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Introduction to analytic geometry (course by Jean-Pierre Demailly)
Partial examination, 07/11/2019, 13:00 – 17:00

Any use of electronic devices is forbidden
Handwritten documents and lecture notes are allowed, printed documents are not (except exercise sheets)
Answers to questions can be developed in French or English
Justifications of more or less trivial questions need not be very long !
The four problems are independent.

1. (a) Let Ω ⊂ Cn be an open set, let E = {wk}k∈N ⊂ Ω be an infinite discrete (i.e. locally finite)
subset of Ω. By looking at the sets EN = {wk}k≥N and the associated ideals, show that the “global”
ring R = O(Ω) is never Noetherian.
Let IN be the ideal of functions f ∈ O(Ω) such that f vanishes at every point of EN . In dimension 1, a well
known theorem of Weierstrass states that there exists a holomorphic function vanishing with prescribed
multiplicities (say 1) at all points of EN and nowhere else, hence the sequence of ideals IN is strictly
increasing and Noetherianity is contradicted. In dimension n, we can reduce ourselves to dimension 1 by
considering the first projection Ω1 = p1(Ω) with p1 : Cn → C, and exploiting the idea of the proof of the
Weierstrass theorem. If Ω1 = C, we can take inductively a sequence wk ∈ Ω with wk,1 = p1(wk) → ∞,
for instance with |w0,1| ≥ 1 and |wk,1| ≥ 2|wk−1,1|, so that |wk,1| ≥ 2k. Then the infinite product

fN (z) = fN (z1) =
∏
k≥N

(
1− z1

wk,1

)
is uniformly convergent on every compact subset, and we have fN ∈ IN and fN /∈ IN−1 for N ≥ 1. If
Ω1 6= C, we can pick a boundary point a ∈ ∂Ω1 and a sequence of points Ω1 3 wk,1 = p1(wk) → a with
wk ∈ Ω, e.g. satisfying |w0,1 − a| ≤ 1 and |wk,1 − a| ≤ 1

2 |wk−1,1 − a|, so that |wk,1 − a| ≤ 2−k. Then the
infinite product

fN (z) = fN (z1) =
∏
k≥N

z1 − wk,1
z1 − a

=
∏
k≥N

(
1− wk,1 − a

z1 − a

)
converges on compact subsets of Ω (as z1 − a 6= 0 there), and so defines a function fN ∈ IN r IN−1.
(b) Let S be a complex analytic submanifold of Ω. If S is compact, prove that S is in fact of dimension 0
and consists of a finite set of points.
Hint. Apply the maximum principle to the coordinate functions.
Indeed, S can have only finitely many connected components Sj . As Sj is also compact, any coordinate
function z` reaches the maximum of its absolute value at some point of Sj and must therefore be constant.
This implies that Sj is a singleton.
(c) Show by an example that result (b) does not hold if one replaces “complex analytic submanifold” by
real analytic (or even real algebraic) submanifold.
In fact, any sphere

∑
(xj − aj)2 = ε2 defines a (n− 1)-dimensional compact real algebraic manifold, and

is contained in Ω if a ∈ Ω and ε > 0 is small.

2. Let A be a germ of analytic set of pure dimension k in a neighborhood of 0 in Cn. One assumes
that coordinates z = (z′, z′′), z′ = (z1, . . . , zk), z′′ = (zk+1, . . . , zn) have been chosen, and well as a
small polydisk D = D′ ×D′′ in Ck × Cn−k, such that the projection p : A ∩D → D′, z 7→ z′ defines a
ramified covering, with ramification locus Σ ⊂ D′. One denotes by d the degree of the covering, and by
z′′ = wj(z

′), 1 ≤ j ≤ d, the branches of A in a neighborhood of every point z′0 ∈ D′ r Σ.
(a) If f ∈ O(D) is a holomorphic function, show that

Qf (z′) =
∏

(z′,z′′)∈A

f(z′, z′′) =

d∏
j=1

f(z′, wj(z
′))

is holomorphic on D′ r Σ and actually extends holomorphically to D′.
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The holomorphicity comes from the holomorphicity of the wj ’s, and by a theorem explained in the course,
the extension property comes from the fact that Qf is locally bounded when z′ approaches a point a′ ∈ Σ.
(b) Let B ⊂ A be an analytic subset defined as B = {z ∈ A/g1(z) = . . . = gN (z) = 0} with gj ∈ O(D).
The goal is to show that p(B) is an analytic subset of D′. For t = (t1, . . . , tN ) ∈ CN , define

h(z′, t) = Qt1g1+···+tNgN (z′).

