Entire curves in complex projective varieties and differential equations

Jean-Pierre Demailly

Institut Fourier, Université Grenoble Alpes \& Académie des Sciences de Paris
Mathematisches Forschungsinstitut Oberwolfach
"Geometric Methods of Complex Analysis"
Conference n ${ }^{\circ} 2120$
May 17 - 21, 2021

Introduction and goals

Let X be a complex projective manifold, $\operatorname{dim}_{\mathbb{C}} X=n$. Our goal is to study the existence and distribution of entire curves, i.e. non constant holomorphic curves $f: \mathbb{C} \rightarrow X$.

Introduction and goals

Let X be a complex projective manifold, $\operatorname{dim}_{\mathbb{C}} X=n$. Our goal is to study the existence and distribution of entire curves, i.e. non constant holomorphic curves $f: \mathbb{C} \rightarrow X$.

Conjecture (Green-Griffiths-Lang)

Assume that X is of general type, i.e. $\kappa(X)=n=\operatorname{dim} X$ where

$$
\kappa(X):=\limsup _{m \rightarrow+\infty} \frac{\log h^{0}\left(X, K_{X}^{\otimes m}\right)}{\log m}
$$

Then $\exists Y \subsetneq X$ algebraic containing all entire curves $f: \mathbb{C} \rightarrow X$.

Introduction and goals

Let X be a complex projective manifold, $\operatorname{dim}_{\mathbb{C}} X=n$. Our goal is to study the existence and distribution of entire curves, i.e. non constant holomorphic curves $f: \mathbb{C} \rightarrow X$.

Conjecture (Green-Griffiths-Lang)

Assume that X is of general type, i.e. $\kappa(X)=n=\operatorname{dim} X$ where

$$
\kappa(X):=\limsup _{m \rightarrow+\infty} \frac{\log h^{0}\left(X, K_{X}^{\otimes m}\right)}{\log m}
$$

Then $\exists Y \subsetneq X$ algebraic containing all entire curves $f: \mathbb{C} \rightarrow X$.
Definition. The smallest algebraic subvariety above will be denoted $Y=\operatorname{Exc}(X)=$ exceptional locus of X.

Introduction and goals

Let X be a complex projective manifold, $\operatorname{dim}_{\mathbb{C}} X=n$. Our goal is to study the existence and distribution of entire curves, i.e. non constant holomorphic curves $f: \mathbb{C} \rightarrow X$.

Conjecture (Green-Griffiths-Lang)

Assume that X is of general type, i.e. $\kappa(X)=n=\operatorname{dim} X$ where

$$
\kappa(X):=\limsup _{m \rightarrow+\infty} \frac{\log h^{0}\left(X, K_{X}^{\otimes m}\right)}{\log m}
$$

Then $\exists Y \subsetneq X$ algebraic containing all entire curves $f: \mathbb{C} \rightarrow X$.
Definition. The smallest algebraic subvariety above will be denoted $Y=\operatorname{Exc}(X)=$ exceptional locus of X.

Arithmetic counterpart (Lang 1987) - very optimistic ?

For X projective defined over a number field \mathbb{K}_{0}, the exceptional locus $Y=\operatorname{Exc}(X)$ in GGL's conjecture equals $\operatorname{Mordell}(X)=$ smallest Y such that $X(\mathbb{K}) \backslash Y$ is finite, $\forall \mathbb{K}$ number field $\supset \mathbb{K}_{0}$.

Category of directed varieties

More generally, we are interested in entire curves $f: \mathbb{C} \rightarrow X$ such that $f^{\prime}(\mathbb{C}) \subset V$, where V is a (possibly singular) linear subspace of X, i.e. a closed irreducible analytic subspace such that $\forall x \in X$, $V_{x}:=V \cap T_{X, x}$ is linear.

Category of directed varieties

More generally, we are interested in entire curves $f: \mathbb{C} \rightarrow X$ such that $f^{\prime}(\mathbb{C}) \subset V$, where V is a (possibly singular) linear subspace of X, i.e. a closed irreducible analytic subspace such that $\forall x \in X$, $V_{x}:=V \cap T_{X, x}$ is linear.
$f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$

Category of directed varieties

More generally, we are interested in entire curves $f: \mathbb{C} \rightarrow X$ such that $f^{\prime}(\mathbb{C}) \subset V$, where V is a (possibly singular) linear subspace of X, i.e. a closed irreducible analytic subspace such that $\forall x \in X$, $V_{x}:=V \cap T_{X, x}$ is linear.
$f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$

Definition (Category of directed varieties)

- Objects : pairs $(X, V), X$ manifold $/ \mathbb{C}$ and $V \subset T_{X}$
- Arrows $\psi:(X, V) \rightarrow(Y, W)$ holomorphic s.t. $d \psi(V) \subset W$

Category of directed varieties

More generally, we are interested in entire curves $f: \mathbb{C} \rightarrow X$ such that $f^{\prime}(\mathbb{C}) \subset V$, where V is a (possibly singular) linear subspace of X, i.e. a closed irreducible analytic subspace such that $\forall x \in X$, $V_{x}:=V \cap T_{X, x}$ is linear.
$f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$

Definition (Category of directed varieties)

- Objects : pairs $(X, V), X$ manifold $/ \mathbb{C}$ and $V \subset T_{X}$
- Arrows $\psi:(X, V) \rightarrow(Y, W)$ holomorphic s.t. $d \psi(V) \subset W$
- "Absolute case" $\left(X, T_{X}\right)$, i.e. $V=T_{X}$
- "Relative case" $\left(X, T_{X / S}\right)$ where $X \rightarrow S$
- "Integrable case" when $[\mathcal{O}(V), \mathcal{O}(V)] \subset \mathcal{O}(V)$ (foliations)

Canonical sheaf of a directed variety (X,V)

Canonical sheaf of a directed manifold (X, V)

When V is nonsingular, i.e. a subbundle, one simply sets

$$
K_{V}=\operatorname{det}\left(V^{*}\right) \quad \text { (as a line bundle). }
$$

Canonical sheaf of a directed variety (X,V)

Canonical sheaf of a directed manifold (X, V)

When V is nonsingular, i.e. a subbundle, one simply sets

$$
K_{V}=\operatorname{det}\left(V^{*}\right) \quad(\text { as a line bundle }) .
$$

When V is singular, we first introduce the rank 1 sheaf ${ }^{b} \mathcal{K}_{V}$ of sections of det V^{*} that are locally bounded with respect to a smooth ambient metric on T_{X}.

Canonical sheaf of a directed variety (X,V)

Canonical sheaf of a directed manifold (X, V)

When V is nonsingular, i.e. a subbundle, one simply sets

$$
K_{V}=\operatorname{det}\left(V^{*}\right) \quad \text { (as a line bundle). }
$$

When V is singular, we first introduce the rank 1 sheaf ${ }^{b} \mathcal{K}_{V}$ of sections of det V^{*} that are locally bounded with respect to a smooth ambient metric on T_{X}. One can show that ${ }^{b} \mathcal{K}_{V}$ is equal to the integral closure of the image of the natural morphism

$$
\mathcal{O}\left(\Lambda^{r} T_{X}^{*}\right) \rightarrow \mathcal{O}\left(\Lambda^{r} V^{*}\right) \rightarrow \mathcal{L}_{V}:=\text { invert. sheaf } \mathcal{O}\left(\Lambda^{r} V^{*}\right)^{* *}
$$

that is, if the image is $\mathcal{L}_{V} \otimes \mathcal{J}_{V}, \mathcal{J}_{V} \subset \mathcal{O}_{X}$,

$$
{ }^{b} \mathcal{K}_{V}=\mathcal{L}_{V} \otimes \overline{\mathcal{J}}_{V}, \quad \overline{\mathcal{J}}_{V}=\text { integral closure of } \mathcal{J}_{V}
$$

Canonical sheaf of a directed variety (X,V)

Canonical sheaf of a directed manifold (X, V)

When V is nonsingular, i.e. a subbundle, one simply sets

$$
K_{V}=\operatorname{det}\left(V^{*}\right) \quad \text { (as a line bundle). }
$$

When V is singular, we first introduce the rank 1 sheaf ${ }^{b} \mathcal{K}_{V}$ of sections of det V^{*} that are locally bounded with respect to a smooth ambient metric on T_{X}. One can show that ${ }^{b} \mathcal{K}_{V}$ is equal to the integral closure of the image of the natural morphism

$$
\mathcal{O}\left(\Lambda^{r} T_{X}^{*}\right) \rightarrow \mathcal{O}\left(\Lambda^{r} V^{*}\right) \rightarrow \mathcal{L}_{V}:=\text { invert. sheaf } \mathcal{O}\left(\Lambda^{r} V^{*}\right)^{* *}
$$

that is, if the image is $\mathcal{L}_{V} \otimes \mathcal{J}_{V}, \mathcal{J}_{v} \subset \mathcal{O}_{x}$,

$$
{ }^{b} \mathcal{K}_{V}=\mathcal{L}_{V} \otimes \overline{\mathcal{J}}_{V}, \quad \overline{\mathcal{J}}_{V}=\text { integral closure of } \mathcal{J}_{V}
$$

Caution

One may have to first blow up X, otherwise ${ }^{b} \mathcal{K}_{V}$ need not always provide the appropriate geometric information.

