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Aim of the lecture

Our goal is to study (nonconstant) entire curves f : C→ X drawn
in a projective variety/C. The variety X is said to be Brody (⇔
Kobayashi) hyperbolic if there are no such curves.

More generally, if ∆ =
∑

∆j is a reduced normal crossing divisor in
X , we want to study entire curves f : C→ X r∆ drawn in the
complement of ∆.

If there are no such curves, we say that the log pair (X ,∆) is
Brody hyperbolic.

J.-P. Demailly (Grenoble), Institut Fourier, July 1, 2019 Existence of logarithmic and orbifold jet differentials 2/24



Aim of the lecture (continued)

Even more generally, if ∆ =
∑

(1− 1
ρj

)∆j ⊂ X is a normal crossing

divisor, we want to study entire curves f : C→ X meeting each
component ∆j of ∆ with multiplicity ≥ ρj .

The pair (X ,∆) is called an orbifold (in the sense of Campana).
Here ρj ∈ ]1,∞], where ρj =∞ corresponds to the logarithmic
case. Usually ρj ∈ {2, 3, ...,∞}, but ρj ∈ R>1 will be allowed.

The strategy is to show that under suitable conditions, orbifold
entire curves must satisfy algebraic differential equations.
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k-jets of curves and k-jet bundles

Let X be a nonsingular n-dimensional projective variety over C.

Definition of k-jets

For k ∈ N∗, a k-jet of curve f[k] : (C, 0)k → X is an equivalence class of
germs of holomorphic curves f : (C, 0)→ X , written f = (f1, . . . , fn) in
local coordinates (z1, . . . , zn) on an open subset U ⊂ X , where two
germs are declared to be equivalent if they have the same Taylor
expansion of order k at 0 :

f (t) = x + tξ1 + t2ξ2 + · · ·+ tkξk + O(tk+1), t ∈ D(0, ε) ⊂ C,

and x = f (0) ∈ U, ξs ∈ Cn, 1 ≤ s ≤ k.

Notation

Let JkX be the bundle of k-jets of curves, and πk : JkX → X the
natural projection, where the fiber (JkX )x = π−1

k (x) consists of k-jets
of curves f[k] such that f (0) = x .
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Algebraic differential operators

Let t 7→ z = f (t) be a germ of curve, f[k] = (f ′, f ′′, . . . , f (k)) its k-jet at
any point t = 0. Look at the C∗-action induced by dilations
λ · f (t) := f (λt), λ ∈ C∗, for f[k] ∈ JkX .

Taking a (local) connection∇ onTX and putting ξs = f (s)(0) =∇s f (0),
we get a trivialization JkX ' (TX )⊕k and the C∗ action is given by

(∗) λ · (ξ1, ξ2, . . . , ξk) = (λξ1, λ
2ξ2, . . . , λ

kξk).

We consider the Green-Griffiths sheaf Ek,m(X ) of homogeneous
polynomials of weighted degree m on JkX defined by

P(x ; ξ1, . . . , ξk) =
∑

aα1α2...αk
(x) ξα1

1 . . . ξαk
k ,

∑k
s=1 s|αs | = m.

Here, we assume the coefficients aα1α2...αk
(x) to be holomorphic in x ,

and view P as a differential operator P(f ) = P(f ; f ′, f ′′, . . . , f (k)),

P(f )(t) =
∑

aα1α2...αk
(f (t)) f ′(t)α1f ′′(t)α2 . . . f (k)(t)αk .
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Graded algebra of algebraic differential operators

In this way, we get a graded algebra
⊕

m Ek,m(X ) of differential
operators. As sheaf of rings, in each coordinate chart U ⊂ X , it is a
pure polynomial algebra isomorphic to

OX [f
(s)
j ]1≤j≤n, 1≤s≤k where deg f

(s)
j = s.

If a change of coordinates z 7→ w = ψ(z) is performed on U, the curve
t 7→ f (t) becomes t 7→ ψ ◦ f (t) and we have inductively

(ψ ◦ f )(s) = (ψ′ ◦ f ) · f (s) + Qψ,s(f ′, . . . , f (s−1))

where Qψ,s is a polynomial of weighted degree s.

By filtering by the partial degree of P(x ; ξ1, ..., ξk) successively in ξk ,
ξk−1, ..., ξ1, one gets a multi-filtration on Ek,m(X ) such that the graded
pieces are

G •Ek,m(X ) =
⊕

`1+2`2+···+k`k=m

S`1T ∗X ⊗ · · · ⊗ S`kT ∗X .
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Logarithmic jet differentials

Take a logarithmic pair (X ,∆), ∆ =
∑

∆j normal crossing divisor.

