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Let K be a compact subset of Cn. One defines the polynomial hull of K to be
K̂ =

{
z ∈ Cn / |P (z)| ≤ sup

K
|P |, ∀P ∈ C[z1, . . . , zn]

}
.

1. (a) Show that the polynomial hull K̂ is compact, coincides with the holomorphic hull

K̂O =
{
z ∈ Cn / |f(z)| ≤ sup

K
|f |, ∀f ∈ O(Cn)

}
and that K̂ = ∂̂K.

By definition K̂ contains K and sup
K̂
|P | = supK |P | for every P ∈ C[z1, . . . , zn]. If we take P (z) = zj ,

we find sup
K̂
|zj | = supK |zj | < +∞, hence K̂ is bounded. On the other hand the continuity of |P |

implies that
K̂ =

⋂
P∈C[z1,...,zn]

{z ∈ Cn / |P (z)| ≤MP } (where MP = supK |P |)

is closed. Therefore K̂ is compact. Since C[z1, . . . , zn] ⊂ O(Cn), it is obvious from the definition that
K̂O ⊂ K̂. However every entire function f ∈ O(Cn) is a limit, uniformly of every compact set of Cn,
of a sequence of polynomials Pν (just take the truncated Taylor series Pν(z) =

∑
|α|≤ν aαz

α centered
at 0). The equality sup

K̂
|Pν | = supK |Pν | implies in the limit sup

K̂
|f | = supK |f |, and we conclude

that K̂ ⊂ K̂O, whence K̂ = K̂O. Finally, the maximum principle tells us that sup∂K |f | = supK |f | for
every f ∈ O(Cn). This implies immediately K̂ = ∂̂K.
Contrary to what I have seen stated in some tests, it is not true in Cn (n ≥ 2) that {z ∈ Cn / |P (z)| ≤M}
is a bounded set. Just take P (z) = z1 to see that this is wrong. In fact, this is wrong for all polynomials!
(b) Prove that K̂ is contained in the convex hull K̃ of K.

Hint. Consider f(z) = e`(z) where ` runs over all linear forms on Cn, and recall that the convex
hull K̃ is equal to the intersection of closed half spaces that contain K (this is a consequence of the
Hahn-Banach theorem in finite dimension).

In fact |e`(z)| = eRe `(z), and for ` ∈ (Cn)∗, the real parts z 7→ Re `(z) are just the real linear forms on
the underlying real vector space Cn ' R2n. As f = e` ∈ O(Cn), we infer

K̂ = K̂O ⊂ {z ∈ Cn / Re `(z) ≤ m`} (where m` = supK Re `).

The right hand side is precisely equal to the convex hull K̃ ( = intersection of half spaces containing K),
thus K̂ ⊂ K̃. As a consequence, every compact convex set is polynomially convex.
(c) A (compact) polynomial polyhedron is a compact set of the form K = {z ∈ Cn / |Pj(z)| ≤ cj} for

suitable polynomials P1, . . . , Pm ∈ C[z1, . . . , zn] and constants cj ∈ R+. Show that K̂ = K and give
an example where K is non convex.
Hint. In C2, take one of the polynomials to be P (z1, z2) = z1z2.

If K = {z ∈ Cn / |Pj(z)| ≤ cj}, then sup
K̂
|Pj | = supK |Pj | ≤ cj , hence K̂ ⊂ K, thus K̂ = K. For the

example, since we need a compact polynomial polyhedron, we cannot just take one polynomial on Cn
(except for n = 1 where this would be possible). In C2, let us consider the polynomial polyhedron

K =
{

(z1, z2) ∈ C2 / |z1| ≤ 1, |z2| ≤ 1, |z1z2| ≤ δ
}

with δ ∈ ]0, 1[, which is trivially compact. It contains the points (1, δ) and (δ, 1), but does not contain
the middle point ( 1+δ

2 , 1+δ
2 ) as ( 1+δ

2 )2 > δ ⇔ ( 1−δ
2 )2 > 0. Hence K̂ = K is non convex.