Canonical sheaf of a directed variety (X, V) [sequel]

Blow up process for a directed variety
If $\mu: \widetilde{X} \rightarrow X$ is a modification, then \widetilde{X} is equipped with the pull-back directed structure $\widetilde{V}=\overline{\tilde{\mu}^{-1}\left(V_{\mid X^{\prime}}\right)}$, where $X^{\prime} \subset X$ is a Zariski open set over which μ is a biholomorphism.

Canonical sheaf of a directed variety (X, V) [sequel]

Blow up process for a directed variety
If $\mu: \widetilde{X} \rightarrow X$ is a modification, then \widetilde{X} is equipped with the pull-back directed structure $\widetilde{V}=\tilde{\mu}^{-1}\left(V_{\mid X^{\prime}}\right)$, where $X^{\prime} \subset X$ is a Zariski open set over which μ is a biholomorphism.

Canonical sheaf of a directed variety (X, V) [sequel]

Blow up process for a directed variety

If $\mu: \widetilde{X} \rightarrow X$ is a modification, then \widetilde{X} is equipped with the pull-back directed structure $\widetilde{V}=\tilde{\mu}^{-1}\left(V_{\mid X^{\prime}}\right)$, where $X^{\prime} \subset X$ is a Zariski open set over which μ is a biholomorphism.

Observation

One always has

$$
{ }^{b} \mathcal{K}_{V} \subset \mu_{*}\left({ }^{b} \mathcal{K}_{\widetilde{V}}\right) \subset \mathcal{L}_{V}=\mathcal{O}\left(\operatorname{det} V^{*}\right)^{* *}
$$

and $\mu_{*}\left({ }^{b} \mathcal{K}_{\tilde{V}}\right)$ "increases" with μ (taking $\widetilde{\widetilde{X}} \rightarrow \widetilde{X} \rightarrow X$).

Canonical sheaf of a directed variety (X, V) [sequel]

By Noetherianity, one can define a sequence of rank 1 sheaves

$$
\mathcal{K}_{V}^{[m]}=\lim _{\mu} \uparrow \mu_{*}\left({ }^{b} \mathcal{K}_{\tilde{V}}\right)^{\otimes m}, \quad \mu_{*}\left({ }^{b} \mathcal{K}_{V}\right)^{\otimes m} \subset \mathcal{K}_{V}^{[m]} \subset \mathcal{L}_{V}^{\otimes m}
$$

which we call the pluricanonical sheaf sequence of (X, V).

Canonical sheaf of a directed variety (X, V) [sequel]

By Noetherianity, one can define a sequence of rank 1 sheaves

$$
\mathcal{K}_{V}^{[m]}=\lim _{\mu} \uparrow \mu_{*}\left({ }^{b} \mathcal{K}_{\tilde{V}}\right)^{\otimes m}, \quad \mu_{*}\left({ }^{b} \mathcal{K}_{V}\right)^{\otimes m} \subset \mathcal{K}_{V}^{[m]} \subset \mathcal{L}_{V}^{\otimes m}
$$

which we call the pluricanonical sheaf sequence of (X, V).

Remark

The blow-up μ for which the limit is attained may depend on m. We do not know if there is a μ that works for all m.

Canonical sheaf of a directed variety (X, V) [sequel]

By Noetherianity, one can define a sequence of rank 1 sheaves

$$
\mathcal{K}_{V}^{[m]}=\lim _{\mu} \uparrow \mu_{*}\left({ }^{b} \mathcal{K}_{\tilde{V}}\right)^{\otimes m}, \quad \mu_{*}\left({ }^{b} \mathcal{K}_{V}\right)^{\otimes m} \subset \mathcal{K}_{V}^{[m]} \subset \mathcal{L}_{V}^{\otimes m}
$$

which we call the pluricanonical sheaf sequence of (X, V).

Remark

The blow-up μ for which the limit is attained may depend on m. We do not know if there is a μ that works for all m.

This generalizes the concept of reduced singularities of foliations, (which is known to work in that form only for surfaces).

Canonical sheaf of a directed variety (X, V) [sequel]

By Noetherianity, one can define a sequence of rank 1 sheaves

$$
\mathcal{K}_{V}^{[m]}=\lim _{\mu} \uparrow \mu_{*}\left({ }^{b} \mathcal{K}_{\tilde{V}}\right)^{\otimes m}, \quad \mu_{*}\left({ }^{b} \mathcal{K}_{V}\right)^{\otimes m} \subset \mathcal{K}_{V}^{[m]} \subset \mathcal{L}_{V}^{\otimes m}
$$

which we call the pluricanonical sheaf sequence of (X, V).

Remark

The blow-up μ for which the limit is attained may depend on m. We do not know if there is a μ that works for all m.

This generalizes the concept of reduced singularities of foliations, (which is known to work in that form only for surfaces).

Definition

We say that (X, V) is of general type if the pluricanonical sheaf sequence $\mathcal{K}_{V}^{[0]}$ is big, i.e. $H^{0}\left(X, \mathcal{K}_{V}^{[m]}\right)$ provides a generic embedding of X for a suitable $m \gg 1$.

Generalized Green-Griffiths-Lang conjecture

Generalized GGL conjecture

If (X, V) is directed manifold of general type, i.e. $\mathcal{K}_{V}^{[0]}$ is big, then there exists an algebraic locus $Y \subsetneq X$ such that for every $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$, one has $f(\mathbb{C}) \subset Y$.

Generalized Green-Griffiths-Lang conjecture

Generalized GGL conjecture

If (X, V) is directed manifold of general type, i.e. $\mathcal{K}_{V}^{[0]}$ is big, then there exists an algebraic locus $Y \subsetneq X$ such that for every $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$, one has $f(\mathbb{C}) \subset Y$.

Remark 1. Elementary by Ahlfors-Schwarz if $r=$ rank $V=1$. $t \mapsto \log \left\|f^{\prime}(t)\right\|_{V, h}$ is strictly subharmonic if $r=1$ and $\left(V^{*}, h^{*}\right)$ big.

Generalized Green-Griffiths-Lang conjecture

Generalized GGL conjecture

If (X, V) is directed manifold of general type, i.e. $\mathcal{K}_{V}^{[0]}$ is big, then there exists an algebraic locus $Y \subsetneq X$ such that for every $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$, one has $f(\mathbb{C}) \subset Y$.

Remark 1. Elementary by Ahlfors-Schwarz if $r=$ rank $V=1$. $t \mapsto \log \left\|f^{\prime}(t)\right\|_{V, h}$ is strictly subharmonic if $r=1$ and (V^{*}, h^{*}) big. Remark 2. The above statement is possibly too optimistic. It might be safer to add a suitable (semi)stability condition on V.

Generalized Green-Griffiths-Lang conjecture

Generalized GGL conjecture

If (X, V) is directed manifold of general type, i.e. $\mathcal{K}_{V}^{[0]}$ is big, then there exists an algebraic locus $Y \subsetneq X$ such that for every $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$, one has $f(\mathbb{C}) \subset Y$.

Remark 1. Elementary by Ahlfors-Schwarz if $r=\operatorname{rank} V=1$. $t \mapsto \log \left\|f^{\prime}(t)\right\|_{V, h}$ is strictly subharmonic if $r=1$ and (V^{*}, h^{*}) big.
Remark 2. The above statement is possibly too optimistic. It might be safer to add a suitable (semi)stability condition on V.

Basic strategy

Show that the entire curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ must satisfy nontrivial algebraic differential equations $P\left(f ; f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)=0$, and actually, many such equations.

Definition of algebraic differential operators

Let $\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V), \quad t \mapsto f(t)=\left(f_{1}(t), \ldots, f_{n}(t)\right)$ be a curve, $f(0)=x$, and pick local holomorphic coordinates $\left(z_{1}, \ldots, z_{n}\right)$ centered at x on a coordinate open set $U \simeq U^{\prime} \times U^{\prime \prime} \subset \mathbb{C}^{r} \times \mathbb{C}^{n-r}$ such that $\pi^{\prime}: U \rightarrow U^{\prime}$ induces an isomorphism $d \pi^{\prime}: V \rightarrow U \times \mathbb{C}^{r}$.

Definition of algebraic differential operators

Let $\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V), \quad t \mapsto f(t)=\left(f_{1}(t), \ldots, f_{n}(t)\right)$ be a curve, $f(0)=x$, and pick local holomorphic coordinates $\left(z_{1}, \ldots, z_{n}\right)$ centered at x on a coordinate open set $U \simeq U^{\prime} \times U^{\prime \prime} \subset \mathbb{C}^{r} \times \mathbb{C}^{n-r}$ such that $\pi^{\prime}: U \rightarrow U^{\prime}$ induces an isomorphism $d \pi^{\prime}: V \rightarrow U \times \mathbb{C}^{r}$. Then f is determined by the Taylor expansion

$$
\pi^{\prime} \circ f(t)=t \xi_{1}+\ldots+t^{k} \xi_{k}+O\left(t^{k+1}\right), \quad \xi_{s}=\frac{1}{s!} \nabla^{s} f(0)
$$

where ∇ is the trivial connection on $V \simeq U \times \mathbb{C}^{r}$.

