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Log canonical thresholds

The goal is to explain a proof of the strong openness conjecture for
log canonical thresholds. Let Ω be a domain in Cn, f ∈ O(Ω) a
holomorphic function, and ϕ ∈ PSH(Ω) a psh function on Ω.

The log canonical threshold cz0(ϕ) ∈ ]0,+∞] (or complex
singularity exponent) is defined to be

cz0(ϕ) = sup
{
c > 0 ; e−2c ϕ is L1 on a neighborhood of z0

}
.

A well known theorem of Skoda asserts that
1

n
ν(ϕ, z0) ≤ cz0(ϕ)−1 ≤ ν(ϕ, z0).

For every holomorphic function f on Ω, we also introduce the
weighted log canonical threshold cf ,z0(ϕ) ∈ ]0,+∞] of ϕ with
weight f at z0 to be

cf ,z0(ϕ) = sup
{
c > 0 ; |f |2e−2c ϕ is L1 on a neighborhood of z0

}
.
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Semi-continuity theorem / strong openness

Theorem (Guan-Zhou 2013, version due to Pham H. Hiep 2014))

Let f be a holomorphic function on an open set Ω in Cn and
let ϕ be a psh function on Ω.

(i) (“Semicontinuity theorem”) Assume that∫
Ω′
e−2c ϕdV2n < +∞ on some open subset Ω′ ⊂ Ω and let

z0 ∈ Ω′. Then there exists δ = δ(c , ϕ,Ω′, z0) > 0 such that
for every ψ ∈ PSH(Ω′), ‖ψ − ϕ‖L1(Ω′) ≤ δ implies cz0(ψ) > c .
Moreover, as ψ converges to ϕ in L1(Ω′), the function e−2c ψ

converges to e−2c ϕ in L1 on every relatively compact open
subset Ω′′ b Ω′.

(ii) (“Strong effective openness”) Assume that∫
Ω′
|f |2e−2c ϕdV2n < +∞ on some open subset Ω′ ⊂ Ω. When

ψ ∈ PSH(Ω′) converges to ϕ in L1(Ω′) with ψ ≤ ϕ, the
function |f |2e−2c ψ converges to |f |2e−2c ϕ in L1 norm on every
relatively compact open subset Ω′′ b Ω′.
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Consequences of the semi-continuity theorem

Corollary 1 (Strong openness, Guan-Zhou 2013)

For any plurisubharmonic function ϕ on a neighborhood of a point
z0 ∈ Cn, the set {c > 0 : |f |2e−2c ϕ is L1 on a neighborhood of z0}
is an open interval ]0, cf ,z0(ϕ)[.

Proof. After subtracting a large constant to ϕ, we can assume
ϕ ≤ 0. Then Cor. 1 is a consequence of assertion (ii) of the main
theorem by taking Ω′ small enough and ψ = (1 + δ)ϕ with δ ↘ 0.

Application to multiplier ideal sheaves (Guan-Zhou 2013)

Let h = e−ϕ a singular hermitian metric with ϕ quasi-psh. The
“upper semicontinuous regularization” of I(h) is defined to be

I+(h) = lim
ε→0
I(h1+ε) = lim

ε→0
I((1 + ε)ϕ) = lim

k→+∞
I((1 + 1/k)ϕ)

(by Noetherianity, this increasing sequence is stationary on all
compact subsets). Then I+(h) = I(h).
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Convergence from below / idea of the proof

Corollary 2 (Convergence from below)

If ψ ≤ ϕ converges to ϕ in a neighborhood of z0 ∈ Cn, then
cf ,z0(ψ) ≤ cf ,z0(ϕ) converges to cf ,z0(ϕ).

Proof. We have by definition cf ,z0(ψ) ≤ cf ,z0(ϕ) for ψ ≤ ϕ, but
again (ii) shows that cf ,z0(ψ) becomes ≥ c for any given value
c ∈ (0, cf ,z0(ϕ)), when ‖ψ − ϕ‖L1(Ω′) is sufficiently small.

Phams’s theorem is proved by induction on n (n = 0, 1 are easy).

