
Sheaf cohomology and the

De Rham-Weil isomorphism theorem

We present here the most basic facts concerning sheaf cohomology, and restrict our-
selves to paracompact spaces, i.e. Hausdorff topological spaces admitting locally finite
partitions of unity for any open covering. The theory of sheaves is due to Jean Leray
(between 1940 and 1945; he was then a war prisoner in Austria). Analytic sheaves were
then developped by Oka, Cartan and Serre. For the applications to algebraic geom-
etry involving Zariski topology (which is non Hausdorff), a more general approach of
cohomology due to Grothendieck is needed, but the paracompact theory usually suffices
for analytic geometry. Here, all sheaves are implicitly supposed to be at least sheaves
of abelian groups, and correspondingly, sheaf morphisms are morphisms of sheaves of
abelian groups.

§ 1. Čech Cohomology

§ 1.A. Definitions

Let X be a topological space, A a sheaf of abelian groups on X , and U = (Uα)α∈I

an open covering of X . For the sake of simplicity, we set

Uα0α1...αq
= Uα0

∩ Uα1
∩ . . . ∩ Uαq

.

The group Cq(U,A) of Čech q-cochains is the set of families

c = (cα0α1...αq
) ∈

∏

(α0,...,αq)∈Iq+1

A(Uα0α1...αq
).

The group structure on Cq(U,A) is the obvious one deduced from the addition law on
sections of A. The Čech differential δq : Cq(U,A) −→ Cq+1(U,A) is defined by the
formula

(1.1) (δqc)α0...αq+1
=

∑

06j6q+1

(−1)j c
α0...α̂j ...αq+1 ↾Uα0...αq+1

,

and we set Cq(U,A) = 0, δq = 0 for q < 0. In degrees 0 and 1, we get for example

q = 0, c = (cα), (δ0c)αβ = cβ − cα ↾Uαβ
,(1.2)

q = 1, c = (cαβ), (δ1c)αβγ = cβγ − cαγ + cαβ ↾Uαβγ
.(1.2′)

Easy verifications left to the reader show that δq+1 ◦ δq = 0. We get therefore a cochain
complex

(
C•(U,A), δ

)
, called the complex of Čech cochains relative to the covering U.

(1.3) Definition. The Čech cohomology group of A relative to U is

Hq(U,A) = Hq
(
C•(U,A)

)
.



Formula (1.2) shows that the set of Čech 0-cocycles is the set of families (cα) ∈∏
A(Uα) such that cβ = cα on Uα ∩ Uβ . Such a family defines in a unique way a global

section f ∈ A(X) with f↾Uα
= cα. Hence

(1.4) H0(U,A) = A(X).

Now, let V = (Vβ)β∈J be another open covering of X that is finer than U ; this means
that there exists a map ρ : J → I such that Vβ ⊂ Uρ(β) for every β ∈ J . Then we can
define a morphism ρ• : C•(U,A) −→ C•(V,A) by

(1.5) (ρqc)β0...βq
= cρ(β0)...ρ(βq) ↾Vβ0...βq

;

the commutation property δρ• = ρ•δ is immediate. If ρ′ : J → I is another refinement
map such that Vβ ⊂ Uρ′(β) for all β, the morphisms ρ•, ρ′• are homotopic. To see this,
we define a map hq : Cq(U,A) −→ Cq−1(V,A) by

(hqc)β0...βq−1
=

∑

06j6q−1

(−1)jcρ(β0)...ρ(βj)ρ′(βj)...ρ′(βq−1) ↾Vβ0...βq−1
.

The homotopy identity δq−1 ◦ hq + hq+1 ◦ δq = ρ′q − ρq is easy to verify. Hence ρ• and
ρ′• induce a map depending only on U, V :

(1.6) Hq(ρ•) = Hq(ρ′•) : Hq(U,A) −→ Hq(V,A).

