Complements:

– Closed Hilbertian operators – Complete Riemannian manifolds

§ 1. Closed Hilbertian operators

We expose here some basic results of Von Neumann's theory of unbounded operators on Hilbert spaces. Let $\mathcal{H}_1, \mathcal{H}_2$ be complex Hilbert spaces. We consider a linear operator T defined on a subspace Dom $T \subset \mathcal{H}_1$ (called the domain of T) into \mathcal{H}_2 . The operator T is said to be *densely defined* if $Dom T$ is dense in \mathcal{H}_1 , and *closed* if its graph

$$
Gr T = \{(x, Tx) ; x \in Dom T\}
$$

is closed in $\mathcal{H}_1 \times \mathcal{H}_2$.

Assume now that T is closed and densely defined. The adjoint T^* of T (in Von Neumann's sense) is constructed as follows: Dom T^* is the set of $y \in \mathcal{H}_2$ such that the linear form

$$
Dom T \ni x \longmapsto \langle Tx, y \rangle_2
$$

is bounded in \mathcal{H}_1 -norm. Since Dom T is dense, there exists for every y in Dom T^{*} a unique element $T^{\star}y \in \mathcal{H}_1$ such that $\langle Tx, y \rangle_2 = \langle x, T^{\star}y \rangle_1$ for all $x \in \text{Dom }T^{\star}$. It is immediate to verify that $\mathrm{Gr} T^* = (\mathrm{Gr}(-T))^{\perp}$ in $\mathcal{H}_1 \times \mathcal{H}_2$. It follows that T^* is closed and that every pair $(u, v) \in \mathcal{H}_1 \times \mathcal{H}_2$ can be written

$$
(u, v) = (x, -Tx) + (T^*y, y), \quad x \in \text{Dom } T, \ y \in \text{Dom } T^*.
$$

Take in particular $u = 0$. Then

$$
x + T^*y = 0
$$
, $v = y - Tx = y + TT^*y$, $\langle v, y \rangle_2 = ||y||_2^2 + ||T^*y||_1^2$.

If $v \in (\text{Dom }T^{\star})^{\perp}$ we get $\langle v, y \rangle_2 = 0$, thus $y = 0$ and $v = 0$. Therefore T^{\star} is densely defined and our discussion implies:

(1.1) Theorem [Von Neumann 1929]). If $T : \mathcal{H}_1 \longrightarrow \mathcal{H}_2$ is a closed and densely defined operator, then its adjoint T^* is also closed and densely defined and $(T^*)^* = T$. Furthermore, we have the relation $\text{Ker } T^* = (\text{Im } T)^{\perp}$ and its dual $(\text{Ker } T)^{\perp} = \overline{\text{Im } T^*}$.

Consider now two closed and densely defined operators T, S :

$$
\mathcal{H}_1 \xrightarrow{T} \mathcal{H}_2 \xrightarrow{S} \mathcal{H}_3
$$

such that $S \circ T = 0$. By this, we mean that the range $T(D \text{om } T)$ is contained in Ker $S \subset T$ Dom S, in such a way that there is no problem for defining the composition $S \circ T$. The starting point of all L^2 estimates is the following abstract existence theorem.

(1.2) Theorem. There are orthogonal decompositions

$$
\mathcal{H}_2 = (\operatorname{Ker} S \cap \operatorname{Ker} T^{\star}) \oplus \overline{\operatorname{Im} T} \oplus \overline{\operatorname{Im} S^{\star}},
$$

 $\operatorname{Ker} S = (\operatorname{Ker} S \cap \operatorname{Ker} T^*) \oplus \overline{\operatorname{Im} T}.$

