
Differential and pseudodifferential
operators on manifolds

Course on analytic geometry (Jean-Pierre Demailly)

1. Differential operators on vector bundles
We first describe some basic concepts concerning differential operators (symbol, composi-

tion, ellipticity, adjoint), in the general context of vector bundles. Assume given a differentiable
manifold M of class C∞, dimRM = m, and let E, F be vector bundles on M , over the field
K = R or K = C, such that rankE = r, rankF = r′.

1.1. Definition. A (linear) differential operator of degree δ from E to F is a K-linear operator
P : C∞(M,E)→ C∞(M,F ), u 7→ Pu of the form

Pu(x) =
∑
|α|6δ

aα(x)Dαu(x),

where E�Ω ' Ω×Kr, F�Ω ' Ω×Kr′ are local trivializations on an open chart Ω ⊂M with local
coordinates (x1, . . . , xm), and the coefficients aα(x) are r′× r matrices

(
aαλµ(x)

)
16λ6r′, 16µ6r

with C∞ coefficients on Ω. One write here Dα = (∂/∂x1)α1 · · · (∂/∂xm)αm as usual, and the
matrices u = (uµ)16µ6r, Dαu = (Dαuµ)16µ6r are viewed as column vectors.

If t ∈ K is a parameter and f ∈ C∞(M,K), u ∈ C∞(M,E), an easy calculation shows that
e−tf(x)P (etf(x)u(x)) is a homogeneous polynomial of degree δ in t, of the form

e−tf(x)P (etf(x)u(x)) = tδσP (x, df(x)) · u(x) + terms cj(x)tj of degree j < δ,

where σP is a homogeneous polynomial map T ?M → Hom(E,F ) defined by

(1.2) T ?M,x 3 ξ 7→ σP (x, ξ) ∈ Hom(Ex, Fx), σP (x, ξ) =
∑
|α|=δ

aα(x)ξα.

Then σP (x, ξ) is a C∞ function of the variables (x, ξ) ∈ T ?M , and this function is independent
of the choice of the coordinates or trivializations used for E, F . The function σP is called the
principal symbol of P . The principal symbol of a composition Q ◦ P of differential operators
P : C∞(M,E)→ C∞(M,F ), Q : C∞(M,F )→ C∞(M,G) is simply the product

(1.3) σQ◦P (x, ξ) = σQ(x, ξ)σP (x, ξ),

calculated as a product of matrices (i.e. as a composition of endomorphisms). Differential
operators for which the symbol is injective play a very important role :

1.4. Definition. A differential operator P is said to be elliptic if σP (x, ξ) ∈ Hom(Ex, Fx) is
injective for all x ∈M and ξ ∈ T ?M,x r {0}.

Let us now assume that M is oriented and assume given a C∞ volume form dV (x) =
γ(x) dx1∧· · ·∧dxm onM , where γ(x) > 0 is a C∞ density ; if (M, g) is a Riemannian manifold,
one can for instance take The Riemannian volume form dV = dVg =

√
det(gij) dx1 ∧ · · · ∧dxm.
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If E is a Euclidian or Hermitian vector bundle, we can define a Hilbert space L2(M,E) of global
sections with values in E, namely the space of forms u with measurable coefficients that are
square summable for the scalar product

‖u‖2 =

∫
M

|u(x)|2 dV (x),(1.5)

〈〈u, v〉〉 =

∫
M

〈u(x), v(x)〉 dV (x), u, v ∈ L2(M,E).(1.5′)

1.6. Definition. If P : C∞(M,E) → C∞(M,F ) is a differential operator and if the bundles
E, F are Euclidian or Hermitian, there exists a unique differential operator

P ? : C∞(M,F )→ C∞(M,E),

called the formal adjoint of P , such that for all sections u ∈ C∞(M,E) and v ∈ C∞(M,F ) one
has an identity

〈〈Pu, v〉〉 = 〈〈u, P ?v〉〉 whenever Suppu ∩ Supp v bM.

Proof. The uniqueness is easy to verify, being a consequence of the density of C∞ form with
compact support in L2(M,E). By a partition of unity argument, we reduce the verification of the
existence of P ? to the proof of its existence locally onM . Now, let Pu(x) =

∑
|α|6δ aα(x)Dαu(x)

be the description of P relative to the trivializations of E, F associated to an orthonormal
frame and to the system of locate coordinates on an open set Ω ⊂ M . By assuming
Suppu ∩ Supp v b Ω, an integration by parts gives

〈〈Pu, v〉〉 =

∫
Ω

∑
|α|6δ,λ,µ

aαλµD
αuµ(x)vλ(x) γ(x) dx1 . . . dxm

=

∫
Ω

∑
|α|6δ,λ,µ

(−1)|α|uµ(x)Dα(γ(x) aαλµvλ(x) dx1 . . . dxm

=

∫
Ω

〈u,
∑
|α|6δ

(−1)|α|γ(x)−1Dα
(
γ(x) a∗αv(x)

)
〉 dV (x)

where a∗α denotes the adjoint (= conjugate of transpose) of matrix aα. We thus see that P ? exists,
and is defined in a unique way by

(1.7) P ?v(x) =
∑
|α|6δ

(−1)|α|γ(x)−1Dα
(
γ(x) a∗αv(x)

)
.

1.8. Remark. The condition Suppu∩Supp v bM avoids boundary terms in the integration by
parts. As a consequence, if (M,∂M) is a manifold with boundary and Suppu∩ Supp v touches
the boundary, the equality is no longer valid. On the other hand, under the same condition
for the supports, the formula still holds whenever products Dαuµvλ make sense in the sense of
distributions, e.g. if u ∈ D′(M,E) and v ∈ C∞(M,F ), or vice versa.

Formula (1.7) shows immediately that the principal symbol of P ? is

(1.9) σP?(x, ξ) = (−1)δ
∑
|α|=δ

a∗α ξ
α = (−1)δσP (x, ξ)?.

