General extension theorem for cohomology classes on non reduced analytic subspaces

Jean-Pierre Demailly

Institut Fourier, Université de Grenoble Alpes \& Académie des Sciences de Paris
Trends in Modern Geometry 2017
Graduate School of Mathematical Sciences The University of Tokyo, July 10-13, 2017

References

This is a joint work with Junyan Cao \& Shin-ichi Matsumura J.-P. Demailly, Extension of holomorphic functions defined on non reduced analytic subvarieties, arXiv:1510.05230v1, Advanced Lectures in Mathematics Volume 35.1, the legacy of Bernhard Riemann after one hundred and fifty years, 2015.
J.Y. Cao, J.-P. Demailly, S-i. Matsumura, A general extension theorem for cohomology classes on non reduced analytic subspaces, arXiv:1703.00292v2, Science China Mathematics, 60 (2017) 949-962
T. Ohsawa, K. Takegoshi, On the extension of L^{2} holomorphic functions, Math. Zeitschrift 195 (1987), 197-204.
T. Ohsawa series of papers I-VI, and : On a curvature condition that implies a cohomology injectivity theorem of Kollár-Skoda type, Publ. Res. Inst. Math. Sci. 41 (2005), no. 3, 565-577.

The extension problem

Let (X, ω) be a possibly noncompact n-dimensional Kähler manifold, $\mathcal{J} \subset \mathcal{O}_{X}$ a coherent ideal sheaf, $Y=V(\mathcal{J})$ its zero variety and

$$
\mathcal{O}_{Y}=\mathcal{O}_{X} / \mathcal{J}
$$

Here Y may be non reduced, i.e. \mathcal{O}_{Y} may have nilpotent elements.

The extension problem

Let (X, ω) be a possibly noncompact n-dimensional Kähler manifold, $\mathcal{J} \subset \mathcal{O}_{X}$ a coherent ideal sheaf, $Y=V(\mathcal{J})$ its zero variety and

$$
\mathcal{O}_{Y}=\mathcal{O}_{X} / \mathcal{J}
$$

Here Y may be non reduced, i.e. \mathcal{O}_{Y} may have nilpotent elements.
Also, let $\left(L, h_{L}\right)$ be a hermitian holomorphic line bundle on X, and

$$
\Theta_{L, h_{L}}=i \partial \bar{\partial} \log h_{L}^{-1}
$$

its curvature current (we allow singular metrics, $h_{L}=e^{-\varphi}$, $\varphi \in L_{\mathrm{loc}}^{1}, \Theta_{L, h_{L}}$ being computed in the sense of currents).

Question

Under which conditions on $X, Y=V(\mathcal{J}),\left(L, h_{L}\right)$ is
$H^{q}\left(X, K_{X} \otimes L\right) \rightarrow H^{q}\left(Y,\left(K_{X} \otimes L\right)_{\mid Y}\right)=H^{q}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{O}_{X} / \mathcal{J}\right)$
a surjective restriction morphism?

Motivation: abundance conjecture and MMP

One potential application would be to study the Minimal Model Program (MMP) for arbitrary projective - or even Kähler varieties, whereas only the case of general type varieties is known.

Motivation: abundance conjecture and MMP

One potential application would be to study the Minimal Model Program (MMP) for arbitrary projective - or even Kähler varieties, whereas only the case of general type varieties is known.

For a line bundle L, one defines the Kodaira-litaka dimension $\kappa(L)=\lim \sup _{m \rightarrow+\infty} \log \operatorname{dim} H^{0}\left(X, L^{\otimes m}\right) / \log m$ and the numerical dimension $\operatorname{nd}(L)=$ maximum exponent p of non zero "positive intersections" $\left\langle T^{p}\right\rangle$ of a positive current $T \in c_{1}(L)$ when L is psef (pseudoeffective), and $\operatorname{nd}(L)=-\infty$ otherwise. They always satisfy

$$
-\infty \leq \kappa(L) \leq \operatorname{nd}(L) \leq n=\operatorname{dim} X .
$$

Motivation: abundance conjecture and MMP

One potential application would be to study the Minimal Model Program (MMP) for arbitrary projective - or even Kähler varieties, whereas only the case of general type varieties is known.
For a line bundle L, one defines the Kodaira-litaka dimension $\kappa(L)=\lim \sup _{m \rightarrow+\infty} \log \operatorname{dim} H^{0}\left(X, L^{\otimes m}\right) / \log m$ and the numerical dimension $\operatorname{nd}(L)=$ maximum exponent p of non zero "positive intersections" $\left\langle T^{p}\right\rangle$ of a positive current $T \in c_{1}(L)$ when L is psef (pseudoeffective), and $\operatorname{nd}(L)=-\infty$ otherwise. They always satisfy

$$
-\infty \leq \kappa(L) \leq \operatorname{nd}(L) \leq n=\operatorname{dim} X
$$

Definition (abundance)

A line bundle L is said to be abundant if $\kappa(L)=\mathrm{nd}(L)$.

Motivation: abundance conjecture and MMP

One potential application would be to study the Minimal Model Program (MMP) for arbitrary projective - or even Kähler varieties, whereas only the case of general type varieties is known.
For a line bundle L, one defines the Kodaira-litaka dimension $\kappa(L)=\lim \sup _{m \rightarrow+\infty} \log \operatorname{dim} H^{0}\left(X, L^{\otimes m}\right) / \log m$ and the numerical dimension $\operatorname{nd}(L)=$ maximum exponent p of non zero "positive intersections" $\left\langle T^{p}\right\rangle$ of a positive current $T \in c_{1}(L)$ when L is psef (pseudoeffective), and $\operatorname{nd}(L)=-\infty$ otherwise. They always satisfy

$$
-\infty \leq \kappa(L) \leq \operatorname{nd}(L) \leq n=\operatorname{dim} X .
$$

Definition (abundance)

A line bundle L is said to be abundant if $\kappa(L)=\operatorname{nd}(L)$.
The fundamental abundance conjecture can be stated: for each nonsingular klt pair (X, Δ) the \mathbb{Q}-line bundle $K_{X}+\Delta$ is abundant.

Generalized base point free theorem ?

One can try to investigate the abundance of $L=K_{X}+\Delta$ by induction on the dimension $n=\operatorname{dim} X$, by extending sections of $K_{X}+L_{m}, L_{m}=(m-1) K_{X}+m \Delta$ from subvarieties (noticing that $K_{X}+\Delta$ psef implies L_{m} psef, and even $L_{m}-\Delta$ psef).

Generalized base point free theorem ?

