
On the computational complexity

of mathematical functions

Jean-Pierre Demailly

Institut Fourier, Université de Grenoble I
& Académie des Sciences, Paris (France)

November 26, 2011
KVPY conference at Vijyoshi Camp

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Computing, a very old concern

Babylonian mathematical tablet
allowing the computation of

√
2

(1800 – 1600 BC)

Decimal numeral system
invented in India (∼ 500BC ?) :

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Madhava’s formula for π

Early calculations of π were done by Greek and Indian
mathematicians several centuries BC.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Madhava’s formula for π

Early calculations of π were done by Greek and Indian
mathematicians several centuries BC.
These early evaluations used polygon approximations and
Pythagoras theorem. In this way, using 96 sides, Archimedes
got 3 + 10

71
< π < 3 + 10

70
whose average is 3.1418 (c. 230 BC).

Chinese mathematicians reached 7 decimal places in 480 AD.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Madhava’s formula for π

Early calculations of π were done by Greek and Indian
mathematicians several centuries BC.
These early evaluations used polygon approximations and
Pythagoras theorem. In this way, using 96 sides, Archimedes
got 3 + 10

71
< π < 3 + 10

70
whose average is 3.1418 (c. 230 BC).

Chinese mathematicians reached 7 decimal places in 480 AD.

The next progress was the discovery of the first infinite series
formula by Madhava (circa 1350 – 1450), a prominent
mathematician-astronomer from Kerala (formula rediscovered
in the XVIIe century by Leibniz and Gregory) :

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · ·+ (−1)n

2n + 1
+ · · ·

Convergence is unfortunately very slow, but Madhava was able
to improve convergence and reached in this way 11 decimal places.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Ramanujan’s formula for π

Srinivasa Ramanujan (1887 – 1920),
a self-taught mathematical prodigee.
His work dealt mainly with
arithmetics and function theory

1

π
=

2
√
2

9801

+∞∑

n=0

(4n)!(1103 + 26390n)

(n!)43964n
(1910).

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Ramanujan’s formula for π

Srinivasa Ramanujan (1887 – 1920),
a self-taught mathematical prodigee.
His work dealt mainly with
arithmetics and function theory

1

π
=

2
√
2

9801

+∞∑

n=0

(4n)!(1103 + 26390n)

(n!)43964n
(1910).

Each term is approximately 108 times smaller than the
preceding one, so the convergence is very fast.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Computational complexity theory

• Complexity theory is a branch of computer science and
mathematics that :
– tries to classify problems according to their difficulty
– focuses on the number of steps (or time) needed to solve them.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Computational complexity theory

• Complexity theory is a branch of computer science and
mathematics that :
– tries to classify problems according to their difficulty
– focuses on the number of steps (or time) needed to solve them.

• Let N = size of the data (e.g. for a decimal number, the
number N of digits.)

A problem will be said to have polynomial complexity if it
requires less than C Nd steps (or units of time) to be solved,
where C and d are constants (d is the degree).

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Computational complexity theory

• Complexity theory is a branch of computer science and
mathematics that :
– tries to classify problems according to their difficulty
– focuses on the number of steps (or time) needed to solve them.

• Let N = size of the data (e.g. for a decimal number, the
number N of digits.)

A problem will be said to have polynomial complexity if it
requires less than C Nd steps (or units of time) to be solved,
where C and d are constants (d is the degree).

• Especially, it is said to have
– linear complexity when # steps ≤ C N

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Computational complexity theory

• Complexity theory is a branch of computer science and
mathematics that :
– tries to classify problems according to their difficulty
– focuses on the number of steps (or time) needed to solve them.

• Let N = size of the data (e.g. for a decimal number, the
number N of digits.)

A problem will be said to have polynomial complexity if it
requires less than C Nd steps (or units of time) to be solved,
where C and d are constants (d is the degree).