Remark: in C, one can show that the polynomial hull K̂ is the union of K with the bounded connected
components of CrK (“holes”), thus K ⊂ C is polynomially convex if and only if CrK is connected.

2. Let ψ : Cn → R be a smooth plurisubharmonic exhaustion. For every value c ∈ R, one defines

Ωc =
{
z ∈ Cn / ψ(z) < c

}
, Kc =

{
z ∈ Cn / ψ(z) ≤ c

}
.
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Recall that ψ being an exhaustion means that Kc is compact for every c ∈ R. The goal of the exercise is
to show that

(∗∗) every holomorphic function f ∈ O(Ωc+δ), δ > 0, is the uniform limit on Kc of a sequence of
polynomials Pm ∈ C[z1, . . . , zn].

Let θ ∈ D(Ωc+δ) be cut-off function equal to 1 on Kc+δ/2 with support in Kc+3δ/4. One solves the
equation ∂u = v on Cn, where v = ∂(θf) is extended by 0 in the complement of Ωc+δ. For this, one
works in the L2 space of (0, q)-forms with respect to the weight function ϕm(z) = mψ(z) + |z|2 and the
standard Hermitian metric ω = i

∑
1≤j≤n dzj ∧ dzj .

(a) Show that
∫
Cn
|v|2e−ϕmdλ ≤ C1 exp(−m(c+ δ/2))

for some constant C1 ≥ 0 (where dλ = Lebesgue measure).
We have v = ∂(θf) = (∂θ)f + θ(∂f) = (∂θ)f , hence v = 0 on Ωc+δ/2 (where θ = 1) as well as on
Cn rKc+3δ/4 (where θ = 0), i.e. Supp(v) ⊂ Kc+3δ/4 r Ωc+δ/2 = {c + δ/2 ≤ ψ ≤ c + 3δ/4}. On this set
e−mψ ≥ exp(−m(c+ δ/2)), thus∫

Cn
|v|2e−ϕmdλ =

∫
Kc+3δ/4rΩc+δ/2

|v(z)|2e−mψ(z)−|z|2dλ(z) ≤ C1 exp(−m(c+ δ/2))

with C1 =
∫
Kc+3δ/4rΩc+δ/2

|v(z)|2e−|z|2dλ(z) < +∞.

(b) Show that the eigenvalues of i∂∂ϕm with respect to ω are at least equal to 1, and derive from the
theory of L2 estimates for ∂ that there exist solutions of the equations ∂um = v such that∫

Cn
|um|2e−ϕmdλ ≤ C2 exp(−m(c+ δ/2)).

Hint. On Cn, solving ∂ for (0, q)-forms is the same as solving ∂ for (n, q)-forms.
As i∂∂ψ ≥ 0, we find i∂∂ϕm ≥ i∂∂|z|2 = ω. This implies that the eigenvalues λ1 ≤ . . . ≤ λn of i∂∂ϕm
with respect to ω satisfy λj ≥ 1. Now, the theory of L2 estimates imply that the equation ∂u = v in the
space of (n, q)-forms can be solved with a solution u = um of bidegree (n, q − 1) on Cn, such that

(†)
∫
Cn
|um|2e−ϕmdλ ≤

∫
Cn

1

λ1 + · · ·+ λq
|v|2e−ϕmdλ ≤ 1

q

∫
Cn
|v|2e−ϕmdλ.

Here our v = ∂(θf) is a (0, 1)-form. Since the bundle ΛnT ∗Cn is trivial an equipped with the trivial
metric ω, we can “convert it” to (n, 1)-form simply by multiplying by dz1 ∧ . . .∧ dzn (the L2 norm being
unchanged). Thus, for q = 1, we actually get a solution um as a (0, 1)-form satisfying∫

Cn
|um|2e−ϕmdλ ≤

∫
Cn
|v|2e−ϕmdλ ≤ C1 exp(−m(c+ δ/2)).

(c) Infer from the above that
∫
Kc+δ/4

|um|2dλ ≤ C3 exp(−mδ/4) and that um converges uniformly to 0

on the compact set Kc.
Hint. Use the mean value inequality on balls B(z, r), where r = d(Kc, {Kc+δ/4).

