
M2R Université Grenoble Alpes 2019-2020

Introduction to analytic geometry (course by Jean-Pierre Demailly)
Sheet number 3, 17/10/2019

Basic definitions about categories
Recall that a category C is a collection of “objects” denoted by ob(C) and a collection of “morphisms”
(or arrows) mor(C) u : a → b between objects of C (here, one can think of u as being a map, but it can
be just an “abstract arrow” not associated to an actual map), satisfying the following axioms:
– for all morphisms u : a→ b and v : b→ c in mor(C), there is a composed morphism v ◦ u : a→ c (here
again, ◦ can be an abstract composition law, not necessarily the composition of maps, although this is
the most frequent case)
– composition of morphisms is associative
– for each object a ∈ ob(C), there is an identity morphism 1a : a → a which is a left and right unit
element for composition.
Examples 1: category S of sets: ob(S) = all sets, mor(S) = all maps between sets; in a similar way,
categories of groups, vector spaces, rings, A-modules, K-algebras, where the morphisms are taken to be
morphisms of these algebraic structures.
Remark: The collection of all sets is not a set, nor is the collection of all maps between sets !
Examples 2: category of sheaves S of abelian groups over a given topological space X, together with mor-
phisms of sheaves of abelian groups; category of C-vector bundles E over a given manifold or topological
space X, together with continuous (resp. smooth) morphisms of bundles.
A functor F : C → C′ from a category C into a category C′ is an association F : a 7→ a′ = F (a) from
ob(C) to ob(C′) and F : u 7→ u′ = F (u) from mor(C) to mor(C′) in such a way that F (1a) = 1F (a) and
F (v ◦ u) = F (v) ◦F (u) for all composable morphisms u, v ∈ mor(C). An equivalence of categories C,C′ is
a functor F : C→ C′ such that there is a left and right inverse functor G : C′ → C.

1. Show that a morphism ϕ : (X,CkX) → (Y,CkY ) of ringed spaces between Ck differential manifolds is
the same as a Ck map X → Y . Show that a morphism ϕ : (X,CkX)→ (Y,C`Y ) of ringed spaces can exist
only if ` ≥ k (one agrees that ω >∞ > k for all k ∈ N).

2. Let (X,A) be a ringed space. Show that a morphism A⊕q → A⊕p of A-modules is given by a p × q
matrix of global sections in A(X), and that the homomorphism sheaf Hom(A⊕q,A⊕p), whose sections
over U ⊂ X consist of morphisms from A

⊕q
|U to A

⊕p
|U , satisfies Hom(A⊕q,A⊕p) ' A⊕pq.

3. Let (X,OX) be a complex manifold. The goal of this exercise is to show that there is an equivalence
of categories between locally free OX -modules E and holomorphic vector bundles E over X.
(a) Let π : E → X be a holomorphic vector bundle of rank r (in the sense defined by Catriona Maclean).
One defines a presheaf E over X by E(U) = {sections of E over U}, i.e. holomorphic maps s : U → E
such that π ◦ s = IdU . Show that E is a locally free OX -module of rank r.
(b) Conversely, let E be a locally free OX -modules of rank r. Observing that C = OX,x/mX,x is an
OX,x-module, one defines Ex = Ex⊗OX,x/mX,x. Show that Ex ' Cr and that the projection π : E → X
which maps every fiber Ex to x defines a holomorphic vector bundles defined by the same cocycle of
holomorphic matrices as E.
(c) Observe that one has similar equivalences of categories for smooth topological bundles, or even for
topological vector bundles, over the field K = R or over the field K = C.

4. If E → X is a real Cp-vector bundle or even rank 2r over a Cp differential manifold X, one defines an
almost complex structure J on E to be a global endomorphism J ∈ Cp(X,EndR(E)) such that J2 = − Id.
(a) show that E equipped with J can then be considered as a complex Cp-vector bundle of rank r over X.
Hint. Show that one can extract from any local Cp-frame (e1, . . . , e2r) over R a local complex frame,
e.g. (e1, . . . , er) after a permutation of the indices. Using the fact that J is Cp, show that the complex
transition matrices obtained by taking such frames over an open covering (Uα) of X are still Cp.
(b) Show that there is a direct sum decomposition of Cp vector subbundles

EC := E ⊗R C = E1,0 ⊕ E0,1
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where E1,0 (resp. E0,1) is the eigenspace of eigenvalue +i (resp. −i) of the complexified endomorphism
JC ∈ EndC(E

C).