Now, we want to define a direct limit Hq(X,A) of the groups Hq(U,A) by means of
the refinement mappings (1.6). In order to avoid set theoretic difficulties, the coverings
used in this definition will be considered as subsets of the power set P(X), so that the
collection of all coverings becomes actually a set.

(1.7) Definition. The Čech cohomology group Hq(X,A) is the direct limit

Hq(X,A) = lim
−→
U

Hq(U,A)

when U runs over the collection of all open coverings of X. Explicitly, this means that

the elements of Hq(X,A) are the equivalence classes in the disjoint union of the groups

Ȟq(U,A), with an element in Hq(U,A) and another in Hq(V,A) identified if their

images in Hq(W,A) coincide for some refinement W of the coverings U and V.

If ϕ : A → B is a sheaf morphism, we have an obvious induced morphism ϕ• :
C•(U,A) −→ C•(U,B), and therefore we find a morphism

Hq(ϕ•) : Hq(U,A) −→ Hq(U,B).

Let 0 → A→B→ C→ 0 be an exact sequence of sheaves. We have an exact sequence
of groups

(1.8) 0 −→ Cq(U,A) −→ Cq(U,B) −→ Cq(U,C),



but in general the last map is not surjective, because every section in C(Uα0,...,αq
) need

not have a lifting in B(Uα0,...,αq
). The image of C•(U,B) in C•(U,C) will be denoted

C•
B

(U,C) and called the complex of liftable cochains of C in B. By construction, the
sequence

(1.9) 0 −→ Cq(U,A) −→ Cq(U,B) −→ Cq
B

(U,C) −→ 0

is exact, thus we get a corresponding long exact sequence of cohomology

(1.10) Hq(U,A) −→ Hq(U,B) −→ Hq
B

(U,C) −→ Hq+1(U,A) −→ · · · .

(1.11) Proposition. Let A be a sheaf of modules over a sheaf of rings R on X. Assume

that R is a soft sheaf (i.e., by definition, that R admits locally finite partitions of unity

for every open covering of X). Then Hq(U,A) = 0 for every q > 1 and every open

covering U = (Uα)α∈I of X.

Proof. Let (ψα)α∈I be a partition of unity in R subordinate to U, i.e. Supp(ψα) ⊂ Uα

and
∑

α ψα = 1
R

, the sum being locally finite. We define hq : Cq(U,A) −→ Cq−1(U,A)
by

(1.12) (hqc)α0...αq−1
=

∑

ν∈I

ψν cνα0...αq−1

where ψν cνα0...αq−1
is extended by 0 on Uα0...αq−1

∩ ∁Uν . It is clear that

(δq−1hqc)α0...αq
=

∑

ν∈I

ψν

(
cα0...αq

− (δqc)να0...αq

)
,

i.e. δq−1hq + hq+1δq = Id. Hence δqc = 0 implies δq−1hqc = c if q > 1. �

§ 1.B. Čech Cohomology on Paracompact Spaces

We prove here that Čech cohomology theory behaves well on paracompact spaces,
namely, we get exact sequences of cohomology for any short exact sequence of sheaves.

(1.13) Proposition. Assume that X is paracompact. If

0 −→ A −→B −→ C −→ 0

is a short exact sequence of sheaves, there is a “long” exact sequence

Hq(X,A) −→ Hq(X,B) −→ Hq(X,C) −→ Ȟq+1(X,A) −→ · · ·

which is the direct limit of the exact sequences (1.10) over all coverings U.

Proof. We have to show that the natural map

lim
−→

Hq
B

(U,C) −→ lim
−→

Hq(U,C)

is an isomorphism. This follows easily from the following lemma, which says essentially
that every cochain in C becomes liftable in B after a refinement of the covering.



(1.14) Lifting lemma. Let U = (Uα)α∈I be an open covering of X and c ∈ Cq(U,C).
If X is paracompact, there exists a finer covering V = (Vβ)β∈J and a refinement map

ρ : J → I such that ρqc ∈ Cq
B

(V,C).