We notice that ∂um = v = 0 on Ωc+δ/2 and that ϕm(z) ≤ m(c+ δ/4) +R2 on Kc+∆/4, where R = sup |z|
on that compact set. Therefore∫

Kc+δ/4

|um|2dλ ≤
∫
Kc+δ/4

|um|2e−ϕmeϕmdλ ≤ exp(m(c+ δ/4) +R2)

∫
Kc+δ/4

|um|2e−ϕmdλ

≤ exp(m(c+ δ/4) +R2) · C1 exp(−m(c+ δ/2)) = C3 exp(−mδ/4).

Let us take r = d(Kc, {Kc+δ/4). Then, for every point z ∈ Kc, we have B(z, r) ⊂ Kc+δ/4, and the mean
value inequality for the plurisubharmonic function |um|2 implies

|um(z)|2 ≤ 1

πnr2n/n!

∫
B(z,r)

|um|2dλ ≤ C4 exp(−mδ/2).
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We conclude from this that um converges uniformly to 0 on Kc.
(d) Prove the assertion (∗∗).
Using the solution um obtained in (b) and (c), we set fm = θf − um. Then

∂fm = ∂(θf)− ∂um = v − ∂um = 0 on Cn,

thus fm ∈ O(Cn). Also, by (c), fm|Kc = f − um converges uniformly to f on Kc. If we replace
fm by its truncated Taylor series (centererd at 0) of sufficiently large degree, we obtain a polynomial
Pm ∈ C[z1, . . . , zn] such that supKc |fm−Pm| ≤ 2−m, and infer that Pm converges uniformly to f on Kc.

3. A compact set K ⊂ Cn is said to be polynomially convex if K̂ = K. In the remainder of this exercise,
K is supposed to be a polynomially convex compact set.
(a) Show that the function χ(t) = t e−1/t for t > 0, χ(t) = 0 for t ≤ 0 is a convex function that is strictly

convex increasing on ]0,+∞[.
On the interval ]0,+∞[, one gets

χ′(t) = (1 + t−1)e−1/t > 0, χ′′(t) = t−3e−1/t > 0,

and inductively χ(k)(t) = Pk(1/t)e−1/t where Pk is a polynomial of degree 2k − 1. All derivatives tend
to 0 as t→ 0+, hence χ defines a smooth function χ : R→ R that is strictly convex increasing on ]0,+∞[
(and convex non decreasing on R).
(b) Let a /∈ K. Show that one can choose a polynomial P ∈ C[z1, . . . , zn] and real numbers c ∈ R, ε > 0

such that the plurisubharmonic function ua(z) = χ(|P (z)|2 + ε|z|2 − c) is identically 0 on K, and
satisfies ua(a) > 0, while i∂∂ua is positive definite on an open neighborhood Va of a, Va ⊂ Cn rK.

By definition of the polynomial hull, for a /∈ K, there exists a polynomial P such that |P (a)| > supK |P |.
Fix δ > 0 such that |P (a)|2 ≥ supK |P |2 + 2δ and R = supK |z|. Then for ε ≤ δ/R2 and z ∈ K we find
ε|z|2 ≤ εR2 ≤ δ, hence

|P (a)|2 + ε|a|2 ≥ |P (a)|2 > |P (a)|2 − δ ≥ sup
K

(|P (z)|2 + δ) ≥ sup
K

(|P (z)|2 + ε|z|2).

After subtracting c = |P (a)|2 − δ we obtain

|P (a)|2 + ε|a|2 − c ≥ δ > 0 ≥ sup
K

(|P (z)|2 + ε|z|2 − c).

