Introduction to analytic geometry (course by Jean-Pierre Demailly) Sheet number 6, 13/11/2019

1. (*Basic homotopy formula for De Rham cohomology*).

Let X a real n-dimensional real manifold. Smooth differential forms of degree p on the product \widetilde{X} = $[0, 1] \times X$ are denoted by

$$
u(t,x) = \sum_{|I|=p} u'_I(t,x) dx_I \sum_{|I|=p-1} u''_I(t,x) dt \wedge dx_I, \quad (t,x) \in [0,1] \times X,
$$

(or in abridged form $u = u' + dt \wedge u''$). One defines an operator

$$
K: C^{\infty}(\widetilde{X}, \Lambda^p T_{\widetilde{X}}^*) \to C^{\infty}(X, \Lambda^{p-1} T_X^*), \quad u \mapsto v = Ku
$$

by

$$
v(x) = \int_0^1 dt \wedge u''(t, x) = \sum_{|I|=p-1} \left(\int_0^1 u_I''(t, x) dt \right) dx_I.
$$

(a) Let $i_t : X \to \tilde{X} = [0, 1] \times X$ be the "injection at time t", i.e. $x \mapsto (t, x)$. Check the fundamental formula $dKu + Kdu = i_1^*u - i_0^*u$ for every $u \in C^\infty(\tilde{X}, \Lambda^pT^*_{\tilde{X}})$. Infer that the induced morphisms $i_0^*, i_1^*: H^p_{\text{DR}}(\widetilde{X}, \mathbb{R}) \to H^p_{\text{DR}}(X, \mathbb{R})$ are equal (and actually, that i_t^* is independent of t).

(b) Let X, Y be real C^{∞} differential manifolds and $f, g: X \to Y$ be smooth maps. One says that f, g are (differentiably) homotopic if there exists a C^{∞} map $h : [0,1] \times X \to Y$ such that $f(x) = h(0,x)$ and $g(x) = h(1, x)$ [h is then called a differentiable homotopy between f and g; check that this is an equivalence relation]. Show that the pull-back morphisms $f^*, g^*: H^p_{\text{DR}}(Y, \mathbb{R}) \to H^p_{\text{DR}}(X, \mathbb{R})$ are equal. *Hint*. Consider the composition $H = Kh^* : C^\infty(Y, \Lambda^p T^*_Y) \to C^\infty(X, \Lambda^{p-1} T^*_X)$.

(c) (*Poincaré lemma*) A manifold X is said to have the homotopy type of a point if Id_X and any constant map $X \to \{x_0\} \subset X$ are smoothly homotopic (examples: X a convex or star-shaped open set in \mathbb{R}^n). Using (b), show that the De Rham cohomology of such a manifold satisfies $H_{\text{DR}}^p(X,\mathbb{R}) = 0$ for $p \ge 1$ and $H_{\mathrm{DR}}^0(X,\mathbb{R})=\mathbb{R}.$

2. (*A proof of the Dolbeault-Grothendieck lemma on polydisks*).

Let $\Omega_R = \prod_{1 \leq j \leq n} D(0, R_j)$ be a polydisk in \mathbb{C}^n , $r_j \in]0, +\infty]$, and let $\Omega_r = \prod_{1 \leq j \leq n} D(0, r_j)$, $0 < r_j < R_j$, be a smaller polydisk. The first goal is to prove that for every $C^{\infty}(p,q)$ -form v in Ω_R with $q \geq 1$ and $\overline{\partial}v = 0$, there exists a C^{∞} $(p, q - 1)$ -form u with $\overline{\partial}u = v$ in Ω_r .

(a) Show that it is enough to consider the case $p = 0$.

Hint. $\overline{\partial}$ does not interact with the $(p, 0)$ terms dz_I , so that one just gets a direct sum of $\binom{n}{n}$ $\binom{n}{p}$ identical $(0, \bullet)$ ∂-complexes [but this is true only on a manifold X where T_X is trivial, such as \mathbb{C}^n].

(b) One defines $\mathcal{C}_{q,k}(\Omega_r)$ to be the space of smooth forms v of bidegree $(0,q)$ on Ω_r that involve only $d\overline{z}_1,\ldots,d\overline{z}_k$ in their expansion $\sum_{|J|=q} v_J(z) d\overline{z}_J$, and satisfy $\overline{\partial}v=0$.

