Introduction to analytic geometry (course by Jean-Pierre Demailly) Sheet number 1, 03/10/2019

1. *Standard area and volume calculations in* \mathbb{R}^n and \mathbb{C}^n . Here, \mathbb{R}^n and \mathbb{C}^n are equipped with their *standard Euclidean/Hermitian structures, the Hermitian norm being denoted* $z \mapsto |z|$ *.*

(a) The Lebesgue measure in $\mathbb{C}^n \simeq \mathbb{R}^{2n}$ can be written as

$$
d\lambda(z)=\frac{i}{2}\,dz_1\wedge d\overline{z}_1\wedge\ldots\wedge\frac{i}{2}\,dz_n\wedge d\overline{z}_n=\frac{i^{n^2}}{2^n}\,dz_1\wedge\ldots\wedge dz_n\wedge d\overline{z}_1\wedge\ldots\wedge d\overline{z}_n,
$$

where $z_j = x_j + iy_n$ and $\mathbb{C}^n \simeq \mathbb{R}^{2n}$ is oriented (conventionally) by coordinates $(x_1, y_1, \ldots, x_n, y_n)$. (b) *Surface element of Euclidean spheres*

Show that the degree $n-1$ differential form on \mathbb{R}^n defined by

$$
d\sigma(x) = \frac{1}{R} \sum_{j=1}^{n} (-1)^{j-1} x_j dx_1 \wedge \ldots \wedge \widehat{dx_j} \wedge \ldots \wedge dx_n \quad \text{(where } \hat{\ast} \text{ means a term } \ast \text{ omitted)},
$$

induces on the sphere $S(0, R) \subset \mathbb{R}^n$ the Euclidean area measure. In the case of \mathbb{C}^n , show that a similar role can be played by

$$
d\sigma(z) = \frac{i^{n^2}}{2^n} \frac{2}{R} \sum_{j=1}^n (-1)^{j-1} z_j dz_1 \wedge \ldots \wedge \widehat{dz_j} \wedge \ldots \wedge dz_n \wedge d\overline{z_1} \wedge \ldots \wedge d\overline{z_n}.
$$

Hint. Compute $dr(x) \wedge d\sigma(x)$ with $r(x) = (\sum |x_j|^2)^{1/2}$ (resp. $r(z) = (\sum z_j \overline{z}_j)^{1/2}$); compare with $d\lambda$. (c) If $x = ru$ is the usual polar decomposition in $\mathbb{R}^n \setminus \{0\}$ (with $r = |x| \in \mathbb{R}_+$ and $u = \frac{x}{|x|} \in \mathbb{S}^{n-1}$, show that $d\lambda(x) = r^{n-1}dr \wedge d\sigma(u)$ where $d\sigma(u)$ is given as in (b). (Of course, one has a similar formula in \mathbb{C}^n with $z = ru$ and $d\lambda(z) = r^{2n-1}dr \wedge d\sigma(u)$.

Hint. Notice that $du_1 \wedge \ldots \wedge du_n = 0$ since $\dim \mathbb{S}^{n-1} < n$.

(d) Let $\mathbb{S}^{2n-1} \subset \mathbb{C}^n$ be the unit sphere, and consider the projection

$$
\mathbb{S}^{2n-1} \to \mathbb{C}^{n-1}, \quad z = (z_1, \dots, z_n) \mapsto z' = (z_1, \dots, z_{n-1}).
$$

Write $z' = \rho u, \, \rho \in \mathbb{R}_+, \, u \in \mathbb{S}^{2n-3} \subset \mathbb{C}^{n-1}$, and $z_n = r_n e^{i\theta_n}$ in polar coordinates on \mathbb{C}^{n-1} (resp. \mathbb{C}). If λ' is the Lebesgue measure of \mathbb{C}^{n-1} and σ' the area measure of \mathbb{S}^{2n-3} , show that

$$
d\sigma(z) = d\lambda'(z') \wedge d\theta_n = \rho^{2n-3} d\rho \wedge d\sigma'(u) \wedge d\theta_n
$$

in the complement of $\mathbb{S}^{2n-1} \cap \{z_n = 0\} \simeq \mathbb{S}^{2n-3}$ (which is $d\sigma$ -negligible) in \mathbb{S}^{2n-1} . Derive from there the Fubini type formula

$$
\int_{\mathbb{S}^{2n-1}} f(z) d\sigma(z) = \int_{\rho \in [0,1]} \int_{\theta_n \in [0,2\pi]} \int_{u \in \mathbb{S}^{2n-3}} f(\rho u, (1-\rho^2)^{1/2} e^{i\theta_n}) \rho^{2n-3} d\rho d\theta_n d\sigma'(u).
$$

Hint. Use $d\theta_n = \text{Im}(d\log z_n) = \frac{1}{2i} \left(\frac{dz_n}{z_n}\right)$ $rac{dz_n}{z_n} - \frac{d\overline{z}_n}{\overline{z}_n}$ $\frac{d\overline{z}_n}{\overline{z}_n}$) to compute $dr \wedge d\lambda(z') \wedge d\theta_n$.