5. Let X be a differential manifold of class Cp, p ≥ 2.
(a) Given vector fields ξ =

∑
ξj

∂
∂xj

, η =
∑
ηk

∂
∂xk

of class C`, 1 ≤ ` ≤ p− 1, on an open set U in X, the
Lie bracket [ξ, η] of ξ, η is defined to be

[ξ, η] · f := ξ · (η · f)− η · (ξ · f), ∀f ∈ C2(U,R)

(viewing vector fields as derivations acting on functions). Show that this defines again a vector field,
compute explicitly [ξ, η] in coordinates, and show that [ξ, η] is of class C`−1. For g ∈ C1(U), prove that

[gξ, η] = g[ξ, η]− (η · g)ξ, [ξ, gη] = g[ξ, η] + (ξ · g)η.

(b) Show that the Lie bracket extends in a natural way to complex vector fields (i.e. sections ξ =
∑
ξj(x)

∂
ξj

of TX ⊗R C, whose components are complex valued functions insteal of real ones).
(c) An almost complex structure on an even dimensional differential manifold (X,CpX) is by definition
an almost complex structure J on its tangent bundle TX , so that one has a decomposition TX ⊗R C =
T 1,0
X ⊕ T 0,1

X . The almost complex structure is said to be integrable if Lie brackets of vector fields in T 1,0
X

remain in T 1,0
X , i.e. the sheaf of sections T1,0

X (U) = Cp−1(U, T 1,0
X ) is stable by Lie bracket. In case (X,OX)

is a complex analytic manifold and J is its “natural” almost complex structure, compute the Lie brackets
[f ∂
∂zj

, g ∂
∂zk

], [f ∂
∂zj

, g ∂
∂zk

], [f ∂
∂zj

, g ∂
∂zk

], and conclude that T1,0
X as well as T0,1

X are stable by Lie bracket.

(d) On C2 ' R4, equipped with coordinates (x1, y1, x2, y2), one defines J ∈ C∞(R4,End(TR4)) by

J
∂

∂x1
=

∂

∂y1
, J

∂

∂y1
= − ∂

∂x1
, J

∂

∂x2
= p

∂

∂x2
+ q

∂

∂y2
, J

∂

∂y2
= r

∂

∂x2
+ s

∂

∂y2

where p, q, r, s are functions of (x1, y1, x2, y2). Show that this defines an almost complex structure on R4

if and only if (
p r
q s

)2

=

(
−1 0
0 −1

)
⇐⇒ s = −p and p2 + rq = −1.

Compute the Lie bracket of

ξ =
∂

∂z1
=

1

2

( ∂

∂x1
− iJ ∂

∂x1

)
, η =

1

2

( ∂

∂x2
− iJ ∂

∂x2

)
,

and conclude from there that J is integrable if and only if∣∣∣∣∣∣∣∣
∂p

∂z1
1− ip

∂q

∂z1
−iq

∣∣∣∣∣∣∣∣ = 0 ⇐⇒ ∂

∂z1

( q

1− ip

)
= 0 ⇐⇒ ∂

∂z1

( q

1 + ip

)
= 0,

i.e. q
1+ip is holomorphic in z1 = x1+iy1. Show that in case one takes e.g. p = −s = x1, q = −r =

√
1 + x21,

then the almost complex structure J cannot derive from a holomorphic structure.

Remark. A deep theorem, known as the Newlander-Nirenberg theorem, originally proved in 1957, states
that a C∞ almost complex structure derives from a holomorphic structure if and only if it is integrable
(which is always the case in real dimension 2). The result is also true for J of class C` regularity,
` > 1, even when ` = r + α is a non integer value, r ∈ N∗, 0 < α < 1. The holomorphic coor-
dinate chart can then taken to be of class Cr+α+1 with respect to the original coordinates (cf. e.g.
https://www.esi.ac.at/static/esiprpr/esi2239.pdf).
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