)
dσ(z) ≥ U⋆

t (z0) −M(t) ≥ − log 2

and integration with respect to t yields
∫

∂B

u(z)dσ(z) ≥ −4/3(3/2)2n log 2 > −∞. ⊓⊔

Complementary references

[A-T] H. Alexander and B.A. Taylor. — Comparison of two capacities in
Cn, Math. Zeitschrift, 186 (), 407–417.

[Ceg] U. Cegrell. — Capacities in complex analysis, Aspects of Mathematics,
Vol. 14, Vieweg & Sohn, 153 p, .

[Duf] A. Dufresnoy. — Sur l’équation de Monge-Ampère complexe dans la boule
de Cn, Ann. Inst. Fourier, 39 (), 773-775.

[E-M1] H. El Mir. — Fonctions plurisousharmoniques et ensembles polaires, Sémi-
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