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Basic definitions about categories

Recall that a category € is a collection of “objects” denoted by ob(€) and a collection of “morphisms”
(or arrows) mor(C) u : a — b between objects of € (here, one can think of u as being a map, but it can
be just an “abstract arrow” not associated to an actual map), satisfying the following axioms:

— for all morphisms u: a — b and v : b — ¢ in mor(C), there is a composed morphism vowu : a — ¢ (here
again, o can be an abstract composition law, not necessarily the composition of maps, although this is
the most frequent case)

— composition of morphisms is associative

— for each object a € ob(€), there is an identity morphism 1, : a — a which is a left and right unit
element for composition.

Ezamples 1: category 8 of sets: ob(8) = all sets, mor(8) = all maps between sets; in a similar way,
categories of groups, vector spaces, rings, A-modules, K-algebras, where the morphisms are taken to be
morphisms of these algebraic structures.

Remark: The collection of all sets is not a set, nor is the collection of all maps between sets !

FEzxamples 2: category of sheaves § of abelian groups over a given topological space X, together with mor-
phisms of sheaves of abelian groups; category of C-vector bundles E over a given manifold or topological
space X, together with continuous (resp. smooth) morphisms of bundles.

A functor F : € — € from a category € into a category €’ is an association F : a — a/ = F(a) from
ob(€) to ob(€") and F : u + u' = F(u) from mor(€) to mor(€’) in such a way that F(1,) = 1p(,) and
F(vou) = F(v) o F(u) for all composable morphisms u,v € mor(C). An equivalence of categories C, €’ is
a functor F': € — €’ such that there is a left and right inverse functor G : ¢’ — C.

1. Show that a morphism ¢ : (X,C%) — (Y, C%) of ringed spaces between C* differential manifolds is
the same as a C*¥ map X — Y. Show that a morphism ¢ : (X, C%) — (Y, C%) of ringed spaces can exist
only if £ > k (one agrees that w > oo > k for all k € N).

2. Let (X, A) be a ringed space. Show that a morphism A%? — A®P of A-modules is given by a p X ¢
matrix of global sections in A(X), and that the homomorphism sheaf Hom (A%®Y, A®P), whose sections
over U C X consist of morphisms from Af?]q to A%’, satisfies Hom (AP, ADP) ~ APP4,

3. Let (X,0x) be a complex manifold. The goal of this exercise is to show that there is an equivalence
of categories between locally free O x-modules & and holomorphic vector bundles E over X.

(a) Let 7 : E — X be a holomorphic vector bundle of rank r (in the sense defined by Catriona Maclean).
One defines a presheaf & over X by €(U) = {sections of FE over U}, i.e. holomorphic maps s : U — FE
such that m o s = Idy. Show that € is a locally free O x-module of rank 7.

(b) Conversely, let € be a locally free Ox-modules of rank r. Observing that C = Ox ,/mx , is an
Ox z-module, one defines E, = €, ® Ox ,/mx ;. Show that E, ~ C” and that the projection 7 : £ — X
which maps every fiber E, to z defines a holomorphic vector bundles defined by the same cocycle of
holomorphic matrices as €.

(c) Observe that one has similar equivalences of categories for smooth topological bundles, or even for
topological vector bundles, over the field K = R or over the field K = C.

4. If E — X is a real CP-vector bundle or even rank 2r over a CP differential manifold X, one defines an
almost complex structure J on E to be a global endomorphism J € CP(X, Endg(E)) such that J? = —Id.

(a) show that E equipped with J can then be considered as a complex CP-vector bundle of rank r over X.
Hint. Show that one can extract from any local CP-frame (eq,...,es.) over R a local complex frame,
e.g. (e1,...,e.) after a permutation of the indices. Using the fact that J is CP, show that the complex
transition matrices obtained by taking such frames over an open covering (U, ) of X are still CP.

(b) Show that there is a direct sum decomposition of C? vector subbundles
E¢:=FE®rC=E""a®E"
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where E'0 (resp. E%!) is the eigenspace of eigenvalue +i (resp. —i) of the complexified endomorphism
J€ € Endc(E®).

5. Let X be a differential manifold of class C?, p > 2.

(a) Given vector fields £ = ijg%j, n= an% of class C*, 1 < ¢ < p—1, on an open set U in X, the
Lie bracket [£,n] of &, n is defined to be

(Enl-f=E(-f)—n-(&-f), VfeC*(UR)

(viewing vector fields as derivations acting on functions). Show that this defines again a vector field,
compute explicitly [¢,7] in coordinates, and show that [, 7] is of class C*~!. For g € C'(U), prove that

(9§, m] = gl&,nl — (n-9)&,  [€,9n] = gl&,n] + (€ g)n.

(b) Show that the Lie bracket extends in a natural way to complex vector fields (i.e. sections £ = )" &;(z) 5%

of T'x ®r C, whose components are complex valued functions insteal of real ones).

(c) An almost complex structure on an even dimensional differential manifold (X, €% ) is by definition
an almost complex structure J on its tangent bundle T'x, so that one has a decomposition Tx ®r C =
Ty’ ® T%'. The almost complex structure is said to be integrable if Lie brackets of vector fields in Ty"
remain in Ty, i.e. the sheaf of sections Ty°(U) = CP~1(U, Ty") is stable by Lie bracket. In case (X, Ox)
is a complex analytic manifold and J is its “natural” almost complex structure, compute the Lie brackets
[f%,g%], [f(%j,g%k], [f%,g%], and conclude that ‘J’;O as well as ‘J'[))(’l are stable by Lie bracket.

(d) On C? ~ R%, equipped with coordinates (1, y1,x2,%2), one defines J € C°(R* End(Tg+)) by

e _904 ;0 __0 4,0 _~0 _ 06 ;06 __ 90 .9
ory  Oyr’ oy Oz’ 5$2_p5$2 q5y2’ Oy Oz 0y2

where p, ¢, r, s are functions of (21,1, x2,y2). Show that this defines an almost complex structure on R*

if and Only if
p r 2 -1 0 2
<q > - ( 0 ’1) > S§=-Dp and p +Tq__1

Compute the Lie bracket of

0 0 0 0 .. 0
fz&fi(axl‘”axl)’ ”:;<a@‘”ax2)’

and conclude from there that J is integrable if and only if

op .

— 1—-p

82’1 o a q _ a q —
dq . =0 azl<1—ip)_0 821(1+ip)_0
et —iq

821

ie. 1fip is holomorphic in z; = x1+4y;. Show that in case one takese.g. p = —s =1, ¢ = —r = /1 + 22,

then the almost complex structure J cannot derive from a holomorphic structure.

Remark. A deep theorem, known as the Newlander-Nirenberg theorem, originally proved in 1957, states
that a C* almost complex structure derives from a holomorphic structure if and only if it is integrable
(which is always the case in real dimension 2). The result is also true for J of class C* regularity,
¢ > 1, even when ¢/ = r 4+ « is a non integer value, r € N*, 0 < a < 1. The holomorphic coor-
dinate chart can then taken to be of class C"t**! with respect to the original coordinates (cf. e.g.
https://www.esi.ac.at/static/esiprpr/esi2239.pdf).