If rankE = rankF , the operator P is elliptic if and only if σP (x, ξ) is invertible for ξ 6= 0,
therefore the ellipticity of P is equivalent to that of P ?.
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2. Sobolev spaces
The space of tempered distributions S′(Rm) is by definition the dual of the Schwartz space

S(Rm) of rapidly decrasing C∞ functions, namely the subspace of functions f ∈ C∞(Rm) for
which all semi-norms f 7→ pk,`(f) = sup|α|6`(1 + |x|)k|Dαf(x)| are finite – S(Rm) is a Fréchet
space. The Fourier transform û of a tempered distribution u ∈ S′(Rm) is defined by the usual
adjunction property û(f) = u(f̂), where

f̂(ξ) :=

∫
Rm

f(x) e−2πix·ξ dλ(x), f ∈ S(Rm).

Let us recall the basic Fourier transform formulas, which can be obtained by differentiating
under the integral sign, resp. by an integration by parts

Dα
ξ f̂(ξ) =

(
(−2πix)αf(x)

)∧
, D̂α

xf(ξ) = (2πiξ)αf̂(ξ)

for any f ∈ S(Rm). Also, the Fourier inversion formula stipulates that

̂̂
f(x) = f(−x) ⇐⇒ f(x) =

∫
Rm

f̂(ξ) e2πix·ξ dλ(ξ).

By adjunction, the same formulas are still valid for all u ∈ S′(Rm). For any real number s, we
define the Sobolev space W s(Rm) to be the Hilbert space of tempered distributions u ∈ S′(Rm)
such that the Fourier transform û is a L2

loc function satisfying the estimate

(2.1) ‖u‖2s =

∫
Rm

(1 + |ξ|2)s|û(ξ)|2dλ(ξ) < +∞.

For s ∈ N, we have D̂αu(ξ) = (2πiξ)αû(ξ), therefore, up to equivalence of norms,

‖u‖2s ∼
∫
Rm

∑
|α|6s

|Dαu(x)|2dλ(x),

and W s(Rm) is the Hilbert space of functions u such that all derivatives Dαu of order |α| 6 s
are in L2(Rm). It is also easy to see that W s(Rm) ⊂ L2(Rm) for s > 0.

We now assume that M is an oriented C∞ manifold of dimension m, equipped with a
volume form dV . Let E →M be a C∞ Hermitian vector bundle of rank r on M . We denote by

W s
loc(M,E)

the (local) Sobolev space of sections u : M → E whose components are locally in W s(Rm) on
all open charts. More precisely, choose a locally finite covering (Ωj) of M by relatively compact
open coordinate charts Ωj ' B(0, rj) ' Rm on which E is trivial. Consider an orthonormal
frame (ej,λ)16λ6r of E�Ωj and write u in terms of its components, i.e. u =

∑
16λ6r uj,λ ej,λ in

Ωj . We then define a Fréchet topology on W s
loc(M,E) by considering the semi-norms

(2.2) ‖u‖2j,s =
∑

16λ6r

‖ψjuj,λ‖2s

where (ψj) is a “quadratic partition of unity” subordinate to (Ωj), i.e. such that
∑
ψ2
j = 1. We

show below that the topology defined in this way is independent of the choices made (covering,
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partition of unity, trivializations of E). If M is compact, the covering (Ωj) can be taken finite,
and one gets a Hilbert space topology associated to the global norm

(2.2′) ‖u‖2s =
∑
j

‖u‖2j,s =
∑
j,λ

‖ψjuj,λ‖2s.

When M is compact, we simply write W s
loc(M,E) = W s(M,E). To get the independence of

the topology on the choices made, we write u =
∑
j,λ ψ

2
juj,λej,λ and decompose again u with

respect to another covering (Ω′k), Ω′k ' Rm, another quadratic partition of unity
∑
ψ′ 2k = 1

and other choices of orthonormal frames (e′k,λ). The new components ψ′ku′k,λ are finite linear
combinations of the ψjuj,λ, multiplied by C∞ functions with compact support in Ωj ∩ Ω′k (as
all such terms involve a factor ψjψ′k). It is then sufficient to apply the following lemma.

2.3. Lemma. For any f ∈ D(Rm), the multiplication map u 7→ fu is continuous on W s(Rm),
i.e. ‖fu‖s 6 C‖u‖s for some constant C = Cf > 0.

Proof. As is well known, we have f̂u = f̂ ∗ û, that is,

f̂u(ξ) =

∫
Rm

f̂(ξ − η) û(η) dλ(η).

One uses the Peetre inequality asserting that

(2.4) (1 + |ξ|2)s 6 2|s|(1 + |ξ − η|2)|s|(1 + |η|2)s

for all ξ, η ∈ Rm and all s ∈ R. Replacing ξ by ξ + η, the case s > 0 is equivalent to

1 + |ξ + η|2 6 2(1 + |ξ|2)(1 + |η|2)

which is itself an easy consequence of |ξ + η|2 + |ξ − η|2 = 2(|ξ|2 + |η|2). Now, for s < 0, the
inequality is equivalent to (1 + |η|2)|s| 6 2|s|(1 + |η − ξ|2)|s|(1 + |ξ|2)|s|, resulting from the case
|s| = −s > 0 by switching ξ and η. The Peetre inequality applied to s/2 gives

(1 + |ξ|)s/2|f̂u(ξ)| 6 2|s|/2
∫
Rm

(1 + |ξ − η|)|s|/2 |f̂(ξ − η)| (1 + |η|)s/2 |û(η)| dλ(η).

The latter integral can be seen as a convolution of g(η) = (1 + |η|)|s|/2 |f̂(η)| with h(η) =
(1 + |η|)s/2 |û(η)|. The Young inequality ‖g ∗ h‖L2 6 ‖g‖L1‖h‖L2 finally implies

‖fu‖s 6 Cf‖u‖s where Cf = 2|s|/2
∫
Rm

(1 + |η|)|s|/2 |f̂(η)| dλ(η)

and Cf < +∞ since f̂ ∈ S(Rm).

We now recall two further fundamental facts, namely the Sobolev lemma and the Rellich lemma.

2.5. Sobolev lemma. For any integer k ∈ N and any real number s > k + m
2 , we have

W s
loc(M,E) ⊂ Ck(M,E) and the inclusion is continuous.