Definition of algebraic differential operators

Let $\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V), \quad t \mapsto f(t)=\left(f_{1}(t), \ldots, f_{n}(t)\right)$ be a curve, $f(0)=x$, and pick local holomorphic coordinates $\left(z_{1}, \ldots, z_{n}\right)$
centered at x on a coordinate open set $U \simeq U^{\prime} \times U^{\prime \prime} \subset \mathbb{C}^{r} \times \mathbb{C}^{n-r}$ such that $\pi^{\prime}: U \rightarrow U^{\prime}$ induces an isomorphism $d \pi^{\prime}: V \rightarrow U \times \mathbb{C}^{r}$. Then f is determined by the Taylor expansion

$$
\pi^{\prime} \circ f(t)=t \xi_{1}+\ldots+t^{k} \xi_{k}+O\left(t^{k+1}\right), \quad \xi_{s}=\frac{1}{s!} \nabla^{s} f(0)
$$

where ∇ is the trivial connection on $V \simeq U \times \mathbb{C}^{r}$.
One considers the Green-Griffiths bundle $E_{k, m}^{\mathrm{GG}} V^{*}$ of polynomials of weighted degree m, written locally in coordinate charts as

$$
P\left(x ; \xi_{1}, \ldots, \xi_{k}\right)=\sum a_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}(x) \xi_{1}^{\alpha_{1}} \ldots \xi_{k}^{\alpha_{k}}, \quad \xi_{s} \in V
$$

Definition of algebraic differential operators

Let $\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V), \quad t \mapsto f(t)=\left(f_{1}(t), \ldots, f_{n}(t)\right)$ be a curve, $f(0)=x$, and pick local holomorphic coordinates $\left(z_{1}, \ldots, z_{n}\right)$
centered at x on a coordinate open set $U \simeq U^{\prime} \times U^{\prime \prime} \subset \mathbb{C}^{r} \times \mathbb{C}^{n-r}$ such that $\pi^{\prime}: U \rightarrow U^{\prime}$ induces an isomorphism $d \pi^{\prime}: V \rightarrow U \times \mathbb{C}^{r}$. Then f is determined by the Taylor expansion

$$
\pi^{\prime} \circ f(t)=t \xi_{1}+\ldots+t^{k} \xi_{k}+O\left(t^{k+1}\right), \quad \xi_{s}=\frac{1}{s!} \nabla^{s} f(0)
$$

where ∇ is the trivial connection on $V \simeq U \times \mathbb{C}^{r}$.
One considers the Green-Griffiths bundle $E_{k, m}^{G G} V^{*}$ of polynomials of weighted degree m, written locally in coordinate charts as

$$
P\left(x ; \xi_{1}, \ldots, \xi_{k}\right)=\sum a_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}(x) \xi_{1}^{\alpha_{1}} \ldots \xi_{k}^{\alpha_{k}}, \quad \xi_{s} \in V
$$

These can also be viewed as algebraic differential operators

$$
\begin{aligned}
P\left(f_{[k]}\right) & =P\left(f ; f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right) \\
& =\sum a_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}(f(t)) f^{\prime}(t)^{\alpha_{1}} f^{\prime \prime}(t)^{\alpha_{2}} \ldots f^{(k)}(t)^{\alpha_{k}} .
\end{aligned}
$$

Definition of algebraic differential operators [sequel]

Here $t \mapsto z=f(t)$ is a curve, $f_{[k]}=\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)$ its k-jet, and $a_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}(z)$ are supposed to holomorphic functions on X.

Definition of algebraic differential operators [sequel]

Here $t \mapsto z=f(t)$ is a curve, $f_{[k]}=\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)$ its k-jet, and $a_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}(z)$ are supposed to holomorphic functions on X.

The reparametrization action : $f \mapsto f \circ \varphi_{\lambda}, \varphi_{\lambda}(t)=\lambda t, \lambda \in \mathbb{C}^{*}$ yields $\left(f \circ \varphi_{\lambda}\right)^{(k)}(t)=\lambda^{k} f^{(k)}(\lambda t)$, whence a \mathbb{C}^{*}-action

$$
\lambda \cdot\left(\xi_{1}, \xi_{1}, \ldots, \xi_{k}\right)=\left(\lambda \xi_{1}, \lambda^{2} \xi_{2}, \ldots, \lambda^{k} \xi_{k}\right)
$$

Definition of algebraic differential operators [sequel]

Here $t \mapsto z=f(t)$ is a curve, $f_{[k]}=\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)$ its k-jet, and $a_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}(z)$ are supposed to holomorphic functions on X.

The reparametrization action : $f \mapsto f \circ \varphi_{\lambda}, \varphi_{\lambda}(t)=\lambda t, \lambda \in \mathbb{C}^{*}$ yields $\left(f \circ \varphi_{\lambda}\right)^{(k)}(t)=\lambda^{k} f^{(k)}(\lambda t)$, whence a \mathbb{C}^{*}-action

$$
\lambda \cdot\left(\xi_{1}, \xi_{1}, \ldots, \xi_{k}\right)=\left(\lambda \xi_{1}, \lambda^{2} \xi_{2}, \ldots, \lambda^{k} \xi_{k}\right)
$$

$E_{k, m}^{\mathrm{GG}}$ is precisely the set of polynomials of weighted degree m, corresponding to coefficients $a_{\alpha_{1} \ldots \alpha_{k}}$ with $m=\left|\alpha_{1}\right|+2\left|\alpha_{2}\right|+\ldots+k\left|\alpha_{k}\right|$.

Definition of algebraic differential operators [sequel]

Here $t \mapsto z=f(t)$ is a curve, $f_{[k]}=\left(f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}\right)$ its k-jet, and $a_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}(z)$ are supposed to holomorphic functions on X.

The reparametrization action : $f \mapsto f \circ \varphi_{\lambda}, \varphi_{\lambda}(t)=\lambda t, \lambda \in \mathbb{C}^{*}$ yields $\left(f \circ \varphi_{\lambda}\right)^{(k)}(t)=\lambda^{k} f^{(k)}(\lambda t)$, whence a \mathbb{C}^{*}-action

$$
\lambda \cdot\left(\xi_{1}, \xi_{1}, \ldots, \xi_{k}\right)=\left(\lambda \xi_{1}, \lambda^{2} \xi_{2}, \ldots, \lambda^{k} \xi_{k}\right)
$$

$E_{k, m}^{\mathrm{GG}}$ is precisely the set of polynomials of weighted degree m, corresponding to coefficients $a_{\alpha_{1} \ldots \alpha_{k}}$ with

$$
m=\left|\alpha_{1}\right|+2\left|\alpha_{2}\right|+\ldots+k\left|\alpha_{k}\right| .
$$

Direct image formula

If $J_{k}^{\mathrm{nc}} V$ is the set of non constant k-jets, one defines the Green-Griffiths bundle to be $X_{k}^{\mathrm{GG}}=J_{k}^{\mathrm{nc}} V / \mathbb{C}^{*}$ and $\mathcal{O}_{X_{k}^{\mathrm{GG}}}(1)$ to be the associated tautological rank 1 sheaf. Then we have

$$
\pi_{k}: X_{k}^{\mathrm{GG}} \rightarrow X, \quad E_{k, m}^{\mathrm{GG}} V^{*}=\left(\pi_{k}\right)_{*} \mathcal{O}_{X_{k}^{\mathrm{GG}}}(m)
$$

Main cohomology estimates

As an application of holomorphic Morse inequalities, one can get the following fundamental estimates.

Theorem (D-, 2010)

Let (X, V) be a directed manifold, $A \rightarrow X$ an ample \mathbb{Q}-line bundle, (V, h) and $\left(A, h_{A}\right)$ hermitian, $\Theta_{A, h_{A}}>0$. Define

$$
\begin{aligned}
& L_{k}=\mathcal{O}_{X_{k}^{\mathrm{GG}}}(1) \otimes \pi_{k}^{*} \mathcal{O}\left(-\frac{1}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) A\right), \\
& \eta=\Theta_{\operatorname{det} V^{*}, \operatorname{det} h^{*}}-\Theta_{A, h_{A}}
\end{aligned}
$$

Then for all $q \geq 0$ and all $m \gg k \gg 1$ such that m is sufficiently divisible, we have upper and lower bounds [$q=0$ is most useful!]
$h^{q}\left(X_{k}^{\mathrm{GG}}, \mathcal{O}\left(L_{k}^{\otimes m}\right)\right) \leq \frac{m^{n+k r-1}}{(n+k r-1)!} \frac{(\log k)^{n}}{n!(k!)^{r}}\left(\int_{X(\eta, q)}(-1)^{q} \eta^{n}+\frac{C}{\log k}\right)$

Main cohomology estimates

As an application of holomorphic Morse inequalities, one can get the following fundamental estimates.