Show that h defines a holomorphic function on D′ × CN that is a homogeneous degree d polynomial in
t = (t1, . . . , tN ). If h(z′, t) =

∑
hα(z′)tα, show that p(B) is the common zero set of the functions hα.

Hint. For any finite set of non zero points in CN , one can find a linear form that does not vanish on any
of them ...
Clearly, (z′, t) 7→ h(z′, t) is holomorphic for (z′, t) ∈ (D′ r Σ)× Cn, and is a homogeneous polynomial of
degree d in t there, i.e.

h(z′, t) =
∑

hα(z′)tα, hα ∈ O(D′ r Σ).

As h is locally bounded near every point of Σ×CN , it must extend to D′×CN and is still a homogeneous
polynomial there, by applying a continuity argument for the coefficients hα (we know that D′ r Σ is
dense in D′). The hint is obtained e.g. by saying that the union of finitely many hyperplanes cannot be
the whole space in a complex vector space (e.g. by Baire – this is not true for vector spaces over a finite
field!). Now, if z′ /∈ p(B), the preimages are (z′, wj(z

′)), 1 ≤ j ≤ d (where some of the roots may coincide
if z′ ∈ Σ), and for every j = 1, . . . , d, the N -tuple (gk(z′, wj(z

′))1≤k≤N is not zero. We can therefore find
a linear form CN 3 (ξk) 7→

∑
tkξk such that

∑
tkgk(z′, wj(z

′)) 6= 0 for all j, so that h(z′, t) 6= 0. This
implies that some coefficient hα(z′) is non zero. On the other hand, if z′ ∈ p(B), there exists j such that
(z′, wj(z

′)) ∈ B, and so
∑

1≤k≤N tkgk(z′, wj(z
′)) = 0 ; this implies that t 7→ h(z′, t) vanishes identically,

thus hα(z′) = 0 for all α. We conclude that p(B) is equal to the common zero set of the hα’s, hence that
p(B) is analytic in D′.
(c) Let H be the hyperbola z1z2 = 1 in C2 and p : C2 → C be the first projection p : (z1, z2) 7→ z1.
Is p(H) analytic in C ? What happens ?
In that case p(H) = C∗ is not analytic in C as it is not even closed (it turns out to be the complement
of an analytic set!). There is no contradiction, since p : H → C is not a ramified covering.
(d) Let B ⊂ Cn be a compact complex analytic set. The goal is to show that B is finite and of
dimension 0 (thus generalizing the result of 1 b). One argues by induction on n, letting p : Cn → Cn−1
be the projection to the first n− 1 coordinates.
– case n = 1.
– for n ≥ 2, show that the fibers of p|B must be finite.
– then show that p(B) is analytic in Cn−1 and conclude.
Hint. For any point a′ ∈ p(B) with p−1(a′) ∩B = {(a′, a′′j ) ∈ Cn−1 × C / 1 ≤ j ≤ m}, construct a neigh-
borhood V ′ of a′ and polynomials Pj,k(z′, zn) ∈ O(V ′)[zn] so that BV ′ := B ∩ p−1(V ′) is the union of

BV ′,j := B ∩ (V ′ ×D(a′′j , ε)) = {(z′, zn) ∈ V ′ ×D(a′′j , ε) / Pj,k(z′, zn) = 0, 1 ≤ k ≤ Nj}, 1 ≤ j ≤ m

and apply (b) with e.g. BV ′ ⊂ A := {
∏
j Pj,0(z′, zn) = 0} to infer that p(B) ∩ V ′ is analytic.