Proof. It is enough to consider the case M = Rm and to show that W s(Rm) ⊂ Ck(Rn) for
s > k + m/2. However, by the Fourier inversion formula, Dαu is the Fourier transform of
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(−2πiξ)αû(−ξ). If we check that ξαû(ξ) ∈ L1(Rm), it will follow that Dαf is continuous and
‖Dαf‖∞ 6 (2π)|α|‖ξαû(ξ)‖L1 . Now, for |α| 6 k, the Cauchy-Schwarz inequality implies∥∥ξαû(ξ)

∥∥
L1 6

∫
Rm

|ξ|k |û(ξ)| dλ(ξ) =

∫
Rm

(1 + |ξ|2)−s/2|ξ|k (1 + |ξ|2)s/2|û(ξ)| dλ(ξ)

6

(∫
Rm

|ξ|2k

(1 + |ξ2|)s
dλ(ξ)

)1/2(∫
Rm

(1 + |ξ2|)s |û(ξ)|2 dλ(ξ)

)1/2

,

and we infer ‖Dαu‖∞ 6 C‖u‖s as soon as the first integral of the right hand side is convergent,
which is the case if s > k +m/2.

It follows immediately from the Sobolev lemma that

(2.6)
⋂
s>0

W s
loc(M,E) = C∞(M,E).

Since W s(Rm) and W−s(Rm) are dual, one can also infer by duality that

(2.6′)
⋃
s60

W s
loc(M,E) = D′(M,E).

A continuous linear operator ϕ : F → G of Fréchet spaces is called compact if there exists a
neighborhood U of 0 in E such that ϕ(U) is compact in V . If F is a Banach space, this just
means that for any bounded sequence (xν) in E, one can extract a subsequence (xν(k)) such
that ϕ(xν(k)) converges in G. It is easy to see that a composition ψ ◦ϕ of continuous operators
ϕ,ψ is compact as soon as one of them is compact.

2.7. Rellich lemma. Let Ω b M be a relatively compact open subset. Then for all t > s, the
restriction morphism

W t
loc(M,E)→W s

loc(Ω, E)

is compact. In particular, if M is compact, the inclusion W t(M,E) ↪→W s(M,E) is compact.

Proof. By definition of the topology ofW s
loc(Ω, E), it is sufficient to show the inclusion morphism

W t
K(Rm) ↪→ W s(Rm) is compact, where W t

K(Rm) consists of elements u ∈ W t(Rm) with
support in a given compact subset K ⊂ Rm. Now, for any bounded sequence uν ∈ W t

K(Rm),
the Fourier transforms

ûν(ξ) =

∫
Rm

uν(x) e−2πix·ξ dλ(x)

are C∞ functions (they even extend as entire holomorphic functions ûν ∈ O(Cm) by taking
ξ ∈ Cm), since the convergence of any derivative Dαûν(ξ) is guaranteed by the compactness of
the support of uν . If θ ∈ D(Rm) is a real cut-off function equal to 1 on a neighborhood of K
and f ∈ D(Rm) ⊂ S(Rm), the formula uν(f) = ûν(f∧−1) = ûν(f̂(−η)) implies

Dαûν(ξ) = (−2πi)|α|
∫
Rm

uν(x) θ(x)xα e−2πix·ξ dλ(ξ)

= (−2πi)|α|
∫
Rm

ûν(η)
(
θ(x)xα

)∧
(ξ − η) dλ(η).

The Cauchy-Schwarz and Peetre inequalities finally give

|Dαûν(ξ)| 6 (2π)|α|‖uν‖t
(∫

Rm

(1 + |η|2)−t
∣∣∣(θ(x)xα

)∧
(ξ − η)

∣∣∣2 dλ(η)

)1/2

6 (2π)|α|2|t|/2(1 + |ξ|2)|t|/2 ‖θ(x)xα‖−t ‖uν‖t.
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As ‖uν‖t is bounded and θ(x)xα ∈ D(Rm) ⊂ W−t(Rm), this shows that ûν is equicontinuous
on every ball B(0, R) ⊂ Rm. By the Ascoli theorem, we can extract a subsequence ûν(k) that
converges uniformly on every ball B(0, R). Now

‖uν(`) − uν(k)‖2s =

∫
{|ξ|6R}∪{|ξ|>R}

(1 + |ξ|2)s|ûν(`)(ξ)− ûν(k)(ξ)|2 dλ(ξ)

6 (1 +R2)max(s,0)

∫
|ξ|6R

|ûν(`)(ξ)− ûν(k)(ξ)|2 dλ(ξ) + (1 +R2)s−t‖uν(`) − uν(k)‖2t ,

and by taking R > 0 large, we see that (uν(k)) is a Cauchy sequence in the Hilbert space
W s(Rm). Therefore (uν(k)) is convergent in W s(Rm), and we infer that W t

K(Rm) ↪→ W s(Rm)
is compact.

3. Pseudodifferential operators
If u ∈ D(Rm), the Fourier transform of u is

(3.1) û(ξ) =

∫
Rm

u(x) e−2πix·ξ dλ(x)

and the Fourier inversion formula gives u(x) =
∫
Rm û(ξ) e2πix·ξ dλ(ξ), thus for any differential

operator P =
∑
|α|6δ aα(x)Dα on Rm, we have

(3.2) Pu(x) =
∑
|α|6δ

aα(x)Dαu(x) =

∫
Rm

∑
|α|6δ

aα(x)(2πiξ)αû(ξ) e2πix·ξ dλ(ξ).

We call
σ(x, ξ) =

∑
|α|6δ

aα(x)(2πiξ)α =
∑
|α|6δ

(2πi)|α| aα(x) ξα

the (total) symbol of P . By analogy with (3.2), and in more generality, a pseudodifferential
operator is defined to be an operator Opσ of the form

(3.3) Opσ(u)(x) =

∫
Rm

σ(x, ξ) û(ξ) e2πix·ξ dλ(ξ), u ∈ D(Rm) ⊂ S(Rm),

where σ belongs to a suitable class of functions on T ?Rm . The so-called standard class of symbols
Sδ(Rm) is defined as follows : for δ ∈ R, Sδ(Rm) is the space of C∞ functions σ(x, ξ) on T ?Rm

such that for any α, β ∈ Nm and any compact subset K ⊂ Rm one has an estimate

(3.4) |Dα
xD

β
ξ σ(x, ξ)| 6 CK,α,β(1 + |ξ|)δ−|β|, ∀(x, ξ) ∈ K × Rm,

where δ ∈ R is regarded as the “degree” of σ. Since û ∈ S(Rm), the integral (3.3) is always
convergent under condition (3.4). The case when σ(x, ξ) is a polynomial of degree δ in ξ (δ ∈ N)
precisely corresponds to the case of a differential operator of degree δ. In general, since û belongs
to the class S(Rm) of rapidly decreasing functions, the integral (3.3) is convergent as well as
all its derivative Dα

x , thus Opσ(u) is a well defined C∞ function on Rm. In the more general
situation of operators acting on a bundle E and having values in a bundle F over a manifoldM ,
we introduce an analogous space of symbols Sδ(M ;E,F ). The elements of Sδ(M ;E,F ) are
functions