Fix a point x ∈ X which belongs exactly to p components, say
∆1, ...,∆p, and take coordinates (z1, ..., zn) so that ∆j = {zj = 0}.
=⇒ log differential operators : polynomials in the derivatives

(log fj)
(s), 1 ≤ j ≤ p and f

(s)
j , p + 1 ≤ j ≤ n.

Alternatively, one gets an algebra of logarithmic jet differentials,
denoted

⊕
m Ek,m(X ,∆), that can be expressed locally as

OX

[
(f1)−1f

(s)
1 , ..., (fp)−1f

(s)
p , f

(s)
p+1, ..., f

(s)
n

]
1≤s≤k .

One gets a multi-filtration on Ek,m(X ,∆) with graded pieces

G •Ek,m(X ,∆) =
⊕

`1+2`2+···+k`k=m

S`1T ∗X 〈∆〉 ⊗ · · · ⊗ S`kT ∗X 〈∆〉

where T ∗X 〈∆〉 is the logarithmic tangent bundle, i.e., the locally free

sheaf generated by dz1
z1
, ...,

dzp
zp
, dzp+1, ..., dzn.
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Orbifold jet differentials

Consider an orbifold (X ,∆), ∆ =
∑

(1− 1
ρj

)∆j a SNC divisor.

Assuming ∆1 = {z1 = 0} and f having multiplicity q ≥ ρ1 > 1

along ∆1, then f
(s)

1 still vanishes at order ≥ (q − s)+, thus (f1)−βf
(s)

1 is
bounded as soon as βq ≤ (q − s)+, i.e. β ≤ (1− s

q )+. Thus, it is
sufficient to ask that β ≤ (1− s

ρ1
)+. At a point x ∈ |∆1| ∩ ... ∩ |∆p|,

the condition for a monomial of the form

(∗) f −β1
1 ... f

−βp
p

∏k

s=1
(f (s))αs , (f (s))αs = (f

(s)
1 )αs,1 ...(f

(s)
n )αs,n ,

αs ∈ Nn, β1, ..., βp ∈ N, to be bounded, is to require that

(∗∗) βj ≤
∑k

s=1
αs,j

(
1− s

ρj

)
+
, 1 ≤ j ≤ p.

Definition

Ek,m(X ,∆) is taken to be the algebra generated by monomials (∗) of
degree

∑
s|αs | = m, satisfying partial degree inequalities (∗∗).
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Orbifold jet differentials [continued]

It is important to notice that if we consider the log pair (X , d∆e) with
d∆e =

∑
∆j , then⊕

m

Ek,m(X ,∆) is a graded subalgebra of
⊕
m

Ek,m(X , d∆e).

The subalgebra Ek,m(X ,∆) still has a multi-filtration induced by the
one on Ek,m(X , d∆e), and, at least for ρj ∈ Q, we formally have

G •Ek,m(X ,∆) ⊂
⊕

`1+2`2+···+k`k=m

S`1T ∗X 〈∆(1)〉 ⊗ · · · ⊗ S`kT ∗X 〈∆(k)〉,

where T ∗X 〈∆(s)〉 is the “s-th orbifold cotangent sheaf” generated by

z
−(1−s/ρj )+

j d (s)zj , 1 ≤ j ≤ p, d (s)zj , p + 1 ≤ j ≤ n

(which makes sense only after taking some Galois cover of X ramifying
at sufficiently large order along ∆j).
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Projectivized jets and direct image formula

Green Griffiths bundles

Consider Xk := JkX/C∗ = Proj
⊕

m Ek,m(X ). This defines a bundle
πk : Xk → X of weighted projective spaces whose fibers are the
quotients of (Cn)k r{0} by the C∗ action

λ · (ξ1, . . . , ξk) = (λξ1, λ
2ξ2, . . . , λ

kξk).

Correspondingly, there is a tautological rank 1 sheaf OXk
(m) [only

invertible when lcm(1, ..., k) | m], and a direct image formula

Ek,m(X ) = (πk)∗OXk
(m)

In the logarithmic case, we define similarly

Xk〈∆〉 := Proj
⊕

m Ek,m(X ,∆)

and let OXk 〈∆〉(1) be the corresponding tautological sheaf, so that

Ek,m(X ,∆) = (πk)∗OXk 〈∆〉(m)
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Generalized Green-Griffiths-Lang conjecture

Generalized GGL conjecture (very optimistic ?)