One can try to investigate the abundance of $L=K_{X}+\Delta$ by induction on the dimension $n=\operatorname{dim} X$, by extending sections of $K_{X}+L_{m}, L_{m}=(m-1) K_{X}+m \Delta$ from subvarieties (noticing that $K_{X}+\Delta$ psef implies L_{m} psef, and even $L_{m}-\Delta$ psef). Cf. BCHM and recent work of Demailly-Hacon-Păun, Fujino, Gongyo, Takayama.

Standard base point free theorem

Let (X, Δ) be a projective klt pair, and L be a nef line bundle such that $L-\left(K_{X}+\Delta\right)$ is nef and big. Then L is semiample, i.e. $|m L|$ is BPF for some $m>0$.

Question (weak positivity variant of the BPF property ?)
Assume that X is not uniruled, i.e. that K_{X} is pseudoeffective, and let L be a line bundle such that $L-\varepsilon K_{X}$ is pseudoeffective for some $0<\varepsilon \ll 1$. Does there exist $G \in \operatorname{Pic}^{0}(X)$ such that $L+G$ is abundant?

First naive (and too restrictive) technique

Consider the exact sequence

$$
0 \rightarrow \mathcal{J} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X} / \mathcal{J} \rightarrow 0
$$

twisted by $\mathcal{O}_{X}\left(K_{X} \otimes L\right)$,

First naive (and too restrictive) technique

Consider the exact sequence

$$
0 \rightarrow \mathcal{J} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X} / \mathcal{J} \rightarrow 0
$$

twisted by $\mathcal{O}_{X}\left(K_{X} \otimes L\right)$, and the corresponding long exact sequence of cohomology groups
$\cdots \rightarrow H^{q}\left(X, K_{X} \otimes L\right) \rightarrow H^{q}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{O}_{x} / \mathcal{J}\right)$ $\rightarrow H^{q+1}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{J}\right) \cdots$

First naive (and too restrictive) technique

Consider the exact sequence

$$
0 \rightarrow \mathcal{J} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X} / \mathcal{J} \rightarrow 0
$$

twisted by $\mathcal{O}_{X}\left(K_{X} \otimes L\right)$, and the corresponding long exact sequence of cohomology groups
$\cdots \rightarrow H^{q}\left(X, K_{X} \otimes L\right) \rightarrow H^{q}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{O}_{X} / \mathcal{J}\right)$ $\rightarrow H^{q+1}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{J}\right) \cdots$
It is therefore enough to have

$$
H^{q+1}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{J}\right)=0 .
$$

In order to kill H^{q+1} it is enough to make a strict positivity (ampleness) assumption, e.g. by the Kodaira-Nakano / Nadel vanishing theorems.

First naive (and too restrictive) technique

Consider the exact sequence

$$
0 \rightarrow \mathcal{J} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X} / \mathcal{J} \rightarrow 0
$$

twisted by $\mathcal{O}_{X}\left(K_{X} \otimes L\right)$, and the corresponding long exact sequence of cohomology groups
$\cdots \rightarrow H^{q}\left(X, K_{X} \otimes L\right) \rightarrow H^{q}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{O}_{X} / \mathcal{J}\right)$ $\rightarrow H^{q+1}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{J}\right) \cdots$
It is therefore enough to have

$$
H^{q+1}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{J}\right)=0 .
$$

In order to kill H^{q+1} it is enough to make a strict positivity (ampleness) assumption, e.g. by the Kodaira-Nakano / Nadel vanishing theorems.
But we only want to make a weak semipositivity assumption! In that case, one cannot expect to kill the cohomology group H^{q+1}.

Assumptions (1)

We assume X to be holomorphically convex. By the Cartan-Remmert theorem, this is the case iff X admits a proper holomorphic map $p: X \rightarrow S$ only a Stein complex space S.

Assumptions (1)

We assume X to be holomorphically convex. By the Cartan-Remmert theorem, this is the case iff X admits a proper holomorphic map $p: X \rightarrow S$ only a Stein complex space S.

Observation : cohomology is then always Hausdorff

Let X be a holomorphically convex complex space and \mathcal{F} a coherent analytic sheaf over X. Then all cohomology groups $H^{q}(X, \mathcal{F})$ are Hausdorff with respect to their natural topology (local uniform convergence of holomorphic Čech cochains)

Assumptions (1)

We assume X to be holomorphically convex. By the Cartan-Remmert theorem, this is the case iff X admits a proper holomorphic map $p: X \rightarrow S$ only a Stein complex space S.

Observation : cohomology is then always Hausdorff

Let X be a holomorphically convex complex space and \mathcal{F} a coherent analytic sheaf over X. Then all cohomology groups $H^{q}(X, \mathcal{F})$ are Hausdorff with respect to their natural topology (local uniform convergence of holomorphic Čech cochains)

Proof. $H^{q}(X, \mathcal{F}) \simeq H^{0}\left(S, R^{q} p_{*} \mathcal{F}\right)$ is a Fréchet space.

Assumptions (1)

We assume X to be holomorphically convex. By the Cartan-Remmert theorem, this is the case iff X admits a proper holomorphic map $p: X \rightarrow S$ only a Stein complex space S.

Observation : cohomology is then always Hausdorff

Let X be a holomorphically convex complex space and \mathcal{F} a coherent analytic sheaf over X. Then all cohomology groups $H^{q}(X, \mathcal{F})$ are Hausdorff with respect to their natural topology (local uniform convergence of holomorphic Čech cochains)

Proof. $H^{q}(X, \mathcal{F}) \simeq H^{0}\left(S, R^{q} p_{*} \mathcal{F}\right)$ is a Fréchet space.

Corollary

To solve an equation $\bar{\partial} u=v$ on a holomorphically convex manifold X, it is enough to solve it approximately:

$$
\bar{\partial} u_{\varepsilon}=v+w_{\varepsilon}, \quad w_{\varepsilon} \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
$$

Assumptions (2)

We assume that the subvariety $Y \subset X$ is defined by

$$
Y=V\left(\mathcal{I}\left(e^{-\psi}\right)\right), \quad \mathcal{O}_{Y}:=\mathcal{O}_{X} / \mathcal{I}\left(e^{-\psi}\right)
$$

where ψ is a quasi-psh function with analytic singularities, i.e. locally on a neighborhood V of an arbitrary point $x_{0} \in X$ we have

$$
\psi(z)=c \log \sum\left|g_{j}(z)\right|^{2}+v(z), \quad g_{j} \in \mathcal{O}_{X}(V), c>0, \quad v \in C^{\infty}(V)
$$

Assumptions (2)

