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Introduction to analytic geometry (course by Jean-Pierre Demailly)
Partial examination, 07/11/2019, 13:00 — 17:00

Any use of electronic devices is forbidden

Handwritten documents and lecture notes are allowed, printed documents are not (except exercise sheets)
Answers to questions can be developed in French or English

Justifications of more or less trivial questions need not be very long !

The four problems are independent.

1. (a) Let Q@ C C™ be an open set, let £ = {wy}reny C 2 be an infinite discrete (i.e. locally finite)
subset of 2. By looking at the sets Enx = {wy}r>n and the associated ideals, show that the “global”
ring R = O(Q) is never Noetherian.

Let Iy be the ideal of functions f € O(2) such that f vanishes at every point of F. In dimension 1, a well
known theorem of Weierstrass states that there exists a holomorphic function vanishing with prescribed
multiplicities (say 1) at all points of Exy and nowhere else, hence the sequence of ideals Iy is strictly
increasing and Noetherianity is contradicted. In dimension n, we can reduce ourselves to dimension 1 by
considering the first projection Q; = p1(Q2) with p; : C* — C, and exploiting the idea of the proof of the
Weierstrass theorem. If ©; = C, we can take inductively a sequence wy € Q with wg 1 = p1(wy) — o0,
for instance with |wg 1| > 1 and |wg 1| > 2|wk_1 1|, so that |wg 1| > 2*. Then the infinite product

InG) = fnz) =] (1- =)

w
KN k,1

is uniformly convergent on every compact subset, and we have fy € Iy and fy ¢ Iy—; for N > 1. If
)y # C, we can pick a boundary point a € 09, and a sequence of points 1 > wy 1 = p1(w) — a with
wy, € Q, e.g. satisfying |wp1 —a| <1 and (w1 —a| < %\wk_l,l — al, so that |wg,1 —al < 2=k Then the

infinite product
. o — Wkl _ _ Wga —a
fN(Z)_fN<21)— H zZ1 —a H (1 zZ1 —a )
k>N k>N

converges on compact subsets of ) (as z; — a # 0 there), and so defines a function fy € Iy ~ In_1.

(b) Let S be a complex analytic submanifold of . If S is compact, prove that S is in fact of dimension 0
and consists of a finite set of points.
Hint. Apply the maximum principle to the coordinate functions.

Indeed, S can have only finitely many connected components S;. As S; is also compact, any coordinate
function 2, reaches the maximum of its absolute value at some point of S; and must therefore be constant.
This implies that \S; is a singleton.

(c) Show by an example that result (b) does not hold if one replaces “complex analytic submanifold” by
real analytic (or even real algebraic) submanifold.

In fact, any sphere > (z; — a;)? = ¢ defines a (n — 1)-dimensional compact real algebraic manifold, and

is contained in Q if a €  and € > 0 is small.

2. Let A be a germ of analytic set of pure dimension k in a neighborhood of 0 in C". One assumes

that coordinates z = (2/,2"), 2/ = (z1,...,2%), 2” = (Zk+1,--.,2n) have been chosen, and well as a

small polydisk D = D’ x D" in C* x C* ¥, such that the projection p: AN D — D', z — 2’ defines a
ramified covering, with ramification locus ¥ C D’. One denotes by d the degree of the covering, and by
2" =w;(7"), 1 <j <d, the branches of A in a neighborhood of every point z; € D' \ X.

(a) If f € O(D) is a holomorphic function, show that
d
Q2 = H [, 2") = H 2 wj(z
(z",2"")€A j=1
is holomorphic on D’ \ ¥ and actually extends holomorphically to D’.
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The holomorphicity comes from the holomorphicity of the w;’s, and by a theorem explained in the course,
the extension property comes from the fact that Q¢ is locally bounded when 2’ approaches a point a’ € X.

(b) Let B C A be an analytic subset defined as B = {z € A/gi(2) = ... = gn(z) = 0} with g; € O(D).
The goal is to show that p(B) is an analytic subset of D’. For t = (t1,...,tx) € CV, define

h(zlv t) = Qtlgl+“'+tNgN (Z/>'

Show that h defines a holomorphic function on D’ x CV that is a homogeneous degree d polynomial in
t=(t1,...,tn). I h(2/,;t) = > ha(2)t*, show that p(B) is the common zero set of the functions h,,.
Hint. For any finite set of non zero points in CV, one can find a linear form that does not vanish on any
of them ...
Clearly, (2’,t) — h(Z’,t) is holomorphic for (2/,t) € (D’ \ ¥) x C", and is a homogeneous polynomial of
degree d in t there, i.e.

h(z' ) =Y ha(2 )%, ha € O(D'\X).

As h is locally bounded near every point of ¥ x CV, it must extend to D’ x CV and is still a homogeneous
polynomial there, by applying a continuity argument for the coefficients h, (we know that D' \ ¥ is
dense in D’). The hint is obtained e.g. by saying that the union of finitely many hyperplanes cannot be
the whole space in a complex vector space (e.g. by Baire — this is not true for vector spaces over a finite
field!). Now, if 2’ ¢ p(B), the preimages are (', w;(2’)), 1 < j < d (where some of the roots may coincide
if 2/ € ¥), and for every j =1,...,d, the N-tuple (gx(2’, w;(2’))1<k<n is not zero. We can therefore find
a linear form CV > (&) — Y tx& such that > trge(2’,w;(2")) # 0 for all j, so that h(z/,t) # 0. This
implies that some coefficient h,(2’) is non zero. On the other hand, if 2’ € p(B), there exists j such that
(2',w;(2")) € B, and 50 Y| cp<n thge(2,w;j(2")) = 0; this implies that ¢ — h(2’,t) vanishes identically,
thus e (2") = 0 for all . We conclude that p(B) is equal to the common zero set of the h,’s, hence that
p(B) is analytic in D'

(c) Let H be the hyperbola 22, = 1 in C? and p : C?> — C be the first projection p : (21,22) = 21.
Is p(H) analytic in C 7 What happens ?

In that case p(H) = C* is not analytic in C as it is not even closed (it turns out to be the complement
of an analytic set!). There is no contradiction, since p : H — C is not a ramified covering.

(d) Let B C C™ be a compact complex analytic set. The goal is to show that B is finite and of
dimension 0 (thus generalizing the result of 1 b). One argues by induction on n, letting p : C* — C"~1
be the projection to the first n — 1 coordinates.

—case n = 1.

— for n > 2, show that the fibers of pjp must be finite.

— then show that p(B) is analytic in C"~! and conclude.

Hint. For any point a’ € p(B) with p~'(a’) N B = {(d’,a}) € C"~! x C/1 < j < m}, construct a neigh-
borhood V' of @’ and polynomials P; (2, 2,) € O(V')[z,] so that By, := BN p~ (V') is the union of

By j:= BN (V' x D(a},e)) ={(z,2,) € V' x D(a},€) | Pjr(?,2,) =0, 1<k <N;}, 1<j<m

and apply (b) with e.g. Bys C A :={[[; Pjo(z’, 2,) = 0} to infer that p(B) NV’ is analytic.
— In dimension 1, an infinite compact set must have an accumulation point, but zeroes of holomorphic
functions cannot have accumulation points. This implies that B must be finite.

— Assume now that n > 2. The fibers of p|p can be seen as an intersection of analytic sets BN ({z'} x C)
in dimension 1. Their compactness implies that they are finite (possibly empty).

— Let o’ € p(B). Then we now that there are only finitely many points (a’,a}), 1 < j < m in the fiber.
Let € > 0 be so small that the disks ﬁ(a}’, e) are disjoint. There exists r > 0 so that

Bnp YB(d,r)) C UB(a/,r) x D(aj,e),

J
otherwise & — B N p~*(B(a’,27%)) N (C*! \ U; D(a},e)) would be a decreasing sequence of non

empty closed sets with empty intersection. Since we can take € and r arbitrarily small, we can as-
sume that B N (B(a',r) x D(a},¢)) is defined by a finite collection of holomorphic equations g; x(z) =0
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in B(a',r) x D(a},¢), 1 <k < Nj, and since the fiber B Np~1(a’) is finite, we can always arrange that
Zn + g5,1(a’, 2n) is not identically zero (eventually by adding one of the functions to those which do not
have this property). By the Weierstrass preparation theorem, we can assume that g;; is a polynomial
P; (¢, 2zn) € O(B(d',7))[2n], possibly after shrinking r and ¢, all zeroes of z, — P; (%, 2,) being con-
tained in D(a}, ). We take V' = B(a’,r) and A := {[[; Pjo(z',2,) = 0} in V' x D(0, R) (R very large).
Then By is defined in A by the finite set of equations P1k1P2k2 ... Pk, = 0where 1 < k; < Nj, and we
can apply (b) to conclude that p(B) NV’ = p(By-) is analytic in V’. This implies that p(B) is analytic
in C"~!, and by induction that p(B) is finite. As the fibers are finite, we conclude that B itself is finite.