If (X ,∆) is an orbifold of general type, in the sense that KX + ∆ is a
big R-divisor, then there is a proper algebraic subvariety Y ( X
containing all orbifold entire curves f : C→ (X ,∆) (not contained in ∆
and having multiplicity ≥ ρj along ∆j).

One possible strategy is to show that such orbifold entire curves f must
satisfy a lot of algebraic differential equations of the form
P(f ; f ′, ..., f (k)) = 0 for k � 1. This is based on:

Fundamental vanishing theorem

[Green-Griffiths 1979], [Demailly 1995], [Siu-Yeung 1996], ...
Let A be an ample divisor on X . Then, for all global jet differential
operators on (X ,∆) with coefficients vanishing on A, i.e.
P ∈ H0(X ,Ek,m(X ,∆)⊗O(−A)), and for all orbifold entire curves
f : C→ (X ,∆), one has P(f[k]) ≡ 0.
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Proof of the fundamental vanishing theorem

Simple case. First consider the compact case (∆ = 0), and assume
that f is a Brody curve, i.e. ‖f ′‖ω bounded for some hermitian metric ω
on X . By raising P to a power, we can assume A very ample, and view
P as a C valued differential operator whose coefficients vanish on a very
ample divisor A.

The Cauchy inequalities imply that all derivatives f (s) are bounded in
any relatively compact coordinate chart. Hence uA(t) = P(f[k])(t) is
bounded, and must thus be
constant by Liouville’s theorem.

Since A is very ample, we can move A ∈ |A| such that A hits f (C) ⊂ X .
But then uA vanishes somewhere, and so uA ≡ 0.

Logarithmic and orbifold cases. In the orbifold case, one must use
instead an “orbifold metric” ω. Removing the hypothesis f ′ bounded is
more tricky. One possible way is to use the Ahlfors lemma and some
representation theory.
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Holomorphic Morse inequalities

Theorem (D, 1985, L. Bonavero 1996)

Let L→ X be a holomorphic line bundle on a compact complex
manifold. Assume L equipped with a singular hermitian metric h = e−ϕ

with analytic singularities in Σ ⊂ X , and θ = i
2πΘL,h. Let

X (θ, q) :=
{
x ∈ X r Σ ; θ(x) has signature (n − q, q)

}
be the q-index set of the (1, 1)-form θ, and

X (θ,≤ q) =
⋃

j≤q X (θ, j).

Then
q∑

j=0

(−1)q−jhj(X , L⊗m ⊗ I(mϕ)) ≤ mn

n!

∫
X (θ,≤q)

(−1)qθn + o(mn),

where I(mϕ) ⊂ OX denotes the multiplier ideal sheaf

I(mϕ)x =
{
f ∈ OX ,x ; ∃U 3 x s.t.

∫
U |f |

2e−mϕdV < +∞
}
.
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Holomorphic Morse inequalities [continued]

Consequence of the holomorphic Morse inequalities

For q = 1, with the same notation as above, we get a lower bound

h0(X , L⊗m) ≥ h0(x , L⊗m ⊗ I(mϕ))

≥ h0(x , L⊗m ⊗ I(mϕ))− h1(x , L⊗m ⊗ I(mϕ))

≥ mn

n!

∫
X (θ,≤1)

θn − o(mn).

here θ is a real (1, 1) form of arbitrary signature on x .

when θ = α− β for some explicit (1,1)-forms α, β ≥ 0 (not necessarily
closed), an easy lemma yields

1X (α−β,≤1) (α− β)n ≥ αn − nαn−1 ∧ β
hence

h0(X , L⊗m) ≥ mn

n!

∫
X

(αn − nαn−1 ∧ β)− o(mn).
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Finsler metric on the k-jet bundles

Assume that TX is equipped with a C∞ connection ∇ and a hermitian
metric h. One then defines a ”weighted Finsler metric” on JkX by
taking b = lcm(1, 2, ..., k) and, at each point x =f (0),

Ψhk (f[k]) :=
( ∑

1≤s≤k
εs‖∇s f (0)‖2b/s

h(x)

)1/b
, 1 = ε1 � ε2 � · · · � εk .

Letting ξs =∇s f (0), this can be viewed as a metric hk on Lk :=OXk
(1),

and the curvature form of Lk is obtained by computing
i

2π∂∂ log Ψhk (f[k]) as a function of (x , ξ1, . . . , ξk).

