
Complements:

– Closed Hilbertian operators

– Complete Riemannian manifolds

§ 1. Closed Hilbertian operators

We expose here some basic results of Von Neumann’s theory of unbounded operators
on Hilbert spaces. Let H1, H2 be complex Hilbert spaces. We consider a linear operator
T defined on a subspace DomT ⊂ H1 (called the domain of T ) into H2. The operator
T is said to be densely defined if DomT is dense in H1, and closed if its graph

GrT =
{

(x, Tx) ; x ∈ DomT
}

is closed in H1 ×H2.

Assume now that T is closed and densely defined. The adjoint T ? of T (in Von
Neumann’s sense) is constructed as follows: DomT ? is the set of y ∈ H2 such that the
linear form

DomT 3 x 7−→ 〈Tx, y〉2
is bounded in H1-norm. Since DomT is dense, there exists for every y in DomT ? a
unique element T ?y ∈ H1 such that 〈Tx, y〉2 = 〈x, T ?y〉1 for all x ∈ DomT ?. It is

immediate to verify that GrT ? =
(
Gr(−T )

)⊥
in H1 ×H2. It follows that T ? is closed

and that every pair (u, v) ∈ H1 ×H2 can be written

(u, v) = (x,−Tx) + (T ?y, y), x ∈ DomT, y ∈ DomT ?.

Take in particular u = 0. Then

x+ T ?y = 0, v = y − Tx = y + TT ?y, 〈v, y〉2 = ‖y‖22 + ‖T ?y‖21.

If v ∈ (DomT ?)⊥ we get 〈v, y〉2 = 0, thus y = 0 and v = 0. Therefore T ? is densely
defined and our discussion implies:

(1.1) Theorem [Von Neumann 1929]). If T : H1 −→ H2 is a closed and densely
defined operator, then its adjoint T ? is also closed and densely defined and (T ?)? = T .
Furthermore, we have the relation KerT ? = (ImT )⊥ and its dual (KerT )⊥ = ImT ?. �

Consider now two closed and densely defined operators T , S :

H1
T−→ H2

S−→ H3

such that S ◦T = 0. By this, we mean that the range T (DomT ) is contained in KerS ⊂
DomS, in such a way that there is no problem for defining the composition S ◦ T . The
starting point of all L2 estimates is the following abstract existence theorem.



(1.2) Theorem. There are orthogonal decompositions

H2 = (KerS ∩KerT ?)⊕ ImT ⊕ ImS?,

KerS = (KerS ∩KerT ?)⊕ ImT .

In order that ImT = KerS, it suffices that

(1.3) ‖T ?x‖21 + ‖Sx‖23 > C‖x‖22, ∀x ∈ DomS ∩DomT ?

for some constant C > 0. In that case, for every v ∈ H2 such that Sv = 0, there exists
u ∈ H1 such that Tu = v and

‖u‖21 6
1

C
‖v‖22.

In particular
ImT = ImT = KerS, ImS? = ImS? = KerT ?.

Proof. Since S is closed, the kernel KerS is closed in H2. The relation (KerS)⊥ = ImS?

implies

(1.4) H2 = KerS ⊕ ImS?

and similarly H2 = KerT ? ⊕ ImT . However, the assumption S ◦ T = 0 shows that
ImT ⊂ KerS, therefore

(1.5) KerS = (KerS ∩KerT ?)⊕ ImT .

The first two equalities in Th. 1.2 are then equivalent to the conjunction of (1.4) and
(1.5).

Now, under assumption (1.3), we are going to show that the equation Tu = v is
always solvable if Sv = 0. Let x ∈ DomT ?. One can write

x = x′ + x′′ where x′ ∈ KerS and x′′ ∈ (KerS)⊥ ⊂ (ImT )⊥ = KerT ?.

Since x, x′′ ∈ DomT ?, we have also x′ ∈ DomT ?. We get

〈v, x〉2 = 〈v, x′〉2 + 〈v, x′′〉2 = 〈v, x′〉2

because v ∈ KerS and x′′ ∈ (KerS)⊥. As Sx′ = 0 and T ?x′′ = 0, the Cauchy-Schwarz
inequality combined with (1.3) implies

|〈v, x〉2|2 6 ‖v‖22 ‖x′‖22 6
1

C
‖v‖22 ‖T ?x′‖21 =

1

C
‖v‖22 ‖T ?x‖21.

This shows that the linear form T ?X 3 x 7−→ 〈x, v〉2 is continuous on ImT ? ⊂ H1 with
norm 6 C−1/2‖v‖2. By the Hahn-Banach theorem, this form can be extended to a
continuous linear form on H1 of norm 6 C−1/2‖v‖2, i.e. we can find u ∈ H1 such that
‖u‖1 6 C−1/2‖v‖2 and

〈x, v〉2 = 〈T ?x, u〉1, ∀x ∈ DomT ?.

This means that u ∈ Dom (T ?)? = DomT and v = Tu. We have thus shown that
ImT = KerS, in particular ImT is closed. The dual equality ImS? = KerT ? follows by
considering the dual pair (S?, T ?). �



§ 2. Complete Riemannian manifolds

Let (M, g) be a riemannian manifold of dimension m, with metric

g(x) =
∑

gjk(x) dxj ⊗ dxk, 1 6 j, k 6 m.

The length of a path γ : [a, b] −→M is by definition

`(γ) =

∫ b

a

|γ′(t)|gdt =

∫ b

a

(∑
j,k

gjk
(
γ(t)

)
γ′j(t)γ

′
k(t)

)1/2
dt.