• Especially, it is said to have
– linear complexity when # steps ≤ C N

– quadratic complexity when # steps ≤ C N2

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Computational complexity theory

• Complexity theory is a branch of computer science and
mathematics that :
– tries to classify problems according to their difficulty
– focuses on the number of steps (or time) needed to solve them.

• Let N = size of the data (e.g. for a decimal number, the
number N of digits.)

A problem will be said to have polynomial complexity if it
requires less than C Nd steps (or units of time) to be solved,
where C and d are constants (d is the degree).

• Especially, it is said to have
– linear complexity when # steps ≤ C N

– quadratic complexity when # steps ≤ C N2

– quasi-linear complexity when # steps ≤ Cε N
1+ε, ∀ε > 0.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

First observations about complexity

• Addition has linear complexity:
consider decimal numbers of the form 0.a1a2a3 . . . aN ,
0.b1b2b3 . . . bN , we have

∑

1≤n≤N

an10
−n +

∑

1≤n≤N

bn10
−n =

∑

1≤n≤N

(an + bn)10
−n,

taking carries into account, this is done in N steps at most.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

First observations about complexity

• Addition has linear complexity:
consider decimal numbers of the form 0.a1a2a3 . . . aN ,
0.b1b2b3 . . . bN , we have

∑

1≤n≤N

an10
−n +

∑

1≤n≤N

bn10
−n =

∑

1≤n≤N

(an + bn)10
−n,

taking carries into account, this is done in N steps at most.

• What about multiplication ?

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

First observations about complexity

• Addition has linear complexity:
consider decimal numbers of the form 0.a1a2a3 . . . aN ,
0.b1b2b3 . . . bN , we have

∑

1≤n≤N

an10
−n +

∑

1≤n≤N

bn10
−n =

∑

1≤n≤N

(an + bn)10
−n,

taking carries into account, this is done in N steps at most.

• What about multiplication ?
∑

1≤k≤N

ak10
−k×

∑

1≤ℓ≤N

bℓ10
−ℓ =

∑

1≤n≤N

cn10
−n, cn =

∑

k+ℓ=n

akbℓ.

Calculation of each cn requires at most N elementary
multiplications and N − 1 additions and corresponding carries,
thus the algorithm requires less than N × 3N steps.

Thus multiplication has at most quadratic complexity.
Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

The Karatsuba algorithm

Can one do better than quadratic complexity for multiplication?

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

The Karatsuba algorithm

Can one do better than quadratic complexity for multiplication?

Yes !! It was discovered by Karatsuba around 1960 that
multiplication has complexity less than C N log2 3 ≃ C N1.585

Karatsuba’s idea: for N = 2q even, split x = 0.a1a2 . . . aN as

x = x ′ + 10−qx ′′, x ′ = 0.a1a2 . . . aq, x ′′ = 0.aq+1aq+2 . . . a2q

and similarly y = 0.b1b2 . . . bN = y ′ + 10−qy ′′. To calculate
xy , one would normally need x ′y ′, x ′′y ′′ and x ′y ′′ + x ′′y ′ which
take 4 multiplications and 1 addition of q-digit numbers.
However, one can use only 3 multiplications by calculating

x ′y ′, x ′′y ′′, x ′y ′′ + x ′′y ′ = x ′y ′ + x ′′y ′′ − (x ′ − x ′′)(y ′ − y ′′)

(at the expense of 4 additions).

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

The Karatsuba algorithm

Can one do better than quadratic complexity for multiplication?