Theorem (D-, 2010)

Let (X, V) be a directed manifold, $A \rightarrow X$ an ample \mathbb{Q}-line bundle, (V, h) and $\left(A, h_{A}\right)$ hermitian, $\Theta_{A, h_{A}}>0$. Define

$$
\begin{aligned}
& L_{k}=\mathcal{O}_{X_{k}^{\mathrm{GG}}}(1) \otimes \pi_{k}^{*} \mathcal{O}\left(-\frac{1}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) A\right), \\
& \eta=\Theta_{\operatorname{det} V^{*}, \operatorname{det} h^{*}}-\Theta_{A, h_{A}}
\end{aligned}
$$

Then for all $q \geq 0$ and all $m \gg k \gg 1$ such that m is sufficiently divisible, we have upper and lower bounds [$q=0$ is most useful!]

$$
\begin{aligned}
& h^{q}\left(X_{k}^{\mathrm{GG}}, \mathcal{O}\left(L_{k}^{\otimes m}\right)\right) \leq \frac{m^{n+k r-1}}{(n+k r-1)!} \frac{(\log k)^{n}}{n!(k!)^{r}}\left(\int_{X(\eta, q)}(-1)^{q} \eta^{n}+\frac{C}{\log k}\right) \\
& h^{q}\left(X_{k}^{\mathrm{GG}}, \mathcal{O}\left(L_{k}^{\otimes m}\right)\right) \geq \frac{m^{n+k r-1}}{(n+k r-1)!} \frac{(\log k)^{n}}{n!(k!)^{r}}\left(\int_{X(\eta, q, q \pm 1)}(-1)^{q} \eta^{n}-\frac{C}{\log k}\right) .
\end{aligned}
$$

Holomorphic Morse inequalities: main statement

The q-index set of a real $(1,1)$-form θ is defined to be

$$
X(\theta, q)=\{x \in X \mid \theta(x) \text { has signature }(n-q, q)\}
$$

(exactly q negative eigenvalues and $n-q$ positive ones)

Holomorphic Morse inequalities: main statement

The q-index set of a real $(1,1)$-form θ is defined to be

$$
X(\theta, q)=\{x \in X \mid \theta(x) \text { has signature }(n-q, q)\}
$$

(exactly q negative eigenvalues and $n-q$ positive ones)
Set also $X(\theta, \leq q)=\bigcup_{0 \leq j \leq q} X(\theta, j)$.
$X(\theta, q)$ and $X(\theta, \leq q)$ are open sets.
$\operatorname{sign}\left(\theta^{n}\right)=(-1)^{q}$ on $X(\theta, q)$.

Holomorphic Morse inequalities: main statement

The q-index set of a real $(1,1)$-form θ is defined to be

$$
X(\theta, q)=\{x \in X \mid \theta(x) \text { has signature }(n-q, q)\}
$$

(exactly q negative eigenvalues and $n-q$ positive ones)
Set also $X(\theta, \leq q)=\bigcup_{0 \leq j \leq q} X(\theta, j)$.
$X(\theta, q)$ and $X(\theta, \leq q)$ are open sets.
$\operatorname{sign}\left(\theta^{n}\right)=(-1)^{q}$ on $X(\theta, q)$.

Theorem (D-, 1985)

Let (L, h) be a hermitian line bundle on X, \mathcal{F} a coherent sheaf, $\theta=\Theta_{L, h}$ and $r=\operatorname{rank} \mathcal{F}$. Then, as $m \rightarrow+\infty$

$$
\sum_{j=0}^{q}(-1)^{q-j} h^{j}\left(X, L^{\otimes m} \otimes \mathcal{F}\right) \leq r \frac{m^{n}}{n!} \int_{X(\theta, \leq q)}(-1)^{q} \theta^{n}+o\left(m^{n}\right)
$$

$1^{\text {st }}$ step: define a Finsler metric on k-jet bundles

Let $J_{k} V$ be the bundle of k-jets of curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$

$1^{\text {st }}$ step: define a Finsler metric on k-jet bundles

Let $J_{k} V$ be the bundle of k-jets of curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ Assuming that V is equipped with a hermitian metric h, one defines a "weighted Finsler metric" on $J^{k} V$ by taking $p=k$! and

$$
\Psi_{h_{k}}(f):=\left(\sum_{1 \leq s \leq k} \varepsilon_{s}\left\|\nabla^{s} f(0)\right\|_{h(x)}^{2 p / s}\right)^{1 / p}, \quad 1=\varepsilon_{1} \gg \varepsilon_{2} \gg \cdots \gg \varepsilon_{k}
$$

$1^{\text {st }}$ step: define a Finsler metric on k-jet bundles

Let $J_{k} V$ be the bundle of k-jets of curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ Assuming that V is equipped with a hermitian metric h, one defines a "weighted Finsler metric" on $J^{k} V$ by taking $p=k$! and $\Psi_{h_{k}}(f):=\left(\sum_{1 \leq s \leq k} \varepsilon_{s}\left\|\nabla^{s} f(0)\right\|_{h(x)}^{2 p / s}\right)^{1 / p}, \quad 1=\varepsilon_{1} \gg \varepsilon_{2} \gg \cdots>\varepsilon_{k}$.
Letting $\xi_{s}=\nabla^{s} f(0)$, this can actually be viewed as a metric h_{k} on $L_{k}:=\mathcal{O}_{X_{k}^{G G}}(1)$, with curvature form $\left(x, \xi_{1}, \ldots, \xi_{k}\right) \mapsto$
$\Theta_{L_{k}, h_{k}}=\omega_{\mathrm{FS}, k}(\xi)+\frac{i}{2 \pi} \sum_{1 \leq s \leq k} \frac{1}{s} \frac{\left|\xi_{s}\right|^{2 p / s}}{\sum_{t}\left|\xi_{t}\right|^{2 p / t}} \sum_{i, j, \alpha, \beta} c_{i j \alpha \beta} \frac{\xi_{s \alpha} \bar{\xi}_{s \beta}}{\left|\xi_{s}\right|^{2}} d z_{i} \wedge d \bar{z}_{j}$
where $\left(c_{i j \alpha \beta}\right)$ are the coefficients of the curvature tensor $\Theta_{V^{*}, h^{*}}$ and $\omega_{\mathrm{FS}, k}$ is the vertical Fubini-Study metric on the fibers of $X_{k}^{\mathrm{GG}} \rightarrow X$.

$1^{\text {st }}$ step: define a Finsler metric on k-jet bundles

Let $J_{k} V$ be the bundle of k-jets of curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ Assuming that V is equipped with a hermitian metric h, one defines a "weighted Finsler metric" on $J^{k} V$ by taking $p=k$! and $\Psi_{h_{k}}(f):=\left(\sum_{1 \leq s \leq k} \varepsilon_{s}\left\|\nabla^{s} f(0)\right\|_{h(x)}^{2 p / s}\right)^{1 / p}, \quad 1=\varepsilon_{1} \gg \varepsilon_{2} \gg \cdots \gg \varepsilon_{k}$.
Letting $\xi_{s}=\nabla^{s} f(0)$, this can actually be viewed as a metric h_{k} on $L_{k}:=\mathcal{O}_{X_{k}^{G G}}(1)$, with curvature form $\left(x, \xi_{1}, \ldots, \xi_{k}\right) \mapsto$
$\Theta_{L_{k}, h_{k}}=\omega_{\mathrm{FS}, k}(\xi)+\frac{i}{2 \pi} \sum_{1 \leq s \leq k} \frac{1}{s} \frac{\left|\xi_{s}\right|^{2 p / s}}{\sum_{t}\left|\xi_{t}\right|^{2 p / t}} \sum_{i, j, \alpha, \beta} c_{i j \alpha \beta} \frac{\xi_{s \alpha} \bar{\xi}_{s \beta}}{\left|\xi_{s}\right|^{2}} d z_{i} \wedge d \bar{z}_{j}$
where $\left(c_{i j \alpha \beta}\right)$ are the coefficients of the curvature tensor $\Theta_{V^{*}, h^{*}}$ and $\omega_{\mathrm{FS}, k}$ is the vertical Fubini-Study metric on the fibers of $X_{k}^{\mathrm{GG}} \rightarrow X$.
The expression gets simpler by using polar coordinates

$$
x_{s}=\left|\xi_{s}\right|_{h}^{2 p / s}, \quad u_{s}=\xi_{s} /\left|\xi_{s}\right|_{h}=\nabla^{s} f(0) /\left|\nabla^{s} f(0)\right| .
$$

\section*{nd

nd
 step: probabilistic interpretation

 step: probabilistic interpretation}$$
\Theta_{L_{k}, h_{k}}=\omega_{\mathrm{FS}, p, k}(\xi)+\frac{i}{2 \pi} \sum_{1 \leq s \leq k} \frac{1}{s} x_{s} \sum_{i, j, \alpha, \beta} c_{i j \alpha \beta}(z) u_{s \alpha} \bar{u}_{s \beta} d z_{i} \wedge d \bar{z}_{j}
$$

where $\omega_{\mathrm{FS}, k}(\xi)$ is positive definite in ξ. The other terms are a weighted average of the values of the curvature tensor $\Theta_{V, h}$ on vectors u_{s} in the unit sphere bundle $S V \subset V$.

$2^{\text {nd }}$
 step: probabilistic interpretation of the curvature

In such polar coordinates, one gets the formula

$$
\Theta_{L_{k}, h_{k}}=\omega_{F S, p, k}(\xi)+\frac{i}{2 \pi} \sum_{1 \leq s \leq k} \frac{1}{s} x_{s} \sum_{i, j, \alpha, \beta} c_{i j \alpha \beta}(z) u_{s \alpha} \bar{u}_{s \beta} d z_{i} \wedge d \bar{z}_{j}
$$

where $\omega_{\mathrm{FS}, \mathrm{k}}(\xi)$ is positive definite in ξ. The other terms are a weighted average of the values of the curvature tensor $\Theta_{V, h}$ on vectors u_{s} in the unit sphere bundle $S V \subset V$.
The weighted projective space can be viewed as a circle quotient of the pseudosphere $\sum\left|\xi_{s}\right|^{2 p / s}=1$, so we can take here $x_{s} \geq 0$, $\sum x_{s}=1$. This is essentially a sum of the form $\sum \frac{1}{s} Q\left(u_{s}\right)$ where $Q(u)=\left\langle\Theta_{\nu^{*}, h^{*}} u, u\right\rangle$ and u_{s} are random points of the sphere, and so as $k \rightarrow+\infty$ this can be estimated by a "Monte-Carlo" integral

$$
\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) \int_{u \in S V} Q(u) d u .
$$

As Q is quadratic, $\int_{u \in S V} Q(u) d u=\frac{1}{r} \operatorname{Tr}(Q)=\frac{1}{r} \operatorname{Tr}\left(\Theta_{V^{*}, h^{*}}\right)=\frac{1}{r} \Theta_{\operatorname{det}} V^{*}$.