Aassume that the theorem holds for dimension n − 1. Let
f ∈ O(∆n

R) be holomorphic on a n-dimensional polydisc, such that∫
∆n

R
|f (z)|2e−2cϕ(z)dV2n(z) converges. The idea is to restrict f to a

generic hyperplane zn = wn. By induction, the integral of the
restriction still converges after increasing c to c + ε (shrinking R).
By the Ohsawa-Takegoshi theorem, the restriction can be extended
to a function F and one proceeds by comparing f and F .
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Key lemma in Pham’s proof
Lemma (Pham)

Let ϕ ≤ 0 be psh and f be holomorphic on the polydisc ∆n
R of

center 0 and (poly)radius R > 0 in Cn, such that for some c > 0∫
∆n

R

|f (z)|2e−2c ϕ(z)dV2n(z) < +∞.

Let ψj ≤ 0, j ∈ N, be psh functions on ∆n
R with ψj → ϕ in

L1
loc(∆n

R), and assume that f ≡ 1 or ψj ≤ ϕ for all j ≥ 1.
Then for every r < R and ε ∈ ]0, 1

2
r ], there exist a value

wn ∈ ∆ε r {0} (in a set of measure > 0), an index j0 = j0(wn), a
constant c̃ = c̃(wn) > c and holomorphic functions Fj on ∆n

r ,
j ≥ j0, such that Fj(z) = f (z) + (zn − wn)

∑
aj ,αz

α with
|wn||aj ,α| ≤ r−|α|ε for all α ∈ Nn, IM(Fj) ≤ IM(f ), and∫

∆n
r

|Fj(z)|2e−2c̃ ψj (z)dV2n(z) ≤ ε2

|wn|2
< +∞, ∀j ≥ j0.

[Here IM(F ) = Initial Monomial in lexicographic order at 0 ].
J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L2 extension theorems and applications to alg. geometry 7/21



Idea of proof of the key lemma

By Fubini’s theorem we have∫
∆R

[ ∫
∆n−1

R

|f (z ′, zn)|2e−2c ϕ(z ′,zn)dV2n−2(z ′)

]
dV2(zn) < +∞.

Since the integral extended to a small disc zn ∈ ∆η tends to 0 as
η → 0, it will become smaller than any preassigned value, say
ε2

0 > 0, for η ≤ η0 small enough. Therefore we can choose a set of
positive measure of values wn ∈ ∆η r {0} such that∫

∆n−1
R

|f (z ′,wn)|2e−2c ϕ(z ′,wn)dV2n−2(z ′) ≤ ε2
0

πη2
<

ε2
0

|wn|2
.

Since the main theorem is assumed to hold for n − 1, for any
ρ < R there exist j0 = j0(wn) and c̃ = c̃(wn) > c such that∫

∆n−1
ρ

|f (z ′,wn)|2e−2c̃ ψj (z
′,wn)dV2n−2(z ′) <

ε2
0

|wn|2
, ∀j ≥ j0.
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Idea of proof of the key lemma (2)

By Ohsawa-Takegoshi, there exists a holomorphic function Fj on
∆n−1
ρ ×∆R such that Fj(z

′,wn) = f (z ′,wn) for all z ′ ∈ ∆n−1
ρ , and∫

∆n−1
ρ ×∆R

|Fj(z)|2e−2c̃ ψj (z)dV2n(z)

≤ CnR
2

∫
∆n−1
ρ

|f (z ′,wn)|2e−2c̃ ψj (z
′,wn)dV2n−2(z ′) ≤ CnR

2ε2
0

|wn|2
,

where Cn is a constant which only depends on n (the constant is
universal for R = 1 and is rescaled by R2 otherwise).
Taking ρ = 1

2
(r + R), the mean value inequality implies

‖Fj‖L∞(∆n
r ) ≤

2nC
1
2
n Rε0

π
n
2 (R − r)n|wn|

.

Since Fj(z
′,wn)− f (z ′,wn) = 0, ∀z ′ ∈ ∆n−1

r , we can write
Fj(z) = f (z) + (zn − wn)gj(z) for some holomorphic function
gj(z) =

∑
α∈Nn aj ,αz

α on ∆n−1
r ×∆R . Then analyze IM(Fj) ...
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Volume and numerical dimension of currents

Definition

let (X , ω) be a compact Kähler manifold, and T ≥ 0 a closed
(1, 1)-current on X . The positive intersection 〈T p〉 ∈ Hp,p

≥0 (X )
(in the sense of Boucksom) is

lim
ε→0

(
lim sup(µm,ε)∗(β

p
m,ε)
)
, µm,ε : X̃m,ε → X

for the Zariski decomposition µ∗m,εTm,ε = βm,ε + [Em,ε] of Bergman
approximations Tm,ε of T + εω. The volume is Vol(T ) = 〈T n〉.