– In dimension 1, an infinite compact set must have an accumulation point, but zeroes of holomorphic
functions cannot have accumulation points. This implies that B must be finite.
– Assume now that n ≥ 2. The fibers of p|B can be seen as an intersection of analytic sets B ∩ ({z′}×C)
in dimension 1. Their compactness implies that they are finite (possibly empty).
– Let a′ ∈ p(B). Then we now that there are only finitely many points (a′, a′′j ), 1 ≤ j ≤ m in the fiber.
Let ε > 0 be so small that the disks D(a′′j , ε) are disjoint. There exists r > 0 so that

B ∩ p−1(B(a′, r)) ⊂
⋃
j

B(a′, r)×D(a′′j , ε),

otherwise k 7→ B ∩ p−1(B(a′, 2−k)) ∩ (Cn−1 r
⋃
j D(a′′j , ε)) would be a decreasing sequence of non

empty closed sets with empty intersection. Since we can take ε and r arbitrarily small, we can as-
sume that B ∩ (B(a′, r)×D(a′′j , ε)) is defined by a finite collection of holomorphic equations gj,k(z) = 0
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in B(a′, r)×D(a′′j , ε), 1 ≤ k ≤ Nj , and since the fiber B ∩ p−1(a′) is finite, we can always arrange that
zn 7→ gj,k(a′, zn) is not identically zero (eventually by adding one of the functions to those which do not
have this property). By the Weierstrass preparation theorem, we can assume that gj,k is a polynomial
Pj,k(z′, zn) ∈ O(B(a′, r))[zn], possibly after shrinking r and ε, all zeroes of zn 7→ Pj,k(z′, zn) being con-
tained in D(a′′j , ε). We take V ′ = B(a′, r) and A := {

∏
j Pj,0(z′, zn) = 0} in V ′ ×D(0, R) (R very large).

Then BV ′ is defined in A by the finite set of equations P1k1P2k2 . . . Pmkm = 0 where 1 ≤ kj ≤ Nj , and we
can apply (b) to conclude that p(B) ∩ V ′ = p(BV ′) is analytic in V ′. This implies that p(B) is analytic
in Cn−1, and by induction that p(B) is finite. As the fibers are finite, we conclude that B itself is finite.

3. Let α ∈ ]0, 1[. One defines the Hopf surface Xα to be the quotient (C2 r {(0, 0)})/Γ by the discrete
group Γ ' Z of homotheties hkα, k ∈ Z, with hα(z) = αz.
(a) Prove that Xα is C∞ (or even Cω)-diffeomorphic to the product of spheres S1 × S3 via the map

z 7→
(

exp(2πi log |z|/ logα) , z/|z|
)
∈ S1 × S3.

We have here hkα(z) = αkz. Clearly, the above map f is real analytic on C2r{(0, 0)} as a composition of
real analytic functions, and passes to the quotient on Xα. Indeed, if we replace z by αz, then log |z|/ logα
is replaced by 1+log |z|/ logα and exp(2πi log |z|/ logα) does not change; the quotient z/|z| is not changed
either. Now, one easily sees that f is bijective and has an inverse bijection g = f−1 given by

g(t, u) = exp(Arg(t)× logα)/2π)u ∈ (C2 r {(0, 0)})/Γ.

This is again well defined since a change of Arg(t) into Arg(t)+2kπ multiples the image by αk, so that we
still get the same point in (C2 r {(0, 0)})/Γ. The above formula shows that g is real analytic on S1×S3.
(b) Show that Xα can be equipped with the structure of a complex analytic surface, and give explicitly
an atlas consisting of 2 open sets in C2.
One can take for instance U0 = {z ∈ C2 / α < |z| < 1} and U1 = {z ∈ C2 / α3/2 < |z| < α1/2}
and Ω0, Ω1 their respective images in Xα. By definition of the quotient topology, these are open sets
homeomorphic to U0, U1, and the charts τj : Ωj → Uj are defined by assigning to every class ż ∈ Ωj its
unique representative z ∈ Uj . It is more or less obvious that Ω0 ∩ Ω1 consists of all points ż such that
|z| /∈ {αk, αk+1/2, k ∈ Z}, with transition maps

τ01 : τ1(Ω0 ∩ Ω1)→ τ0(Ω0 ∩ Ω1),

{
z 7→ α−1z on α3/2 < |z| < α
z 7→ z on α < |z| < α1/2

τ10 : τ0(Ω0 ∩ Ω1)→ τ1(Ω0 ∩ Ω1),

{
z 7→ z on α < |z| < α1/2

z 7→ αz on α1/2 < |z| < 1.