Therefore the function ua(z) = χ(|P (z)|2+ε|z|2−c) satisfies ua(a) > 0 and ua = 0 onK. Clearly, ua ≥ 0 is
plurisubharmonic on Cn as a composition of a convex non decreasing function χ with a plurisubharmonic
function τ(z) = |P (z)|2 + ε|z|2 − c. Also, by the convexity of χ, we get

i∂∂ua ≥ i∂∂χ(τ(z)) = χ′(τ(z)) i∂∂τ + χ′′(τ(z)) i∂τ ∧ ∂τ ≥ χ′(τ(z)) i∂∂τ ≥ εχ′(τ(z)) i∂∂|z|2,

and we see that ua > 0 and i∂∂ua > 0 on a small open neighborhood Va of a contained in Cn rK.
(c) Using a covering of Cn rK by countably many open sets Vap , p ∈ N, show that one can produce a

smooth plurisubharmonic function given by a convergent series ψ =
∑
p∈N ηpuap , ηp = Const> 0, such

that ψ = 0 on K, ψ > 0 strictly plurisubharmonic on Cn rK, and finally ψ(z) ≥ ε′|z|2 − C on Cn.
CnrK is a countable union of compact sets Lν , and each Lν is covered by finitely many neighborhoods Va.
This implies that we can cover CnrK by countably many open neighborhoods Vap , p ∈ N. Now, we can
always find a (decreasing) sequence ηp > 0 such that the series

ψ =
∑
p∈N

ηpuap

converges smoothly in C∞(Cn). For instance, one can take

ηp < 2−p
(

sup
|z|≤p,|β|≤p

|Dβuap(z)|
)−1
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to achieve the uniform convergence of all series
∑
ηp|Dβuap | on all compact subsets of Cn. By construc-

tion, ψ is smooth plurisubharmonic on Cn, while ψ > 0 and i∂∂ψ > 0 on
⋃
Vap = Cn rK. Moreover,

we have ψ ≥ η0ua0 , and since χ(t) ≥ χ(1) + χ′(1)(t− 1) = 2e−1t− C0 for all t ∈ R, we infer

ψ(z) ≥ η0

(
2e−1(|P0(z)|2 + ε0|z|2 − c0)− C0

)
≥ ε′|z|2 − C on Cn.

Therefore ψ is a smooth plurisubharmonic exhaustion of Cn.
(d) Using exercise 2, show that for every holomorphic function f ∈ O(Ω), where Ω is an open neigh-

borhood of K, there exists a sequence of polynomials Pm ∈ C[z1, . . . , zn] converging uniformly to f
on K.

By construction we have K = Kc = {z ∈ Cn / ψ(z) ≤ c} for c = 0. Since
⋂
K1/ν = K0 = K, there exists

δ = 1/ν such that Ωδ = Ω1/ν ⊂ K1/ν ⊂ Ω. Exercise 2 implies that f is a uniform limit of polynomials
Pm ∈ C[z1, . . . , zn] on K = K0.
(e) In dimension 1 (i.e. in C), is it possible to approximate f(z) = 1/z by polynomials on the unit circle ?

What is the problem here ?
One cannot have 1/z = limPm(z) uniformly on S1, since

∫
S1 Pm(z)dz = 0, while

∫
S1

1
zdz = 2πi. This is

of course not a contradiction with (d) since S1 is not polynomially convex (the polynomial hull of S1 is
the closed unit disc D(0, 1)).

4. Throughout this exercise, X denotes a compact complex manifold. Let Y be a complex submanifold
of X and [Y ] the current of integration over Y .
(a) If T is another current on X, the product [Y ] ∧ T cannot be defined in general, since products of

measures do not exist in the calculus of distributions. However, if T = i∂∂ϕ and ϕ is a plurisub-
harmonic function on a coordinate open subset U ⊂ X such that ϕ is not identically −∞ on any
connected component of Y ∩U , show that ϕ is locally integrable on Y , and infer that one can define

[Y ] ∧ i∂∂ϕ := i∂∂(ϕ[Y ]).

Moreover, prove that if ϕ is regularized as a decreasing sequence of smooth plurisubharmonic func-
tions ϕν = ϕ ∗ ρ1/ν obtained by convolution, the above definition of current products is compatible
with weak limits, in the sense that [Y ]∧ i∂∂ϕ = limν→+∞[Y ]∧ i∂∂ϕν weakly in the space of currents.