In order that $\text{Im } T = \text{Ker } S$, it suffices that

(1.3)
$$
||T^*x||_1^2 + ||Sx||_3^2 \ge C||x||_2^2, \quad \forall x \in \text{Dom } S \cap \text{Dom } T^*
$$

for some constant $C > 0$. In that case, for every $v \in \mathcal{H}_2$ such that $Sv = 0$, there exists $u \in \mathcal{H}_1$ such that $Tu = v$ and

$$
||u||_1^2 \leqslant \frac{1}{C}||v||_2^2.
$$

In particular

$$
\overline{\operatorname{Im} T} = \operatorname{Im} T = \operatorname{Ker} S, \quad \overline{\operatorname{Im} S^{\star}} = \operatorname{Im} S^{\star} = \operatorname{Ker} T^{\star}.
$$

Proof. Since S is closed, the kernel Ker S is closed in \mathcal{H}_2 . The relation $(Ker S)^{\perp} = \overline{\text{Im }S^*}$ implies

(1.4)
$$
\mathcal{H}_2 = \text{Ker } S \oplus \overline{\text{Im } S^*}
$$

and similarly $\mathcal{H}_2 = \text{Ker } T^* \oplus \overline{\text{Im } T}$. However, the assumption $S \circ T = 0$ shows that $\overline{\mathrm{Im} T} \subset \mathrm{Ker} S$, therefore

(1.5)
$$
\operatorname{Ker} S = (\operatorname{Ker} S \cap \operatorname{Ker} T^*) \oplus \overline{\operatorname{Im} T}.
$$

The first two equalities in Th. 1.2 are then equivalent to the conjunction of (1.4) and $(1.5).$

Now, under assumption (1.3), we are going to show that the equation $Tu = v$ is always solvable if $Sv = 0$. Let $x \in \text{Dom } T^*$. One can write

$$
x = x' + x''
$$
 where $x' \in \text{Ker } S$ and $x'' \in (\text{Ker } S)^{\perp} \subset (\text{Im } T)^{\perp} = \text{Ker } T^*$.

Since $x, x'' \in \text{Dom } T^*$, we have also $x' \in \text{Dom } T^*$. We get

$$
\langle v, x \rangle_2 = \langle v, x' \rangle_2 + \langle v, x'' \rangle_2 = \langle v, x' \rangle_2
$$

because $v \in \text{Ker } S$ and $x'' \in (\text{Ker } S)^{\perp}$. As $Sx' = 0$ and $T^*x'' = 0$, the Cauchy-Schwarz inequality combined with (1.3) implies

$$
|\langle v, x \rangle_2|^2 \le ||v||_2^2 ||x'||_2^2 \le \frac{1}{C} ||v||_2^2 ||T^*x'||_1^2 = \frac{1}{C} ||v||_2^2 ||T^*x||_1^2.
$$

This shows that the linear form $T_X^* \ni x \mapsto \langle x, v \rangle_2$ is continuous on Im $T^* \subset \mathcal{H}_1$ with norm $\leq C^{-1/2} ||v||_2$. By the Hahn-Banach theorem, this form can be extended to a continuous linear form on \mathcal{H}_1 of norm $\leq C^{-1/2} ||v||_2$, i.e. we can find $u \in \mathcal{H}_1$ such that $||u||_1 \leq C^{-1/2} ||v||_2$ and

$$
\langle x, v \rangle_2 = \langle T^{\star} x, u \rangle_1, \quad \forall x \in \text{Dom } T^{\star}.
$$

This means that $u \in \text{Dom}(T^*)^* = \text{Dom}T$ and $v = Tu$. We have thus shown that Im $T = \text{Ker } S$, in particular Im T is closed. The dual equality Im $S^* = \text{Ker } T^*$ follows by considering the dual pair (S^*, T^*)). $\qquad \qquad \Box$

§ 2. Complete Riemannian manifolds

Let (M, g) be a riemannian manifold of dimension m, with metric

$$
g(x) = \sum g_{jk}(x) dx_j \otimes dx_k, \quad 1 \le j, k \le m.
$$

The length of a path $\gamma : [a, b] \longrightarrow M$ is by definition

$$
\ell(\gamma) = \int_a^b |\gamma'(t)|_g dt = \int_a^b \left(\sum_{j,k} g_{jk}(\gamma(t)) \gamma'_j(t) \gamma'_k(t) \right)^{1/2} dt.
$$