T ?M 3 (x, ξ) 7→ σ(x, ξ) ∈ Hom(Ex, Fx)
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satisfying condition (3.4) with respect to all coordinate systems and all local trivializations of
E,F . An associated global operator Opσ onM can be defined by taking a locally finite covering
(Ωj) of M providing coordinates and trivializations of E,F , a quadratic partition of unity (ψj)
subordinate to (Ωj) (i.e.

∑
ψ2
j = 1), and by putting

(3.5) Opσ(u) =
∑
j

ψj Opσj
(ψju), u ∈ C∞(M,E),

where σj ∈ C∞(T ∗M |Ωj
,Hom(Kr,Kr′) is the local expression of σ on Ωj with respect to the

trivializations of E,F . This definition of Opσ allows to reduce most properties to be checked
to the case of Rm with the trivial bundles E = F = K.

3.6. Remark. The global definition of Opσ provided by (3.5) does depend on the choice of the
partition of unity (ψj), and also on the trivializations of E,F . This can be seen already in the
case of an ordinary differential operator Dα. In fact, the Leibniz formula shows that∑

j

ψjD
α(ψju) = Dαu+

∑
β6α, β 6=α

(
α

β

)
ψjD

α−βψj D
βu

differs from the top degree term Dαu by variable lower order terms. The important fact,
however, is that the principal symbol is what one expects, and it is always possible to add
lower order terms to Opσ to correct any discrepancies. One can e.g. rely on the following
elementary fact about asymptotic expansions of symbols.

3.7. Asymptotic expansions. Let σν ∈ Sδ−ν(M ;E,F ), ν ∈ N, be any sequence of symbols.
Then there exists τ ∈ Sδ(M ;E,F ) such that τ −

∑k
ν=0 σν ∈ Sδ−k−1(M ;E,F ) for all k ∈ N.

Proof. By a partition of unity argument, it is sufficient to prove the result in the case M = Rm,
E = F = K. Let θ(ξ) > 0 be a C∞ cutoff function on Rm, equal to 0 for |ξ| 6 1 and to 1
for |ξ| > 2. We set

τ(x, ξ) = σ0(x, ξ) +
+∞∑
ν=1

θ(ενξ)σν(x, ξ)

where εν ∈ ]0, 1] is a sequence that decays sufficiently fast to 0. In fact, by (3.4) there is an
increasing sequence of constants CN > 0 such that

|Dα
xD

β
ξ σν(x, ξ)| 6 CN (1 + |ξ|)δ−ν−|β|

for all |α|, |β|, ν 6 N and x ∈ Rm such that |x| 6 N . Also, since θ vanishes on B(0, 1) and its
derivatives vanish on RmrB(0, 2), there is a constant C ′N such that |Dγθ(ξ)| 6 C ′N |ξ|(1+|ξ|)−|γ|
for all ξ ∈ Rm and |γ| 6 N , thus

|Dγ(ξ 7→ θ(ενξ))| = ε|γ|ν |Dγθ(ενξ)| 6
C ′Nε

|γ|
ν εν |ξ|

(1 + εν |ξ|)|γ|
6 C ′N

ε
1+|γ|
ν (1 + |ξ|)

(εν + εν |ξ|)|γ|
6 C ′Nεν(1 + |ξ|)1−|γ|.

By the Leibniz formula, for any |α|, |β| 6 N and x ∈ RN with |x| 6 N , we get∣∣∣∣Dα
xD

β
ξ

( +∞∑
ν=1

θ(ενξ)σν(x, ξ)

)∣∣∣∣ 6 +∞∑
ν=1

∑
γ6β

(
β

γ

)
C ′Nεν(1 + |ξ|)1−|γ|Cmax(N,ν)(1 + |ξ|)δ−ν−|β−γ|

6 2NC ′N

+∞∑
ν=1

ενCmax(N,ν) (1 + |ξ|)δ−|β|,
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and the convergence of the series is achieved by taking e.g. εν = 2−νC−1
ν . This already implies

τ ∈ Sδ(Rm). Next,

τ(x, ξ)−
k∑
ν=0

σν(x, ξ) = θk+1(εk+1ξ)σk+1(x, ξ)+

k∑
ν=1

(1−θν(ενξ))σν(x, ξ)+

+∞∑
ν=k+2

θν(ενξ))σν(x, ξ).

Here, the first term coincides with σk+1(x, ξ) for |ξ| > 2/εk+1, thus it belongs to Sδ−k−1(Rm).
The same is true for the summation

∑k
ν=1 which has compact support in ξ. Finally, the above

estimates imply∣∣∣∣Dα
xD

β
ξ

( +∞∑
ν=k+2

θ(ενξ)σν(x, ξ)

)∣∣∣∣ 6 2NC ′N

+∞∑
ν=k+2

ενCmax(N,ν) (1 + |ξ|)δ−k−1−|β|,

hence the summation
∑+∞
ν=k+2 is also in Sδ−k−1(Rm).

The basic results pertaining to the theory of pseudodifferential operators are summarized below.

3.8. Schwartz kernel of a pseudodifferential operator. Condition (3.4) implies that
ξ 7→ σ(x, ξ) as well as all its derivatives ξ 7→ Dα

xσ(x, ξ) are of polynomial growth at infinity.
This implies that they are in the space of tempered distributions S′(Rm), and can be assigned
a partial Fourier transform y 7→ σ̂ξ(x, y) with respect to the second argument, that is in S′(Rm)
and depends smoothly on x. The Fourier transform of σ(x, ξ)e2πix·ξ is Kσ(x, y) = σ̂ξ(x, y − x),
and for M = Rm, the usually adjunction formula ĝ(u) = g(û) implies

(3.9) Opσ(u) =

∫
y∈M

Kσ(x, y)u(y) dV (y), ∀u ∈ D(M),

or equivalently, viewing Opσ(u) as a distribution,∫
x∈M

Opσ(u)(x) f(x) dV (x) =

∫
M×M

Kσ(x, y) f(x)u(y) dV (x) dV (y), ∀f, u ∈ D(M).