Since ϕ is not identically −∞ on any connected component of Y ∩U , we know that ψ|Y ∩U is a plurisuhar-
monic function on Y ∩U , hence it is L1

loc with respect to the Lebesgue measure on Y in any coordinates.
This implies that the current ϕ[Y ] given by

f 7→
∫
Y

fϕ, ∀f ∈ Dp,p(Y ∩ U), p = dimC Y,

is well defined. Therefore [Y ] ∧ i∂∂ϕ := i∂∂(ϕ[Y ]) is also well defined. Actually, we get

〈i∂∂(ϕ[Y ]), f〉 = 〈ϕ[Y ], i∂∂f〉 =

∫
X

ϕ[Y ] ∧ i∂∂f =

∫
Y

ϕ i∂∂f, ∀f ∈ Dp,p(Y ∩ U).

Now, if we take a regularization ϕν = ϕ ∗ ρ1/ν by convolution, then ϕν is monotonically converging to
ϕ and we infer that ϕν|Y ∩U converges to ϕ|Y ∩U in L1

loc(Y ). Therefore
∫
Y
ϕν i∂∂f →

∫
Y
ϕ i∂∂f and

we conclude that i∂∂(ϕν [Y ]) converges weakly to i∂∂(ϕ[Y ]). In other words, [Y ] ∧ i∂∂ϕν (which is a
“standard” wedge product by a smooth form), converges weakly to [Y ] ∧ i∂∂ϕ (which is possibly “non
standard”, as i∂∂ϕ may have measure coefficients).
(b) Let σ be a holomorphic section of some holomorphic line bundle L→ X, equipped with a smooth Her-

mitian metric h. One says that σ is transverse to Y if at every point a ∈ Y ∩σ−1(0) one has dσ(a) 6= 0
when the differentiation is made in a trivialization of L near a. Show that the above transversality
condition is independent of the choice of the trivialization of L, and assuming transversality, that
the product [Y ]∧ [D] of [Y ] by the current of integration over the divisor D = div(σ) is well defined.
Prove moreover via the Lelong-Poincaré equation that [Y ] ∧ [D] and [Y ] ∧ 1

2πΘL,h induce the same
cohomology classes in De Rham (or Bott-Chern) cohomology.
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If we change the trivialization, we get a new expression σ̃ = gσ where g 6= 0 is the transition automor-
phism. Then dσ̃ = (dg)σ + g(dσ) = g dσ) along σ−1(0), thus dσ̃(a) 6= 0 is equivalent to dσ(a) 6= 0 at
any point a ∈ Y ∩ σ−1(0). The Lelong-Poincaré equation gives [D] = i

2π∂∂ log |σ|2 (locally) in any local
trivialization of L|U . By (a), we can define

[Y ] ∩ [D] = [Y ] ∧ i

2π
∂∂ log |σ|2 =

i

2π
∂∂(log |σ|2[Y ]) : f 7→

∫
Y

log |σ|2 i

2π
∂∂f,

and by the Lelong-Poincaré equation applied again on Y to σ|Y , we find∫
Y

log |σ|2 i

2π
∂∂f =

∫
Y

i

2π
∂∂ log |σ|Y |2 ∧ f = 〈[Y ∩D], f〉

because the zero divisor of σ|Y is Y ∩D. We see that [Y ]∧ [D] = [Y ∩D]. This holds on any trivializing
open set U of L, hence this is in fact an equality of currents on the wole of X. Now, if we use a hermitian
metric h on L, the generalized Lelong-Poincaré equation gives

[D] =
i

2π
∂∂ log |σ|2h +

i

2π
ΘL,h.

Here ϕ = log |σ|2h is not plurisubharmonic, but it differs from the plurisubharmonic function log |σ|2 by
the addition of a smooth function, and we can still apply (a). This gives

[Y ∩D] = [Y ] ∧ [D] = [Y ] ∧
( i

2π
∂∂ log |σ|2h +

i

2π
ΘL,h

)
=

i

2π
∂∂(log |σ|2h[Y ]) + [Y ] ∧ i

2π
ΘL,h.