The geodesic distance of two points $x, y \in M$ is

 $\delta(x,y) = \inf_{\gamma} \ell(\gamma)$ over paths γ with $\gamma(a) = x, \gamma(b) = y$,

if x, y are in the same connected component of M, $\delta(x, y) = +\infty$ otherwise. It is easy to check that δ satisfies the usual axioms of distances: for the separation axiom, use the fact that if y is outside some closed coordinate ball \overline{B} of radius r centered at x and if $g \geq c |dx|^2$ on \overline{B} , then $\delta(x, y) \geq c^{1/2}r$. In addition, δ satisfies the axiom:

(2.1) for every
$$
x, y \in M
$$
, $\inf_{z \in M} \max\{\delta(x, z), \delta(y, z)\} = \frac{1}{2}\delta(x, y)$.

In fact for every $\varepsilon > 0$ there is a path γ such that $\gamma(a) = x$, $\gamma(b) = y$, $\ell(\gamma) < \delta(x, y) + \varepsilon$ and we can take z to be at mid-distance between x and y along γ . A metric space E with a distance δ satisfying the additional axiom (2.1) will be called a *qeodesic* metric space (Gromov calls them "length spaces"). It is then easy to see by dichotomy that any two points $x, y \in E$ can be joined by a chain of points $x = x_0, x_1, \ldots, x_N = y$ such that $\delta(x_i, x_{i+1}) < \varepsilon$ and $\sum \delta(x_i, x_{i+1}) < \delta(x, y) + \varepsilon$.

(2.2) Lemma (Hopf-Rinow). Let (E, δ) be a geodesic metric space. Then the following properties are equivalent:

- a) E is locally compact and complete;
- b) all closed geodesic balls $\overline{B}(x_0, r)$ are compact.

Proof. Since any Cauchy sequence is bounded, it is immediate that b) implies a). We now check that a) \implies b). Fix x_0 and define R to be the supremum of all $r > 0$ such that $\overline{B}(x_0, r)$ is compact. Since E is locally compact, we have $R > 0$. Suppose that $R < +\infty$. Then $\overline{B}(x_0, r)$ is compact for every $r < R$. Let y_ν be a sequence of points in $\overline{B}(x_0, R)$. Fix an integer p. As $\delta(x_0, y_\nu) \le R$, axiom (2.1) shows that we can find points $z_{\nu} \in M$ such that $\delta(x_0, z_{\nu}) \leq (1 - 2^{-p})R$ and $\delta(z_{\nu}, y_{\nu}) \leq 2^{1-p}R$. Since $\overline{B}(x_0,(1-2^{-p})R)$ is compact, there is a subsequence $(z_{\nu(p,q)})_{q\in\mathbb{N}}$ converging to a limit point w_p with $\delta(z_{\nu(p,q)}, w_p) \leq 2^{-q}$. We proceed by induction on p and take $\nu(p+1, q)$ to be a subsequence of $\nu(p,q)$. Then

$$
\delta(y_{\nu(p,q)}, w_p) \leq \delta(y_{\nu(p,q)}, z_{\nu(p,q)}) + \delta(z_{\nu(p,q)}, w_p) \leq 2^{1-p}R + 2^{-q}.
$$