Yes !! It was discovered by Karatsuba around 1960 that
multiplication has complexity less than C N log2 3 ≃ C N1.585

Karatsuba’s idea: for N = 2q even, split x = 0.a1a2 . . . aN as

x = x ′ + 10−qx ′′, x ′ = 0.a1a2 . . . aq, x ′′ = 0.aq+1aq+2 . . . a2q

and similarly y = 0.b1b2 . . . bN = y ′ + 10−qy ′′. To calculate
xy , one would normally need x ′y ′, x ′′y ′′ and x ′y ′′ + x ′′y ′ which
take 4 multiplications and 1 addition of q-digit numbers.
However, one can use only 3 multiplications by calculating

x ′y ′, x ′′y ′′, x ′y ′′ + x ′′y ′ = x ′y ′ + x ′′y ′′ − (x ′ − x ′′)(y ′ − y ′′)

(at the expense of 4 additions). One then proceeds inductively
to conclude that the time T (N) needed for N = 2s satisfies

T (2s) ≤ 3T (2s−1) + 4 2s−1.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Optimal complexity of multiplication

It is an easy exercise to conclude by induction that
T (2s) ≤ 6 3s − 4 2s if one assumes T (1) = 1, and so

T (2s) ≤ 6 3s ⇒ T (N) ≤ C N log2 3.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Optimal complexity of multiplication

It is an easy exercise to conclude by induction that
T (2s) ≤ 6 3s − 4 2s if one assumes T (1) = 1, and so

T (2s) ≤ 6 3s ⇒ T (N) ≤ C N log2 3.

It was in fact shown in 1971 by Schönage and Strassen that
multiplication has quasi-linear complexity, less than

C N logN log logN.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Optimal complexity of multiplication

It is an easy exercise to conclude by induction that
T (2s) ≤ 6 3s − 4 2s if one assumes T (1) = 1, and so

T (2s) ≤ 6 3s ⇒ T (N) ≤ C N log2 3.

It was in fact shown in 1971 by Schönage and Strassen that
multiplication has quasi-linear complexity, less than

C N logN log logN.

For this reason, the usual mathematical functions also have
quasi-linear complexity at most !

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Optimal complexity of multiplication

It is an easy exercise to conclude by induction that
T (2s) ≤ 6 3s − 4 2s if one assumes T (1) = 1, and so

T (2s) ≤ 6 3s ⇒ T (N) ≤ C N log2 3.

It was in fact shown in 1971 by Schönage and Strassen that
multiplication has quasi-linear complexity, less than

C N logN log logN.

For this reason, the usual mathematical functions also have
quasi-linear complexity at most !

The Schönage-Strassen algorithm is based on the use of
discrete Fourier transforms. The theory comes from Joseph
Fourier, the founder of my university in 1810 ...

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Joseph Fourier

Joseph Fourier (1768 – 1830)
in his suit of member of
Académie des Sciences,
of which he became
“Secrétaire Perpétuel”
(Head) in 1822.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Life of Joseph Fourier

Born in 1768 in a poor family, Joseph Fourier quickly reveals
himself to be a scientific prodigee.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Life of Joseph Fourier

Born in 1768 in a poor family, Joseph Fourier quickly reveals
himself to be a scientific prodigee.

Orphan from mother at age 8 and from father at age 10, he is
sent to a religious military school in the city of Auxerre, where
he has fortunately access to some important scientific books.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Life of Joseph Fourier

Born in 1768 in a poor family, Joseph Fourier quickly reveals
himself to be a scientific prodigee.

Orphan from mother at age 8 and from father at age 10, he is
sent to a religious military school in the city of Auxerre, where
he has fortunately access to some important scientific books.

He is just 161
2
years when the director of his school asks him

to become the math teacher !

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Life of Joseph Fourier

Born in 1768 in a poor family, Joseph Fourier quickly reveals
himself to be a scientific prodigee.

Orphan from mother at age 8 and from father at age 10, he is
sent to a religious military school in the city of Auxerre, where
he has fortunately access to some important scientific books.

He is just 161
2
years when the director of his school asks him

to become the math teacher !

At age 26, he becomes a Professor at Ecole Normale Supérieure
and École Polytechnique. In 1798, he is chosen by Napoleon
as his main scientific advisor during the campaign of Egypt.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Life of Joseph Fourier

Born in 1768 in a poor family, Joseph Fourier quickly reveals
himself to be a scientific prodigee.

