Complements:
— Closed Hilbertian operators

— Complete Riemannian manifolds

§ 1. Closed Hilbertian operators

We expose here some basic results of Von Neumann’s theory of unbounded operators
on Hilbert spaces. Let #1, #5 be complex Hilbert spaces. We consider a linear operator
T defined on a subspace DomT C #; (called the domain of T') into #5. The operator
T is said to be densely defined if Dom T is dense in #1, and closed if its graph

GrT = {(x,Tz) ; x € DomT}

is closed in #H; x #Ho.

Assume now that 7 is closed and densely defined. The adjoint 7% of 7' (in Von
Neumann’s sense) is constructed as follows: Dom T is the set of y € H5 such that the
linear form

DomT 5 z — (Tx,y)2

is bounded in #i-norm. Since Dom T is dense, there exists for every y in DomT™* a
unique element T*y € #; such that (T'z,y)s = (x,T*y); for all x € DomT*. It is

immediate to verify that Gr 7™ = (GI‘(—T))J_ in #1 x #Ho. It follows that T™* is closed
and that every pair (u,v) € #; x #H2 can be written

(u,v) = (x,—Tz)+ (T"y,y), = €DomT, ye DomT*.
Take in particular v = 0. Then
e+ Ty=0, v=y-Te=y+TTy, (v,9)2= [yl + Ty}

If v € (DomT*)+ we get (v,y)2 = 0, thus y = 0 and v = 0. Therefore T* is densely
defined and our discussion implies:

(1.1) Theorem [Von Neumann 1929]). If T : Hi; — Hs is a closed and densely
defined operator, then its adjoint T™ is also closed and densely defined and (T*)* = T.
Furthermore, we have the relation Ker T* = (ImT)* and its dual (Ker T)* =ImT*. O

Consider now two closed and densely defined operators 7', S' :
Hy - Hy = Hs

such that SoT = 0. By this, we mean that the range T'(Dom T') is contained in Ker S C
Dom S, in such a way that there is no problem for defining the composition S o T. The
starting point of all L? estimates is the following abstract existence theorem.



(1.2) Theorem. There are orthogonal decompositions
Ho = (Ker SNKerT*) @ Im T @ Im S*,
Ker S = (Ker SNKerT*) & ImT.
In order that ImT = Ker S, it suffices that
(1.3) |T*z||3 + ||Sz||3 = C||z||3, V&€ DomSNDomT*

for some constant C' > 0. In that case, for every v € #o such that Sv = 0, there exists
u € #H1 such that Tu = v and

1
Jul? < il
In particular
ImT =ImT =KerS, ImS*=1ImS*=KerT".
Proof. Since S is closed, the kernel Ker S is closed in #3. The relation (Ker S)* = Im S*
implies
(1.4) Ho =Ker S @ Im S*

and similarly #o5 = KerT* & ImT. However, the assumption S o T' = 0 shows that
ImT C Ker S, therefore

(1.5) KerS = (KerSNKerT*) & ImT.

The first two equalities in Th. 1.2 are then equivalent to the conjunction of (1.4) and
(1.5).

Now, under assumption (1.3), we are going to show that the equation Tu = v is
always solvable if Sv = 0. Let z € DomT™. One can write

t=1a'+2" where 2’ € KerS and z” € (KerS)t ¢ (ImT)* = Ker T*.
Since z, 2" € Dom T™, we have also ' € DomT*. We get
(v, 7)o = (v, 7)o + (v,2")2 = (v,2")2
because v € Ker S and z” € (Ker S)*. As Sz’ = 0 and T*z” = 0, the Cauchy-Schwarz
inequality combined with (1.3) implies

1 1
(v, @) < lollz 127112 < FlIollz 17*2'IE = Fllollz 17"

This shows that the linear form 7% > z —— (z,v)2 is continuous on Im7T* C #; with
norm < C~'2|lv|l. By the Hahn-Banach theorem, this form can be extended to a
continuous linear form on #; of norm < C~1/2||v||z, i.e. we can find u € #; such that
lulls < C=12]lv]|2 and

(x,v)g = (T"x,u);, Vo & DomT".

This means that v € Dom (7*)* = DomT and v = Tu. We have thus shown that
Im7T = Ker S, in particular Im 7 is closed. The dual equality Im S* = Ker T™ follows by
considering the dual pair (S*,T™). O



§ 2. Complete Riemannian manifolds

Let (M, g) be a riemannian manifold of dimension m, with metric
g(@) =Y gjn(x)da; @ dzy, 1< jk<m.