Modulo negligible error terms of the form O(εs+1/εs), this gives

ΘLk ,hk = ωFS,k(ξ) +
i

2π

∑
1≤s≤k

1

s

|ξs |2b/s∑
t |ξt |2b/t

∑
i ,j ,α,β

cijαβ
ξsαξsβ
|ξs |2

dzi ∧ dz j

where (cijαβ) are the coefficients of the curvature tensor ΘT∗
X ,h

∗ andωFS,k

is the weighted Fubini-Study metric on the fibers of Xk → X .
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Evaluation of Morse integrals

The above expression is simplified by using polar coordinates

xs = |ξs |2b/sh , us = ξs/|ξs |h = ∇s f (0)/|∇s f (0)|.
In such polar coordinates, one gets the formula

ΘLk ,hk = ωFS,k(ξ) +
i

2π

∑
1≤s≤k

1

s
xs
∑
i ,j ,α,β

cijαβ(z) usαusβ dzi ∧ dz j

where ωFS,k(ξ) is positive definite in ξ.

By holomorphic Morse inequalities, we need to evaluate an integral∫
Xk (ΘLh,hk

,≤1)
ΘNk

Lk ,hk
, Nk = dimXk = n + (kn − 1),

and we have to integrate over the parameters z ∈ X , xs ∈ R+ and us in
the unit sphere bundle S(TX , 1) ⊂ TX .

Since the weighted projective space can be viewed as a circle quotient of
the pseudosphere

∑
|ξs |2b/s = 1, we can take here

∑
xs = 1, i.e. (xs) in

the (k − 1)-dimensional simplex ∆/ k−1.
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Probabilistic interpretation of the curvature

Now, the signature of ΘLk ,hk depends only on the vertical terms, i.e.∑
1≤s≤k

1

s
xsq(us), q(us) :=

i

2π

∑
i ,j ,α,β

cijαβ(z) usαusβ dzi ∧ dz j .

After averaging over (xs) ∈ ∆/ k−1 and computing the rational number∫
ωFS,k(ξ)nk−1 = 1

(k!)n , what is left is to evaluate Morse integrals with

respect to (us) of “horizontal” (1, 1)-forms given by sums
∑ 1

s q(us),
where us are “random points” on the unit sphere.

As k→+∞, this sum yields asymptotically a “Monte-Carlo” integral(
1 +

1

2
+ · · ·+ 1

k

)∫
u ∈ S(TX ,1)

q(u) du.

Since q is quadratic in u, we have

∫
u ∈ S(TX ,1)

q(u) du =
1

n
Tr(q) and

Tr(q) = Tr(ΘT∗
X ,h

∗) = ΘdetT∗
X ,det h∗ = ΘKX ,det h∗ .
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Probabilistic cohomology estimate

Theorem 1 (D-, Pure and Applied Math. Quarterly 2011)

Fix A ample line bundle on X , (TX , h), (A, hA) hermitian structures on
TX , A, and ωA = ΘA,hA > 0. Let ηε = ΘKX ,det h∗ − εωA and

Lk = OXk
(1)⊗ π∗kOX

(
− 1

kn

(
1 +

1

2
+ · · ·+ 1

k

)
εA
)
, ε ∈ Q+.

Then for m sufficiently divisible, we have a lower bound

h0(Xk , L
⊗m
k ) = h0

(
X ,Ek,m(X )⊗OX

(
− mε

kn

(
1 +

1

2
+ . . . +

1

k

)
A
))

≥ mn+kn−1

(n + kr − 1)!

(log k)n

n! (k!)n

(∫
X (η,≤1)

ηnε −
C

log k

)
.

Corollary

If KX is big and ε > 0 is small, then ηε can be taken > 0, so
h0(Xk , L

⊗m
k ) ≥ Cn,k,η,εm

n+kn−1 with Cn,k,η,ε > 0, for m� k � 1.

There are in fact similar upper/lower bounds for all hq(Xk , L
⊗m
k ).
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Non probabilistic cohomology estimate

The Monte-Carlo estimate can be replaced by a non probabilistic one, if
one assumes an explicit lower bound for the curvature tensor

ΘT∗
X ,h

∗ ≥ −γ ⊗ Id,

where γ ≥ 0 is a smooth (1, 1)-form on X .

In case X ⊂ PN and A = O(1), one can always take γ = 2ωA where
ωA = ΘA,hA > 0.

By Morse inequalities for differences 1X (α−β,≤1) (α− β)n, one gets

Theorem 2 (D-, Acta Math. Vietnamica 2012)

Assume k ≥ n and m� 1. With the same notation as in Theorem 1,
the dimensions h0(Xk , L

⊗m
k ) are bounded below by

mn+kn−1

n!k!n(n + kn − 1)!