Fundamental vanishing theorem and diff. equations

Passing to a "singular version" of holomorphic Morse inequalities to accommodate singular metrics ([Bonavero, 1996]), one gets

Corollary: existence of global jet differentials (D-, 2010)
Let (X, V) be of general type, i.e. ${ }^{b} \mathcal{K}_{V}^{\otimes p}$ big rank 1 sheaf, and let

$$
L_{k, \varepsilon}=\mathcal{O}_{x_{k}^{\mathrm{GG}}}(1) \otimes \pi_{k}^{*} \mathcal{O}\left(-\delta_{k} \varepsilon A\right), \quad \delta_{k}=\frac{1}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right),
$$

with A ample. Then there exist many nontrivial global sections

$$
P \in H^{0}\left(X_{k}^{\mathrm{GG}}, L_{k, \varepsilon}^{\otimes m}\right) \simeq H^{0}\left(X, E_{k, m}^{\mathrm{GG}} V^{*} \otimes \mathcal{O}\left(-m \delta_{k} \varepsilon A\right)\right)
$$

for $m \gg k \gg 1$ and $\varepsilon \in \mathbb{Q}_{>0}$ small.

Fundamental vanishing theorem and diff. equations

Passing to a "singular version" of holomorphic Morse inequalities to accommodate singular metrics ([Bonavero, 1996]), one gets

Corollary: existence of global jet differentials (D-, 2010)
Let (X, V) be of general type, i.e. ${ }^{b} \mathcal{K}_{V}^{\otimes p}$ big rank 1 sheaf, and let

$$
L_{k, \varepsilon}=\mathcal{O}_{X_{k}^{\mathrm{GG}}}(1) \otimes \pi_{k}^{*} \mathcal{O}\left(-\delta_{k} \varepsilon A\right), \quad \delta_{k}=\frac{1}{k r}\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right),
$$

with A ample. Then there exist many nontrivial global sections

$$
P \in H^{0}\left(X_{k}^{\mathrm{GG}}, L_{k, \varepsilon}^{\otimes m}\right) \simeq H^{0}\left(X, E_{k, m}^{\mathrm{GG}} V^{*} \otimes \mathcal{O}\left(-m \delta_{k} \varepsilon A\right)\right)
$$

for $m \gg k \gg 1$ and $\varepsilon \in \mathbb{Q}_{>0}$ small.
Fundamental vanishing theorem \Rightarrow differential equations
[Green-Griffiths 1979], [Demailly 1995], [Siu-Yeung 1996] For all global differential operators $P \in H^{0}\left(X, E_{k, m}^{\mathrm{GG}} V^{*} \otimes \mathcal{O}(-q A)\right)$, $q \in \mathbb{N}^{*}$, and all $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$, one has $P\left(f_{[k]}\right) \equiv 0$.

The base locus problem

Geometrically, this can interpreted by stating that the image $f_{[k]}(\mathbb{C})$ of the k-jet curve lies in the base locus

$$
Z=\bigcap_{m \in \mathbb{N}^{*}} \bigcap_{\sigma \in H^{0}\left(X_{k}^{\mathrm{GG}}, L_{k, \varepsilon}^{\otimes m}\right)} \sigma^{-1}(0) \subset X_{k}^{\mathrm{GG}}
$$

The base locus problem

Geometrically, this can interpreted by stating that the image $f_{[k]}(\mathbb{C})$ of the k-jet curve lies in the base locus

$$
Z=\bigcap_{m \in \mathbb{N}^{*}} \bigcap_{\sigma \in H^{0}\left(X_{k}^{\mathrm{GG}}, L_{k, \varepsilon}^{\otimes m}\right)} \sigma^{-1}(0) \subset X_{k}^{\mathrm{GG}}
$$

To prove the GGL conjecture, we would need to get $\pi_{k}(Z) \subsetneq X$.

General problem concerning base loci

Let (L, h) be a hermitian line bundle over X. If we assume that $\theta=\Theta_{L, h}$ satisfies $\int_{X(\theta, \leq 1)} \theta^{n}>0$, then we know that L is big, i.e. that $h^{0}\left(X, L^{\otimes m}\right) \geq c m^{n}$, for $m \geq m_{0}$ and $c>0$,

General problem concerning base loci

Let (L, h) be a hermitian line bundle over X. If we assume that $\theta=\Theta_{L, h}$ satisfies $\int_{X(\theta, \leq 1)} \theta^{n}>0$, then we know that L is big, i.e. that $h^{0}\left(X, L^{\otimes m}\right) \geq c m^{n}$, for $m \geq m_{0}$ and $c>0$, but this does not tell us anything about the base locus $\operatorname{Bs}(L)=\bigcap_{\sigma \in H^{0}(X, L \otimes m)} \sigma^{-1}(0)$.

General problem concerning base loci

Let (L, h) be a hermitian line bundle over X. If we assume that $\theta=\Theta_{L, h}$ satisfies $\int_{X(\theta, \leq 1)} \theta^{n}>0$, then we know that L is big, i.e. that $h^{0}\left(X, L^{\otimes m}\right) \geq c m^{n}$, for $m \geq m_{0}$ and $c>0$, but this does not tell us anything about the base locus $\operatorname{Bs}(L)=\bigcap_{\sigma \in H^{0}(X, L \otimes m)} \sigma^{-1}(0)$.

Definition

The "iterated base locus" $\operatorname{IBs}(L)$ is obtained by picking inductively $Z_{0}=X$ and $Z_{k}=$ zero divisor of a section σ_{k} of $L^{\otimes m_{k}}$ over the normalization of Z_{k-1}, and taking $\bigcap_{k, m_{1}, \ldots, m_{k}, \sigma_{1}, \ldots, \sigma_{k}} Z_{k}$.

General problem concerning base loci

Let (L, h) be a hermitian line bundle over X. If we assume that $\theta=\Theta_{L, h}$ satisfies $\int_{X(\theta, \leq 1)} \theta^{n}>0$, then we know that L is big, i.e. that $h^{0}\left(X, L^{\otimes m}\right) \geq c m^{n}$, for $m \geq m_{0}$ and $c>0$, but this does not tell us anything about the base locus $\operatorname{Bs}(L)=\bigcap_{\sigma \in H^{0}(X, L \otimes m)} \sigma^{-1}(0)$.

Definition

The "iterated base locus" $\operatorname{IBs}(L)$ is obtained by picking inductively $Z_{0}=X$ and $Z_{k}=$ zero divisor of a section σ_{k} of $L^{\otimes m_{k}}$ over the normalization of Z_{k-1}, and taking $\bigcap_{k, m_{1}, \ldots, m_{k}, \sigma_{1}, \ldots, \sigma_{k}} Z_{k}$.

Unsolved problem

Find a condition, e.g. in the form of Morse integrals (or analogs) for $\theta=\Theta_{L, h}$, ensuring for instance that $\operatorname{codim} \operatorname{IBs}(L)>p$.

General problem concerning base loci

Let (L, h) be a hermitian line bundle over X. If we assume that $\theta=\Theta_{L, h}$ satisfies $\int_{X(\theta, \leq 1)} \theta^{n}>0$, then we know that L is big, i.e. that $h^{0}\left(X, L^{\otimes m}\right) \geq c m^{n}$, for $m \geq m_{0}$ and $c>0$, but this does not tell us anything about the base locus $\operatorname{Bs}(L)=\bigcap_{\sigma \in H^{0}(X, L \otimes m)} \sigma^{-1}(0)$.

Definition

The "iterated base locus" $\operatorname{IBs}(L)$ is obtained by picking inductively $Z_{0}=X$ and $Z_{k}=$ zero divisor of a section σ_{k} of $L^{\otimes m_{k}}$ over the normalization of Z_{k-1}, and taking $\bigcap_{k, m_{1}, \ldots, m_{k}, \sigma_{1}, \ldots, \sigma_{k}} Z_{k}$.

Unsolved problem

Find a condition, e.g. in the form of Morse integrals (or analogs) for $\theta=\Theta_{L, h}$, ensuring for instance that $\operatorname{codim} \operatorname{IBs}(L)>p$.

We would need for instance to be able to check the positivity of Morse integrals $\int_{Z\left(\theta_{\mid Z}, \leq 1\right)} \theta^{n-p}$ for Z irreducible, $\operatorname{codim} Z=p$.

A new result on the base locus of jet differentials

Theorem (D-, 2021)
Let (X, V) be a directed variety of general type. Then there exists $k_{0} \in \mathbb{N}$ and $\delta>0$ with the following properties.

