Introduction to analytic geometry (course by Jean-Pierre Demailly) Sheet number 8, 05/12/2019

1. (Properties of compact Kähler manifolds).

If X is a manifold (resp. a complex manifold), one defines the Betti numbers, resp. the Hodge numbers to be

$$b_k(X) = \dim_{\mathbb{R}} H^k_{\mathrm{DR}}(X, \mathbb{R}), \quad \text{resp. } h^{p,q}(X) = \dim_{\mathbb{C}} H^{p,q}_{\overline{\partial}}(X, \mathbb{C}).$$

(a) Let Z be any complex manifold. Show that the conjugation of forms induces a conjugate linear isomorphism from $H^{p,q}_{\partial}(Z,\mathbb{C})$ onto $H^{q,p}_{\overline{\partial}}(Z,\mathbb{C})$. Derive from there that for (X,ω) compact Kähler, one has

$$h^{p,q}(X) = h^{q,p}(X) = h^{n-p,n-q}(X) = h^{n-q,n-p}(X)$$

(b) If (X, ω) is compact Kähler, then $b_1(X)$ is even. More generally the odd Betti numbers $b_{2k+1}(X)$ are even. As a consequence, the Hopf manifolds $X = \mathbb{C}^n \setminus \{0\}/\Gamma$ where Γ is an infinite cyclic group of homotheties $z \mapsto \alpha^k z$, $0 < \alpha < 1$, cannot be Kähler.

(c) If u is a holomorphic p-form on (X, ω) compact Hermitian, check that

$$\int_X |u|^2_{\omega} dV_{\omega} = C_{n,p} \, i^{p^2} \int_X u \wedge \overline{u} \wedge \omega^{n-p}.$$

with $C_{n,p} > 0$. Infer from there that one must have du = 0 if ω is Kähler or if p = n - 1.

2. (Compact Riemann surfaces of low genus).

A compact Riemann surface X has $b_1(X) = 2g$, and one can define g to be the genus of X.

(a) If X is diffeomorphic to the sphere S^2 , then g = 0. Conversely, if g = 0, show that $H^{0,1}_{\mathbb{C}}(X,\mathbb{C}) = 0$. Derive from there that X possesses a meromorphic function f with a simple pole, and infer that f has degree 1 and must be an isomorphism from \mathbb{P}^1 onto X.

Hint. Solve an equation $\overline{\partial}u = \overline{\partial}(\theta(z))/z$ where z is a local holomorphic coordinate centered at a point p, and θ is a cutoff function equal to 1 near p, with compact support in the neighborhood V where z is defined, and set $f(z) = \theta(z)/z - u(z)$.

(b) Assume $g \ge 1$. If $K_X = T_X^* = \Omega_X^1$, show that $H^0(X, \Omega_X^1) = H^{1,0}(X, \mathbb{C})$ has dimension g. Take a non zero element $u \in H^0(X, \Omega_X^1)$ and consider the injection of sheaves $\mathcal{O}_X \hookrightarrow \Omega_X^1$, $f \mapsto fu$.

- Show that the quotient sheaf $Q = \Omega_X^1 / \mathcal{O}_X$ is a skyscraper sheaf with support in the finite set of zeroes of u, and that the dimension of the stalk at a zero of u is equal to the multiplicity of that zero.

- Look at the long exact sequence of cohomology groups associated with the short exact sequence of sheaves $0 \to \mathcal{O}_X \to \mathcal{O}_X^1 \to Q \to 0$. Using Serre duality, infer that $H^0(X,Q) = 2g - 2$, and that u has 2g - 2 zeroes counted with multiplicities.

Hint: recall that a skyscraper sheaf only has non zero cohomology in degree 0.

(c) If g = 1, show that X is isomorphic to an elliptic curve.

Hint. Using (b), infer that Ω^1_X and T_X are trivial. If ξ is a non-vanishing vector field, consider the flow $\Phi : \mathbb{C} \times X \to X$ of ξ , which is an additive holomorphic action of $(\mathbb{C}, +)$ on X. The goal is to show that for any point $x_0 \in X$, the map $\mathbb{C} \to X$, $t \mapsto \Phi(t, x_0)$ yields an isomorphism $\mathbb{C}/\Lambda \to X$, where Λ is a lattice.

- The orbit of any point $x_0 \in X$ is open.
- The orbits of two points x_0 , x_1 are either equal or disjoint.
- Use the connectedness of X to infer that there is only one orbit, and that the map $t \mapsto \Phi_t(x_0)$ cannot be injective.

- Consider $\Lambda = \{t \in \mathbb{C} \mid \varphi_t(x_0) = x_0\}$. Show that Λ is a discrete co-compact subgroup of \mathbb{C} .