We assume that the subvariety $Y \subset X$ is defined by

$$
Y=V\left(\mathcal{I}\left(e^{-\psi}\right)\right), \quad \mathcal{O}_{Y}:=\mathcal{O}_{X} / \mathcal{I}\left(e^{-\psi}\right)
$$

where ψ is a quasi-psh function with analytic singularities, i.e. locally on a neighborhood V of an arbitrary point $x_{0} \in X$ we have

$$
\psi(z)=c \log \sum\left|g_{j}(z)\right|^{2}+v(z), \quad g_{j} \in \mathcal{O}_{X}(V), c>0, \quad v \in C^{\infty}(V)
$$

and $\mathcal{I}\left(e^{-\psi}\right) \subset \mathcal{O}_{X}$ is the multiplier ideal sheaf

$$
\mathcal{I}\left(e^{-\psi}\right)_{x_{0}}=\left\{f \in \mathcal{O}_{x, x_{0}} ; \exists U \ni x_{0}, \int_{U}|f|^{2} e^{-\psi} d \lambda<+\infty\right\}
$$

Assumptions (2)

We assume that the subvariety $Y \subset X$ is defined by

$$
Y=V\left(\mathcal{I}\left(e^{-\psi}\right)\right), \quad \mathcal{O}_{Y}:=\mathcal{O}_{X} / \mathcal{I}\left(e^{-\psi}\right)
$$

where ψ is a quasi-psh function with analytic singularities, i.e. locally on a neighborhood V of an arbitrary point $x_{0} \in X$ we have

$$
\psi(z)=c \log \sum\left|g_{j}(z)\right|^{2}+v(z), \quad g_{j} \in \mathcal{O}_{x}(V), c>0, \quad v \in C^{\infty}(V),
$$

and $\mathcal{I}\left(e^{-\psi}\right) \subset \mathcal{O}_{X}$ is the multiplier ideal sheaf

$$
\mathcal{I}\left(e^{-\psi}\right)_{x_{0}}=\left\{f \in \mathcal{O}_{x, x_{0}} ; \exists U \ni x_{0}, \int_{U}|f|^{2} e^{-\psi} d \lambda<+\infty\right\}
$$

Claim (Nadel)

$\mathcal{I}\left(e^{-\psi}\right)$ is a coherent ideal sheaf.

Assumptions (2)

We assume that the subvariety $Y \subset X$ is defined by

$$
Y=V\left(\mathcal{I}\left(e^{-\psi}\right)\right), \quad \mathcal{O}_{Y}:=\mathcal{O}_{X} / \mathcal{I}\left(e^{-\psi}\right)
$$

where ψ is a quasi-psh function with analytic singularities, i.e. locally on a neighborhood V of an arbitrary point $x_{0} \in X$ we have

$$
\psi(z)=c \log \sum\left|g_{j}(z)\right|^{2}+v(z), \quad g_{j} \in \mathcal{O}_{X}(V), c>0, \quad v \in C^{\infty}(V)
$$

and $\mathcal{I}\left(e^{-\psi}\right) \subset \mathcal{O}_{X}$ is the multiplier ideal sheaf

$$
\mathcal{I}\left(e^{-\psi}\right)_{x_{0}}=\left\{f \in \mathcal{O}_{x, x_{0}} ; \exists U \ni x_{0}, \int_{U}|f|^{2} e^{-\psi} d \lambda<+\infty\right\}
$$

Claim (Nadel)

$\mathcal{I}\left(e^{-\psi}\right)$ is a coherent ideal sheaf.
Moreover $\mathcal{I}\left(e^{-\psi}\right)$ is always an integrally closed ideal.

Assumptions (2)

We assume that the subvariety $Y \subset X$ is defined by

$$
Y=V\left(\mathcal{I}\left(e^{-\psi}\right)\right), \quad \mathcal{O}_{Y}:=\mathcal{O}_{X} / \mathcal{I}\left(e^{-\psi}\right)
$$

where ψ is a quasi-psh function with analytic singularities, i.e. locally on a neighborhood V of an arbitrary point $x_{0} \in X$ we have

$$
\psi(z)=c \log \sum\left|g_{j}(z)\right|^{2}+v(z), \quad g_{j} \in \mathcal{O}_{X}(V), c>0, \quad v \in C^{\infty}(V)
$$

and $\mathcal{I}\left(e^{-\psi}\right) \subset \mathcal{O}_{X}$ is the multiplier ideal sheaf

$$
\mathcal{I}\left(e^{-\psi}\right)_{x_{0}}=\left\{f \in \mathcal{O}_{x, x_{0}} ; \exists U \ni x_{0}, \int_{U}|f|^{2} e^{-\psi} d \lambda<+\infty\right\}
$$

Claim (Nadel)

$\mathcal{I}\left(e^{-\psi}\right)$ is a coherent ideal sheaf.
Moreover $\mathcal{I}\left(e^{-\psi}\right)$ is always an integrally closed ideal.
Typical choice: $\psi(z)=c \log |s(z)|_{h_{E}}^{2}, c>0, s \in H^{0}(X, E)$.

Log resolution / reduction to the divisorial case

The simplest case is when $Y=\sum m_{j} Y_{j}$ is an effective simple normal crossing divisor and $\mathcal{O}_{Y}=\mathcal{O}_{X} / \mathcal{O}_{X}(-Y)$. We can then take

$$
\psi(z)=\sum c_{j} \log \left|\sigma_{\gamma_{j}}\right|_{h_{j}}^{2}, \quad c_{j}>0,\left\lfloor c_{j}\right\rfloor=m_{j},
$$

for some smooth hermitian metric h_{j} on $\mathcal{O}_{X}\left(Y_{j}\right)$. Then

$$
\mathcal{I}\left(e^{-\psi}\right)=\mathcal{O}_{X}\left(-\sum m_{j} Y_{j}\right), \quad i \partial \bar{\partial} \psi=\sum c_{j}\left(2 \pi\left[Y_{j}\right]-\Theta_{\mathcal{O}\left(Y_{j}\right), h_{j}}\right)
$$

Log resolution / reduction to the divisorial case

The simplest case is when $Y=\sum m_{j} Y_{j}$ is an effective simple normal crossing divisor and $\mathcal{O}_{Y}=\mathcal{O}_{X} / \mathcal{O}_{X}(-Y)$. We can then take

$$
\psi(z)=\sum c_{j} \log \left|\sigma_{\gamma_{j}}\right|_{h_{j}}^{2}, \quad c_{j}>0,\left\lfloor c_{j}\right\rfloor=m_{j},
$$

for some smooth hermitian metric h_{j} on $\mathcal{O}_{X}\left(Y_{j}\right)$. Then

$$
\mathcal{I}\left(e^{-\psi}\right)=\mathcal{O}_{X}\left(-\sum m_{j} Y_{j}\right), \quad i \partial \bar{\partial} \psi=\sum c_{j}\left(2 \pi\left[Y_{j}\right]-\Theta_{\mathcal{O}\left(Y_{j}\right), h_{j}}\right)
$$

The case of a higher codimensional multiplier ideal scheme $\mathcal{I}\left(e^{-\psi}\right)$ can easily be reduced to the divisorial case by using a suitable log resolution (a composition of blow ups, thanks to Hironaka's desingularization theorem).