This is a holomorphic atlas in complex dimension 2.
(c) Check that

ω(z) =
i

|z|2
∂∂ |z|2

defines a hermitian metric on Xα that is not a Kähler metric, but show however that ∂∂ ω = 0.
Since h∗α|z|2 = α2|z|2 and h∗α ∂∂ |z|2 = α2 ∂∂ |z|2, we see that h∗αω = ω. Therefore ω passes to the
quotient and defines a (1, 1)-form on Xα. As i ∂∂ |z|2 = i(dz1 ∧ dz1 + dz2 ∧ dz2) is positive definite on
C2 r {(0, 0)}, we conclude that ω is a positive definite hermitian metric on Xα. A calculation gives

∂ ω =
−i

|z|4
∂ |z|2 ∧ ∂∂ |z|2 =

−i

|z|4
(z1dz1 + z2dz2) ∧ (dz1 ∧ dz1 + dz2 ∧ dz2)

=
−i

|z|4
(
z1dz1 ∧ dz2 ∧ dz2 + z2dz2 ∧ dz1 ∧ dz1

)
6= 0, thus ω is not Kähler,

∂∂ ω = − i

|z|4
∂
(
z1dz1 ∧ dz2 ∧ dz2 + z2dz2 ∧ dz1 ∧ dz1

)
+

2i

|z|6
∂|z|2 ∧

(
z1dz1 ∧ dz2 ∧ dz2 + z2dz2 ∧ dz1 ∧ dz1

)
= − i

|z|4
· 2dz1 ∧ dz1 ∧ dz2 ∧ dz2 +

2i

|z|6
(z1dz1 + z2dz2) ∧

(
z1dz1 ∧ dz2 ∧ dz2 + z2dz2 ∧ dz1 ∧ dz1

)
= − i

|z|4
· 2dz1 ∧ dz1 ∧ dz2 ∧ dz2 +

2i

|z|6
(|z1|2 + |z2|2) dz1 ∧ dz1 ∧ dz2 ∧ dz2 = 0.
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(d) If P (z), Q(z) are homogeneous polynomials of degree d on C2 without common zeroes, show that
Φ(z) = (P (z), Q(z)) defines a holomorphic morphism ϕ : Xα → Xβ for certain values of β (which
ones ?).
If Φ : C2 r {(0, 0)} → C2 r {(0, 0)} descends to a map ϕ : Xα → Xβ , we must have by definition
Φ(αz) = βk(z)Φ(z) for some k(z) ∈ Z. In fact, the connectedness of C2 r {(0, 0)} and the continuity
of k(z) = (log β)−1 log |Φ(αz)|/ log |Φ(z)| imply that k(z) is a constant k ∈ Z. Now, if Φ = (P,Q) with
P,Q homogeneous of degree d, we have Φ(αz) = αdΦ(z) for every z ∈ C2 r {(0, 0)}, i.e. αd = βk. If
d = 0, Φ is a constant, we have k = 0 and there is no constraint on β. If d > 0, then αd < 1 and
thus k > 0 as well. Therefore β must be of the form αd/k, i.e. log β/ logα = d/k ∈ Q∗+. Conversely, if
log β/ logα = d/k ∈ Q∗+, such polynomial maps exist, e.g. Φ(z1, z2) = (zd1 , z

d
2).

(e) Observing that the universal cover ofXα is C2r{0}, conclude that any non constant holomorphic mor-
phism ϕ : Xα → Xβ lifts to a holomorphic map Φ : C2 → C2 such that Φ(αz) = βpΦ(z) for some p ∈ N∗.
Infer that a necessary and sufficient condition for the existence of such morphisms is log β/ logα ∈ Q∗+,
and that Φ must be homogeneous of some degree.
As C2 r {0} is simply connected, the composition

C2 r {0} −→ Xα
ϕ−→Xβ = (C2 r {0})/Γ

lifts to a holomorphic map Φ : C2 r {0} → C2 r {0}. The Riemann-Hartogs extension theorem implies
that Φ extends to a holomorphic map Φ : C2 → C2. Also, the discussion made in (d) implies that
Φ(αz) = βkΦ(z) for some k ∈ Z. Let Φ(z) =