The length of a path v : [a,b] — M is by definition

()= [l = [ (S onte) onio) e
: .\ 2

The geodesic distance of two points x,y € M is

d(z,y) =infl(y) over paths v with ~(a) =z, ~(b) =y,
8!

if x,y are in the same connected component of M, §(z,y) = +oo otherwise. It is easy
to check that ¢ satisfies the usual axioms of distances: for the separation axiom, use the
fact that if y is outside some closed coordinate ball B of radius 7 centered at z and if
g > c|dz|? on B, then §(x,y) > ¢*/?r. In addition, § satisfies the axiom:

(2.1) for every 7,y € M, inf max{d(r, 2),6(y, =)} = %5(33, ).

In fact for every € > 0 there is a path v such that v(a) = x, y(b) =y, £(v) < §(z,y) + ¢
and we can take z to be at mid-distance between x and y along 7. A metric space F
with a distance ¢ satisfying the additional axiom (2.1) will be called a geodesic metric
space (Gromov calls them “length spaces”). It is then easy to see by dichotomy that any
two points z,y € E can be joined by a chain of points x = zg, x1,...,2ny = y such that
d(xj,xj41) <eand Y d(z;,z41) < 0(z,y) +e.

(2.2) Lemma (Hopf-Rinow). Let (E,d) be a geodesic metric space. Then the following
properties are equivalent:

a) E is locally compact and complete;

b) all closed geodesic balls B(xg,r) are compact.

Proof. Since any Cauchy sequence is bounded, it is immediate that b) implies a). We
now check that a) = b). Fix z¢ and define R to be the supremum of all » > 0
such that B(zg,r) is compact. Since E is locally compact, we have R > 0. Suppose
that R < 4o0o. Then B(xg,r) is compact for every r < R. Let y, be a sequence of
points in B(zg, R). Fix an integer p. As §(xo,v,) < R, axiom (2.1) shows that we can
find points z, € M such that 6(zg,2,) < (1 —27P)R and §(z,,y,) < 2'"PR. Since
B(zo, (1 — 27P)R) is compact, there is a subsequence (z,(, q))qen converging to a limit
point w, with §(z,(, q), wp) < 279. We proceed by induction on p and take v(p+1,q) to
be a subsequence of v(p,q). Then

S(Wu(pa)s Wp) < OYup.a)s Zipa) + O (Zuipg)s wp) < 27 PR +271.

Since (Yy(p+1,q)) is a subsequence of (1,(p,q)), We infer that d(w,, wpr1) <327PR by
letting ¢ tend to +00. By the completeness hypothesis, the Cauchy sequence (w,) con-
verges to a limit point w € M, and the above inequalities show that (y,(p ) converges



to w € B(zg, R). Therefore B(xg, R) is compact. Now, each point y € B(xg, R) can be
covered by a compact ball B(y, ¢,), and the compact set B(z¢, R) admits a finite covering
by concentric balls B(y;,e,,/2). Set e = mine,,. Every point z € B(zo, R + £/2) is at
distance < /2 of some point y € B(zo, R), hence at distance < £/2 + €, /2 of some
point y;, in particular B(zo, R+¢/2) C |JB(y;,&y,) is compact. This is a contradiction,
so R = +o0. U

The following standard definitions and properties will be useful in order to deal with
the completeness of the metric.

(2.3) Definitions.

a) A riemannian manifold (M, g) is said to be complete if (M, ) is complete as a metric
space.

b) A continuous function ¢» : M — R is said to be ezhaustive if for every ¢ € R the
sublevel set M, = {x € M ; () < c} is relatively compact in M.

c) A sequence (K, ), en of compact subsets of M is said to be ezhaustive if M = |J K,
and if K, is contained in the interior of K,11 for all v (so that every compact subset
of M is contained in some K,).

(2.4) Lemma. The following properties are equivalent:
a) (M,g) is complete;
b) there exists an exhaustive function ¢ € “€>*(M,R) such that |di|, < 1;

c) there exists an exhaustive sequence (K, ), en of compact subsets of M and functions
¥, € €°(M,R) such that

Y, =1 in a neighborhood of K,,  Supp ¥, C K,
0<¢, <1 and |dy|, <277

Proof. a) = b). Without loss of generality, we may assume that M is connected. Select

a point o € M and set 1g(z) = 36(xo, ). Then ¢ is a Lipschitz function with constant

%, thus v is differentiable almost everywhere on M and |dio|, < % We can find a
smoothing ¢ of v such that |dy|, < 1 and [p — 9| < 1. Then ¢ is an exhaustion

function of M.

b) = ¢). Choose 1 as in a) and a function p € “€>°(R,R) such that p =1 on | — o0, 1.1],
p=0on[1.9,4+00] and 0 < p’ <2 on [1,2]. Then

K, ={zeM; @) <2}, u(x) = p(277 ()
satisfy our requirements.
c) = b). Set p = > 2"(1 — ).

b) = a). The inequality |d|, < 1 implies |¢(z) — ¥(y)| < 0(z,y) for all x,y € M, so
all §-balls must be relatively compact in M. U