Main results

Theorem (JY. Cao, D- , S-i. Matsumura, January 2017)

Take (X, ω) to be Kähler and holomorphically convex, and let $\left(L, h_{L}\right)$ be a hermitian line bundle such that

$$
\text { (**) } \quad \Theta_{L, h_{L}}+(1+\alpha \delta) i \partial \bar{\partial} \psi \geq 0 \quad \text { in the sense of currents }
$$

for some $\delta(x)>0$ continuous and $\alpha=0,1$. Then:

Main results

Theorem (JY. Cao, D- , S-i. Matsumura, January 2017)

Take (X, ω) to be Kähler and holomorphically convex, and let $\left(L, h_{L}\right)$ be a hermitian line bundle such that

$$
(* *) \quad \Theta_{L, h_{L}}+(1+\alpha \delta) i \partial \bar{\partial} \psi \geq 0 \quad \text { in the sense of currents }
$$

for some $\delta(x)>0$ continuous and $\alpha=0,1$. Then: the morphism induced by the natural inclusion $\mathcal{I}\left(h_{L} e^{-\psi}\right) \rightarrow \mathcal{I}\left(h_{L}\right)$

$$
H^{q}\left(X, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L} e^{-\psi}\right)\right) \rightarrow H^{q}\left(X, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L}\right)\right)
$$

is injective for every $q \geq 0$,

Main results

Theorem (JY. Cao, D- , S-i. Matsumura, January 2017)

Take (X, ω) to be Kähler and holomorphically convex, and let $\left(L, h_{L}\right)$ be a hermitian line bundle such that

$$
(* *) \quad \Theta_{L, h_{L}}+(1+\alpha \delta) i \partial \bar{\partial} \psi \geq 0 \quad \text { in the sense of currents }
$$

for some $\delta(x)>0$ continuous and $\alpha=0,1$. Then: the morphism induced by the natural inclusion $\mathcal{I}\left(h_{L} e^{-\psi}\right) \rightarrow \mathcal{I}\left(h_{L}\right)$

$$
H^{q}\left(X, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L} e^{-\psi}\right)\right) \rightarrow H^{q}\left(X, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L}\right)\right)
$$

is injective for every $q \geq 0$, in other words, the sheaf morphism $\mathcal{I}(h) \rightarrow \mathcal{I}\left(h_{L}\right) / \mathcal{I}\left(h_{L} e^{-\psi}\right)$ yields a surjection

$$
H^{q}\left(X, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L}\right)\right) \rightarrow H^{q}\left(X, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L}\right) / \mathcal{I}\left(h_{L} e^{-\psi}\right)\right)
$$

Main results

Theorem (JY. Cao, D- , S-i. Matsumura, January 2017)

Take (X, ω) to be Kähler and holomorphically convex, and let $\left(L, h_{L}\right)$ be a hermitian line bundle such that

$$
(* *) \quad \Theta_{L, h_{L}}+(1+\alpha \delta) i \partial \bar{\partial} \psi \geq 0 \quad \text { in the sense of currents }
$$

for some $\delta(x)>0$ continuous and $\alpha=0,1$. Then:
the morphism induced by the natural inclusion $\mathcal{I}\left(h_{L} e^{-\psi}\right) \rightarrow \mathcal{I}\left(h_{L}\right)$

$$
H^{q}\left(X, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L} e^{-\psi}\right)\right) \rightarrow H^{q}\left(X, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L}\right)\right)
$$

is injective for every $q \geq 0$, in other words, the sheaf morphism $\mathcal{I}(h) \rightarrow \mathcal{I}\left(h_{L}\right) / \mathcal{I}\left(h_{L} e^{-\psi}\right)$ yields a surjection

$$
H^{q}\left(X, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L}\right)\right) \rightarrow H^{q}\left(X, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L}\right) / \mathcal{I}\left(h_{L} e^{-\psi}\right)\right)
$$

Corollary (take h_{L} smooth $\Rightarrow \mathcal{I}\left(h_{L}\right)=\mathcal{O}_{X}$, and $Y=V\left(\mathcal{I}\left(e^{-\psi}\right)\right.$)
If h_{L} is smooth, $\mathcal{O}_{Y}=\mathcal{O}_{X} / \mathcal{I}\left(e^{-\psi}\right)$ and h_{L}, ψ satisfy $(* *)$, then $H^{q}\left(X, K_{X} \otimes L\right) \rightarrow H^{q}\left(Y,\left(K_{X} \otimes L\right)_{\mid Y}\right)$ is surjective.

Comments / algebraic consequences

The exact sequence $0 \rightarrow \mathcal{I}\left(h_{L} e^{-\psi}\right) \rightarrow \mathcal{I}\left(h_{L}\right) \rightarrow \mathcal{I}\left(h_{L}\right) / \mathcal{I}\left(h_{L} e^{-\psi}\right) \rightarrow 0$ implies that both injectivity and surjectivity hold when

$$
H^{q}\left(X, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L} e^{-\psi}\right)=0\right.
$$

and for this it is enough to have a strict curvature assumption $(* * *) \quad \Theta_{L, h_{L}}+i \partial \bar{\partial} \psi \geq \delta \omega>0 \quad$ in the sense of currents.

Comments / algebraic consequences

The exact sequence $0 \rightarrow \mathcal{I}\left(h_{L} e^{-\psi}\right) \rightarrow \mathcal{I}\left(h_{L}\right) \rightarrow \mathcal{I}\left(h_{L}\right) / \mathcal{I}\left(h_{L} e^{-\psi}\right) \rightarrow 0$ implies that both injectivity and surjectivity hold when

$$
H^{q}\left(X, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L} e^{-\psi}\right)=0\right.
$$

and for this it is enough to have a strict curvature assumption
$(* * *) \quad \Theta_{L, h_{L}}+i \partial \bar{\partial} \psi \geq \delta \omega>0 \quad$ in the sense of currents.