∑
p∈N2 apz

p (ap ∈ C2) be the Taylor expansion of Φ. An
identification of coefficients in the relation Φ(αz) = βkΦ(z) leads to the conclusion that we can only have
monomials of degree d = |p| = p1 + p2 such that αd = βk, i.e. d = k log β/ logα and Φ must be of the
form Φ = (P,Q) with homogeneous polynomials of degree d. Since ϕ is assumed to be non constant, this
is possible only with d, k > 0 and log β/ logα = d/k ∈ Q∗+.
(f) Give an example of a pair of non homeomorphic compact complex surfaces, resp. of a pair of homeo-
morphic (and even diffeomorphic) but non biholomorphic ones.
Examples on non homeomorphic compact complex surfaces are for instance X1/2 and Y = P1 × P1 (Y is
simply connected and X1/2 is not). Now, we have seen that X1/2 and X1/3 are both Cω-diffeomorphic to
S1 × S3, but non biholomorphic since log 3/ log 2 /∈ Q∗+ (there are no relations of the form 3k = 2d with
d, k > 0).

4. Except for (g) below, let X = Rn/Zn be the n-dimensional torus, considered as a C∞ manifold.
(a) Show that C∞ differential forms of degree p on X can be interpreted as forms u(x) =

∑
|I|=p uI(x)dxI

on Rn (the summation is over length p increasing multi-indices), where each function uI satisfies a certain
periodicity condition.
Pulling back any form u on X by the quotient maps Rn → X = Rn/Zn leads to interpreting u as a
differential form on Rn with coefficients uI that are Zn-periodic functions.
(b) Infer from (a) that forms with constant coefficients give rise to a natural ring morphism
ϕ : Λp(Rn)∗ → Hp

DR(X,R).
If we take the coefficients uI to be constant, then one trivially gets du = 0, and thus we get a morphism

ϕ : Λp(Rn)∗ → Hp
DR(X,R), u 7→ {u}

where {u} is seen as the cohomology class of the corresponding constant-coefficient form on Rn/Zn.
By definition, this is trivially a ring morphism.
(c) For p+ q = n, one defines a bilinear map

Hp
DR(X,R)×Hq

DR(X,R) −→ R, ({u}, {v}) 7→
∫
X

u ∧ v

where X is given the usual orientation of Rn, and {u} denotes the cohomology class of a d-closed form u.
Show that the above bilinear form is well defined.

4



We have to show that
∫
X
u ∧ v does not change when the representatives u, v of our classes {u}, {v} are

changed. By definition of cohomology classes, we have to take du = 0, dv = 0. Now if u is changed to
u+ dw, then ∫

X

(u+ dw) ∧ v −
∫
X

u ∧ v =

∫
X

dw ∧ v =

∫
X

d(w ∧ v) = 0

by Stokes’formula. Similarly,
∫
X
u ∧ v is left unchanged if v is replaced by v + dw. The R-bilinearity of

the map is trivial.
(d) Derive from (c) that the cohomology class of a constant-coefficient form u =

∑
uIdxI is equal to 0 if

and only if u = 0, in other words that ϕ is injective.
Hint. Use v = dx{I where {I means the complement of I in {1, 2, . . . , n}.
If u = dw, then ∫

X

u ∧ dx{I =

∫
X

dw ∧ dx{I =

∫
X

d(w ∧ dx{I) = 0

by Stokes, and on the other hand∫
X

u ∧ dx{I =

∫
X

uI dxI ∧ dx{I = ±
∫
X

uI dx1 ∧ . . . ∧ dxn = ±uI ,

thus uI = 0 for every I. This means that ϕ is injective.
(e) Given a ∈ Rn, one defines operators La, Ga and M acting on smooth p-forms u by La(u) = v (resp.
Gau = w, Mu = ũ ) where

vI(x) = DauI(x), wI(x) =

∫ 1

0

uI(x+ ta) dt, ũI(x) =

∫
a∈[0,1]n

uI(x+ a) dλ(a),

where dλ is the Lebesgue measure on Rn and Da the derivative in direction a. Show that La, Ga
and M commute with the exterior derivative d, and that Mu = ũ always has constant coefficients (i.e.
independent of x). Compute explicitly Ga ◦ La and d ◦M .
The commutation of La, Ga andM with d comes from the commutation ofDa with partial differentiations
∂/∂xk (Schwarz’ theorem for smooth functions), resp. from differentiation with respect to parameters xk
under the integral sign, for the integral expressions of wI(x) and ũI(x). The periodicity of uI tells us that
ũI is just the average value of uI when seen as a function on Rn/Zn, hence it is a constant. Therefore
d ◦M(u) = dũ = 0 and we already conclude from this that d ◦M = 0. By definition

La(u) =
∑
I

DauI(x) dxI , Ga(u) =
∑
I

(∫ 1

0

uI(x+ ta) dt

)
dxI ,

thus

Ga ◦ La(u)(x) =
∑
I

(∫ 1

0

DauI(x+ ta) dt

)
dxI =

∑
I

(uI(x+ a)− uI(x)) dxI = u(x+ a)− u(x).