The geodesic distance of two points x, y ∈M is

δ(x, y) = inf
γ
`(γ) over paths γ with γ(a) = x, γ(b) = y,

if x, y are in the same connected component of M , δ(x, y) = +∞ otherwise. It is easy
to check that δ satisfies the usual axioms of distances: for the separation axiom, use the
fact that if y is outside some closed coordinate ball B of radius r centered at x and if
g > c|dx|2 on B, then δ(x, y) > c1/2r. In addition, δ satisfies the axiom:

(2.1) for every x, y ∈M , inf
z∈M

max{δ(x, z), δ(y, z)} =
1

2
δ(x, y).

In fact for every ε > 0 there is a path γ such that γ(a) = x, γ(b) = y, `(γ) < δ(x, y) + ε
and we can take z to be at mid-distance between x and y along γ. A metric space E
with a distance δ satisfying the additional axiom (2.1) will be called a geodesic metric
space (Gromov calls them “length spaces”). It is then easy to see by dichotomy that any
two points x, y ∈ E can be joined by a chain of points x = x0, x1, . . . , xN = y such that
δ(xj , xj+1) < ε and

∑
δ(xj , xj+1) < δ(x, y) + ε.

(2.2) Lemma (Hopf-Rinow). Let (E, δ) be a geodesic metric space. Then the following
properties are equivalent:

a) E is locally compact and complete ;

b) all closed geodesic balls B(x0, r) are compact.

Proof. Since any Cauchy sequence is bounded, it is immediate that b) implies a). We
now check that a) =⇒ b). Fix x0 and define R to be the supremum of all r > 0
such that B(x0, r) is compact. Since E is locally compact, we have R > 0. Suppose
that R < +∞. Then B(x0, r) is compact for every r < R. Let yν be a sequence of
points in B(x0, R). Fix an integer p. As δ(x0, yν) 6 R, axiom (2.1) shows that we can
find points zν ∈ M such that δ(x0, zν) 6 (1 − 2−p)R and δ(zν , yν) 6 21−pR. Since
B(x0, (1 − 2−p)R) is compact, there is a subsequence (zν(p,q))q∈N converging to a limit
point wp with δ(zν(p,q), wp) 6 2−q. We proceed by induction on p and take ν(p+ 1, q) to
be a subsequence of ν(p, q). Then

δ(yν(p,q), wp) 6 δ(yν(p,q), zν(p,q)) + δ(zν(p,q), wp) 6 21−pR+ 2−q.

Since (yν(p+1,q)) is a subsequence of (yν(p,q)), we infer that δ(wp, wp+1) 6 3 2−pR by
letting q tend to +∞. By the completeness hypothesis, the Cauchy sequence (wp) con-
verges to a limit point w ∈ M , and the above inequalities show that (yν(p,p)) converges



to w ∈ B(x0, R). Therefore B(x0, R) is compact. Now, each point y ∈ B(x0, R) can be
covered by a compact ball B(y, εy), and the compact set B(x0, R) admits a finite covering
by concentric balls B(yj , εyj/2). Set ε = min εyj . Every point z ∈ B(x0, R + ε/2) is at

distance 6 ε/2 of some point y ∈ B(x0, R), hence at distance 6 ε/2 + εyj/2 of some

point yj , in particular B(x0, R+ ε/2) ⊂
⋃
B(yj , εyj ) is compact. This is a contradiction,

so R = +∞. �

The following standard definitions and properties will be useful in order to deal with
the completeness of the metric.

(2.3) Definitions.

a) A riemannian manifold (M, g) is said to be complete if (M, δ) is complete as a metric
space.

b) A continuous function ψ : M → R is said to be exhaustive if for every c ∈ R the
sublevel set Mc = {x ∈M ; ψ(x) < c} is relatively compact in M .

c) A sequence (Kν)ν∈N of compact subsets of M is said to be exhaustive if M =
⋃
Kν

and if Kν is contained in the interior of Kν+1 for all ν (so that every compact subset
of M is contained in some Kν).

(2.4) Lemma. The following properties are equivalent:

a) (M, g) is complete;

b) there exists an exhaustive function ψ ∈ C∞(M,R) such that |dψ|g 6 1 ;

c) there exists an exhaustive sequence (Kν)ν∈N of compact subsets of M and functions
ψν ∈ C∞(M,R) such that

ψν = 1 in a neighborhood of Kν , Supp ψν ⊂ K◦ν+1,

0 6 ψν 6 1 and |dψν |g 6 2−ν .

Proof. a) =⇒ b). Without loss of generality, we may assume that M is connected. Select
a point x0 ∈M and set ψ0(x) = 1

2δ(x0, x). Then ψ0 is a Lipschitz function with constant
1
2 , thus ψ0 is differentiable almost everywhere on M and |dψ0|g 6 1

2 . We can find a
smoothing ψ of ψ0 such that |dψ|g 6 1 and |ψ − ψ0| 6 1. Then ψ is an exhaustion
function of M .

b) =⇒ c). Choose ψ as in a) and a function ρ ∈ C∞(R,R) such that ρ = 1 on ]−∞, 1.1],
ρ = 0 on [1.9,+∞[ and 0 6 ρ′ 6 2 on [1, 2]. Then

Kν = {x ∈M ; ψ(x) 6 2ν+1}, ψν(x) = ρ
(
2−ν−1ψ(x)

)
satisfy our requirements.

c) =⇒ b). Set ψ =
∑

2ν(1− ψν).

b) =⇒ a). The inequality |dψ|g 6 1 implies |ψ(x) − ψ(y)| 6 δ(x, y) for all x, y ∈ M , so
all δ-balls must be relatively compact in M . �


