Surfaces de Riemann (Jean-Pierre Demailly), feuille n°8, 21/03/2019

1. Soit (X, \mathcal{O}_X) une surface de Riemann, et z une coordonnée locale sur un ouvert de carte U de X. Si $f \in \mathcal{C}^1(U, \mathbb{C})$, on définit $\partial f = \frac{\partial f}{\partial z}dz$ et $\overline{\partial} f = \frac{\partial f}{\partial \overline{z}}d\overline{z}$, de sorte que $df = \partial f + \overline{\partial} f$. De même, si $\alpha(z) = v(z)dz + w(z)d\overline{z}$ est une 1-forme de classe \mathcal{C}^1 , on définit

$$\partial\alpha(z)=\frac{\partial w(z)}{\partial z}dz\wedge d\overline{z},\quad \overline{\partial}\alpha(z)=\frac{\partial v(z)}{\partial\overline{z}}d\overline{z}\wedge dz,$$

de sorte que $d\alpha = \partial \alpha + \overline{\partial} \alpha$.

(a) Pour toute fonction $f \in \mathcal{C}^2(U,\mathbb{C})$, montrer que l'on a d(df) = 0, $\partial(\partial f) = 0$, $\overline{\partial}(\overline{\partial}f) = 0$, et que

$$id\overline{\partial}f(z) = -id\partial f(z) = i\partial\overline{\partial}f(z) = -i\overline{\partial}\partial f(z) = -i\overline{\partial}\partial f(z) = \frac{\partial^2 f}{\partial z \partial \overline{z}}idz \wedge d\overline{z} = \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}\right)dx \wedge dy$$

si l'on écrit z = x + iy. Montrer que pour tout fonction holomorphe $g \in \mathcal{O}_X(U)$ ne s'annulant pas, on a $i\partial \overline{\partial} \log |g|^2 = 0$ (dans tout ce qui suit, log désigne le logarithme népérien. On pourra remarquer que $|g|^2 = g\overline{g}$!)

(b) Soit K est un domaine compact à bord \mathcal{C}^1 par morceaux dans X. On rappelle la convention d'orientation usuelle du bord ∂K : si p est un point non anguleux du bord et si z=x+iy est une coordonnée locale holomorphe choisie de sorte que la direction réelle Ox soit une direction tangente à ∂K et Oy une direction normale pointant vers l'intérieur de K, alors ∂K est orienté dans le sens de la demi-tangente Ox (noter qu'on peut toujours se ramener à ce cas en "tournant" la coordonnée locale et en prenant une nouvelle coordonnée $\tilde{z} = \lambda(z-p)$ avec $|\lambda| = 1$, si nécessaire). Alors on a la formule de Stokes

$$\int_{K} d\alpha = \int_{\partial K} \alpha$$

pour toute 1-forme de classe \mathcal{C}^1 sur K. (La première est une intégrale en 2 variables. Par découpage de K en en nombre fini de morceaux, on se ramène à la situation où K est contenu dans un ouvert de carte, auquel cas il s'agit de la formule de Green-Riemann usuelle pour un ouvert du plan $\mathbb{C} \simeq \mathbb{R}^2$). En déduire que si X est compacte et K = X, on a $\int_X d\alpha = 0$, puis que $\int_X i\partial \overline{\partial} u = 0$ pour toute fonction $u \in \mathcal{C}^2(X)$.

(c) Soit \mathcal{F} un \mathcal{O}_X -module inversible muni d'une métrique hermitienne h de classe \mathcal{C}^2 au moins. On définit la forme de courbure de (\mathcal{F}, h) comme étant la 2-forme

$$\Theta_{\mathcal{F},h} = -\frac{i}{2\pi} \partial \overline{\partial} \log |e|_h^2$$

où e est un générateur local quelconque du faisceau \mathcal{F} (qui, par hypothèse, est localement libre de rang 1). Montrer que ceci a un sens, i.e. que $\Theta_{\mathcal{F},h}$ ne dépend pas du générateur local e choisi (si \tilde{e} est une autre base sur \mathcal{O}_X , on a $\tilde{e} = ge$ avec g holomorphe inversible).

(d) On suppose ici X compacte. Montrer que l'intégrale

$$\int_{\mathbf{Y}}\Theta_{\mathfrak{F},h}$$

ne dépend pas de la métrique hermitienne h choisie sur \mathcal{F} .

Indication: si \tilde{h} est une autre métrique, on peut écrire $\tilde{h} = he^{-u}$ avec $u = -\log \frac{\tilde{h}}{\tilde{h}} \in \mathcal{C}^2(X)$. Exprimer la relation qui existe entre $\Theta_{\mathcal{F},\tilde{h}}$ et $\Theta_{\mathcal{F},h}$.

2. On suppose ici que la surface de Riemann X est compacte. Le but du présent exercice est de montrer que $\int_X \Theta_{\mathcal{F},h}$ coïncide avec le degré $\deg(\mathcal{F})$ (et en particulier que $\int_X \Theta_{\mathcal{F},h} \in \mathbb{Z}$). On admettra qu'il existe toujours un diviseur D sur X tel que $\mathcal{F} \simeq \mathcal{O}_X(D)$.

(a) Si $\varphi: \mathcal{F} \to \mathcal{G}$ est un isomorphisme de \mathcal{O}_X -modules, montrer que l'on a

$$\int_X \Theta_{\mathcal{F},h} = \int_X \Theta_{\mathcal{G},\tilde{h}}$$

quelles que soient les métriques h sur $\mathcal F$ et $\tilde h$ sur $\mathcal G$ de classe $\mathcal C^2$.

Indication : considérer le cas où h et \tilde{h} se correspondent par l'isomorphisme $\varphi.$

(b) Montrer que si $(\mathfrak{F}, h_{\mathfrak{F}})$ et $(\mathfrak{G}, h_{\mathfrak{G}})$ sont des faisceaux inversibles munis de structures hermitiennes, on a

$$\int_{X} \Theta_{\mathcal{F} \otimes \mathcal{G}, h_{\mathcal{F}} \otimes h_{\mathcal{G}}} = \int_{X} \Theta_{\mathcal{F}, h_{\mathcal{F}}} + \int_{X} \Theta_{\mathcal{G}, h_{\mathcal{G}}},$$

où $h_{\mathcal{F}} \otimes h_{\mathcal{G}}$ désigne la structure hermitienne sur $\mathcal{F} \otimes \mathcal{G}$ telle que $|s \otimes t|^2_{h_{\mathcal{F}} \otimes h_{\mathcal{G}}} = |s|^2_{h_{\mathcal{F}}} |t|^2_{h_{\mathcal{G}}}$.

(c) Soit $p \in X$ un point fixé. On considère ici le cas $\mathcal{F} = \mathcal{O}_X([p]) \subset \mathcal{M}_X$, faisceau des fonctions méromorphes ayant au plus un pôle simple en p. On choisit une coordonnée locale z sur un voisinage V de p telle que p corresponde au point z=0, de sorte que $e(z)=\frac{1}{z}$ est un générateur local de \mathcal{F} sur V et $\tilde{e}(z)=1$ un générateur de \mathcal{F} sur $X\smallsetminus\{p\}$. On considère le voisinage $V_\varepsilon:=\{|z|<\varepsilon\}\subset V$ pour $\varepsilon>0$ assez petit, et on définit une métrique h_ε sur \mathcal{F} en posant, $\forall f\in\mathcal{F}(U)$,

$$\begin{cases} |f|_{h_{\varepsilon}}^2 = |f(z)|^2 & \text{pour } z \in U \smallsetminus V_{\varepsilon}, \\ |f|_{h_{\varepsilon}}^2 = |f(z)|^2 \exp\left(\theta_{\varepsilon}(z)\log|z|^2\right) & \text{pour } z \in U \cap V_{\varepsilon}, \end{cases}$$

où θ_{ε} est une fonction de classe \mathbb{C}^{∞} sur V, à support compact dans V_{ε} , égale à 1 sur $V_{\varepsilon/2}$. Vérifier qu'il y a bien recollement et que h_{ε} est une métrique de classe \mathbb{C}^{∞} pour \mathcal{F} (i.e., par exemple, que $|e|_{h_{\varepsilon}}^{2}$ est de classe \mathbb{C}^{∞} sur V et $|\tilde{e}|_{h_{\varepsilon}}^{2}$ de classe \mathbb{C}^{∞} sur $X \setminus \{p\}$), et que

$$\int_X \Theta_{\mathcal{F},h_{\varepsilon}} = \int_{V_{\varepsilon}} \frac{i}{2\pi} \partial \overline{\partial} \Big((1 - \theta_{\varepsilon}(z)) \log |z|^2 \Big) = \int_{\partial V_{\varepsilon}} \frac{1}{2\pi i} \partial \Big((1 - \theta_{\varepsilon}(z)) \log |z|^2 \Big) = \int_{\partial V_{\varepsilon}} \frac{1}{2\pi i} \partial \Big(\log |z|^2 \Big) = 1$$

à l'aide de la formule de Stokes et de la formule de Cauchy (ou d'un calcul en coordonnées polaires).

(d) Conclure pour $\mathcal{F} \simeq \mathcal{O}_X(D)$ quelconque.