The distributionKσ(x, y) ∈ D′(Rm×Rm) is called the (Schwartz) kernel of Opσ. More generally,
in the case of a manifold, we get by (3.5) a formula similar to (3.9), with a global kernel
Kσ(x, y) =

∑
j ψj(x)Kσj

(x, y)ψj(y) in D′(M ×M). Laurent Schwartz has shown (this is the
so-called Schwartz kernel theorem) that every continuous linear operator T : D(M) → D′(M)
is actually given by such a kernel K ∈ D′(M ×M), i.e.

Tu(x) =

∫
y∈M

K(x, y)u(y) dV (y)⇔∫
M

Tu(x) f(x) dV (x) =

∫
M×M

K(x, y) f(x)u(y) dV (x) dV (y)

for all f, u ∈ D(M). A proof can be obtained as a direct application of Grothendieck’s theory
of topological tensor products (see Chapter 9 of online book).

3.10. Action of pseudodifferential operators on Sobolev spaces. For σ ∈ Sδ(M ;E,F ),
the operator Opσ can be extended uniquely as a continuous linear operator

Opσ : W s
loc(M,E)→W s−δ

loc (M,F ).
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Proof. Thanks to the presence of a term ψj on both sides in (3.5), we are reduced to the case
(3.3) where M = Rm and x 7→ u(x), x 7→ σ(x, ξ) have support in a compact subset K ⊂ Rm.
The result is easily seen to be true when Opσ =

∑
|α|6δ aα(x)Dα is a differential operator.

In fact, since multiplication by aα is continuous on W t(Rm) by Lemma 2.3, we only have to
show that Dα : W s(Rm) → W s−δ(Rm) is continuous for |α| 6 δ, but this is obvious from the
identity D̂αu(ξ) = (2πiξ)αû(ξ). In general, we just compute the Fourier transform of Opσ(u).
By Fubini, for u ∈ D(Rm) ⊂ S(Rm), we find

Opσ(u)∧(η) =

∫
Rm

(∫
Rm

σ(x, ξ) û(ξ) e2πix·ξ dλ(ξ)

)
e−2πix·η dλ(x) =

∫
Rm

σ̂x(η − ξ, ξ) û(ξ) dλ(ξ)

where σ̂x is the partial Fourier transform of σ(x, ξ) with respect to x. Inequality (3.4) implies

|(2πiη)αDβ
ξ σ̂x(η, ξ)| =

∣∣∣∣ ∫
Rm

Dα
xD

β
ξ σ(x, ξ) e−2πix·η dλ(x)

∣∣∣∣ 6 λ(K)CK,α,β(1 + |ξ|)δ−|β|,

thus we have an estimate

(3.11) |Dβ
ξ σ̂x(η, ξ)| 6 Cβ,N (1 + |η|2)−N/2 (1 + |ξ|2)(δ−|β|)/2 for every N ∈ N.

At this point, we need (3.11) only for β = 0. The Peetre inequality gives

(1 + |η|2)(s−δ)/2 ∣∣Opσ(u)∧(η)
∣∣

6 2|s−δ|/2
∫
Rm

(1 + |η − ξ|2)|s−δ|/2(1 + |ξ|2)(s−δ)/2 ∣∣σ̂x(η − ξ, ξ)
∣∣ ∣∣û(ξ)

∣∣ dλ(ξ)

6 C ′N,s,δ

∫
Rm

(1 + |η − ξ|2)(|s−δ|−N)/2(1 + |ξ|2)s/2
∣∣û(ξ)

∣∣ dλ(ξ).

We choose N > |s− δ|+m, e.g. N = b |s− δ| c+m+ 1, so that t := N − |s− δ| > m. Then∫
Rm

(1 + |η − ξ|2)−t/2 dλ(ξ) =

∫
Rm

(1 + |ξ|2)−t/2 dλ(ξ) < +∞,

and we get a probability measure dµη(ξ) = c (1 + |η − ξ|2)−t/2 dλ(ξ) for a certain constant
c > 0. By Cauchy-Schwarz applied to the measure dµη(ξ) and to the functions f(ξ) = 1,
g(ξ) = (1 + |ξ|2)s/2 |û(ξ)|, we find

(1 + |η|2)s−δ
∣∣Opσ(u)∧(η)

∣∣2 6 C ′′s,δ

∫
Rm

c (1 + |η − ξ|2)−t/2 (1 + |ξ|2)s
∣∣û(ξ)

∣∣2 dλ(ξ).

By the Fubini theorem, a final integration with respect to η implies ‖Opσ(u)‖2s−δ 6 C ′′s,δ‖u‖2s.
Since D(Rm) is dense in W s(Rm) (exercise !), the existence of a unique continuous extension
Opσ : W s(Rm)→W s−δ(Rm) follows.

3.12. Regularizing operators. In particular, if σ ∈ S−∞(M ;E,F ) :=
⋂
δ<0 S

δ(M ;E,F ),
then Opσ is a continuous operator sending an arbitrary distribution D′(M,E) into C∞(M,F ).
More precisely, since ξ 7→ σ(x, ξ) is rapidly decreasing locally uniformly in x with all derivatives
Dα
x the Schwartz kernel Kσ(x, y) = σ̂ξ(x, y−x) is then easily seen to be smooth, and conversely,

if we are given a kernel K(x, y) in C∞(M ×M) with “proper support” in M ×M in the sense
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that for every point x0 ∈ X, there is a neighborhood W of x0 and a compact set L ⊂ M such
that K(x, y) = 0 on W × (M r L), the formula

(3.13) Ru(x) =

∫
M

K(x, y)u(y) dV (y), u ∈ D′(M)

defines a continuous operator R : D′(M)→ C∞(M). In the case M = Rm, we have

Ru(x) =

∫
M

K̂y(x,−ξ) û(ξ) dV (ξ), ∀u ∈ D′(M),

thusR is the pseudodifferential operator associated with the symbol σ(x, ξ) = K̂y(x,−ξ) e−2πix·ξ.
The properness condition for K implies that K̂y(x, ξ) is rapidly decreasing in ξ, thus σ is in the
class R := S−∞(M ;E,F ). Such an operator is called a regularizing operator.

