Introduction to analytic geometry (course by Jean-Pierre Demailly) Sheet number 7, 21/11/2019

The goal of this sheet is to detail the proof of the Lelong-Poincaré formula.

1. (*Multiplicities in the divisor of a holomorphic function*).

(a) Let $f \in \mathcal{O}_{X,x}$ be a non zero germ of holomorphic function at a point $x \in X$ in a complex *n*-dimensional manifold X. One defines the vanishing order ord_x(f) of f at point x to be the largest integer k such that $D^{\alpha} f(x) = 0$ for all mult-indices $\alpha \in \mathbb{N}^n$ with $|\alpha| < k$, i.e. $f(z) = O(|z - x|^k)$ as $z \to x$. Show that $\mathrm{ord}_x(fg) = \mathrm{ord}_x(f) \mathrm{ord}_x(g) \text{ for } f, g \in \mathcal{O}_{X,x}, f, g \not\equiv 0.$

(b) Assume that $x \in Z_{reg}$ where $Z = f^{-1}(0)$. Since codim $Z = 1$, by the definition of what is a smooth codim 1 submanifold, one can find local holomorphic coordinates (z_1, \ldots, z_n) centered at x on an open neighborhood V of x, such that $Z \cap V = \{z \in V / z_1 = 0\}$. Then show that there exists and integer $m \geq 1$ such that $f(z) = z_1^m g(z)$ with a non vanishing function $g \in \mathcal{O}_X(V)$ (after possibly shrinking V). *Hint.* The division process is obtained by looking at the Taylor expansion of f, and leads to a function g that is no longer divisible by z_1 . If $g(x) = 0$, show that the smoothness (and local irreducibility) of the germ of Z at x is contradicted.

(c) Prove that the integer m occuring in (b) does not depend on the choice of coordinates (subject to the condition $Z \cap V = \{z \in V / z_1 = 0\}$, and infer that one can attach a "multiplicity" m_i of f along each connected component Z'_{j} of Z_{reg} , such that $m_{j} = \text{ord}_{x}(f)$ for every point $x \in Z'_{j}$.

(d) For a monomial $f(z) = z_1^{a_1} \cdots z_n^{a_p}$ on \mathbb{C}^n , evaluate $\text{ord}_x(f)$ for every point $x \in \mathbb{C}^n$.

2. Let M be a *n*-dimensional real differentiable manifold, and $T = \sum_{|I|=n-p} T_I(x) dx_I \in \mathcal{D}'_p(M)$ be a dimension p current. One says that T is a *normal current* if both T and dT are of order 0, i.e. there coefficients are Radon measures.

(a) Assume that the support $\text{Supp}(T)$ is contained in a closed submanifold $S \subset M$ and near a point $a \in S$, take coordinates (x_1, \ldots, x_n) on a neighborhood $V \ni a$, centered at a, such that

$$
S \cap V = \{ x \in V / x_1 = \dots = x_q = 0 \}, \qquad q = \text{codim } S.
$$

If T is of order 0, show that $x_jT = 0$, $1 \le j \le q$ (and give a counterexample if T is not of order 0). *Hint.* For a counterexample, take $S = \{0\} \subset M = \mathbb{R}$ and $T = \delta_0'$ (derivative of the Dirac measure).

(b) With the notation of (a), if T is normal, show that $dx_j \wedge T = 0$, $1 \le j \le q$, and infer that one must have $T = 0$ if dim $S < p$, i.e. $q > n - p$.

(c) If X is a complex manifold and T is a normal bidimension (p, p) current with support in an analytic subset W with dim_C $W < p$, show that $T = 0$.

Hint. Use a stratification $W_j \subset W$ by analytic subsets, dim $W_j \leq j$, such that $W_j \setminus W_{j-1}$ is a closed submanifold of dimension j in $X \setminus W_{j-1}$, $0 \le j \le s = \dim W$, and show by descending induction on j that $T_{|X\smallsetminus W_i} = 0$.

3. (a) Show that on \mathbb{C}^n , the (1, 1)-current $\frac{i}{\pi} \partial \overline{\partial} \log |z_1|$ is equal to the current of integration on the hyperplane $H_1 = \{z_1 = 0\}.$

Hint. Evaluate on a test form of bidegree $f = \sum_{|I|=|J|=n-1} f_{IJ}(z) dz_I \wedge d\overline{z}_J$, and show that the only term that is to be taken into account is $\frac{\partial^2}{\partial z_1 \partial z_2}$ $\frac{\partial^2}{\partial z_1 \partial \overline{z}_1} f_{IJ}(z)$ with $I = J = \{2, \ldots, n\}.$

(b) Let X be a complex n-dimensional manifold and $f \in \mathcal{O}(X)$ that does not vanish identically on any connected component of X. Define $Z = f^{-1}(0)$ et $W = Z_{\text{sing}}$, so that dim $W \leq n-2$. Show that

$$
\frac{i}{\pi}\partial\overline{\partial}\log|f| = [Z_f] = \sum m_j [Z_j] \quad \text{on } X \setminus W, \quad \text{where } Z_j = \overline{Z'_j}.
$$

Hint. Combine 1 (b,c) and 3 (a).

(c) Assuming known that $\frac{i}{\pi}\partial\overline{\partial}\log|f|$ and $[Z_f]$ are closed ≥ 0 bidegree $(1,1)$ currents, prove that one actually has $\frac{i}{\pi} \partial \overline{\partial} \log |f| - [Z_f] = 0$ using 2 (c).