A new result on the base locus of jet differentials

Theorem (D-, 2021)

Let (X, V) be a directed variety of general type. Then there exists $k_{0} \in \mathbb{N}$ and $\delta>0$ with the following properties.
Let $Z \subset X_{k}^{G G}$ be an irreducible algebraic subvariety that is a component of a complete intersection of irreducible hypersurfaces

$$
\bigcap\left\{k \text {-jets } f_{[k]} \in X_{k}^{\mathrm{GG}} ; P_{j}(f)=0\right\}, \quad P_{j} \in H^{0}\left(X, E_{s j, m_{j}}^{\mathrm{GG}} V^{*} \otimes G_{j}\right)
$$

$1 \leq j \leq \ell$
with $k \geq k_{0}, \operatorname{ord}\left(P_{j}\right)=s_{j}, 1 \leq s_{1}<\cdots<s_{\ell} \leq k, \sum_{1 \leq j \leq \ell} \frac{1}{s_{j}} \leq \delta \log k$, and $G_{j} \in \operatorname{Pic}(X)$.

A new result on the base locus of jet differentials

Theorem (D-, 2021)

Let (X, V) be a directed variety of general type. Then there exists $k_{0} \in \mathbb{N}$ and $\delta>0$ with the following properties.
Let $Z \subset X_{k}^{G G}$ be an irreducible algebraic subvariety that is a component of a complete intersection of irreducible hypersurfaces

$$
\bigcap\left\{\text { k-jets } f_{[k]} \in X_{k}^{\mathrm{GG}} ; P_{j}(f)=0\right\}, \quad P_{j} \in H^{0}\left(X, E_{s_{j}, m_{j}}^{\mathrm{GG}} V^{*} \otimes G_{j}\right)
$$

$1 \leq j \leq \ell$
with $k \geq k_{0}, \operatorname{ord}\left(P_{j}\right)=s_{j}, 1 \leq s_{1}<\cdots<s_{\ell} \leq k, \sum_{1 \leq j \leq \ell} \frac{1}{s_{j}} \leq \delta \log k$, and $G_{j} \in \operatorname{Pic}(X)$. Then the Morse integrals $\int_{Z\left(L_{k, s}, \leq 1\right)} \Theta_{L_{k, \varepsilon}}^{\operatorname{dim} Z}$ of

$$
L_{k, \varepsilon}=\mathcal{O}_{X_{k}^{\mathrm{GG}}}(1) \otimes \pi_{k}^{*} \mathcal{O}_{X}\left(-\frac{1}{k r}\left(1+\frac{1}{2}+\cdots+\frac{1}{k}\right) \varepsilon A\right)
$$

are positive for $\varepsilon>0$ small, hence $H^{0}\left(Z, L_{k, \varepsilon}^{\otimes m}\right) \geq c m^{\operatorname{dim} Z}$ for $m \gg 1$.

A new result on the base locus of jet differentials

Theorem (D-, 2021)

Let (X, V) be a directed variety of general type. Then there exists $k_{0} \in \mathbb{N}$ and $\delta>0$ with the following properties.
Let $Z \subset X_{k}^{\mathrm{GG}}$ be an irreducible algebraic subvariety that is a component of a complete intersection of irreducible hypersurfaces
$1 \leq j \leq \ell$
with $k \geq k_{0}, \operatorname{ord}\left(P_{j}\right)=s_{j}, 1 \leq s_{1}<\cdots<s_{\ell} \leq k, \sum_{1 \leq j \leq \ell} \frac{1}{s_{j}} \leq \delta \log k$, and $G_{j} \in \operatorname{Pic}(X)$. Then the Morse integrals $\int_{Z\left(L_{k, \varepsilon}, \leq 1\right)} \Theta_{L_{k, \varepsilon}}^{1 \leq j \leq \ell}$ of

$$
L_{k, \varepsilon}=\mathcal{O}_{X_{k}^{\mathrm{GG}}}(1) \otimes \pi_{k}^{*} \mathcal{O}_{X}\left(-\frac{1}{k r}\left(1+\frac{1}{2}+\cdots+\frac{1}{k}\right) \varepsilon A\right)
$$

are positive for $\varepsilon>0$ small, hence $H^{0}\left(Z, L_{k, \varepsilon}^{\otimes m}\right) \geq c m^{\operatorname{dim} Z}$ for $m \gg 1$.
Unfortunately, this seems insufficient to prove the GGL conjecture.

Further geometric structures: Semple jet bundles

- Functor "1-jet" : $(X, V) \mapsto(\tilde{X}, \tilde{V})$ where :

$$
\begin{aligned}
& \tilde{x}=P(V)=\text { bundle of projective spaces of lines in } V \\
& \left.\tilde{\tilde{V}}_{(x,[r])}: \tilde{X}=P(V) \rightarrow X, \quad(x,[v]) \mapsto x, v \in V_{\tilde{x}},(x,[r]) ; \pi_{*} \xi \in \mathbb{C} v \subset T_{X, x}\right\}
\end{aligned}
$$

Further geometric structures: Semple jet bundles

- Functor "1-jet" : $(X, V) \mapsto(\tilde{X}, \tilde{V})$ where :

$$
\begin{aligned}
& \tilde{X}=P(V)=\text { bundle of projective spaces of lines in } V \\
& \pi: \tilde{X}=P(V) \rightarrow X, \quad(x,[v]) \mapsto x, \quad v \in V_{x} \\
& \tilde{V}_{(x,[r])}=\left\{\xi \in T_{\tilde{x},(x,[r])} ; \pi_{*} \xi \in \mathbb{C} v \subset T_{X, x}\right\}
\end{aligned}
$$

- For every entire curve $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ tangent to V f lifts as $\left\{\begin{array}{l}f_{[1]}(t):=\left(f(t),\left[f^{\prime}(t)\right]\right) \in P\left(V_{f(t)}\right) \subset \tilde{X} \\ f_{[1]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(\tilde{X}, \tilde{V}) \quad\left(\text { projectivized } 1^{\text {st }} \text {-jet }\right)\end{array}\right.$

Further geometric structures: Semple jet bundles

- Functor "1-jet" : $(X, V) \mapsto(\tilde{X}, \tilde{V})$ where :

$$
\begin{aligned}
& \tilde{X}=P(V)=\text { bundle of projective spaces of lines in } V \\
& \pi: \tilde{X}=P(V) \rightarrow X, \quad(x,[v]) \mapsto x, v \in V_{x} \\
& \tilde{V}_{(x,[r])}=\left\{\xi \in T_{\tilde{x},(x,[r])} ; \pi_{*} \xi \in \mathbb{C} \subset \subset T_{X, x}\right\}
\end{aligned}
$$

- For every entire curve $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ tangent to V

$$
f \text { lifts as }\left\{\begin{array}{l}
f_{[1]}(t):=\left(f(t),\left[f^{\prime}(t)\right]\right) \in P\left(V_{f(t)}\right) \subset \tilde{X} \\
\left.f_{[1]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(\tilde{X}, \tilde{V}) \text { (projectivized } 1^{\text {st_}} \text {-jet }\right)
\end{array}\right.
$$

- Definition. Semple jet bundles :
- $\left(X_{k}, V_{k}\right)=k$-th iteration of functor $(X, V) \mapsto(\tilde{X}, \tilde{V})$
$-f_{[k]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow\left(X_{k}, V_{k}\right)$ is the projectivized k-jet of f.

Further geometric structures: Semple jet bundles

- Functor "1-jet" : $(X, V) \mapsto(\tilde{X}, \tilde{V})$ where :

$$
\begin{aligned}
& \tilde{X}=P(V)=\text { bundle of projective spaces of lines in } V \\
& \pi: \tilde{X}=P(V) \rightarrow X, \quad(x,[v]) \mapsto x, v \in V_{x} \\
& \tilde{V}_{(x,[r])}=\left\{\xi \in T_{\tilde{x},(x,[r])} ; \pi_{*} \xi \in \mathbb{C} v \subset T_{x, x}\right\}
\end{aligned}
$$

- For every entire curve $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ tangent to V f lifts as $\left\{\begin{array}{l}f_{[1]}(t):=\left(f(t),\left[f^{\prime}(t)\right]\right) \in P\left(V_{f(t)}\right) \subset \tilde{X} \\ f_{[1]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(\tilde{X}, \tilde{V}) \quad \text { (projectivized } 1^{\text {st }} \text {-jet) }\end{array}\right.$
- Definition. Semple jet bundles :
- $\left(X_{k}, V_{k}\right)=k$-th iteration of functor $(X, V) \mapsto(\tilde{X}, \tilde{V})$
$-f_{[k]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow\left(X_{k}, V_{k}\right)$ is the projectivized k-jet of f.
- Basic exact sequences. On $X_{k}=P\left(V_{k-1}\right)$, one has

$$
\begin{aligned}
& 0 \rightarrow T_{X_{k} / X_{k-1}} \rightarrow V_{k} \xrightarrow{d \pi_{k}} \mathcal{O}_{X_{k}}(-1) \rightarrow 0 \Rightarrow \text { rank } V_{k}=r \\
& 0 \rightarrow \mathcal{O}_{X_{k}} \rightarrow \pi_{k}^{\star} V_{k-1} \otimes \mathcal{O}_{X_{k}}(1) \rightarrow T_{X_{k} / X_{k-1}} \rightarrow 0 \quad \text { (Euler) }
\end{aligned}
$$

Direct image formula for Semple bundles

For $n=\operatorname{dim} X$ and $r=\operatorname{rank} V$, one gets a tower of \mathbb{P}^{r-1}-bundles

$$
\pi_{k, 0}: X_{k} \xrightarrow{\pi_{k}} X_{k-1} \rightarrow \cdots \rightarrow X_{1} \xrightarrow{\pi_{1}} X_{0}=X
$$

with $\operatorname{dim} X_{k}=n+k(r-1)$, rank $V_{k}=r$, and tautological line bundles $\mathcal{O}_{X_{k}}(1)$ on $X_{k}=P\left(V_{k-1}\right)$.