Regularizing operators play very nicely in regularity theory, in the sense that adding such
operators does not interfere with the regularity of distributions at stake. They can somehow
be considered as “negligible” in pseudodifferential calculus ; it is thus very frequent to make
calculations only modulo R.

3.14. Composition of pseudodifferential operators associated to standard symbols.
For any σ ∈ Sδ(M ;E,F ) and σ′ ∈ Sδ′(M ;F,G), δ, δ′ ∈ R, there exists a “composed symbol”
σ′ � σ ∈ Sδ+δ′(M ;E,G) such that Opσ′ ◦Opσ = Opσ′�σ. Moreover

σ′ � σ − σ′ · σ ∈ Sδ+δ
′−1(M ;E,G).

More precisely, we have an asymptotic expansion

σ′ � σ(x, ξ) ∼
∑
`

∑
|α|=`

1

(2πi)|α|α!
Dα
ξ σ
′(x, ξ)Dα

xσ(x, ξ) modR

where the `-th term is in Sδ+δ′−`(M ;E,G).

Proof. When Opσ′ and Opσ are differential operators (i.e. σ′(x, ξ) and σ(x, ξ) are polynomials
in ξ), the asymptotic expansion is an exact formula, and is just a finite sum; this follows easily
from the Leibniz formula. The general manifold case requires to compute locally finite sums of
the form ∑

j,k

ψk Opσ′
k

(
ψkψj Opσj

(ψju)
)

where u ∈W s
loc(M). The (j, k)-term is non zero only in case Supp(ψj)∩Supp(ψk) 6= ∅. One can

arrange the covering (Ωj) and the partition of unity in such a way that whenever this happens
Supp(ψj) ∪ Supp(ψk) is contained in Ωj or Ωk (e.g. by taking geodesic balls Ωj ' B(0, rj), so
that B(0, rj/4) still covers M , and Supp(ψj) ⊂ B(0, rj/4)). Then, by using a diffeomorphism
Ωj ' Rm, it is sufficient to consider the case where M = Rm, and to consider the composition
of pseudodifferential operators associated with the symbols ψk(x)σ′k(x, ξ) and ψkψj(x)σj(x, ξ).
Hence, we can also assume that σ′(x, ξ) and σ(x, ξ) have compact support in x, being non zero
only when x ∈ K ⊂ Rm. In that case, for u ∈ D(Rn) we have absolutely convergent integrals
of rapidly decreasing functions

Opσ′(u)(x) =

∫
Rm

σ′(x, η) û(η) e2πix·η dλ(η),

Opσ(u)∧(η) =

∫
Rm

σ̂x(η − ξ, ξ) û(ξ) dλ(ξ),
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the first one being equivalent to definition (3.3) with ξ replaced by η, and the second one already
stated in 3.10. By substituting the second formula in the first, we find

Opσ′ ◦Opσ(u)(x) =

∫
Rm

σ′(x, η)

(∫
Rm

σ̂x(η − ξ, ξ) û(ξ) dλ(ξ)

)
e2πix·η dλ(η)

=

∫
Rm

(∫
Rm

σ′(x, η) σ̂x(η − ξ, ξ) e2πix·η dλ(η)

)
û(ξ) dλ(ξ)

=

∫
Rm

(∫
Rm

σ′(x, η + ξ) σ̂x(η, ξ) e2πix·η dλ(η)

)
û(ξ) e2πix·ξ dλ(ξ),

where, in the last line, we have performed a change of variable η 7→ η + ξ. This shows that
Opσ ◦Opσ is associated to the symbol

(3.15) σ′ � σ(x, ξ) =

∫
Rm

σ′(x, η + ξ) σ̂x(η, ξ) e2πix·η dλ(η),

and we have to prove that σ′ � σ ∈ Sδ+δ′(M ;E,G). For this, we compute

Dα
xD

β
ξ σ
′ � σ(x, ξ) =

∑
µ,ν

(
α

µ

)(
β

ν

)∫
Rm

Dµ
xD

ν
ξσ
′(x, η + ξ)Dβ−ν

ξ σ̂x(η, ξ) (2πiη)α−µe2πix·η dλ(η).

As we have already shown (cf. (3.11)), we have estimates

|Dβ−ν
ξ σ̂x(η, ξ)| 6 Cβ−ν,N (1 + |η|2)−N/2 (1 + |ξ|2)(δ−|β|+|ν|)/2,

and also

|Dµ
xD

ν
ξσ
′(x, η + ξ)| 6 C ′µ,ν(1 + |η + ξ|2)(δ′−|ν|)/2

6 C ′µ,ν 2|δ
′−|ν||/2(1 + |ξ|2)(δ′−|ν|)/2(1 + |η|2)|δ

′−|ν||/2

by the Peetre inequality. Therefore∣∣Dα
xD

β
ξ σ
′ � σ(x, ξ)

∣∣ 6 C ′′α,β,N

∫
Rm

(1 + |ξ|2)(δ+δ′−|β|)/2(1 + |η|2)(|δ′−|ν||+|α|−|µ|−N)/2 dλ(η).

For N large enough to ensure the convergence of the integral, we get the expected upper bound∣∣Dα
xD

β
ξ σ
′ � σ(x, ξ)

∣∣ 6 C ′′′α,β(1 + |ξ|)δ+δ
′−|β|.

Furthermore, we have a Taylor expansion

σ′(x, η + ξ) =
∑
|α|6p

1

α!
Dα
ξ σ
′(x, ξ) ηα +

∫ 1

0

∑
|α|=p+1

1

α!
Dα
ξ σ
′(x, ξ + tη) ηα (p+ 1)(1− t)pdt

The integral term is bounded by

C(4)
p (1 + |ξ + tη|2)(δ′−p−1)/2 6 C(5)

p (1 + |ξ|2)(δ′−p−1)/2(1 + |η|2)|δ
′−p−1|/2.