Corollary (purely algebraic)

Assume that X is projective (or that one has a projective morphism $X \rightarrow S$ over an affine algebraic base S). Let $Y=\sum m_{j} Y_{j}$ be an effective divisor and $\mathcal{O}_{Y}=\mathcal{O}_{X} / \mathcal{O}_{X}(-Y)$. If (as \mathbb{Q}-divisors)
$(* *) \quad L-(1+\delta) \sum c_{j} Y_{j}=G_{\delta}+U_{\delta}, \quad\left\lfloor c_{j}\right\rfloor=m_{j}$
with $\delta=0$ or $\delta_{0} \in \mathbb{Q}_{+}^{*}, G_{\delta}$ semiample and $U_{\delta} \in \operatorname{Pic}^{0}(X)$, then

$$
H^{q}\left(X, K_{X} \otimes L\right) \rightarrow H^{q}\left(Y,\left(K_{X} \otimes L\right)_{\mid Y}\right)
$$

is surjective.

Twisted Bochner-Kodaira-Nakano inequality (Ohsawa-Takegoshi)

Let (X, ω) be a Kähler manifold and let $\eta, \lambda>0$ be smooth functions on X.
For every compacted supported section $u \in \mathcal{C}_{c}^{\infty}\left(X, \Lambda^{p, q} T_{X}^{*} \otimes L\right)$ with values in a hermitian line bundle $\left(L, h_{L}\right)$, one has

$$
\begin{aligned}
\left\|(\eta+\lambda)^{\frac{1}{2}} \bar{\partial}^{*} u\right\|^{2} & +\left\|\eta^{\frac{1}{2}} \bar{\partial} u\right\|^{2}+\left\|\lambda^{\frac{1}{2}} \partial u\right\|^{2}+2\left\|\lambda^{-\frac{1}{2}} \partial \eta \wedge u\right\|^{2} \\
& \geq \int_{X}\left\langle B_{L, L_{L}, \omega, \eta, \lambda}^{p, q} u, u\right\rangle d V_{X, \omega}
\end{aligned}
$$

where $d V_{X, \omega}=\frac{1}{n!} \omega^{n}$ is the Kähler volume element and $B_{L, h_{L}, \omega, \eta, \lambda}^{p, q}$ is the Hermitian operator on $\Lambda^{p, q} T_{X}^{*} \otimes L$ such that

$$
B_{L, h_{L}, \omega, \eta, \lambda}^{p, q}=\left[\eta i \Theta_{L}-i \partial \bar{\partial} \eta-i \lambda^{-1} \partial \eta \wedge \bar{\partial} \eta, \Lambda_{\omega}\right] .
$$

Approximate solutions to $\bar{\partial}$-equations

Main L^{2} estimate

Let (X, ω) be a Kähler manifold possessing a complete Kähler metric let $\left(E, h_{E}\right)$ be a Hermitian vector bundle over X. Assume that $B=B_{E, h, \omega, \eta, \lambda}^{n, q}$ satisfies $B+\varepsilon \mathrm{Id}>0$ for some $\varepsilon>0$ (so that B can be just semi-positive or even slightly negative).

Approximate solutions to $\bar{\partial}$-equations

Main L^{2} estimate

Let (X, ω) be a Kähler manifold possessing a complete Kähler metric let $\left(E, h_{E}\right)$ be a Hermitian vector bundle over X. Assume that $B=B_{E, h, \omega, \eta, \lambda}^{n, q}$ satisfies $B+\varepsilon \mathrm{Id}>0$ for some $\varepsilon>0$ (so that B can be just semi-positive or even slightly negative). Take a section $v \in L^{2}\left(X, \Lambda^{n, q} T_{X}^{*} \otimes E\right)$ such that $\bar{\partial} v=0$ and

$$
M(\varepsilon):=\int_{X}\left\langle(B+\varepsilon \mathrm{Id})^{-1} v, v\right\rangle d V_{X, \omega}<+\infty
$$

Approximate solutions to $\bar{\partial}$-equations

Main L^{2} estimate

Let (X, ω) be a Kähler manifold possessing a complete Kähler metric let $\left(E, h_{E}\right)$ be a Hermitian vector bundle over X. Assume that $B=B_{E, h, \omega, \eta, \lambda}^{n, q}$ satisfies $B+\varepsilon \mathrm{Id}>0$ for some $\varepsilon>0$ (so that B can be just semi-positive or even slightly negative). Take a section $v \in L^{2}\left(X, \Lambda^{n, q} T_{X}^{*} \otimes E\right)$ such that $\bar{\partial} v=0$ and

$$
M(\varepsilon):=\int_{X}\left\langle(B+\varepsilon \mathrm{Id})^{-1} v, v\right\rangle d V_{X, \omega}<+\infty
$$

Then there exists an approximate solution $u_{\varepsilon} \in L^{2}\left(X, \Lambda^{n, q-1} T_{X}^{*} \otimes E\right)$ and a correction term $w_{\varepsilon} \in L^{2}\left(X, \Lambda^{n, q} T_{X}^{*} \otimes E\right)$ such that

$$
\begin{aligned}
& \bar{\partial} u_{\varepsilon}=v+w_{\varepsilon} \quad \text { and } \\
& \int_{X}(\eta+\lambda)^{-1}\left|u_{\varepsilon}\right|^{2} d V_{X, \omega}+\frac{1}{\varepsilon} \int_{X}\left|w_{\varepsilon}\right|^{2} d V_{X, \omega} \leq M(\varepsilon)
\end{aligned}
$$

Proof: setting up the relevant $\bar{\partial}$ equation (1)

Every cohomology class in

$$
H^{q}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}\left(h_{L}\right) / \mathcal{I}\left(h_{L} e^{-\psi}\right)\right)
$$

is represented by a holomorphic Čech q-cocycle with respect to a
Stein covering $\mathcal{U}=\left(U_{i}\right)$, say $\left(c_{i_{0} . . i_{q}}\right)$,

$$
c_{i_{0} \ldots i_{q}} \in H^{0}\left(U_{i_{0}} \cap \ldots \cap U_{i_{q}}, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}\left(h_{L}\right) / \mathcal{I}\left(h_{L} e^{-\psi}\right)\right) .
$$

Proof: setting up the relevant $\bar{\partial}$ equation (1)

Every cohomology class in

$$
H^{q}\left(X, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}\left(h_{L}\right) / \mathcal{I}\left(h_{L} e^{-\psi}\right)\right)
$$

is represented by a holomorphic Čech q-cocycle with respect to a Stein covering $\mathcal{U}=\left(U_{i}\right)$, say $\left(c_{i 0 . . . i_{q}}\right)$,

$$
c_{i_{0} \ldots i_{q}} \in H^{0}\left(U_{i_{0}} \cap \ldots \cap U_{i_{q}}, \mathcal{O}_{X}\left(K_{X} \otimes L\right) \otimes \mathcal{I}\left(h_{L}\right) / \mathcal{I}\left(h_{L} e^{-\psi}\right)\right) .
$$