(e) Show by induction on *n* that the area of \mathbb{S}^{2n-1} is $\sigma_{2n-1} = \frac{2\pi^n}{(n-1)!}$. The area of $S(0,R) \subset \mathbb{C}^n$ is $\frac{2\pi^n}{(n-1)!}R^{2n-1}$ and the volume of $B(0,R)\subset\mathbb{C}^n$ is $\frac{\pi^n}{n!}R^{2n}$.

2. Let $\Omega \subset \mathbb{C}^n$ be an open set such that

$$
\forall z \in \Omega, \ \forall \lambda \in \mathbb{C}, \ |\lambda| \le 1 \ \Rightarrow \ \lambda z \in \Omega.
$$

Show that Ω is a union of polydisks of center 0 (with respect to coordinates $z' = u(z)$ associated with arbitrary unitary matrices $u \in U(n)$ and infer that the space of polynomials $\mathbb{C}[z_1,\ldots,z_n]$ is dense in $\mathcal{O}(\Omega)$ for the topology of uniform convergence on compact subsets. If Ω is bounded, show that $\mathbb{C}[z_1, \ldots, z_n]$ is dense in $\mathcal{O}(\Omega) \cap C^0(\overline{\Omega})$ for the topology of uniform convergence on $\overline{\Omega}$.

Hint: consider the Taylor expansion of a function $f \in O(\Omega)$ at the origin, writing it as a series of homogeneous polynomials. To deal with the case of $\mathcal{O}(\Omega) \cap C^0(\overline{\Omega})$, first apply a dilation to f.

3. The goal of this exercise is to prove the Cauchy formula for the unit ball in \mathbb{C}^n . Let $B \subset \mathbb{C}^n$ be the unit Hermitian ball, $S = \partial B$ and $f \in O(B) \cap C^{0}(\overline{B})$. Our goal is to check the following Cauchy formula:

$$
f(w) = \frac{1}{\sigma_{2n-1}} \int_{S} \frac{f(z)}{(1 - \langle w, z \rangle)^n} d\sigma(z).
$$

- (a) By means of a unitary transformation and exercise 2, reduce the question to the case when $w =$ $(0, \ldots, 0, w_n)$ and $f(z)$ is a monomial $z^{\alpha} = z_1^{\alpha_1} \ldots z_n^{\alpha_n}$.
- (b) Show that the integral $\int_{S} z^{\alpha} \overline{z}_{n}^{k} d\sigma(z)$ vanishes unless $\alpha = (0, \ldots, 0, k)$. Compute the value of the non zero integral by means of suitable integration by parts. *Hint*. Use formula 1(d), invariance of σ by rotation, and/or Fourier series arguments.
- (c) Prove the formula by means of a suitable power series expansion of $(1 \langle w, z \rangle)^{-n}$.

4. *Montel spaces*

Let E be a topological vector space E over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . A subset $S \subset E$ is said to be bounded if for every neighborhood U of zero in E, there exists $\lambda \in \mathbb{K}^*$ such that $A \subset \lambda U$ (or equivalently, $\lambda^{-1} A \subset U$).

- (a) Show that if A is compact, then A is bounded. *Hint*. Use the continuity of the operations to prove the fact that for any given open neighborhood U of 0, one can find a neighborhood V of 0 and $\delta > 0$ such that $V + \mu V \subset U$ for all $\mu \in \mathbb{K}$, $|\mu| < \delta$, and cover A by translates $x_j + V$.
- (b) If $(E, \|\cdot\|)$ is a normed vector space, show that A is bounded if and only if $\sup_{x\in A} ||x|| < +\infty$. More generally, if E is locally convex and the topology of E is defined by a collection of semi-norms $(p_{\alpha})_{\alpha\in I}$, then A is bounded if and only if for every $\alpha \in I$ one has $\sup_{x\in A} p_{\alpha}(x) < +\infty$.
- (c) A Fréchet space E will be said to be a *Montel space* if the compact subsets of E are exactly the closed bounded subsets of E. Show that for every open set $\Omega \subset \mathbb{C}^n$, the space $\mathcal{O}(\Omega)$ is a Montel space; likewise, for $\Omega \subset \mathbb{R}^n$, $C^{\infty}(\Omega)$ is a Montel space.
- (d) Show that an infinite dimensional Banach space is never a Montel space. Derive from there that the topology of $\mathcal{O}(\Omega)$ or $C^{\infty}(\Omega)$ cannot be defined by a single norm.