If we plug the Taylor expansion in (3.15), this remainder term contributes for

C
(6)
p,N

∫
Rm

(1 + |ξ|2)(δ+δ′−p−1)/2(1 + |η|2)(|δ′−p−1|−N)/2 dλ(η) 6 C(7)
p (1 + |ξ|)δ+δ

′−p−1,
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while the main terms yield∫
Rm

∑
|α|6p

1

α!
Dα
ξ σ
′(x, ξ) ηα σ̂x(η, ξ) e2πix·η dλ(η) =

∑
|α|6p

1

(2πi)|α|α!
Dα
ξ σ
′(x, ξ)Dα

xσ(x, ξ)

by the Fourier inversion formula. It is easy to check that the terms with |α| = ` are in
Sδ+δ

′−`(M ;E,F ). Statement 3.14 is proved.

3.16. Adjoint of a pseudodifferential operator. Assume that E, F are equipped with
smooth Hermitian metrics hE, hF . Given σ ∈ Sδ(M ;E,F ), there exists an adjoint symbol
σ† ∈ Sδ(M ;F,E) such that Opσ et Opσ† are (formally) adjoint, i.e. for every u ∈ D(M,E),
v ∈ D(M,F ) ∫

M

〈Opσ(u), v〉F dV =

∫
M

〈u,Opσ†(v)〉E dV.

Proof. We first compute σ† in the trivial case M = Rm, E = F = K with the trivial metric,
when x 7→ σ(x, ξ) has compact support. Then∫
M

〈Opσ(u), v〉 dV =

∫
Rm

Opσ(u)(x)v(x) dλ(x) =

∫
Rm×Rm

σ(x, ξ) û(ξ) e2πix·ξ v(x) dλ(x) dλ(ξ).

A partial Fourier transform with respect to x gives∫
M

〈Opσ(u), v〉 dV =

∫
Rm×Rm

σ̂x(η − ξ, ξ) û(ξ) v̂(η) dλ(ξ) dλ(η).

Similarly, 〈〈u,Opσ†(v)〉〉 = 〈〈Opσ†(v), u〉〉, and by switching u and v, ξ and η, σ and σ†, we get∫
M

〈Opσ†(v), u〉 dV =

∫
Rm×Rm

σ̂†x(ξ − η, η) v̂(η) û(ξ) dλ(ξ) dλ(η).

The required relation between σ and σ† is σ̂†x(ξ − η, η) = σ̂x(η − ξ, ξ), or equivalently, after a
one-to-one substitution (η, ξ) 7→ (ξ, ξ + η),

σ̂†x(η, ξ) = σ̂x(−η, ξ + η).

In the higher rank case E = Kr, F = Kr′ we find

(3.17) σ̂†x(η, ξ) = σ̂x(−η, ξ + η)∗

where A∗ is the complex adjoint of a matrix A. We leave the reader check that this defines
σ† ∈ Sδ(M ;F,E), again by means of the Peetre inequality and by the fast decay of σ̂x(η, ξ)
in η. The general case follows from the fact that (ψj Opσj

ψj)
∗ = ψj(Opσj

)∗ψj = ψj Opσ†
j
ψj ,

when orthormal trivializations of E, F are taken in each chart.
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4. Fundamental results on elliptic operators
The concept of ellipticity is easily extended to pseudodifferential operators by expressing

that the symbol σ(x, ξ) is “uniformly” injective when ξ →∞.

4.1. Definition. A pseudodifferential operator Opσ of degree δ is called elliptic if it can be
defined by a symbol σ ∈ Sδ(M,E,F ) such that

|σ(x, ξ) · u| > c|ξ|δ|u|, ∀(x, ξ) ∈ T ?M , ∀u ∈ Ex

for |ξ| large enough, the estimation being uniform for x ∈M .

If E and F have the same rank, the ellipticity condition implies that σ(x, ξ) is invertible
for ξ large. By taking a suitable C∞ truncating function θ(ξ) > 0 equal to 0 for |ξ| 6 R large
and to 1 for |ξ| > 2R, one sees that the function σ′(x, ξ) = θ(ξ)σ(x, ξ)−1 defines a symbol in
the space S−δ(M ;F,E). Also, since

1− σ′(x, ξ)σ(x, ξ) = 1− θ(ξ) ∈ D(Rm) ⊂ S(Rm),

this difference is a regularizing operator. According to 3.14, we have Id−Opσ′ ◦Opσ = Opρ,
where ρ ∈ S−1(M ;E,E), and thus ρ�j ∈ S−j(M ;E,E). Choose a symbol τ equivalent to the
asymptotic expansion Id +ρ + ρ�2 + · · · + ρ�j + · · · (this is possible by 3.7). Then Opτ is an
inverse of Opσ′ ◦Opσ = Id−Opρ modulo R. It is then clear that one obtains an inverse Opτ�σ′

of Opσ modulo R. An easy consequence of this observation is the following :

4.2. Gårding inequality. Assume given P : C∞(M,E) → C∞(M,F ) an elliptic differential
operator of degree δ, where rankE = rankF = r, and let P̃ be an extension of P with
distributional coefficient sections. For all u ∈ W 0(M,E) such that P̃ u ∈ W s(M,F ), one then
has u ∈W s+δ(M,E) and

‖u‖s+δ 6 Cs(‖P̃ u‖s + ‖u‖0),

where Cs is a positive constant depending only on s.

Proof. Since P is elliptic of degree δ, there exists a symbol σ ∈ S−δ(M ;F,E) such that
Opσ ◦P̃ = Id +R, R ∈ R. Then ‖Opσ(v)‖s+δ 6 C‖v‖s by applying 3.10. Consequently, in
setting v = P̃ u, we see that u = Opσ(P̃ u)−Ru satisfies the desired estimate.

5. Finiteness theorem
We conclude these notes with the proof of the following fundamental finiteness theorem,

which is the starting point of L2 Hodge theory. We assume throughout this section that M is
compact, in general finiteness cannot hold on non compact manifolds.