Since i
2π∂∂(log |σ|2h[Y ]) is a coboundary, we conclude that the cohomology class of [Y ∩ D] is equal to

the cohomology class of [Y ] ∧ i
2πΘL,h, in the De Rham (or Bott-Chern) cohomology groups computed

via complexes of currents.
(c) Let σj , 1 ≤ j ≤ p, be holomorphic sections of Hermitian line bundles (Lj , hj) over X. One assumes

that the divisors Dj = div(σj) are non singular and intersect transversally, in the sense that the
differentials dσj1(a), . . . , dσjk(a) are linearly independent at any point a ∈ σ−1

j1
(0) ∩ . . . ∩ σ−1

jk
(0).

Prove inductively that the wedge product [D1]∧. . .∧[Dp] is well defined, coincides with [D1∩. . .∩Dp]
and belongs to the cohomology class of i

2πΘL1,h1
∧ . . . ∧ i

2πΘLp,hp .
We proceed by induction on p. For p = 1, the result is a direct consequence of the Lelong-Poincaré
formula. Assuming the result proved for p− 1, we consider

Y = D1 ∩ . . . ∩Dp−1

which is a non singular subvariety of X by the transversality assumption and the implicit function
theorem. By the induction hypothesis, we infer that

[D1 ∩ . . . ∩Dp] = [Y ∩Dp] = [Y ] ∧ [Dp] = ([D1] ∧ . . . ∧ [Dp−1]) ∧ [Dp]

and that the cohomology class coincides with

[Y ] ∧ i

2π
ΘLp,hp = [D1 ∩ . . . ∩Dp−1] ∧ i

2π
ΘLp,hp =

( i

2π
ΘL1,h1

∧ . . . ∧ i

2π
ΘLp−1,hp−1

)
∧ i

2π
ΘLp,hp .

(d) (Bézout formula) If Dj , 1 ≤ j ≤ n, are non singular algebraic hypersurfaces {Pj(z) = 0} of degree
degPj = δj intersecting transversally in complex projective space Pn, compute the number of inter-
section points in D1 ∩ . . . ∩Dn.
Hint. Apply the results of exercise 4 (d,e) in exercise sheet 9 (or reprove them using (c)).

We apply (c) to Lj = OPn(δj) with its standard Fubini-Study metric. Since ΘLj ,hj = δjωFS, we see that
the cohomology class of [D1 ∩ . . . ∩ Dp] equals that of δ1 . . . δp ωpFS. If we take the D1, . . . , Dn to be n
coordinate hyperplanes z1 = 0, . . . , zn = 0, thenD1∩. . .∩Dn consists of the single point a = [1 : 0 : . . . : 0].
In that case δj = 1 and we get that

∫
Pn δa = 1 =

∫
Pn ω

n
FS. In general, we find∫

Pn
[D1 ∩ . . . ∩Dp] ∧ ωn−pFS = δ1 . . . δp

∫
Pn
ωnFS = δ1 . . . δp,
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i.e. the “Fubini-Study area” of D1∩ . . .∩Dp is equal to δ1 . . . δp (up to a factor (n−p)!). In the particular
case of the transverse intersection D1 ∩ . . . ∩Dn of n non singular hypersurfaces, we conclude that the
number of intersection points is equal to the product δ1 . . . δn of the degrees.
Remark: these conclusions are also true in the singular or non transverse case if one simply assumes
codimD1 ∩ . . . ∩ Dp = p (“complete intersection case”), but it is then necessary to introduce ad hoc
multiplicities along the various irreducible components of D1 ∩ . . .∩Dp to take into account singularities
and tangencies of intersection. This actually leads to defining an appropriate “intersection cycle”.