Proof. Since U admits a locally finite refinement, we may assume that U itself is locally
finite. There exists an open coveringW = (Wα)α∈I of X such that Wα ⊂ Uα. For every
point x ∈ X , we can select an open neighborhood Vx of x with the following properties:

a) if x ∈Wα, then Vx ⊂ Wα ;

b) if x ∈ Uα or if Vx ∩Wα 6= ∅, then Vx ⊂ Uα ;

c) if x ∈ Uα0...αq
, then cα0...αq

∈ Cq(Uα0...αq
,C) admits a lifting in B(Vx).

Indeed, a) (resp. c)) can be achieved because x belongs to only finitely many sets Wα

(resp. Uα), and so only finitely many sections of C have to be lifted in B. b) can be
achieved because x has a neighborhood V ′

x that meets only finitely many sets Uα ; then
we take

Vx ⊂ V ′
x ∩

⋂

Uα∋x

Uα ∩
⋂

Uα 6∋x

(V ′
x rWα).

Choose ρ : X → I such that x ∈ Wρ(x) for every x. Then a) implies Vx ⊂ Wρ(x), so
V = (Vx)x∈X is finer than U, and ρ defines a refinement map. If Vx0...xq

6= ∅, we have

Vx0
∩Wρ(xj) ⊃ Vx0

∩ Vxj
6= ∅ for 0 6 j 6 q,

thus Vx0
⊂ Uρ(x0)...ρ(xq) by b). Now, c) implies that the section cρ(x0)...ρ(xq) admits a

lifting in B(Vx0
), and in particular in B(Vx0...xq

). Therefore ρqc is liftable in B. �

(1.15) Corollary. Let 0 −→ A −→ B −→ C −→ 0 be an exact sequence of sheaves on

X, and let U be a paracompact open subset. If H1(U,A) = 0, there is an exact sequence

0 −→ Γ(U,A) −→ Γ(U,B) −→ Γ(U,C) −→ 0.

§ 1.C. Leray’s Theorem for acyclic coverings

We assume here that we are here in a topological space X such that every open subset
U is paracompact (one can show that every metrizable space has this property). By
definition of Čech cohomology, for every exact sequence of sheaves 0 → A→B→ C→ 0
there is a commutative diagram

(1.16)
Hq(U,A)−→ Hq(U,B)−→ Hq

B

(U,C)−→ Hq+1(U,A)−→ Hq+1(U,B)y y y y y
Hq(X,A)−→ Hq(X,B)−→ Hq(X,C)−→ Hq+1(X,A)−→ Hq+1(X,B).

in which the vertical maps are the canonical arrows to the inductive limit.

(1.17) Theorem (Leray). Assume that Hs(Uα0...αt
,A) = 0 for all indices α0, . . . , αt

and all s > 1. Then Hq(U,A) ≃ Hq(X,A) for every q > 0.



We say that the covering U is acyclic (with respect to A) if the hypothesis of Th. 1.17
is satisfied. Leray’s theorem asserts that the cohomology groups of A on X can be
computed by means of an arbitrary acyclic covering (if such a covering exists), without
using the direct limit procedure.

Proof. By induction on q, the result being obvious for q = 0. Consider the exact sequence
0 → A → B → C → 0 where B is the sheaf of non necessarily continuous sections of
Ã and C = B/A. As B is acyclic, the hypothesis on A and the long exact sequence of
cohomology imply Hs(Uα0...αt

,C) = 0 for s > 1, t > 0. Moreover C•
B

(U,C) = C•(U,C)
thanks to Cor. 1.15 applied on each open set Uα0...αq

. The induction hypothesis in degree
q and diagram (1.16) give

Hq(U,B)−→ Hq(U,C)−→ Hq+1(U,A)−→ 0y ≃
y ≃

y
Hq(X,B)−→ Hq(X,C)−→ Hq+1(X,A)−→ 0,

hence Hq+1(U,A) −→ Hq+1(X,A) is also an isomorphism. �

(1.18) Remark. The morphism H1(U,A) −→ H1(X,A) is always injective. Indeed,
(1.10) yields

H0
B

(U,C)/ ImH0(U,B)
≃
−→ H1(U,A)

y y

H0(X,C)/ ImH0(X,B)
≃
−→ H1(X,A)

and H0(U,B) = H0(X,B) = Γ(X,B), while H0
B

(U,C) −→ H0(X,C) is an injection.
As a consequence, the refinement mappings H1(U,A) → H1(V,A) are also injective.