Numerical dimension of a current

nd(T ) = max
{
p ∈ N ; 〈T p〉 6= 0 in Hp,p

≥0 (X )
}

.

Numerical dimension of a hermitian line bundle (L, h)

If ΘL,h ≥ 0, one defines nd(L, h) = nd(ΘL,h).
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Generalized Nadel vanishing theorem

Theorem (Junyan Cao, PhD thesis 2012)

Let X be compact Kähler, and (L, h) be s.t. ΘL,h ≥ 0 on X . Then

Hq(X ,KX ⊗ L⊗ I+(h)) = 0 for q ≥ n − nd(L, h) + 1,

Moreover we have in fact I+(h) = I(h) by Guan-Zhou.

Remark 1. There is also a concept of numerical dimension of a
class α ∈ H1,1(X ): one defines nd(L) to be −∞ if L is not psef, and

nd(L) = max{p ∈ N ; lim
ε→0

sup
{T∈C1(L), T≥−εω}

〈(T + εω)p〉 6= 0

when L is psef. In general, we have nd(L, h) ≤ nd(L), but it may
happen that sup{h, ΘL,h≥0} nd(L, h) < nd(L).

Remark 2. In the projective case, one can use a hyperplane section
argument, using Tsuji’s algebraic expression of nd(L, h) :

nd(L, h) = max
{
p∈N ; ∃Y p⊂X , h0(Y , (L⊗m ⊗ I(hm))|Y ) ≥ cmp

}
.
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Proof of generalized Nadel vanishing (projective case)

Hyperplane section argument (projective case). Take A = very
ample divisor, ω = ΘA,hA > 0, and Y = A1 ∩ . . . ∩ An−p, Aj ∈ |A|.
Then

〈Θp
L,h〉 · Y =

∫
X

〈Θp
L,h〉 · Y =

∫
X

〈Θp
L,h〉 ∧ ω

n−p > 0.

From this one concludes that (ΘL,h)|Y is big.

Lemma (J. Cao)

When (L, h) is big, i.e. 〈Θn
L,h〉 > 0, there exists a metric h̃ such

that I(h̃) = I+(h) with ΘL,h̃ ≥ εω [Riemann-Roch].

Then Nadel ⇒ Hq(X ,KX ⊗ L⊗ I+(h)) = 0 for q ≥ 1.

Conclude by induction on dimX and the exact cohomology
sequence for the restriction to a hyperplane section.
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Proof of generalized Nadel vanishing (Kähler case)

Kähler case. By the regularization theorem, one finds an
approximation h̃ε = h0e

−ϕ̃ε with analytic singularities of the metric
h of L, such that ΘL,h̃ε

≥ −1
2
εω.

Then, by blowing-up X to achieve divisorial singularities for h̃ε and
using Yau’s theorem, one solves on X a singular Monge-Ampère
equation: ∃hε = h0e

−ϕε with logarithmic poles, such that

(ΘL,hε + εω)n = Cεω
n.

where Cε ≥
(
n
p

)
〈Θp

L,h〉 · (εω)n−p ∼ Cεn−p, p = nd(L, h).

Another important fact is that one can ensure the equalities
I+(h) = I(h1+ε) = I(hε) (looking deeper in the regularization).

Ch. Mourougane argument (PhD thesis 1996). Let λ1 ≤ . . . ≤ λn
be the eigenvalues of ΘL,h + εω with respect to ω at each point
x ∈ X . Then

λ1 . . . λn = Cε ≥ Const εn−p.
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Final step: use Bochner-Kodaira formula

Moreover∫
X

λq+1 . . . λn ω
n =

∫
X

Θn−q
L,h ∧ ω

q ≤ Const, ∀q ≥ 1,

so λq+1 . . . λn ≤ C on a large open set U ⊂ X and

λqq ≥ λ1 . . . λq ≥ cεn−p ⇒ λq ≥ cε(n−p)/q on U ,

⇒
q∑

j=1

(λj − ε) ≥ λq − qε ≥ cε(n−p)/q − qε > 0 for q > n − p.