5.1. Finiteness theorem. Assume given E, F Hermitian vector bundles on a compact
manifold M , such that rankE = rankF = r, and let P : C∞(M,E) → C∞(M,F ) be an
elliptic differential operator of degree δ. Then :

i) KerP is finite dimensional.

ii) P
(
C∞(M,E)

)
is closed and of finite codimension in C∞(M,F ) ; moreover, if P ? is the

formal adjoint of P , there exists a decomposition

C∞(M,F ) = P
(
C∞(M,E)

)
⊕KerP ?

as an orthogonal direct sum in W 0(M,F ) = L2(M,F ).
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Proof. (i) The Gårding inequality shows that ‖u‖s+δ 6 Cs‖u‖0 for all u ∈ KerP . By the Sobolev
lemma, this implies that KerP is closed in W 0(M,E). Moreover, the ‖ ‖0-closed unit ball of
KerP is contained in the ‖ ‖δ-boule of radius C0, therefore it is compact according to the
Rellich lemma. The Riesz Theorem implies dim KerP < +∞.

(ii) We first show that the extension

P̃ : W s+δ(M,E)→W s(M,F )

has a closed image all s. For any ε > 0, there exists a finite number of elements v1, . . . , vN ∈
W s+δ(M,F ), N = N(ε), such that

(5.2) ‖u‖0 6 ε‖u‖s+δ +
N∑
j=1

|〈〈u, vj〉〉0|.

Indeed, the set

K(vj) =
{
u ∈W s+δ(M,F ) ; ε‖u‖s+δ +

N∑
j=1

|〈〈u, vj〉〉0| 6 1
}

is relatively compact in W 0(M,F ) and
⋂

(vj)K(vj) = {0}. It follows that there are elements
(vj) such that the K(vj) are contained in the unit ball of W 0(M,E), as required. Substituting
the ‖u‖0 by its upper bound (5.2) in the Gårding inquality, we obtain

(1− Csε)‖u‖s+δ 6 Cs

(
‖P̃ u‖s +

N∑
j=1

|〈〈u, vj〉〉0|
)
.

Define T =
{
u ∈W s+δ(M,E) ; u ⊥ vj , 1 6 j 6 n} and put ε = 1/2Cs. It follows that

‖u‖s+δ 6 2Cs‖P̃ u‖s, ∀u ∈ T.

This implies that P̃ (T ) is closed. As a consequence

P̃
(
W s+δ(M,E)

)
= P̃ (T ) + Span

(
P̃ (v1), . . . , P̃ (vN )

)
is closed in W s(M,E). Consider now the case s = 0. Since C∞(M,E) is dense in W δ(M,E),
we see that in W 0(M,E) = L2(M,E), one has(

P̃
(
W δ(M,E)

))⊥
=
(
P
(
C∞(M,E)

))⊥
= Ker P̃ ?.

We have thus proven that

(5.3) W 0(M,E) = P̃
(
W δ(M,E)

)
⊕Ker P̃ ?.

Since P ? is also elliptic, it follows that Ker P̃ ? is finite dimensional and that Ker P̃ ? = KerP ? is
contained in C∞(M,F ). By applying the Gårding inequality, the decomposition formula (5.3)
gives

W s(M,E) = P̃
(
W s+δ(M,E)

)
⊕KerP ?,(5.4)

C∞(M,E) = P
(
C∞(M,E)

)
⊕KerP ?.(5.5)
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We finish this section by the construction of the Green operator associated with a self-
adjoint elliptic operator.

5.6. Theorem. Assume given E a Hermitian vector bundle of rank r over a compact mani-
fold M , and P : C∞(M,E)→ C∞(M,E) a self-adjoint elliptic differential operator of degree δ.
Then if H denotes the orthogonal projection H : C∞(M,E) → KerP , there exists a unique
operator G on C∞(M,E) such that

PG+H = GP +H = Id .

Moreover G is a pseudodifferential operator of degree −δ, called Green operator associated to P .

Proof. According to Theorem 5.1, KerP = KerP ? is finite dimensional, and ImP = (KerP )⊥.
It then follows that the restriction of P to (KerP )⊥ is a bijective operator. One defines G
toe be 0⊕ P−1 relative to the orthogonal decomposition C∞(M,E) = KerP ⊕ (KerP )⊥. The
relations PG+H = GP +H = Id are then obvious, as well as the uniqueness of G. Moreover,
G is continuous in the Fréchet space topology of C∞(M,E), according to the Banach theorem.
One also uses the fact that there exists a pseudodifferential operator Q of order −δ which is an
inverse of P modulo R, i.e., PQ = Id +R, R ∈ R. It then follows that

Q = (GP +H)Q = G(Id +R) +HQ = G+GR+HQ,

where GR and HQ are regularizing operators (H is a regularizing operator of finite rank defined
by the kernel

∑
ϕs(x)⊗ ϕ?s(y), where (ϕs) is a base of eigenfunctions of KerP ⊂ C∞(M,E)).

Consequently G = Q mod R and G is a pseudodifferential operator of degree −δ.

5.7. Corollary. Under the hypotheses of Theorem 5.6, the eigenvalues of P form a real sequence
(λk) such that limk→+∞ |λk| = +∞, the eigenspaces Vλk

of P are finite dimensional, and one
has a Hilbert space (completed) orthogonal direct sum

L2(M,E) =
⊕̂

k
Vλk

.

For any integer m ∈ N, an element u =
∑
k uk ∈ L2(M,E) is in Wmδ(X,E) if and only if∑

|λk|2m‖uk‖2 < +∞.

Proof. The Green operator extends to a self-adjoint operator

G̃ : L2(M,E)→ L2(M,E)

which factors through W δ(M,E), and is therefore compact. This operator defines an inverse to
P̃ : W δ(M,E)→ L2(M,E) on (KerP )⊥. The spectral theory of compact self-adjoint operators
shows that the eigenvalues µk of G̃ form a real sequence µk tending to 0 and that L2(M,E) is a
Hilbert orthogonal direct sum of eigenspaces. The corresponding eigenvalues of P̃ are λk = µ−1

k

if µk 6= 0, and according to the ellipticity of P −λk Id, the eigenspaces Vλk
= Ker(P −λk Id) are

finite dimensional and contained in C∞(M,E). Finally, if u =
∑
k uk ∈ L2(M,E), the Gårding

inequality shows that u ∈ Wmδ(M,E) if and only if P̃mu ∈ L2(M,E) = W 0(M,E), which
easily gives the condition

∑
|λk|2m‖uk‖2 < +∞.