• For a C^{∞} function g on a 1-dimensional disk $D(0, R)$ and θ a suitable cutoff function, prove that $f = \frac{1}{\pi}$ $\frac{1}{\pi z} * (\theta g)$ solves the equation $\frac{\partial f}{\partial \overline{z}} = g$ on $D(0, r)$, $r < R$.

• If $v \in \mathcal{C}_{q,k}(\Omega_R)$, show that the coefficients v_j are holomorphic in z_{k+1}, \ldots, z_n and by writing $v = v' + d\overline{z}_k \wedge v''$ where v', v'' involve only $d\overline{z}_1, \ldots, d\overline{z}_{k-1}$, prove that $v - \overline{\partial}(\frac{1}{\pi \overline{z}_k})$ $\frac{1}{\pi z_k} *_k \theta(z_k) v''(z)) \in \mathcal{C}_{q,k-1}(\Omega_r).$ [Here $*_k$ means a convolution computed term by term for the coefficients $\theta(z_k)v''_J(z)$, with respect to the single variable $z_k \in \mathbb{C}$.

• Prove the first goal by descending induction on k .

(c) Show that one can actually obtain a solution on Ω_R itself.

Hint. Solve with u_{ν} defined on $\Omega_{r_{\nu}}$, where r_{ν} converges to R. For $q = 1$, show that one can achieve convergence by adding suitable polynomials. For $q \geq 2$, use induction on q, and make corrections on u_{ν} with $\overline{\partial}$ of compactly supported forms to achieve convergence.

3. (*Elementary ellipticity results for the Laplace operator* $\Delta = \sum \frac{\partial^2}{\partial x^2}$ $\frac{\partial^2}{\partial x_j^2}$ on \mathbb{R}^n).

(a) Let $\Omega \subset \mathbb{R}^n$ be an open subset and let $\Omega_{\varepsilon} = \{z \in \Omega; d(z, \Omega) > \varepsilon\}$. If $u \in \mathcal{D}'(\Omega)$ and ρ_{ε} is a family of regularizing kernels associated with a radial function ρ , show that $u * \rho_{\varepsilon} \in C^{\infty}(\Omega_{\varepsilon})$ and that $u * \rho_{\varepsilon}$ converges weakly to u on every relatively compact open subset $\Omega' \in \Omega$.

Hint. First show that $u * \rho_{\varepsilon}$ is a continuous function on every compact subset $K \subset \Omega_{\varepsilon}$.

(b) If $f \in C^2(\Omega)$ is a harmonic function (i.e. $\Delta f = 0$), show that $f * \rho_{\varepsilon} = f$ on Ω_{ε} .

Hint. Use Stokes's theorem to see that for $B(x_0, R) \subset \Omega$, the average $\mu(r)$ of f on the sphere $S(x_0, r)$ satisfies $\mu'(r) = 0$ on $]0, R]$, and, as a consequence, that $\mu(r) = f(x_0)$ for all such r. Then apply the definition of a convolution.

(c) Let $u \in \mathcal{D}'(\Omega)$ be such that $\Delta u = 0$. Show that in fact $u \in C^{\infty}(\Omega)$, i.e. every harmonic function or distribution is automatically C^{∞} .

Hint. Consider $u * \rho_{\varepsilon}$ and $u * \rho_{\varepsilon} * \rho_{\eta}$ and infer that these functions do not depend on ε or η .

(d) If $u \in \mathcal{D}'(\Omega)$ satisfies $du = 0$, then u is a constant. Similarly, if $u \in \mathcal{D}'(\Omega)$ satisfies $\overline{\partial}u = 0$ on $\Omega \subset \mathbb{C}^n$, then u is a holomorphic function in the usual sense.

(e) (*The Newton kernel*) For $n \neq 2$, show that there exists a constant c_n such that $\Delta N = \delta_0$ on \mathbb{R}^n , where $N(x) = c_n |x|^{2-n}$ and $|x|^2 = x_1^2 + \cdots + x_n^2$ (What happens for $n = 2$?).

Hint. Compute explicity ΔN_{ε} with $N_{\varepsilon}(x) = (|x|^2 + \varepsilon^2)^{1-n/2}$ and let $\varepsilon \to 0$.