λj = eigenvalues of (ΘL,hε+εω) ⇒ (eigenvalues of ΘL,hε) = λj − ε
and the Bochner-Kodaira formula yields

‖∂u‖2
ε + ‖∂∗u‖2

ε ≥
∫
U

( q∑
j=1

(λj − ε)
)
|u|2e−ϕεdVω.

The fact that U has almost full volume allows to take the limit as
ε→ 0 and conclude that u = 0. QED

J.-P. Demailly (Grenoble), CIRM-ICTP school, June 7-11, 2021 L2 extension theorems and applications to alg. geometry 14/21



Hard Lefschetz theorem with psef coefficients

Hard Lefschetz theorem (D-Peternell-Schneider 2001)

Let (L, h) be a psef line bundle on a compact n-dimensional Kähler
manifold (X , ω), ΘL,h ≥ 0. Then, the Lefschetz map :
u 7→ ωq ∧ u induces a surjective morphism :

Φq
ω,h : H0(X ,Ωn−q

X ⊗ L⊗ I(h)) −→ Hq(X ,KX ⊗ L⊗ I(h)).

The proof is based on using approximated metrics hν = h0e
−ϕν ,

ϕν ↓ ϕ, that are smooth on X rZν , with an increasing sequence of
analytic sets Zν , such that ΘL,hν ≥ −ενω. We also consider Kähler
metrics ων ↓ ω that are complete on X rZν .

Any cohomology class {u} is represented by a (ων , hν)-harmonic
(n, q) form uν with values in KX ⊗ L⊗ I(hν). One gets a unique
(n − q, 0)-form vν s.t. ωq

ν ∧ vν = uν , and a Bochner type formula

‖∂u‖2 + ‖∂∗hνu‖
2 = ‖∂v‖2 +

∫
Y

∑
I ,J

(∑
j∈J

λν,j

)
|uIJ |2e−ϕνdVων .
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Proof of the Hard Lefschetz theorem

Here the λν,j are the curvature eigenvalues of ΘL,hν , so λν,j ≥ −εν .

Taking uν = harmonic representative, we get ∂uν = ∂
∗
hνuν = 0, hence

‖∂vν‖2 =

∫
X

|∂vν |ωνe−ϕνdVων ≤ qεν

∫
X

|uν |2ωνe
−ϕνdVων

≤ qεν

∫
X

|u|2ωνe
−ϕνdVων ≤ qεν

∫
X

|u|2ωe−ϕdVω.

We need the following consequence of the Ohsawa-Takegoshi theorem:

Equisingular approximation theorem

Writing h = h0e
−ϕ, there exists a decreasing sequence ϕν ↓ ϕ

⇒ h = lim hν with hν = h0e
−ϕν , such that

ϕν ∈ C∞(X rZν),
where Zν is an increasing sequence of analytic sets,

I(hν) = I(h), ∀ν,

ΘL,hν ≥ −ενω.
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Important complement by Xiaojun Wu

Theorem (Xiaojun Wu, PhD thesis 2020)

Let (L, h) be a psef line bundle on a compact Kähler manifold
(X , ω), ΘL,h ≥ 0. Then, the wedge multiplication operator ωq ∧ •
induces an isomorphism

H0(X ,Ωn−q
X ⊗ L⊗ I(h)) ∩ Ker(∂h) −→ Hq(X ,KX ⊗ L⊗ I(h)).

Moreover, each section v ∈ H0(X ,Ωn−q
X ⊗ L⊗ I(h)) ∩ Ker(∂h) is

∇h-parallel, and gives rise to a holomorphic foliation of X by
considering the subsheaf Fv = {ξ ∈ O(TX ) ; iξv = 0} ⊂ O(TX ).

Proof. In fact, with cq = i (n−q+1)2
, a formal integration by parts gives∫

X

|∂hv |2hdVω =

∫
X

cq{∂hv , ∂hv}h ∧ ωq−1 = −
∫
X

cq{i∂∂hv , v}h ∧ ωq−1

= −
∫
X

cq{ΘL,hv , v}h ∧ ωq−1 ≤ 0 ⇒ ∂hv = 0.

One can check that this is meaningful in the sense of distributions.
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The end
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