3. Let a €]0,1[. One defines the Hopf surface X, to be the quotient (C%~ {(0,0)})/T by the discrete
group I' ~ Z of homotheties h, k € Z, with h,(z) = az.

(a) Prove that X, is C* (or even C%)-diffeomorphic to the product of spheres S x S3 via the map

Z (exp(27rilog\z|/loga) , z/|z!> € St x 83

We have here h% (z) = a¥z. Clearly, the above map f is real analytic on C2 \ {(0,0)} as a composition of
real analytic functions, and passes to the quotient on X,,. Indeed, if we replace z by az, then log |z|/log «
is replaced by 1+log |z|/ log « and exp(27ilog |z|/ log ) does not change; the quotient z/|z| is not changed
either. Now, one easily sees that f is bijective and has an inverse bijection ¢ = f~! given by

g(t,u) = exp(Arg(t) x loga)/2m) u € (C* ~ {(0,0)})/T.

This is again well defined since a change of Arg(t) into Arg(t)+2km multiples the image by o, so that we
still get the same point in (C? . {(0,0)})/T. The above formula shows that g is real analytic on S x S3.

(b) Show that X, can be equipped with the structure of a complex analytic surface, and give explicitly
an atlas consisting of 2 open sets in C2.

One can take for instance Uy = {z € C?/ a < |z| < 1} and U; = {2z € C?/ o*/? < |z| < a'/?}
and g, 7 their respective images in X,. By definition of the quotient topology, these are open sets
homeomorphic to Uy, Uy, and the charts 7; : Q; — U; are defined by assigning to every class 2 € €; its
unique representative z € Uj;. It is more or less obvious that 2y M €2; consists of all points Z such that
|z| ¢ {aF, a*+1/2 k € Z}, with transition maps

—-1

3/2
— <zl <
71 T1(Q0 N ) = 70(2o N ), {;—>j : 2ﬁg< B E‘alg

2z on a < |z| < al/?
710 : To(Q0 N Q1) — 71(Qo N 1), {z — az on al/? ’<’ 2] < 1.

This is a holomorphic atlas in complex dimension 2.

(c) Check that
w(z) = ‘ |2 88|z|2

defines a hermitian metric on X, that is not a Kéahler metric, but show however that 90w = 0.

Since hf|z|> = o?|z|*> and h, 00 |z]> = a® 90 |z|*, we see that h}w = w. Therefore w passes to the
quotient and defines a (1,1)-form on X,. As i00|z|?> = i(dzy A dZ; + dzz A dZ3) is positive definite on
2~ {(0, 0)}, we conclude that w is a positive definite hermitian metric on X,. A calculation gives

Ow= g ’4 L9122 A 09|22 = Ml (21d%1 + 22d%2) A (dz1 A dZy + dzo A ds)

| |4 (zlcfl ANdzo N dZg + zodZo N dz1 N cfl) # (0, thus w is not Kéahler,

00w = ———0(z1dz) Adza Az + 2adZs Adzy A7) +

R 8|z| A (z1dZy Ndzg N dZo + z9dZa Adzy Adzy)

||6

= i -2dz1 ANdzy ANdzo N\ dzo +

9
|Z|4 (zldzl + EQdZQ) VAN (Zldgl Ndzg N dZg + zodZo N dz1 N dEl)

EE

2i
=———-2dzy ANdzy Ndze NdzZs +

‘ |6<‘Z1‘ +|ZQ‘ dzl/\dzl/\sz/\dEQ:O.



(d) If P(2),Q(z) are homogeneous polynomials of degree d on C? without common zeroes, show that
®(z) = (P(2),Q(z)) defines a holomorphic morphism ¢ : X, — Xp for certain values of § (which
ones 7).

If & : C2\ {(0,0)} — C?~ {(0,0)} descends to a map ¢ : X, — Xz, we must have by definition
®(az) = BFE®(2) for some k(z) € Z. In fact, the connectedness of C2 ~ {(0,0)} and the continuity
of k(z) = (log B)~log |®(az)|/log|®(z)| imply that k(z) is a constant k € Z. Now, if ® = (P, Q) with
P, homogeneous of degree d, we have ®(az) = a?®(2) for every z € C? ~ {(0,0)}, i.e. af = gF. If
d = 0, ® is a constant, we have k¥ = 0 and there is no constraint on 3. If d > 0, then a? < 1 and
thus k > 0 as well. Therefore 8 must be of the form a®*, ie. log3/loga = d/k € Q7. Conversely, if

log B/ log o = d/k € Q7 such polynomial maps exist, e.g. ®(z1, 22) = (27, 29).