Orphan from mother at age 8 and from father at age 10, he is
sent to a religious military school in the city of Auxerre, where
he has fortunately access to some important scientific books.

He is just 161
2
years when the director of his school asks him

to become the math teacher !

At age 26, he becomes a Professor at Ecole Normale Supérieure
and École Polytechnique. In 1798, he is chosen by Napoleon
as his main scientific advisor during the campaign of Egypt.

Back in France in 1802, he becomes the Governor of the
Grenoble area and founds the University. During this period,
he discovers the heat equation and what is now called Fourier
analysis...

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Life of Joseph Fourier

Born in 1768 in a poor family, Joseph Fourier quickly reveals
himself to be a scientific prodigee.

Orphan from mother at age 8 and from father at age 10, he is
sent to a religious military school in the city of Auxerre, where
he has fortunately access to some important scientific books.

He is just 161
2
years when the director of his school asks him

to become the math teacher !

At age 26, he becomes a Professor at Ecole Normale Supérieure
and École Polytechnique. In 1798, he is chosen by Napoleon
as his main scientific advisor during the campaign of Egypt.

Back in France in 1802, he becomes the Governor of the
Grenoble area and founds the University. During this period,
he discovers the heat equation and what is now called Fourier
analysis...

In 1824, he predicts the green house effect !
Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Heat equation and Fourier series

Let θ(x , y , z , t) be the the temperature of a physical material
at a point (x , y , z) and at time t.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Heat equation and Fourier series

Let θ(x , y , z , t) be the the temperature of a physical material
at a point (x , y , z) and at time t.

Fourier shows theoretically and experimentally around 1807
that θ(x , y , z , t) satisfies the propagation equation

θ′t = D(θ′′xx + θ′′yy + θ′′zz).

where D is a constant characterizing the material.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Heat equation and Fourier series

Let θ(x , y , z , t) be the the temperature of a physical material
at a point (x , y , z) and at time t.

Fourier shows theoretically and experimentally around 1807
that θ(x , y , z , t) satisfies the propagation equation

θ′t = D(θ′′xx + θ′′yy + θ′′zz).

where D is a constant characterizing the material.

He then shows that in many cases the solutions can be
expressed in terms of trigonometric series

f (x) =
+∞∑

n=0

an cos nωx + bn sin nωx =
+∞∑

n=−∞

cne
inωx

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Heat equation and Fourier series

Let θ(x , y , z , t) be the the temperature of a physical material
at a point (x , y , z) and at time t.

Fourier shows theoretically and experimentally around 1807
that θ(x , y , z , t) satisfies the propagation equation

θ′t = D(θ′′xx + θ′′yy + θ′′zz).

where D is a constant characterizing the material.

He then shows that in many cases the solutions can be
expressed in terms of trigonometric series

f (x) =
+∞∑

n=0

an cos nωx + bn sin nωx =
+∞∑

n=−∞

cne
inωx

In fact all periodic phenomena can be described in this way.
This is the basis of the modern theory of signal processing and
electromagnetism.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Discrete Fourier transform

Let (an)0≤n<N be a finite sequence of numbers and let u be a
primitive N-th root of unity, i.e.

uN = 1 but un 6= 1 for 0 < n < N .

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Discrete Fourier transform

Let (an)0≤n<N be a finite sequence of numbers and let u be a
primitive N-th root of unity, i.e.

uN = 1 but un 6= 1 for 0 < n < N .

One can work with complex numbers and take u = e2πi/N .

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Discrete Fourier transform

Let (an)0≤n<N be a finite sequence of numbers and let u be a
primitive N-th root of unity, i.e.

uN = 1 but un 6= 1 for 0 < n < N .

One can work with complex numbers and take u = e2πi/N .

When working with integers, it is easier to work modulo a
large prime number, e.g. p = 65537 and take
N = p − 1 = 65536. Then u = 3 satisfies uN = 1 mod p and
one can check that u = 3 is a primitive N-root of unity.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Discrete Fourier transform

Let (an)0≤n<N be a finite sequence of numbers and let u be a
primitive N-th root of unity, i.e.

uN = 1 but un 6= 1 for 0 < n < N .