∫
X

(
ΘKX

+ nγ
)n − cn,k

(
ΘKX

+ nγ
)n−1 ∧ (εωA + nγ),

with cn,k ∈ Q>0 explicit, cn,k ≤ 4n−1n!
(
1 + 1

2 + · · ·+ 1
k

)n
.
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Logarithmic situation

In the case of a log pair (X ,∆), one reproduce essentially the same
calculations, by replacing the cotangent bundle T ∗X with the logarithmic
cotangent bundle T ∗X 〈∆〉. This gives

Theorem 3 (probabilistic estimate)

Put ηε = ΘKX +∆,det h∗ − εωA. For m� k � 1, the dimensions

h0
(
X ,Ek,m(X ,∆)⊗OX

(
− mε

kn

(
1 + 1

2 + · · ·+ 1
k

)
A
))

are bounded below by

mn+kn−1

(n + kr − 1)!

(log k)n

n! (k!)n

(∫
X (η,≤1)

ηnε −
C

log k

)
, C > 0.

Theorem 4 (non probabilistic estimate)

Assume ΘT∗
X 〈∆〉 ≥ −γ ⊗ Id. For k ≥ n,m� 1, there are bounds

mn+kn−1

n!k!n(n + kn − 1)!

∫
X

(
ΘKX +∆ +nγ

)n− cn,k
(
ΘKX +∆ +nγ

)n−1∧ (εωA +nγ).
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Orbifold situation
Consider now the orbifold case (X ,∆), ∆ =

∑
(1− 1

ρj
)∆j .

In this case, the solution is to work on the logarithmic projectivized jet
bundle Xk〈d∆e〉, with Finsler metrics Ψhk (f[k]) of the form( ∑

1≤s≤k
εs

(
p∑

j=1

|fj |
−2(1− s

ρj
)+ |f (s)

j (0)|2 +
n∑

j=p+1

|f (s)
j (0)|2

)b/s

hs(f (0))

)1/b

,

where hs is a hermitian metric on the s-th orbifold bundle T ∗X 〈∆(s)〉.

Theorem 5 (non probabilistic estimate [probabilistic doesn’t work])

Assume ΘT∗
X 〈∆(s)〉 ≥ −γsω ⊗ Id in the sense of Griffiths, with ω = ΘA

(A ample), γs ≥ 0, and let Θs = ΘKX +∆(s) for s = 1, ..., k. Then, for

k ≥ n and m� 1, h0
(
X ,Ek,m(X ,∆)⊗OX (−mεA)

)
≥

mn+kn−1

n!(k!)n(n + kn − 1)!

[ ∫
X

∧n

s=1

(
Θs + nγsω

)
− (2n − 1)!

(n − 1)!2
×(∑k

s=1

γs
s

)(∑k

s=1

1

s
(Θs + nγsω)

)n−1
∧ ω − O(ε)

]
.
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Application to projective space

Consider Pn equipped with an orbifold divisor ∆ =
∑N

j=1(1− 1
ρj

)∆j .

Lemma: lower bound on the curvature of the cotangent bundle

Put A = OPn(1), dj = deg ∆j and γ0 = max
(dj
ρj
, 2
)
. Then ∀γ > γ0,

there exists a suitable hermitian metric on T ∗Pn〈∆〉 such that

ΘT∗
Pn 〈∆〉 + γ ωA ⊗ Id > 0 (in the sense of Griffiths).

Corollary: sufficient condition of existence of orbifold differentials

A sufficient condition for the existence of negatively twisted orbifold
order k = n jet differentials on Pn〈∆〉 is

ρj ≥ ρ > n,
∑N

j=1
dj ≥ cn max

(
dj
ρj
, 2

) n∏
s=1

(
1− s

ρ

)−1
.

with cn = O((2n log n)n) an explicit constant.

Example: N = 1, ρ1 ≥ 2cn, d1 ≥ 4cn.
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Generalization: case of orbifold directed varieties

One can also consider a smooth directed variety (X ,V ) with a
subbundle or subsheaf V ⊂ TX (e.g. a foliation), equipped with an
orbifold divisor ∆ transverse to V .

One then looks at entire curves f : C→ X
that are tangent to V and satisfy
the ramification conditions specified by ∆.

It is possible to define orbifold directed structures V 〈∆(s)〉⊂TX 〈∆(s)〉
and corresponding jet differential bundles Ek,m(X ,V ,∆).

Theorem 6

An existence criterion for sections of Ek,m(X ,V ,∆) holds as well.
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The end

Thank you for your attention!
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