(f) The “interior product” iau of p-form u by a is defined to be the alternate (p − 1)-form such that
iau(x)(ξ2, . . . , ξp) = u(x)(a, ξ2, . . . , ξp). The well known “Lie derivative formula” (that can be admitted
here) states that d(iau) + ia(du) = Lau. Infer from this that for the torus, the operator

ha : C∞(X,ΛpT ∗X)→ C∞(X,Λp−1T ∗X)

defined by ha = Ga ◦ ia satisfies the so called “homotopy formula” d(ha(u)) + ha(du) = va with
va(x) = u(x+ a)− u(x), and that for every closed form u, va is cohomologous to zero. Finally, conclude
from all the above results that ũ− u is cohomologous to zero and that ϕ is an isomorphism.
By the commutation of Ga with d and the Lie derivative formula, we find

d(ha(u))+ha(du) = d(Ga◦ia(u))+Ga◦ia(du) = Ga◦(d(ia(u))+ia(du)) = Ga◦Lau =
(
x 7→ u(x+a)−u(x)

)
.
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When du = 0, this implies that
u(x+ a)− u(x) = dha(u)(x),

i.e. x 7→ u(x+ a)− u(x) is cohomologous to 0. It we integrate over a ∈ Rn/Zn, this gives

ũ(x)− u(x) =

∫
a∈Rn/Zn

dha(u)(x) dλ(a) = d

∫
a∈Rn/Zn

ha(u)(x) dλ(a)

(again, by commutation of ∂/∂xk and
∫

with parameters xk), that is

ũ− u = dK(u) where K(u)(x) =

∫
a∈Rn/Zn

ha(u)(x) dλ(a) =

∫
a∈Rn/Zn

(∫ 1

0

iau(x+ ta) dt

)
dλ(a).

This means that every d-closed form u is cohomologous to its average ũ. We infer from this that ϕ is
surjective, hence an isomorphism.
(g) if X = Cn/Λ is a compact complex torus (where Λ is a lattice in Cn ' R2n), use a similar technique
to show that there is an injective morphism given by constant-coefficient forms

ψ : Λp,q(C∗)n → Hp,q

∂
(X,C).

Let us compute
∫
X
u∧v with u =

∑
|I|=p,|J|=q uI,JdzI ∧dzJ and v = dz{I ∧dz{J . If u = ∂ w for a certain

(p, q − 1)-form w, then∫
X

u ∧ dz{I ∧ dz{J =

∫
X

∂ w ∧ dz{I ∧ dz{J =

∫
X

dw ∧ dz{I ∧ dz{J =

∫
X

d(w ∧ dz{I ∧ dz{J) = 0.

Here, we have used the fact that ∂w ∧ dz{I ∧ dz{J = 0, since the bidegree of this wedge product is
(p+ 1, q − 1) + (n− p, n− q) = (n+ 1, n− 1). On the other hand, if u has constant coefficients, then∫

X

u ∧ dz{I ∧ dz{J = ±uI,J
∫
X

dz1 ∧ dz1 ∧ . . . ∧ dzn ∧ dzn = ±(2i)n uI,J ,

therefore uI,J = 0 and ψ is injective.
Note. One can show that ψ is actually an isomorphism, but this is a bit harder than for De Rham
cohomology (and the required technology has not yet been explained in the course!).
The result was probably (somehow) already known to Riemann, but the “modern technology” is to use
Hodge theory: on a compact Kähler manifold, Hp,q

∂
(X,C) is isomorphic to the space of harmonic (p, q)-

forms. On a torus, this means that ∆uI,J = 0, but by the maximum principle, harmonic functions are
constant on a compact manifold. Thus, for a torus, we get that Hp,q

∂
(X,C) is isomorphic to the space of

constant-coefficient forms. (This turns out to be also true for Bott-Chern cohomology groups).

6