One can work with complex numbers and take u = e2πi/N .

When working with integers, it is easier to work modulo a
large prime number, e.g. p = 65537 and take
N = p − 1 = 65536. Then u = 3 satisfies uN = 1 mod p and
one can check that u = 3 is a primitive N-root of unity.

The discrete Fourier transform of (an) is the sequence

ân =
N−1∑

k=0

aku
kn.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Discrete Fourier transform

Let (an)0≤n<N be a finite sequence of numbers and let u be a
primitive N-th root of unity, i.e.

uN = 1 but un 6= 1 for 0 < n < N .

One can work with complex numbers and take u = e2πi/N .

When working with integers, it is easier to work modulo a
large prime number, e.g. p = 65537 and take
N = p − 1 = 65536. Then u = 3 satisfies uN = 1 mod p and
one can check that u = 3 is a primitive N-root of unity.

The discrete Fourier transform of (an) is the sequence

ân =
N−1∑

k=0

aku
kn.

It is convenient to consider that the index n is defined mod N

(e.g. a−n means aN−n for 0 < n < N).
Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Discrete Fourier transform

Let (an)0≤n<N be a finite sequence of numbers and let u be a
primitive N-th root of unity, i.e.

uN = 1 but un 6= 1 for 0 < n < N .

One can work with complex numbers and take u = e2πi/N .

When working with integers, it is easier to work modulo a
large prime number, e.g. p = 65537 and take
N = p − 1 = 65536. Then u = 3 satisfies uN = 1 mod p and
one can check that u = 3 is a primitive N-root of unity.

The discrete Fourier transform of (an) is the sequence

ân =
N−1∑

k=0

aku
kn.

It is convenient to consider that the index n is defined mod N

(e.g. a−n means aN−n for 0 < n < N).
Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Main formulas of Fourier theory

Fourier transform of a convolution:
For a = (an) and b = (bn) define c = a ∗ b to be the sequence

cn =
∑

p+q=n mod N

apbq “convolution of a and b.”

Then ĉn = ânb̂n.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Main formulas of Fourier theory

Fourier transform of a convolution:
For a = (an) and b = (bn) define c = a ∗ b to be the sequence

cn =
∑

p+q=n mod N

apbq “convolution of a and b.”

Then ĉn = ânb̂n.

Proof.
∑

s

csu
sn =

∑

s

(∑

k+ℓ=s

akbℓ

)
usn =

∑

k,ℓ

aku
knbℓu

ℓn = ânb̂n.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Main formulas of Fourier theory

Fourier transform of a convolution:
For a = (an) and b = (bn) define c = a ∗ b to be the sequence

cn =
∑

p+q=n mod N

apbq “convolution of a and b.”

Then ĉn = ânb̂n.

Proof.
∑

s

csu
sn =

∑

s

(∑

k+ℓ=s

akbℓ

)
usn =

∑

k,ℓ

aku
knbℓu

ℓn = ânb̂n.

Fourier inversion formula: applying twice the Fourier
transform, one gets

̂̂an = N a−n = −a−n mod p (recall N = p − 1).

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Main formulas of Fourier theory

Fourier transform of a convolution:
For a = (an) and b = (bn) define c = a ∗ b to be the sequence

cn =
∑

p+q=n mod N

apbq “convolution of a and b.”

Then ĉn = ânb̂n.

Proof.
∑

s

csu
sn =

∑

s

(∑

k+ℓ=s

akbℓ

)
usn =

∑

k,ℓ

aku
knbℓu

ℓn = ânb̂n.

Fourier inversion formula: applying twice the Fourier
transform, one gets

̂̂an = N a−n = −a−n mod p (recall N = p − 1).