(e) Observing that the universal cover of X, is C*>~.{0}, conclude that any non constant holomorphic mor-
phism ¢ : X, — Xj lifts to a holomorphic map ® : C* — C? such that ®(az) = P®(z) for some p € N*.
Infer that a necessary and sufficient condition for the existence of such morphisms is log #/log o € Q7 ,
and that ® must be homogeneous of some degree.

As C? ~ {0} is simply connected, the composition
C* {0} — X, 5 X5 = (C2~ {0})/T

lifts to a holomorphic map ® : C* \ {0} — C? \ {0}. The Riemann-Hartogs extension theorem implies
that ® extends to a holomorphic map ® : C? — C2. Also, the discussion made in (d) implies that
®(az) = BE®(2) for some k € Z. Let ®(z2) = > pene @p2P (a, € C?) be the Taylor expansion of ®@. An
identification of coefficients in the relation ®(az) = 3*®(z) leads to the conclusion that we can only have
monomials of degree d = |p| = p1 + p2 such that a? = ¥, ie. d = klog3/loga and ® must be of the
form ® = (P, Q) with homogeneous polynomials of degree d. Since ¢ is assumed to be non constant, this
is possible only with d, k > 0 and log 3/loga = d/k € Q%.

(f) Give an example of a pair of non homeomorphic compact complex surfaces, resp. of a pair of homeo-
morphic (and even diffeomorphic) but non biholomorphic ones.

Examples on non homeomorphic compact complex surfaces are for instance X/, and Y = P! x P! (Y is
simply connected and X/ is not). Now, we have seen that X, /5 and X3 are both C*-diffeomorphic to

S' x S3, but non biholomorphic since log3/log2 ¢ Q% (there are no relations of the form 3% = 27 with
d,k>0).

4. Except for (g) below, let X =R"/Z" be the n-dimensional torus, considered as a C'*° manifold.

(a) Show that C°° differential forms of degree p on X can be interpreted as forms u(x) = - 7, ur(z)dz;

on R™ (the summation is over length p increasing multi-indices), where each function wu; satisfies a certain
periodicity condition.

Pulling back any form u on X by the quotient maps R" — X = R"/Z"™ leads to interpreting u as a
differential form on R™ with coefficients u; that are Z™-periodic functions.

(b) Infer from (a) that forms with constant coefficients give rise to a natural ring morphism
@ AP(R™)* — HP R (X, R).

If we take the coefficients u; to be constant, then one trivially gets du = 0, and thus we get a morphism
o AP(R™)* — HP R (X,R), u— {u}
where {u} is seen as the cohomology class of the corresponding constant-coefficient form on R"™/Z"™.

By definition, this is trivially a ring morphism.

(c¢) For p 4+ q¢ = n, one defines a bilinear map
Hbp (X B) X g (X.B) — R ({u} o) = [ uno
X

where X is given the usual orientation of R™, and {u} denotes the cohomology class of a d-closed form w.
Show that the above bilinear form is well defined.



We have to show that [, uAv does not change when the representatives u, v of our classes {u}, {v} are
changed. By definition of cohomology classes, we have to take du = 0, dv = 0. Now if u is changed to

u + dw, then
/(u—i—dw)/\v—/ u/\v:/ dw/\v:/ dlwAv)=0
b's b's b's b's

by Stokes’formula. Similarly, | « wA v is left unchanged if v is replaced by v + dw. The R-bilinearity of
the map is trivial.

(d) Derive from (c) that the cohomology class of a constant-coefficient form u = 3 usdzy is equal to 0 if
and only if u = 0, in other words that ¢ is injective.
Hint. Use v = dxg; where 0I means the complement of I in {1,2,...,n}.

If u = dw, then
/u/\dx[;I:/dw/\dwCI:/d(w/\dng):O
b's b'e b'e

by Stokes, and on the other hand

/u/\dwglz/uldx[/\dxw:j:/ urdxy A ... Ndx, = Fuy,
X X X

thus u; = 0 for every I. This means that ¢ is injective.