�

§ 2. The De Rham-Weil isomorphism theorem

Let (L•, d) be a resolution of a sheaf A, that is a complex of sheaves such that we
have an exact sequence

0 −→ A −→L

0 d0

−→L

1 d1

−→L

2 −→ · · · .

We assume in addition that all Lq are acyclic on X , i.e. Hs(X,Lq) = 0 for all q > 0 and
s > 1. Set Zq = ker dq. Then Z0 = A and for every q > 1 we get a short exact sequence

0 −→ Z

q−1 −→L

q−1 dq−1

−→Z

q −→ 0.

Theorem 1.5 yields an exact sequence

(2.1) Hs(X,Lq−1)
dq−1

−→ Hs(X,Zq)
∂s,q

−→ Hs+1(X,Zq−1) → Hs+1(X,Lq−1) = 0.

If s > 1, the first group is also zero and we get an isomorphism

∂s,q : Hs(X,Zq)
≃
−→ Hs+1(X,Zq−1).



For s = 0 we have H0(X,Lq−1) = Lq−1(X) and H0(X,Zq) = Zq(X) is the q-cocycle
group of L•(X), so the connecting map ∂0,q gives an isomorphism

Hq
(
L

•(X)
)
=Zq(X)/dq−1

L

q−1(x)
∂̃0,q

−→ H1(X,Zq−1).

The composite map ∂q−1,1 ◦ · · · ◦ ∂1,q−1 ◦ ∂̃0,q therefore defines an isomorphism

Hq
(
L

•(X)
) ∂̃0,q

−→H1(X,Zq−1)
∂1,q−1

−→ · · ·
∂q−1,1

−→ Hq(X,Z0)=Hq(X,A).(2.2)

This isomorphism behaves functorially with respect to morphisms of resolutions. Our
assertion means that for every sheaf morphism ϕ : A → B and every morphism of
resolutions ϕ• : L• −→ M

•, there is a commutative diagram

(2.3)

Hs
(
L

•(X)
)
−→ Hs(X,A)

yHs(ϕ•)
yHs(ϕ)

Hs
(
M

•(X)
)
−→ Hs(X,B).

If Wq = ker(dq : Mq → M

q+1), the functoriality comes from the fact that we have
commutative diagrams

0 →Zq−1 →Lq−1 →Zq → 0 , Hs(X,Zq)
∂s,q

−→ Hs+1(X,Zq−1)
yϕq−1

yϕq−1
yϕq

yHs(ϕq)
yHs+1(ϕq−1)

0 →Wq−1 →Mq−1 →Wq → 0 , Hs(X,Wq)
∂s,q

−→ Hs+1(X,Wq−1).

(2.4) De Rham-Weil isomorphism theorem. If (L•, d) is a resolution of A by

sheaves Lq which are acyclic on X, there is a functorial isomorphism

Hq
(
L

•(X)
)
−→ Hq(X,A). �

(2.5) Example: De Rham cohomology. Let X be a n-dimensional paracompact
differential manifold. Consider the resolution

0 → R → E

0 d
→ E

1 → · · · → E

q d
→ E

q+1 → · · · → E

n → 0

given by the exterior derivative d acting on germs of C∞ differential q-forms (cf. Exam-
ple 2.2). The De Rham cohomology groups of X are precisely

(2.6) Hq
DR(X,R) = Hq

(
E

•(X)
)
.