Since $(y_{\nu(p+1,q)})$ is a subsequence of $(y_{\nu(p,q)})$, we infer that $\delta(w_p, w_{p+1}) \leq 32^{-p}R$ by letting q tend to +∞. By the completeness hypothesis, the Cauchy sequence (w_p) converges to a limit point $w \in M$, and the above inequalities show that $(y_{\nu(p,p)})$ converges

to $w \in \overline{B}(x_0, R)$. Therefore $\overline{B}(x_0, R)$ is compact. Now, each point $y \in \overline{B}(x_0, R)$ can be covered by a compact ball $\overline{B}(y,\varepsilon_y)$, and the compact set $\overline{B}(x_0,R)$ admits a finite covering by concentric balls $B(y_j, \varepsilon_{y_j}/2)$. Set $\varepsilon = \min \varepsilon_{y_j}$. Every point $z \in B(x_0, R + \varepsilon/2)$ is at distance $\leq \varepsilon/2$ of some point $y \in \overline{B}(x_0, R)$, hence at distance $\leq \varepsilon/2 + \varepsilon_{y_j}/2$ of some point y_j , in particular $\overline{B}(x_0, R + \varepsilon/2) \subset \bigcup \overline{B}(y_j, \varepsilon_{y_j})$ is compact. This is a contradiction, so $R = +\infty$.

The following standard definitions and properties will be useful in order to deal with the completeness of the metric.

(2.3) Definitions.

- a) A riemannian manifold (M, q) is said to be complete if (M, δ) is complete as a metric space.
- b) A continuous function $\psi : M \to \mathbb{R}$ is said to be exhaustive if for every $c \in \mathbb{R}$ the sublevel set $M_c = \{x \in M : \psi(x) < c\}$ is relatively compact in M.
- c) A sequence $(K_{\nu})_{\nu\in\mathbb{N}}$ of compact subsets of M is said to be exhaustive if $M=\bigcup K_{\nu}$ and if K_{ν} is contained in the interior of $K_{\nu+1}$ for all ν (so that every compact subset of M is contained in some K_{ν}).

(2.4) Lemma. The following properties are equivalent:

- a) (M, q) is complete;
- b) there exists an exhaustive function $\psi \in \mathcal{C}^{\infty}(M,\mathbb{R})$ such that $|d\psi|_g \leq 1$;
- c) there exists an exhaustive sequence $(K_{\nu})_{\nu\in\mathbb{N}}$ of compact subsets of M and functions $\psi_{\nu} \in \mathscr{C}^{\infty}(M,\mathbb{R})$ such that

$$
\psi_{\nu} = 1
$$
 in a neighborhood of K_{ν} , $\text{Supp } \psi_{\nu} \subset K_{\nu+1}^{\circ}$,
\n $0 \le \psi_{\nu} \le 1$ and $|d\psi_{\nu}|_g \le 2^{-\nu}$.

Proof. a) \implies b). Without loss of generality, we may assume that M is connected. Select a point $x_0 \in M$ and set $\psi_0(x) = \frac{1}{2}\delta(x_0, x)$. Then ψ_0 is a Lipschitz function with constant $\overline{1}$ $\frac{1}{2}$, thus ψ_0 is differentiable almost everywhere on M and $|d\psi_0|_g \leqslant \frac{1}{2}$ $\frac{1}{2}$. We can find a smoothing ψ of ψ_0 such that $|d\psi|_g \leq 1$ and $|\psi - \psi_0| \leq 1$. Then ψ is an exhaustion function of M.

b) \Rightarrow c). Choose ψ as in a) and a function $\rho \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ such that $\rho = 1$ on $[-\infty, 1.1]$, $\rho = 0$ on $[1.9, +\infty[$ and $0 \le \rho' \le 2$ on $[1, 2]$. Then

$$
K_{\nu} = \{ x \in M \; ; \; \psi(x) \leqslant 2^{\nu+1} \}, \quad \psi_{\nu}(x) = \rho(2^{-\nu-1}\psi(x))
$$

satisfy our requirements.

c) \implies b). Set $\psi = \sum 2^{\nu} (1 - \psi_{\nu}).$

b) \Rightarrow a). The inequality $|d\psi|_q \leq 1$ implies $|\psi(x) - \psi(y)| \leq \delta(x, y)$ for all $x, y \in M$, so all δ -balls must be relatively compact in M.