5. The goal of this exercise is to investigate the Künneth formula for products X × Y of compact
Kähler manifolds. Results of pure topology imply that for any field K, e.g. K = R or R = C, one has
Hk(X × Y,K) =

⊕
i+j=kH

i(X,K)⊗Hj(Y,K) for sheaf cohomology with values in the locally constant
sheaf K. In the differential case, Hk(X,K) is known to be isomorphic to De Rham cohomology.
(a) Let (X, gX) and (Y, gY ) be Riemannian manifolds and (X × Y, gX ⊕ gY ) their product. The exterior

derivative obviously splits as d = dx + dy, and one can observe that dx anticommutes with dy and d∗y.
Infer that the Laplace-Beltrami operator ∆ of X×Y is given by ∆ = ∆x+ ∆y where ∆x, say, means
the Laplace-Beltrami operator applied in x to differential forms u(x, y) on X × Y .

A differential form of degree k on X × Y can be expanded as

u(x, y) =
∑
i+j=k

∑
|I|=i, |J|=j

uIJ(x, y) dxI ∧ dyJ

with respect to any systems of coordinates (x1, . . . , xn) on X and (y1, . . . , ym) on Y . Clearly, the exterior
differential d can be split as dx + dy by grouping together the derivatives in the xi’s (resp. yj ’s), i.e.

dxu =
∑
i

(
dxi ∧

∂

∂xi

)
u, dyu =

∑
j

(
dyj ∧

∂

∂yj

)
u.

The rekation d2 = (dx + dy)2 = 0 implies d2
x = 0, d2

y = 0 and dxdy + dydx = 0 by looking at
“bidegrees”. Also, the volume element takes the form γX(x)γY (y) where γX(x) = (det gX,ij(x))1/2,
γY (y) = (det gY,ij(y))1/2, and one easily computes that

d∗xu =
(∑

i

dxi ∧
∂

∂xj

)∗
u = −γ−1

X

∑
i

∂

∂xj
◦ i(dxj)∗(γXu),

where (dxj)
∗ is the dual vector field to dxj with respect to gX , and i• is the interior product. A

similar formula holds for d∗y. Since these operations do not involve the variable y, it is easy to see that d∗x
commutes with ∂/∂yj , and since iξ(α∧β) = iξα∧β+(−1)degαα∧ iξβ, one sees that i(dxj)∗ anticommutes
with dyj ∧ • (because i(dxj)∗dyj = 0). As a result, d∗x also anticommutes with dy, i.e. d∗xdy + dyd

∗
x = 0,

and likewise dxd∗y + d∗ydx = 0. From this we infer that the Laplace-Beltrami operator of X × Y is

∆ = dd∗ + d∗d = (dx + dy)(d∗x + d∗y) + (d∗x + d∗y)(dx + dy) = (dxd
∗
x + d∗xdx) + (dyd

∗
y + d∗ydy) = ∆x + ∆y.

(b) For (X,ωX) and (Y, ωY ) compact Kähler, show that

Hp,q(X × Y,C) '
⊕

(k,`)+(r,s)=(p,q)

Hk,`(X,C)⊗Hr,s(Y,C).

Hint. Use (a) and Hodge theory to find an injection of
⊕

(k,`)+(r,s)=(p,q)H
k,`(X,C)⊗Hr,s(Y,C) into

Hp,q(X × Y,C), and conclude by Hodge decomposition and comparison of dimensions.
Let u(x), v(y) be differential forms on X and Y . We consider the “tensor product” u⊗v on X×Y which,
as a form written in coordinates, is just u(x) ∧ v(y). Then

∆(u(x) ∧ v(y)) = (∆x + ∆y)(u(x) ∧ v(y)) = ∆xu(x) ∧ v(y) + u(x) ∧∆yv(y),
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since ∆x (resp ∆y) only involves differentiations in x (resp. y). Then we see that u(x)∧ v(y) is harmonic
on X × Y as soon as u is harmonic on X and v is harmonic on Y . By looking at harmonic forms of pure
bidegrees, we get a morphism

ΦH,p,q :
⊕

(k,`)+(r,s)=(p,q)

Hk,`(X,C)⊗Hr,s(Y,C)→ Hp,q(X × Y,C),

⊕
(k,`)+(r,s)=(p,q)

uk,` ⊗ vr,s 7→
(

(x, y) 7→
∑

(k,`)+(r,s)=(p,q)

uk,`(x) ∧ vr,s(y)

)
.