All sheaves Eq are EX-modules, so Eq is acyclic by Cor. 4.19. Therefore, we get an
isomorphism

(2.7) Hq
DR(X,R)

≃
−→ Hq(X,R)



from the De Rham cohomology onto the cohomology with values in the constant sheaf R.
Instead of using C∞ differential forms, one can consider the resolution of R given by the
exterior derivative d acting on currents:

0 → R →D

′
n

d
→D

′
n−1 → · · · →D

′
n−q

d
→D

′
n−q−1 → · · · →D

′
0 → 0.

The sheaves D′
q are also EX -modules, hence acyclic. Thanks to (2.3), the inclusion

E

q ⊂D′
n−q induces an isomorphism

(2.8) Hq
(
E

•(X)
)
≃ Hq

(
D

′
n−•(X)

)
,

both groups being isomorphic to Hq(X,R). The isomorphism between cohomology of
differential forms and singular cohomology (another topological invariant) was first es-
tablished by [De Rham 1931]. The above proof follows essentially the method given by
[Weil 1952], in a more abstract setting. As we will see, the isomorphism (2.7) can be put
under a very explicit form in terms of Čech cohomology. We need a simple lemma.

(2.9) Lemma. Let X be a paracompact differentiable manifold. There are arbitrarily

fine open coverings U = (Uα) such that all intersections Uα0...αq
are diffeomorphic to

convex sets.

Proof. Select locally finite coverings Ω′
j ⊂⊂ Ωj of X by open sets diffeomorphic to

concentric euclidean balls in Rn. Let us denote by τjk the transition diffeomorphism from
the coordinates in Ωk to those in Ωj . For any point a ∈ Ω′

j , the function x 7→ |x − a|2

computed in terms of the coordinates of Ωj becomes |τjk(x) − τjk(a)|
2 on any patch

Ωk ∋ a. It is clear that these functions are strictly convex at a, thus there is a euclidean
ball B(a, ε) ⊂ Ω′

j such that all functions are strictly convex on B(a, ε) ∩ Ω′
k ⊂ Ωk (only

a finite number of indices k is involved). Now, choose U to be a (locally finite) covering
of X by such balls Uα = B(aα, εα) with Uα ⊂ Ω′

ρ(α). Then the intersection Uα0...αq
is

defined in Ωk, k = ρ(α0), by the equations

|τjk(x)− τjk(aαm
)|2 < ε2αm

where j = ρ(αm), 0 6 m 6 q. Hence the intersection is convex in the open coordinate
chart Ωρ(α0). �

Let Ω be an open subset of Rn which is starshaped with respect to the origin. Then
the De Rham complex R −→ E

•(Ω) is acyclic: indeed, the Poincaré lemma yields a
homotopy operator kq : Eq(Ω) −→ E

q−1(Ω) such that

kqfx(ξ1, . . . , ξq−1) =

∫ 1

0

tq−1 ftx(x, ξ1, . . . , ξq−1) dt, x ∈ Ω, ξj ∈ R
n,

k0f = f(0) ∈ R for f ∈ E0(Ω).

Hence Hq
DR(Ω,R) = 0 for q > 1. Now, consider the resolution E• of the constant sheaf R

on X , and apply the proof of the De Rham-Weil isomorphism theorem to Čech cohomol-
ogy groups over a covering U chosen as in Lemma 2.9. Since the intersections Uα0...αs

are convex, all Čech cochains in Cs(U,Zq) are liftable in Eq−1 by means of kq. Hence



for all s = 1, . . . , q we have isomorphisms ∂s,q−s : Hs(U,Zq−s) −→ Hs+1(U,Zq−s−1)
for s > 1 and we get a resulting isomorphism

∂q−1,1 ◦ · · · ◦ ∂1,q−1 ◦ ∂̃0,q : Hq
DR(X,R)

≃
−→ Hq(U,R)

We are going to compute the connecting homomorphisms ∂s,q−s and their inverses ex-
plicitly.