Direct image formula for Semple bundles

For $n=\operatorname{dim} X$ and $r=\operatorname{rank} V$, one gets a tower of \mathbb{P}^{r-1}-bundles

$$
\pi_{k, 0}: X_{k} \xrightarrow{\pi_{k}} X_{k-1} \rightarrow \cdots \rightarrow X_{1} \xrightarrow{\pi_{1}} X_{0}=X
$$

with $\operatorname{dim} X_{k}=n+k(r-1)$, rank $V_{k}=r$, and tautological line bundles $\mathcal{O}_{X_{k}}(1)$ on $X_{k}=P\left(V_{k-1}\right)$.

Theorem

X_{k} is a smooth compactification of $X_{k}^{\mathrm{GG}, \text { reg }} / \mathbb{G}_{k}=J_{k}^{\mathrm{GG}, \text { reg }} / \mathbb{G}_{k}$, where \mathbb{G}_{k} is the group of k-jets of germs of biholomorphisms of $(\mathbb{C}, 0)$, acting on the right by reparametrization: $(f, \varphi) \mapsto f \circ \varphi$, and $J_{k}^{\text {reg }}$ is the space of k-jets of regular curves.

Direct image formula for Semple bundles

For $n=\operatorname{dim} X$ and $r=$ rank V, one gets a tower of \mathbb{P}^{r-1}-bundles

$$
\pi_{k, 0}: X_{k} \xrightarrow{\pi_{k}} X_{k-1} \rightarrow \cdots \rightarrow X_{1} \xrightarrow{\pi_{1}} X_{0}=X
$$

with $\operatorname{dim} X_{k}=n+k(r-1)$, rank $V_{k}=r$, and tautological line bundles $\mathcal{O}_{X_{k}}(1)$ on $X_{k}=P\left(V_{k-1}\right)$.

Theorem

X_{k} is a smooth compactification of $X_{k}^{\mathrm{GG}, \text { reg }} / \mathbb{G}_{k}=J_{k}^{\mathrm{GG}, \text { reg }} / \mathbb{G}_{k}$, where \mathbb{G}_{k} is the group of k-jets of germs of biholomorphisms of $(\mathbb{C}, 0)$, acting on the right by reparametrization: $(f, \varphi) \mapsto f \circ \varphi$, and $J_{k}^{\text {reg }}$ is the space of k-jets of regular curves.

Direct image formula for invariant differential operators
$E_{k, m} V^{*}:=\left(\pi_{k, 0}\right)_{*} \mathcal{O}_{X_{k}}(m)=$ sheaf of algebraic differential operators $f \mapsto P\left(f_{[k]}\right)$ acting on germs of curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ such that $P\left((f \circ \varphi)_{[k]}\right)=\varphi^{\prime m} P\left(f_{[k]}\right) \circ \varphi$.

Induced directed structure on a subvariety

Let Z be an irreducible algebraic subset of some Semple k-jet bundle X_{k} over X (k arbitrary).

Induced directed structure on a subvariety

Let Z be an irreducible algebraic subset of some Semple k-jet bundle X_{k} over X (k arbitrary).
We define an induced directed structure $(Z, W) \hookrightarrow\left(X_{k}, V_{k}\right)$ by taking the linear subspace $W \subset T_{Z} \subset T_{X_{k} \mid z}$ to be the closure of $T_{Z^{\prime}} \cap V_{k}$ taken on a suitable Zariski open set $Z^{\prime} \subset Z_{\text {reg }}$ where the intersection has constant rank and is a subbundle of $T_{Z^{\prime}}$.

Induced directed structure on a subvariety

Let Z be an irreducible algebraic subset of some Semple k-jet bundle X_{k} over X (k arbitrary).
We define an induced directed structure $(Z, W) \hookrightarrow\left(X_{k}, V_{k}\right)$ by taking the linear subspace $W \subset T_{Z} \subset T_{X_{k} \mid z}$ to be the closure of $T_{Z^{\prime}} \cap V_{k}$ taken on a suitable Zariski open set $Z^{\prime} \subset Z_{\text {reg }}$ where the intersection has constant rank and is a subbundle of $T_{Z^{\prime}}$.
Alternatively, one could also take W to be the closure of $T_{Z^{\prime}} \cap V_{k}$ in the k-th stage $\left(X_{k}^{a}, V_{k}^{a}\right)$ of the "absolute Semple tower" associated with $\left(X_{0}^{a}, V_{0}^{a}\right)=\left(X, T_{X}\right)$
(so as to deal only with nonsingular ambient Semple bundles).

Induced directed structure on a subvariety

Let Z be an irreducible algebraic subset of some Semple k-jet bundle X_{k} over X (k arbitrary).
We define an induced directed structure $(Z, W) \hookrightarrow\left(X_{k}, V_{k}\right)$ by taking the linear subspace $W \subset T_{Z} \subset T_{X_{k} \mid z}$ to be the closure of $T_{Z^{\prime}} \cap V_{k}$ taken on a suitable Zariski open set $Z^{\prime} \subset Z_{\text {reg }}$ where the intersection has constant rank and is a subbundle of $T_{Z^{\prime}}$.
Alternatively, one could also take W to be the closure of $T_{Z^{\prime}} \cap V_{k}$ in the k-th stage $\left(X_{k}^{a}, V_{k}^{a}\right)$ of the "absolute Semple tower" associated with $\left(X_{0}^{a}, V_{0}^{a}\right)=\left(X, T_{X}\right)$
(so as to deal only with nonsingular ambient Semple bundles).
This produces an induced directed subvariety

$$
(Z, W) \subset\left(X_{k}, V_{k}\right)
$$

It is easy to show that
$\pi_{k, k-1}(Z)=X_{k-1} \Rightarrow \operatorname{rank} W<\operatorname{rank} V_{k}=\operatorname{rank} V$.

Some tautological morphisms

Denote $\mathcal{O}_{X_{k}}(\underline{a})=\pi_{k, 1}^{*} \mathcal{O}_{X_{1}}\left(a_{1}\right) \otimes \cdots \otimes \pi_{k, k-1}^{*} \mathcal{O}_{X_{k-1}}\left(a_{k-1}\right) \otimes \mathcal{O}_{X_{k}}\left(a_{k}\right)$ for every k-tuple $\underline{a}=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}^{k}$, and let $\underline{1}=(1, \ldots, 1) \in \mathbb{Z}^{k}$.

Some tautological morphisms

Denote $\mathcal{O}_{X_{k}}(\underline{a})=\pi_{k, 1}^{*} \mathcal{O}_{X_{1}}\left(a_{1}\right) \otimes \cdots \otimes \pi_{k, k-1}^{*} \mathcal{O}_{X_{k-1}}\left(a_{k-1}\right) \otimes \mathcal{O}_{X_{k}}\left(a_{k}\right)$ for every k-tuple $\underline{a}=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}^{k}$, and let $\underline{1}=(1, \ldots, 1) \in \mathbb{Z}^{k}$.
Absolute and induced tautological morphisms

- For all $p=1, \ldots, n$, there is a tautological morphism

$$
\Phi_{k, p}^{X}: \pi_{k, 0}^{*} \Lambda^{p} T_{X}^{*} \rightarrow \Lambda^{p}\left(V_{k}^{a}\right)^{*} \otimes \mathcal{O}_{X_{k}^{a}}((p-1) \underline{1})
$$

Some tautological morphisms

Denote $\mathcal{O}_{X_{k}}(\underline{a})=\pi_{k, 1}^{*} \mathcal{O}_{X_{1}}\left(a_{1}\right) \otimes \cdots \otimes \pi_{k, k-1}^{*} \mathcal{O}_{X_{k-1}}\left(a_{k-1}\right) \otimes \mathcal{O}_{X_{k}}\left(a_{k}\right)$ for every k-tuple $\underline{a}=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}^{k}$, and let $\underline{1}=(1, \ldots, 1) \in \mathbb{Z}^{k}$.
Absolute and induced tautological morphisms

- For all $p=1, \ldots, n$, there is a tautological morphism

$$
\Phi_{k, p}^{X}: \pi_{k, 0}^{*} \Lambda^{p} T_{X}^{*} \rightarrow \Lambda^{p}\left(V_{k}^{a}\right)^{*} \otimes \mathcal{O}_{X_{k}^{a}}((p-1) \underline{1})
$$

- Let Z be an irreducible subvariety of X_{k} such that $\pi_{k, 0}(Z)=X$. Consider the induced directed structure $(Z, W) \subset\left(X_{k}, V_{k}\right)$ and set $r^{\prime}=\operatorname{rank} W$.