By the standard sheaf theoretic isomorphism with Dolbeault cohomology, this class is represented by a smooth (n, q)-form

$$
f=\sum_{i_{0}, \ldots, i_{q}} c_{i_{0} . \ldots i_{q}} \rho_{i_{0}} \bar{\partial} \rho_{i_{1}} \wedge \ldots \bar{\partial} \rho_{i_{q}}
$$

by means of a partition of unity $\left(\rho_{i}\right)$ subordinate to $\left(U_{i}\right)$. This form is to be interpreted as a form on the (non reduced) analytic subvariety Y associated with the colon ideal sheaf $\mathcal{J}=\mathcal{I}\left(h e^{-\psi}\right): \mathcal{I}(h)$ and the structure sheaf $\mathcal{O}_{Y}=\mathcal{O}_{X} / \mathcal{J}$.

Proof: setting up the relevant $\bar{\partial}$ equation (2)

We get an extension of f as a smooth (no longer $\bar{\partial}$-closed) (n, q)-form on X by taking

$$
\tilde{f}=\sum_{i_{0}, \ldots, i_{q}} \widetilde{c}_{i_{0} . . i_{q} \rho_{i}} \rho_{i_{0}} \bar{\partial} \rho_{i_{1}} \wedge \ldots \bar{\partial} \rho_{i_{q}}
$$

where $\widetilde{c}_{i_{0} \ldots i_{q}}=$ extension of $c_{i_{0} \ldots i_{q}}$ from $U_{i_{0}} \cap \ldots \cap U_{i_{q}} \cap Y$ to $U_{i_{0}} \cap \ldots \cap U_{i_{q}}$

Proof: setting up the relevant $\bar{\partial}$ equation (2)

We get an extension of f as a smooth (no longer $\bar{\partial}$-closed) (n, q)-form on X by taking

$$
\tilde{f}=\sum_{i_{0}, \ldots, i_{q}} \widetilde{c}_{i_{i} \ldots i_{q}} \rho_{i_{0}} \bar{\partial} \rho_{i_{1}} \wedge \ldots \bar{\partial} \rho_{i_{q}}
$$

where $\widetilde{c}_{i_{0} \ldots i_{q}}=$ extension of $c_{i_{0} \ldots i_{q}}$ from $U_{i_{0}} \cap \ldots \cap U_{i_{q}} \cap Y$ to $U_{i_{0}} \cap \ldots \cap U_{i_{q}}$ $\{x \in X / t<\psi(x)<t+1\}$

Proof: setting up the relevant $\bar{\partial}$ equation (2)

We get an extension of f as a smooth (no longer $\bar{\partial}$-closed) (n, q)-form on X by taking

$$
\tilde{f}=\sum_{i_{0}, \ldots, i_{q}} \widetilde{c}_{i_{i} \ldots i_{q}} \rho_{i_{0}} \bar{\partial} \rho_{i_{1}} \wedge \ldots \bar{\partial} \rho_{i_{q}}
$$

where $\widetilde{c}_{i_{0} \ldots i_{q}}=$ extension of $c_{i_{0} \ldots i_{q}}$ from $U_{i_{0}} \cap \ldots \cap U_{i_{q}} \cap Y$ to $U_{i_{0}} \cap \ldots \cap U_{i_{q}}$ $\{x \in X / t<\psi(x)<t+1\}$

Now, truncate \widetilde{f} as $\theta(\psi-t) \cdot \widetilde{f}$ on the green hollow tubular neighborhood, and solve an approximate $\bar{\partial}$-equation

$$
\begin{equation*}
\bar{\partial} u_{t, \varepsilon}=\bar{\partial}(\theta(\psi-t) \cdot \widetilde{f})+w_{t, \varepsilon} \tag{*}
\end{equation*}
$$

Proof: setting up the relevant $\bar{\partial}$ equation (3)

Here we have

$$
\bar{\partial}(\theta(\psi-t) \cdot \tilde{f})=\theta^{\prime}(\psi-t) \bar{\partial} \psi \wedge \widetilde{f}+\theta(\psi-t) \cdot \bar{\partial} \tilde{f}
$$

where the first term vanishes near Y and the second one is L^{2} with respect to $h_{L} e^{-\psi}$ (as the image of $\bar{\partial} \widetilde{f}$ in $\mathcal{I}\left(h_{L}\right) / \mathcal{I}\left(h_{L} e^{-\psi}\right)$ is $\bar{\partial} f=0$).

Proof: setting up the relevant $\bar{\partial}$ equation (3)

Here we have

$$
\bar{\partial}(\theta(\psi-t) \cdot \widetilde{f})=\theta^{\prime}(\psi-t) \bar{\partial} \psi \wedge \widetilde{f}+\theta(\psi-t) \cdot \bar{\partial} \tilde{f}
$$

where the first term vanishes near Y and the second one is L^{2} with respect to $h_{L} e^{-\psi}$ (as the image of $\bar{\partial} \widetilde{f}$ in $\mathcal{I}\left(h_{L}\right) / \mathcal{I}\left(h_{L} e^{-\psi}\right)$ is $\left.\bar{\partial} f=0\right)$.
With ad hoc "twisting functions" $\eta=\eta_{t}:=1-\delta \chi_{t}(\psi)$, $\lambda:=\pi\left(1+\delta^{2} \psi^{2}\right)$ and a suitable adjustment $\varepsilon=e^{(1+\beta) t}, \beta \ll 1$, we can find approximate L^{2} solutions of the $\bar{\partial}$-equation such that

$$
\bar{\partial} u_{t, \varepsilon}=\bar{\partial}(\theta(\psi-t) \cdot \tilde{f})+w_{t, \varepsilon}, \quad \int_{X}\left|u_{t, \varepsilon}\right|_{\omega, h_{L}}^{2} e^{-\psi} d V_{X, \omega}<+\infty
$$

and

$$
\lim _{t \rightarrow-\infty} \int_{X}\left|w_{t, \varepsilon}\right|_{\omega, h_{L}}^{2} e^{-\psi} d V_{X, \omega}=0
$$

Proof: setting up the relevant $\bar{\partial}$ equation (3)