We claim that ΦH,p,q is injective – a statement that could appear as “intuitively obvious”. This can
be checked by an abstract linear algebra argument that has nothing to do with the theory of harmonic
forms, and is applicable in general to tensor products of functional spaces. In fact, given vector bundles
E → X and F → Y , we are going to check that

ΦF : F(X,E)⊗ F(Y, F )→ F(X × Y,E � F )

is always injective, where F(•) denotes the space of all set theoretic maps and E � F → X × Y is the
bundle such that (E � F )(x,y) = Ex ⊗ Fy. Here we need the case where

E =
⊕
i

ΛiRT
∗
X ⊗R C, F =

⊕
j

ΛjRT
∗
Y ⊗R C, E � F '

⊕
k

ΛkRT
∗
X×Y ⊗R C

are the exterior algebra bundles of X,Y,X × Y . Notice that in general ΦF will not be surjective, as a
consequence of the fact that a tensor product only involves finite combinations of elementary tensors,
while X and Y can be infinite. We have to show that a non zero element w =

∑
1≤s≤N us⊗vs is mapped

to a non zero element (x, y) 7→
∑

1≤s≤N us(x)⊗ vs(y) in the image. Observe that w ∈ Fu ⊗ Fv where

Fu = Span(u1, . . . , uN ) ⊂ F(X,E), Fv = Span(v1, . . . , vN ) ⊂ F(Y, F ).

We can find finite subsets A ⊂ X, B ⊂ Y such that the restrictions (us|A)1≤s≤N , (vs|B)1≤s≤N still have
ranks ru = dimFu, rv = dimFv ; in other words, if ρA : F(X,E)→ F(A,E) and ρB : F(Y, F )→ F(B,F )
are the restriction morphisms, then ρA|Fu : Fu → F(A,E) and ρB|Fv : Fv → F(B,F ) are injective.
In fact (for A, say), if Ker ρA|Fu 6= 0, we can pick a non zero element g ∈ Ker ρA|Fu ⊂ Fu and add
to A a point a′ at which g(a′) 6= 0 to eliminate g from the kernel; after doing this, the dimension
of the kernel has decreased at least by 1, and we can repeat the process until the kernel has become
equal to 0. In this circumstance, ρA|Fu ⊗ ρB|Fv : Fu ⊗ Fv → F(A,E) ⊗ F(B,F ) is injective, thus
w|A×B = (ρA|Fu ⊗ ρB|Fv )(w) 6= 0. Next, we have an isomorphism

ΦF|A×B : F(A,E)⊗ F(B,F )→ F(A×B,E � F ),

since both sides are isomorphic to
⊕

x∈A,y∈B Ex⊗Fy, with ΦF|A×B being then the identity map. We infer
that ΦF(w)|A×B 6= 0. Therefore ΦF(w) 6= 0, and we conclude that ΦF and ΦH,p,q are injective, as desired.
However, if we now take the sum of the injections ΦH,p,q for all pairs (p, q) with p+ q = given degree k,
we get an equality of dimensions on both sides, by the topological Künneth formula. We conclude that
the injections ΦH,p,q must be isomorphisms, thus each

Φ∂,p,q :
⊕

(k,`)+(r,s)=(p,q)

Hk,`(X,C)⊗Hr,s(Y,C)
'−→Hp,q(X × Y,C)

is an isomorphism.
Remark: the isomorphism Φ∂,p,q can be seen to be independent of the choice of Kähler metrics, since it
is defined by taking wedge products of ∂-closed forms on X and Y , without further requirements.
(c) Show that there are infinitely many non diffeomorphic connected compact Kähler manifolds in any

dimension n.
Let Cg be a curve of genus g, so that dimH1(Cg,C) = 2g. If we take Xg = Cg × (P1)n−1, then
H1(P1,C) = 0 gives

H1(Xg,C) ' H1(Cg,C) ' C2g.

This implies that the n-dimensional manifolds Xg are pairwise non diffeomorphic. Since H1(•,C) is
topological, they are even non homeomorphic.

7