(f) (*"Hypoellipticity" of the Laplace operator*) Assume that $f \in \mathcal{D}'(\Omega)$ satisfies $\Delta f = g$ with $g \in C^p(\Omega)$. Show that $f \in C^{p+1}(\Omega)$.

Hint. In a neighborhood of a point $x_0 \in \Omega$, consider $h = f - (\theta g) * N$ where θ is a suitable cutoff function, and compute Δh .

4. (*Proof of the Poincaré and Dolbeault-Grothendieck lemmas for currents*).

(a) Show that the proof given in exercise 2 also works for De Rham cohomology on parallelepipeds $\prod_{i=1}^{\infty} |a_i, b_i| \subset \mathbb{R}^n$, replacing the fundamental solution $\frac{1}{\pi z}$ of $\frac{\partial}{\partial \overline{z}}$ by the Heaviside function H, which is a fundamental solution of $\frac{d}{dx}$.

(b) Check that these proofs also work with currents, for the De Rham complex as well as for the Dolbeault complex.

5. ($\overline{\partial}$ *cohomology with compact supports*).

For any sheaf of abelian groups $\mathcal F$ on a topological space X, sheaf cohomology theory leads to the definition of "cohomology groups with compact support" $H_c^q(X, \mathcal{F})$. In case (X, \mathcal{O}_X) is a complex manifold, by general facts of that theory, $H_c^q(X, \mathcal{O}_X)$ coincides with the cohomology of the $\overline{\partial}$ -complex of smooth $(0, q)$ -forms; alternatively, one can adopt this fact as a definition of $H_c^q(X, \mathcal{O}_X)$.

(a) Prove that $H_c^1(\mathbb{C}^n, \mathbb{O}_\mathbb{C}^n) = 0$ for $n \geq 2$.

Hint. Let v be a smooth $\overline{\partial}$ -closed (0, 1)-form on \mathbb{C}^n with compact support contained in a large polydisk $\overline{D}(0,R)$ and consider a smooth function u on \mathbb{C}^n such that $\overline{\partial u} = v$ (such a u exists by exercise 2). Using the Cauchy formula, show that there exists a function $f \in O(\mathbb{C}^n)$ such that $f = u$ on $\mathbb{C}^n \setminus \overline{D}(0,R)$ and infer the result.

(b) In the case of dimension $n = 1$ and $\Omega = \mathbb{C}$, show that $H_c^1(\mathbb{C}, \mathcal{O}_{\mathbb{C}})$ is infinite dimensional.

Hint. For any $(0, 1)$ -form $v(z) = g(z)dz$ with compact support, one can find a compact supported function u such that $\overline{\partial}u(z) = v(z) = g(z)d\overline{z}$ only in case $\int_{\mathbb{C}} g(z) z^p d\lambda(z) = 0$ for all $p \in \mathbb{N}$. Conversely, if this is the case, show (by a power series expansion) that $u = \frac{1}{\pi}$ $\frac{1}{\pi z} * g$ has compact support.

(c) More generally, let $\Omega \subset \mathbb{C}^n$, $n \geq 2$, be an open subset such that $\mathbb{C}^n \setminus \Omega$ has no compact connected component. Show that $H_c^1(\Omega, \mathcal{O}_{\Omega}) = 0$.

Hint. Derive the result from the case of \mathbb{C}^n , extending forms with 0 in the complement of Ω .

(d) (*Hartogs extension theorem*) Let $\Omega \subset \mathbb{C}^n$, $n \geq 2$, be an open set and $K \subset \Omega$ a compact set such that $\Omega \setminus K$ is connected. Show that every holomorphic function $f \in \mathcal{O}(\Omega \setminus K)$ admits a unique holomorphic extension f to Ω . Is the result true for $n = 1$?

Hint. Let $\theta \in \mathcal{D}(\Omega)$, $0 \le \theta \le 1$, such that $\theta = 1$ in a neighborhood of K. Observe that for the $(0, 1)$ -form $v = \overline{\partial}((1-\theta)f)$, extended by 0 on $\mathbb{C}^n \setminus (\Omega \setminus K)$, there exists a smooth compactly supported function u such that $\overline{\partial} u = v$ on \mathbb{C}^n .