Here we have

$$
\bar{\partial}(\theta(\psi-t) \cdot \widetilde{f})=\theta^{\prime}(\psi-t) \bar{\partial} \psi \wedge \widetilde{f}+\theta(\psi-t) \cdot \bar{\partial} \tilde{f}
$$

where the first term vanishes near Y and the second one is L^{2} with respect to $h_{L} e^{-\psi}$ (as the image of $\bar{\partial} \widetilde{f}$ in $\mathcal{I}\left(h_{L}\right) / \mathcal{I}\left(h_{L} e^{-\psi}\right)$ is $\bar{\partial} f=0$).
With ad hoc "twisting functions" $\eta=\eta_{t}:=1-\delta \chi_{t}(\psi)$, $\lambda:=\pi\left(1+\delta^{2} \psi^{2}\right)$ and a suitable adjustment $\varepsilon=e^{(1+\beta) t}, \beta \ll 1$, we can find approximate L^{2} solutions of the $\bar{\partial}$-equation such that

$$
\bar{\partial} u_{t, \varepsilon}=\bar{\partial}(\theta(\psi-t) \cdot \tilde{f})+w_{t, \varepsilon}, \quad \int_{X}\left|u_{t, \varepsilon}\right|_{\omega, h_{L}}^{2} e^{-\psi} d V_{X, \omega}<+\infty
$$

and

$$
\lim _{t \rightarrow-\infty} \int_{X}\left|w_{t, \varepsilon}\right|_{\omega, h_{L}}^{2} e^{-\psi} d V_{X, \omega}=0 .
$$

The estimate on $u_{t, \varepsilon}$ with respect to the weight $h_{L} e^{-\psi}$ shows that $\theta(\psi-t) \cdot \tilde{f}-u_{t, \varepsilon}$ is an approximate extension of f.

Can one get estimates for the extension ?

The answer is yes if ψ is log canonical, namely $\mathcal{I}\left(e^{-(1-\varepsilon) \psi}\right)=\mathcal{O}_{X}$ for all $\varepsilon>0$. Then $Y=V\left(\mathcal{I}\left(e^{-\psi}\right)\right)$ is easily seen to be reduced.

Can one get estimates for the extension ?

The answer is yes if ψ is log canonical, namely $\mathcal{I}\left(e^{-(1-\varepsilon) \psi}\right)=\mathcal{O}_{X}$ for all $\varepsilon>0$. Then $Y=V\left(\mathcal{I}\left(e^{-\psi}\right)\right)$ is easily seen to be reduced.

Ohsawa's residue measure

If ψ is log canonical, one can also associate in a natural way a measure $d V_{Y^{\circ}, \omega}[\psi]$ on the set Y° of regular points of Y as follows. If $g \in \mathcal{C}_{c}\left(Y^{\circ}\right)$ is a compactly supported continuous function on Y° and \widetilde{g} a compactly supported extension of g to X, one sets

$$
\int_{Y^{\circ}} g d V_{Y^{\circ}, \omega}[\psi]=\lim _{t \rightarrow-\infty} \int_{\{x \in X, t<\psi(x)<t+1\}} \tilde{g} e^{-\psi} d V_{X, \omega}
$$

Can one get estimates for the extension ?

The answer is yes if ψ is log canonical, namely $\mathcal{I}\left(e^{-(1-\varepsilon) \psi}\right)=\mathcal{O}_{X}$ for all $\varepsilon>0$. Then $Y=V\left(\mathcal{I}\left(e^{-\psi}\right)\right)$ is easily seen to be reduced.

Ohsawa's residue measure

If ψ is \log canonical, one can also associate in a natural way a measure $d V_{Y^{\circ}, \omega}[\psi]$ on the set Y° of regular points of Y as follows. If $g \in \mathcal{C}_{c}\left(Y^{\circ}\right)$ is a compactly supported continuous function on Y° and \widetilde{g} a compactly supported extension of g to X, one sets

$$
\int_{Y^{\circ}} g d V_{Y^{\circ}, \omega}[\psi]=\lim _{t \rightarrow-\infty} \int_{\{x \in X, t<\psi(x)<t+1\}} \tilde{g} e^{-\psi} d V_{X, \omega}
$$

Theorem

If ψ is Ic and the curvature hypothesis is satisfied, for any f in $H^{0}\left(Y, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L}\right) / \mathcal{I}\left(h_{L} e^{-\psi}\right)\right)$ s.t. $\int_{Y^{\circ}}|f|_{\omega, h_{L}}^{2} d V_{Y^{\circ}, \omega}[\psi]<+\infty$, there exists $\widetilde{f} \in H^{0}\left(X, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L}\right)\right)$ which extends f, such that

$$
\int_{X}\left(1+\delta^{2} \psi^{2}\right)^{-1} e^{-\psi}|\widetilde{f}|_{\omega, h_{L}}^{2} d V_{X, \omega} \leq \frac{34}{\delta} \int_{Y^{\circ}}|f|_{\omega, h_{L}}^{2} d V_{Y^{\circ}, \omega}[\psi]
$$

Can one get estimates for the extension ? (sequel)

If ψ is not log canonical, consider the "last jumps" $m_{p-1}<m_{p} \leq 1$ such that $\mathcal{I}\left(h_{L} e^{-m_{\rho-1} \psi}\right) \supsetneq \mathcal{I}\left(h_{L} e^{-m_{\rho} \psi}\right)=\mathcal{I}\left(h_{L} e^{-\psi}\right)$ and assume

$$
f \in H^{0}\left(Y, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L} e^{-m_{p-1} \psi}\right) / \mathcal{I}\left(h_{L} e^{-m_{p} \psi}\right)\right),
$$

i.e., f vanishes just a little bit less than prescribed by the sheaf $\left.\mathcal{I}\left(h_{L} e^{-\psi}\right)\right)$. Then there is still a corresponding residue measure:

Can one get estimates for the extension ? (sequel)

If ψ is not \log canonical, consider the "last jumps" $m_{p-1}<m_{p} \leq 1$ such that $\mathcal{I}\left(h_{L} e^{-m_{\rho-1} \psi}\right) \supsetneq \mathcal{I}\left(h_{L} e^{-m_{\rho} \psi}\right)=\mathcal{I}\left(h_{L} e^{-\psi}\right)$ and assume

$$
f \in H^{0}\left(Y, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L} e^{-m_{p-1} \psi}\right) / \mathcal{I}\left(h_{L} e^{-m_{p} \psi}\right)\right)
$$

i.e., f vanishes just a little bit less than prescribed by the sheaf $\mathcal{I}\left(h_{L} e^{-\psi}\right)$). Then there is still a corresponding residue measure:

Higher multiplicity residue measure

If f is as above, and \tilde{f} is a local extension, one can associate a higher multiplicity residue measure $|f|^{2} d V_{Y^{\circ}, \omega}[\psi]$ (formal notation) as follows. If $g \in \mathcal{C}_{c}\left(Y^{\circ}\right)$ and \widetilde{g} a compactly supported extension of g to X, one sets

$$
\int_{Y^{\circ}} g|f|^{2} d V_{Y^{\circ}, \omega}[\psi]=\lim _{t \rightarrow-\infty} \int_{\{x \in X, t<\psi(x)<t+1\}} \widetilde{g}|\widetilde{f}|^{2} e^{-m_{p} \psi} d V_{X, \omega}
$$

Can one get estimates for the extension ? (sequel)

If ψ is not \log canonical, consider the "last jumps" $m_{p-1}<m_{p} \leq 1$ such that $\mathcal{I}\left(h_{L} e^{-m_{\rho-1} \psi}\right) \supsetneq \mathcal{I}\left(h_{L} e^{-m_{\rho} \psi}\right)=\mathcal{I}\left(h_{L} e^{-\psi}\right)$ and assume

$$
f \in H^{0}\left(Y, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L} e^{-m_{p-1} \psi}\right) / \mathcal{I}\left(h_{L} e^{-m_{p} \psi}\right)\right)
$$

i.e., f vanishes just a little bit less than prescribed by the sheaf $\mathcal{I}\left(h_{L} e^{-\psi}\right)$). Then there is still a corresponding residue measure:

Higher multiplicity residue measure

If f is as above, and \tilde{f} is a local extension, one can associate a higher multiplicity residue measure $|f|^{2} d V_{Y^{\circ}, \omega}[\psi]$ (formal notation) as follows. If $g \in \mathcal{C}_{c}\left(Y^{\circ}\right)$ and \widetilde{g} a compactly supported extension of g to X, one sets

$$
\int_{Y^{\circ}} g|f|^{2} d V_{Y^{\circ}, \omega}[\psi]=\lim _{t \rightarrow-\infty} \int_{\{x \in X, t<\psi(x)<t+1\}} \tilde{g}|\widetilde{f}|^{2} e^{-m_{p} \psi} d V_{X, \omega}
$$

Then a global extension $\widetilde{f} \in H^{0}\left(X, K_{X} \otimes L \otimes \mathcal{I}\left(h_{L} e^{-m_{p-1} \psi}\right)\right)$ exists, that satisfies the expected L^{2} estimate.

Special case / limitations of the L^{2} estimates

In the special case when ψ is given by $\psi(z)=r \log |s(z)|_{h_{E}}^{2}$ for a section $s \in H^{0}(X, E)$ generically transverse to the zero section of a rank r vector vector E on X, the subvariety $Y=s^{-1}(0)$ has codimension r, and one can check easily that

$$
d V_{Y^{\circ}, \omega}[\psi]=\frac{d V_{Y^{\circ}, \omega}}{\left|\Lambda^{r}(d s)\right|_{\omega, h_{E}}^{2}}
$$

Special case / limitations of the L^{2} estimates

In the special case when ψ is given by $\psi(z)=r \log |s(z)|_{h_{E}}^{2}$ for a section $s \in H^{0}(X, E)$ generically transverse to the zero section of a rank r vector vector E on X, the subvariety $Y=s^{-1}(0)$ has codimension r, and one can check easily that

$$
d V_{Y^{\circ}, \omega}[\psi]=\frac{d V_{Y^{\circ}, \omega}}{\left|\Lambda^{r}(d s)\right|_{\omega, h_{E}}^{2}}
$$

Thus one sees that the residue measure takes into account in a very precise manner the singularities of Y. It may happen that $d V_{Y^{\circ}, \omega}[\psi]$ has infinite mass near the singularities of Y, as is the case when Y is a simple normal crossing divisor.

Special case / limitations of the L^{2} estimates

In the special case when ψ is given by $\psi(z)=r \log |s(z)|_{h_{E}}^{2}$ for a section $s \in H^{0}(X, E)$ generically transverse to the zero section of a rank r vector vector E on X, the subvariety $Y=s^{-1}(0)$ has codimension r, and one can check easily that

$$
d V_{Y^{\circ}, \omega}[\psi]=\frac{d V_{Y^{\circ}, \omega}}{\left|\Lambda^{r}(d s)\right|_{\omega, h_{E}}^{2}}
$$

Thus one sees that the residue measure takes into account in a very precise manner the singularities of Y. It may happen that $d V_{Y^{\circ}, \omega}[\psi]$ has infinite mass near the singularities of Y, as is the case when Y is a simple normal crossing divisor.
Therefore, sections $s \in H^{0}\left(Y,\left(K_{X} \otimes L\right)_{\mid Y}\right.$ may not be L^{2} with respect to $\left.d V_{Y^{\circ}, \omega}[\psi]\right)$, and the L^{2} estimate of the approximate extension can blow up as $\varepsilon \rightarrow 0$. The surprising fact is this is however sufficient to prove the qualitative extension theorem, but without any effective L^{2} estimate in the limit.

Remarks: optimal L^{2} estimates

In a series of fundamental papers, Z. Błocki and Guan-Zhou have shown that in the log canonical case, the L^{2} estimate holds with an optimal constant.

Remarks: optimal L^{2} estimates

In a series of fundamental papers, Z. Błocki and Guan-Zhou have shown that in the log canonical case, the L^{2} estimate holds with an optimal constant.

This implies some interesting consequences, such as a proof of the Suita conjecture on the optimal comparison between the Bergman kernel and the logarithmic capacity of domains.

Remarks: optimal L^{2} estimates

In a series of fundamental papers, Z. Błocki and Guan-Zhou have shown that in the log canonical case, the L^{2} estimate holds with an optimal constant.
This implies some interesting consequences, such as a proof of the Suita conjecture on the optimal comparison between the Bergman kernel and the logarithmic capacity of domains.
In a very recent paper (June 27), G. Hosono has proved that the L^{2} estimate also holds with an optimal constant in case there is only one jump and the multiplier ideal sheaf is a power of the reduced ideal defining the subvariety Y.

Remarks: optimal L^{2} estimates

In a series of fundamental papers, Z. Błocki and Guan-Zhou have shown that in the log canonical case, the L^{2} estimate holds with an optimal constant.

This implies some interesting consequences, such as a proof of the Suita conjecture on the optimal comparison between the Bergman kernel and the logarithmic capacity of domains.
In a very recent paper (June 27), G. Hosono has proved that the L^{2} estimate also holds with an optimal constant in case there is only one jump and the multiplier ideal sheaf is a power of the reduced ideal defining the subvariety Y.
In fact, this result can be seen to hold under the sole assumption that there is only one jump, by a variation of the known methods (Błocki, Guan-Zhou, Berndtsson-Lempert).

The end