Some tautological morphisms

Denote $\mathcal{O}_{X_{k}}(\underline{a})=\pi_{k, 1}^{*} \mathcal{O}_{X_{1}}\left(a_{1}\right) \otimes \cdots \otimes \pi_{k, k-1}^{*} \mathcal{O}_{X_{k-1}}\left(a_{k-1}\right) \otimes \mathcal{O}_{X_{k}}\left(a_{k}\right)$ for every k-tuple $\underline{a}=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}^{k}$, and let $\underline{1}=(1, \ldots, 1) \in \mathbb{Z}^{k}$.
Absolute and induced tautological morphisms

- For all $p=1, \ldots, n$, there is a tautological morphism

$$
\Phi_{k, p}^{X}: \pi_{k, 0}^{*} \Lambda^{p} T_{X}^{*} \rightarrow \Lambda^{p}\left(V_{k}^{a}\right)^{*} \otimes \mathcal{O}_{X_{k}^{a}}((p-1) \underline{1})
$$

- Let Z be an irreducible subvariety of X_{k} such that $\pi_{k, 0}(Z)=X$. Consider the induced directed structure $(Z, W) \subset\left(X_{k}, V_{k}\right)$ and set $r^{\prime}=$ rank W. Then there is over Z a subsheaf $W_{0} \subset \pi_{k, 0}^{*} V$ of rank $r_{0} \geq r^{\prime}$, and there exist nonzero tautological morphisms derived from $\Phi_{k, p}^{X}$, of the form

$$
\Phi_{k}^{Z, W}:{ }^{b} \Lambda^{r_{0}} W_{0}^{*} \rightarrow{ }^{b} \mathcal{K}_{W} \otimes \mathcal{O}_{X_{k}}(\underline{a})_{\mid Z}
$$

where ${ }^{b} \mathcal{K}_{W} \subset\left(\Lambda^{r^{\prime}} W^{*}\right)^{* *},{ }^{b} \Lambda^{r}{ }^{0} W_{0}^{*}$ is a quotient of the sheaf $\pi_{k, 0}^{*}{ }^{b} \Lambda^{r_{0}} V^{*}$ of bounded r_{0}-forms on V, and $\underline{a} \in \mathbb{N}^{k}$.

Geometric use of the tautological morphisms

Theorem (D-, 2021)

Let (X, V) be a directed variety. Assume that ${ }^{b} \wedge^{p} V^{*}$ is strongly big for some $p \leq r=$ rank V, in the sense that for $A \in \operatorname{Pic}(X)$ ample, the symmetric powers $S^{m}\left({ }^{b} \wedge^{p} V^{*}\right) \otimes \mathcal{O}(-A)$ are generated by their sections over a Zariski open set of X, for $m \gg 1$.

Geometric use of the tautological morphisms

Theorem (D-, 2021)

Let (X, V) be a directed variety. Assume that ${ }^{b} \Lambda^{p} V^{*}$ is strongly big for some $p \leq r=\operatorname{rank} V$, in the sense that for $A \in \operatorname{Pic}(X)$ ample, the symmetric powers $S^{m}\left({ }^{b} \Lambda^{p} V^{*}\right) \otimes \mathcal{O}(-A)$ are generated by their sections over a Zariski open set of X, for $m \gg 1$.

- If $p=1,(X, V)$ satisfies the generalized GGL conjecture.

Geometric use of the tautological morphisms

Theorem (D-, 2021)

Let (X, V) be a directed variety. Assume that ${ }^{b} \Lambda^{p} V^{*}$ is strongly big for some $p \leq r=\operatorname{rank} V$, in the sense that for $A \in \operatorname{Pic}(X)$ ample, the symmetric powers $S^{m}\left({ }^{b} \Lambda^{p} V^{*}\right) \otimes \mathcal{O}(-A)$ are generated by their sections over a Zariski open set of X, for $m \gg 1$.

- If $p=1,(X, V)$ satisfies the generalized GGL conjecture.
- If $p \geq 2$, there exists a subvariety $Y \subsetneq X$ and finitely many induced directed subvarieties $\left(Z_{\alpha}, W_{\alpha}\right) \subset\left(X_{k}, V_{k}\right)$ with rank $W_{\alpha} \leq p-1$, such that all curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ satisfy either $f(\mathbb{C}) \subset Y$ or $f_{[k]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow \bigcup\left(Z_{\alpha}, W_{\alpha}\right)$.

Geometric use of the tautological morphisms

Theorem (D-, 2021)

Let (X, V) be a directed variety. Assume that ${ }^{b} \Lambda^{p} V^{*}$ is strongly big for some $p \leq r=\operatorname{rank} V$, in the sense that for $A \in \operatorname{Pic}(X)$ ample, the symmetric powers $S^{m}\left({ }^{b} \Lambda^{p} V^{*}\right) \otimes \mathcal{O}(-A)$ are generated by their sections over a Zariski open set of X, for $m \gg 1$.

- If $p=1,(X, V)$ satisfies the generalized GGL conjecture.
- If $p \geq 2$, there exists a subvariety $Y \subsetneq X$ and finitely many induced directed subvarieties $\left(Z_{\alpha}, W_{\alpha}\right) \subset\left(X_{k}, V_{k}\right)$ with rank $W_{\alpha} \leq p-1$, such that all curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ satisfy either $f(\mathbb{C}) \subset Y$ or $f_{[k]}:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow \bigcup\left(Z_{\alpha}, W_{\alpha}\right)$.
- In particular, if $p=2$, all entire curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ are either contained in $Y \subsetneq X$, or they are tangent to a rank 1 foliation on a subvariety $Z \subset X_{k}$. This implies that the latter curves are parametrized by a finite dimensional space.

Logarithmic version

More generally, if $\Delta=\sum \Delta_{j}$ is a reduced normal crossing divisor in X, we want to study entire curves $f: \mathbb{C} \rightarrow X \backslash \Delta$ drawn in the complement of Δ.

Logarithmic version

More generally, if $\Delta=\sum \Delta_{j}$ is a reduced normal crossing divisor in X, we want to study entire curves $f: \mathbb{C} \rightarrow X \backslash \Delta$ drawn in the complement of Δ.

At a point where $\Delta=\left\{z_{1} \ldots z_{p}=0\right\}$ one defines the cotangent logarithmic sheaf $T_{\chi\langle\Delta\rangle}^{*}$ to be generated by $\frac{d z_{1}}{z_{1}}, \ldots, \frac{d z_{p}}{z_{p}}, d z_{p+1}, \ldots, d z_{n}$.

Logarithmic version

More generally, if $\Delta=\sum \Delta_{j}$ is a reduced normal crossing divisor in X, we want to study entire curves $f: \mathbb{C} \rightarrow X \backslash \Delta$ drawn in the complement of Δ.

At a point where $\Delta=\left\{z_{1} \ldots z_{p}=0\right\}$ one defines the cotangent logarithmic sheaf $T_{X\langle\Delta\rangle}^{*}$ to be generated by $\frac{d z_{1}}{z_{1}}, \ldots, \frac{d z_{p}}{z_{p}}, d z_{p+1}, \ldots, d z_{n}$.

Theorem (D-, 2021)

If $\Lambda^{2} T_{X\langle\Delta\rangle}^{*}$ is strongly big on X, there exists a subvariety $Y \subsetneq X$ and a rank 1 foliation \mathcal{F} on some k-jet bundle X_{k}, such that all entire curves $f: \mathbb{C} \rightarrow X \backslash \Delta$ are contained in Y or tangent to \mathcal{F}.

Logarithmic/orbifold directed versions

(Work in progress with F. Campana, L. Darondeau \& E. Rousseau)
There are also more general versions dealing with entire curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ and avoiding a normal crossing divisor Δ transverse to V ("logarithmic case"), or meeting $\Delta=\sum\left(1-\frac{1}{\rho_{j}}\right) \Delta_{j}$ with multiplicities $\geq \rho_{j}$ along Δ_{j} ("orbifold case").

Logarithmic/orbifold directed versions

(Work in progress with F. Campana, L. Darondeau \& E. Rousseau)
There are also more general versions dealing with entire curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ and avoiding a normal crossing divisor Δ transverse to V ("logarithmic case"), or meeting $\Delta=\sum\left(1-\frac{1}{\rho_{j}}\right) \Delta_{j}$ with multiplicities $\geq \rho_{j}$ along Δ_{j} ("orbifold case").

At this step, positivity is to be expressed for a sequence of orbifold cotangent bundles

$$
V^{*}\left\langle\Delta^{(s)}\right\rangle, \quad \Delta^{(s)}=\sum_{j}\left(1-\frac{s}{\rho_{j}}\right)_{+} \Delta_{j} .
$$

Logarithmic/orbifold directed versions

(Work in progress with F. Campana, L. Darondeau \& E. Rousseau)
There are also more general versions dealing with entire curves $f:\left(\mathbb{C}, T_{\mathbb{C}}\right) \rightarrow(X, V)$ and avoiding a normal crossing divisor Δ transverse to V ("logarithmic case"), or meeting $\Delta=\sum\left(1-\frac{1}{\rho_{j}}\right) \Delta_{j}$ with multiplicities $\geq \rho_{j}$ along Δ_{j} ("orbifold case").

At this step, positivity is to be expressed for a sequence of orbifold cotangent bundles
$V^{*}\left\langle\Delta^{(s)}\right\rangle, \quad \Delta^{(s)}=\sum_{j}\left(1-\frac{s}{\rho_{j}}\right)_{+} \Delta_{j}$.

In all cases, proving the GGL conjecture with optimal positivity conditions (i.e. only assuming bigness of the logarithmic/orbifold canonical sheaf) seems to require a better use of stability properties.

The end

Thank you for your attention!