Proof. ̂̂an =
∑

k

(∑

ℓ

aℓu
kℓ
)
ukn =

∑

ℓ

aℓ

(∑

k

uk(n+ℓ)
)
and

∑
k
uk(n+ℓ) = 0 if ℓ 6= −n and

∑
k
uk(n+ℓ) = N if ℓ = −n.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Fast Fourier Transform (FFT)

Consequence: To calculate the convolution c = a ∗ b (which is
what we need to calculate

∑
ak10

−k
∑

bℓ10
−ℓ), one

calculates the Fourier transforms (ân), (b̂n), then ĉn = ânb̂n,
which gives back (−c−n) and thus (cn) by Fourier inversion.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Fast Fourier Transform (FFT)

Consequence: To calculate the convolution c = a ∗ b (which is
what we need to calculate

∑
ak10

−k
∑

bℓ10
−ℓ), one

calculates the Fourier transforms (ân), (b̂n), then ĉn = ânb̂n,
which gives back (−c−n) and thus (cn) by Fourier inversion.

This looks complicated, but the Fourier transform can be
computed extremely fast !!

FFT algorithm: assume that N = 2s (in our example
N = 65536 = 216) and define inductively αn,0 = an and

αn,k+1 = αn,k + αn+2ku
2kn, 0 ≤ k < s.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Fast Fourier Transform (FFT)

Consequence: To calculate the convolution c = a ∗ b (which is
what we need to calculate

∑
ak10

−k
∑

bℓ10
−ℓ), one

calculates the Fourier transforms (ân), (b̂n), then ĉn = ânb̂n,
which gives back (−c−n) and thus (cn) by Fourier inversion.

This looks complicated, but the Fourier transform can be
computed extremely fast !!

FFT algorithm: assume that N = 2s (in our example
N = 65536 = 216) and define inductively αn,0 = an and

αn,k+1 = αn,k + αn+2ku
2kn, 0 ≤ k < s.

By considering the binary decomposition n =
∑

nk2
k , 0 ≤ k < s,

of any integer n = 0...N − 1, one sees that αn,s = ân. The
calculation requires only s steps, each of which requires N
additions and 2N mutiplications (using u2k+1n = (u2kn)2), so in
total we consume only 3sN = 3N log2 N operations !

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Other mathematical functions

OK about multiplication, but what for division ? square root ?

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Other mathematical functions

OK about multiplication, but what for division ? square root ?

Approximate division can be obtained solely from multiplication!
If x0 is a rough approximation of 1/a, then the sequence

xn+1 = 2xn − ax2
n

satisfies 1− axn+1 = (1− axn)
2, and so inductively

1− axn = (1− ax0)
2n will converge extremely fast to 0. In fact

if |1− ax0| < 1/10 and n ∼ log2 N, we get already N correct
digits. Hence we need iterating only log2 N times the
sequence, and so division is also quasi-linear in time.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Other mathematical functions

OK about multiplication, but what for division ? square root ?

Approximate division can be obtained solely from multiplication!
If x0 is a rough approximation of 1/a, then the sequence

xn+1 = 2xn − ax2
n

satisfies 1− axn+1 = (1− axn)
2, and so inductively

1− axn = (1− ax0)
2n will converge extremely fast to 0. In fact

if |1− ax0| < 1/10 and n ∼ log2 N, we get already N correct
digits. Hence we need iterating only log2 N times the
sequence, and so division is also quasi-linear in time.

Similarly, square roots can be approximated by using only
multiplications and divisions, thanks to the “Babylonian
algorithm”:

xn+1 =
1

2

(
xn +

a

xn

)
, x0 > 0

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

What about π ?

In fact Carl-Friedrich Gauss (another
mathematical prodigee...) discovered
around 1797 the following formula for
the arithmetic-geometric mean:
start from real numbers a, b > 0 and
define inductively a0 = a, b0 = b and

an+1 =
an + bn

2
, bn+1 =

√
anbn.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

What about π ?