(e) Given a € R"™, one defines operators L,, G, and M acting on smooth p-forms u by L,(u) = v (resp.
Gou = w, Mu = u) where

vi(z) = Dyur(x), wr(x) :/0 ur(x +ta)dt, ur(x)= /6[0 . ur(x + a)dX(a),

where d)\ is the Lebesgue measure on R"™ and D, the derivative in direction a. Show that L,,G,
and M commute with the exterior derivative d, and that Mu = u always has constant coefficients (i.e.
independent of x). Compute explicitly G, o L, and d o M.

The commutation of L,, G, and M with d comes from the commutation of D, with partial differentiations
0/0xy, (Schwarz’ theorem for smooth functions), resp. from differentiation with respect to parameters zj,
under the integral sign, for the integral expressions of wy(x) and uy(x). The periodicity of u; tells us that
uy is just the average value of u; when seen as a function on R™/Z"™, hence it is a constant. Therefore
do M(u) = du =0 and we already conclude from this that d o M = 0. By definition

La(u) = ZI:DQW(,@) der, Ga(u) = ZI: </01 ur(z + ta) dt) duy,
thus

Goo Ly(u)(z) = ZI: </0 Dour(z + ta) dt>da:1 = Z(u;(az +a) —ur(z))de; = u(z + a) — u(x).

1

(f) The “interior product” izu of p-form u by a is defined to be the alternate (p — 1)-form such that
iqu(z)(&a,...,&p) = u(z)(a,&a,...,&). The well known “Lie derivative formula” (that can be admitted
here) states that d(iqu) + i4(du) = Lyu. Infer from this that for the torus, the operator

he : O°(X,APT%) — C™°(X,AP1T%)
defined by h, = G, o i, satisfies the so called “homotopy formula” d(h,(u)) + he(du) = v, with

Vg(x) = u(z + a) — u(x), and that for every closed form u, v, is cohomologous to zero. Finally, conclude
from all the above results that © — u is cohomologous to zero and that ¢ is an isomorphism.

By the commutation of GG, with d and the Lie derivative formula, we find
d(hq(u))+hq(du) = d(Gaoiq(u)+Gaoia(du) = Gao(d(iq(u))+iq(du)) = GeoLeu = (z — u(z+a)—u(z)).

)



When du = 0, this implies that
u(z + a) — u(@) = dhq(u) (=),

ie. z — u(z + a) — u(x) is cohomologous to 0. It we integrate over a € R™/Z", this gives

u(z) —u(z) = /ER"/Z" dhg(u)(z) dA(a) = d/ ha(u)(x) dA(a)

a€R™ /7"

(again, by commutation of 9/dz) and | with parameters x), that is

U—u=dK(u) where K(u)(z)= / e ha(uw)(z) dA(a) = / e ( /0 liau($+ta) dt>d>\(a).

This means that every d-closed form u is cohomologous to its average u. We infer from this that ¢ is
surjective, hence an isomorphism.

(g) if X = C"/A is a compact complex torus (where A is a lattice in C™ ~ R?"), use a similar technique
to show that there is an injective morphism given by constant-coefficient forms

P APY(CH)" — HD(X,C).

Let us compute [, uAv with u = Zm:p \J|=q Ur,7dzr NdZy and v = dzgy Adzgy. fu = 9w for a certain
(p,q — 1)-form w, then

X X X X

Here, we have used the fact that Ow A dzp; A dZp; = 0, since the bidegree of this wedge product is
(p+1,g—1)+ (n—p,n—q) =(n+1,n—1). On the other hand, if u has constant coefficients, then

/ u/\dzcl/\dEUJ::tuLJ/ dzy Ndzy A ... Ndzp NdZ, = £(21)" ur, g,
X X

therefore ur ; = 0 and ¥ is injective.

Note. One can show that ¢ is actually an isomorphism, but this is a bit harder than for De Rham
cohomology (and the required technology has not yet been explained in the course!).

The result was probably (somehow) already known to Riemann, but the “modern technology” is to use
Hodge theory: on a compact Kéhler manifold, Hg’q(X , C) is isomorphic to the space of harmonic (p, q)-
forms. On a torus, this means that Auy ; = 0, but by the maximum principle, harmonic functions are
constant on a compact manifold. Thus, for a torus, we get that H2?(X, C) is isomorphic to the space of
constant-coefficient forms. (This turns out to be also true for Bott-Chern cohomology groups).