Let c in Cs(U,Zq−s) such that δsc = 0. As cα0...αs
is d-closed, we can write c =

d(kq−sc) where the cochain kq−sc ∈ Cs(U,Eq−s−1) is defined as the family of sections
kq−scα0...αs

∈ Eq−s−1(Uα0...αs
). Then d(δskq−sc) = δs(dkq−sc) = δsc = 0 and

∂s,q−s{c} = {δskq−sc} ∈ Ȟs+1(U,Zq−s−1).

The isomorphismHq
DR(X,R)

≃
−→ Hq(U,R) is thus defined as follows: to the cohomology

class {f} of a closed q-form f ∈ Eq(X), we associate the cocycle (c0α) = (f↾Uα
) ∈

C0(U,Zq), then the cocycle

c1αβ = kqc0β − kqc0α ∈ C1(U,Zq−1),

and by induction cocycles (csα0...αs
) ∈ Cs(U,Zq−s) given by

(2.10) cs+1
α0...αs+1

=
∑

06j6s+1

(−1)j kq−scs
α0...α̂j ...αs+1

on Uα0...αs+1
.

The image of {f} in Hq(U,R) is the class of the q-cocycle (cqα0...αq
) in Cq(U,R).

Conversely, let (ψα) be a C∞ partition of unity subordinate to U. Any Čech cocycle
c ∈ Cs+1(U,Zq−s−1) can be written c = δsγ with γ ∈ Cs(U,Eq−s−1) given by

γα0...αs
=

∑

ν∈I

ψν cνα0...αs
,

(cf. Prop. 1.11)), thus {c′} = (∂s,q−s)−1{c} can be represented by the cochain c′ = dγ ∈
Cs(U,Zq−s) such that

c′α0...αs
=

∑

ν∈I

dψν ∧ cνα0...αs
= (−1)q−s−1

∑

ν∈I

cνα0...αs
∧ dψν .

For a reason that will become apparent later, we shall in fact modify the sign of our
isomorphism ∂s,q−s by the factor (−1)q−s−1. Starting from a class {c} ∈ Hq(U,R), we
obtain inductively {b} ∈ H0(U,Zq) such that

(2.11) bα0
=

∑

ν0,...,νq−1

cν0...νq−1α0
dψν0

∧ . . . ∧ dψνq−1
on Uα0

,

corresponding to {f} ∈ Hq
DR(X,R) given by the explicit formula

(2.12) f =
∑

νq

ψνq
bνq

=
∑

ν0,...,νq

cν0...νq
ψνq

dψν0
∧ . . . ∧ dψνq−1

.



The choice of sign corresponds to (2.2) multiplied by (−1)q(q−1)/2.

(2.13) Example: Dolbeault cohomology groups. Let X be a C-analytic manifold
of dimension n, and let Ep,q be the sheaf of germs of C∞ differential forms of type (p, q)
with complex values. For every p = 0, 1, . . . , n, the Dolbeault-Grothendieck lemma shows
that (Ep,•, d′′) is a resolution of the sheaf Ωp

X of germs of holomorphic forms of degree p
on X . The Dolbeault cohomology groups of X are defined by

(2.14) Hp,q(X,C) = Hq
(
E

p,•(X)
)
.

Since the sheaves Ep,q are acyclic, we get the Dolbeault isomorphism theorem, originally
proved by Dolbeault in 1953, which relates d′′-cohomology and sheaf cohomology:

(2.15) Hp,q(X,C)
≃
−→ Hq(X,Ωp

X).

The case p = 0 is especially interesting:

(2.16) H0,q(X,C) ≃ Hq(X,OX).

As in the case of De Rham cohomology, there is an inclusion Ep,q ⊂ D′
n−p,n−q and the

complex of currents (D′
n−p,n−•, d

′′) defines also a resolution of Ωp
X . Hence there is an

isomorphism:

(2.17) Hp,q(X,C) = Hq
(
E

p,•(X)
)
≃ Hq

(
D

′
n−p,n−•(X)

)
.