In fact Carl-Friedrich Gauss (another
mathematical prodigee...) discovered
around 1797 the following formula for
the arithmetic-geometric mean:
start from real numbers a, b > 0 and
define inductively a0 = a, b0 = b and

an+1 =
an + bn

2
, bn+1 =

√
anbn.

Then (an) and (bn) converge (extremely fast, only ∼ log2 N
steps to get N correct digits) towards

M(a, b) =
2π

I (a, b)
where I (a, b) =

∫ 2π

0

dx√
a2 cos2 x + b2 sin2 x

(an “elliptic integral”).

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

The Brent-Salamin formula

Using this and another formula due to Legendre (1752 – 1833),
Brent and Salamin found in 1976 a remarkable formula for π.
Define

cn =
√
a2n − b2n

in the arithmetic-geometric sequence. Then

π =
4M(1, 1/

√
2)2

1−
∑+∞

n=1 2
n+1c2n

.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

The Brent-Salamin formula

Using this and another formula due to Legendre (1752 – 1833),
Brent and Salamin found in 1976 a remarkable formula for π.
Define

cn =
√
a2n − b2n

in the arithmetic-geometric sequence. Then

π =
4M(1, 1/

√
2)2

1−
∑+∞

n=1 2
n+1c2n

.

As a consequence, the calculation of N digits of π is also a
quasi-linear problem!

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

The Brent-Salamin formula

Using this and another formula due to Legendre (1752 – 1833),
Brent and Salamin found in 1976 a remarkable formula for π.
Define

cn =
√
a2n − b2n

in the arithmetic-geometric sequence. Then

π =
4M(1, 1/

√
2)2

1−
∑+∞

n=1 2
n+1c2n

.

As a consequence, the calculation of N digits of π is also a
quasi-linear problem!

This formula has been used several times to break the world
record, which seems to be 5 trillions digits since 2010
(however, there exist so efficient quadratic complexity formulas
that they are still competitive at that level...)

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Complexity of matrix multiplication

Question. How many steps are necessary to compute the
product C = AB of two n × n matrices, assuming that each
elementary multiplication or addition takes 1 step?

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Complexity of matrix multiplication

Question. How many steps are necessary to compute the
product C = AB of two n × n matrices, assuming that each
elementary multiplication or addition takes 1 step?

The standard matrix matrix multiplication algorithm

cik =
∑

1≤j≤n

aijbjk , 1 ≤ i , k ≤ n

leads to calculate n2 coefficients, each of which requires
n multiplications and (n − 1) additions, so in total
n2(2n − 1) ∼ 2n3 operations.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Complexity of matrix multiplication

Question. How many steps are necessary to compute the
product C = AB of two n × n matrices, assuming that each
elementary multiplication or addition takes 1 step?

The standard matrix matrix multiplication algorithm

cik =
∑

1≤j≤n

aijbjk , 1 ≤ i , k ≤ n

leads to calculate n2 coefficients, each of which requires
n multiplications and (n − 1) additions, so in total
n2(2n − 1) ∼ 2n3 operations.

However, the size of the data is N = n2, and the general
philosophy that it should be quasi-linear would suggest an
algorithm with complexity less than N1+ε = n2+2ε for every ε.

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

Complexity of matrix multiplication

Question. How many steps are necessary to compute the
product C = AB of two n × n matrices, assuming that each
elementary multiplication or addition takes 1 step?

The standard matrix matrix multiplication algorithm

cik =
∑

1≤j≤n

aijbjk , 1 ≤ i , k ≤ n

leads to calculate n2 coefficients, each of which requires
n multiplications and (n − 1) additions, so in total
n2(2n − 1) ∼ 2n3 operations.

However, the size of the data is N = n2, and the general
philosophy that it should be quasi-linear would suggest an
algorithm with complexity less than N1+ε = n2+2ε for every ε.

The fastest known algorithm, due to Coppersmith and
Winograd in 1987 has #steps ≤ C n2.38 (quite complicated!)

Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions

