Since the norm of the linear form is $||u||$, we also get $||u|| \leq C^{1/2}$, that is,

$$
\int_X |u|^2 dV_\omega \le C = \int_X \langle (A^{p,q})^{-1} v, v \rangle dV_\omega.
$$

We have therefore proved the following result.

Theorem (S. Bochner, K. Kodaira, S. Nakano, J. Kohn, A. Andreotti - E. Vesentini, L. Hörmander and continuators)

Let (X, ω) be a complete Kähler manifold and (E, h) a hermitian holomorphic vector bundle *over* X*. Assume that the self-adjoint operator*

$$
A^{p,q}=A^{p,q}_{X,\omega\,;\,E,h}:=[\Theta_{E,h},\Lambda_\omega]
$$

is positive definite on $\Lambda^{p,q}T_X^* \otimes E$. Then for every (p,q) form $v \in L^2(X, \Lambda^{p,q}T_X^* \otimes E)$ such *that* $\overline{\partial}_E v = 0$ *, the del-bar equation*

$$
\overline{\partial}_E u = v
$$

admits a solution $u \in L^2(X, \Lambda^{p,q-1}T^*_X \otimes E)$ *in the sense of distributions, such that*

(b)
$$
\int_X |u|^2 dV_\omega \leq \int_X \langle (A^{p,q})^{-1}v, v \rangle dV_\omega,
$$

provided that the right hand side of (b) *is convergent.*

(c) The solution of minimal L^2 norm is the one such that $u \in (\text{Ker}\overline{\partial}_E)^{\perp} = \overline{\text{Im}\overline{\partial}_E^*}$. This *solution is unique and satisfies the additional property*

$$
\overline{\partial}_E^* u = 0.
$$

(d) The minimal L^2 solution satisfies $\overline{\Box}_E u = \overline{\partial}_E^* v$, therefore by ellipticity, one gets automa*tically* $u \in C^{\infty}(X, \Lambda^{p,q-1}T_X^* \otimes E)$ *if* $v \in C^{\infty}(X, \Lambda^{p,q}T_X^* \otimes E)$ *.*

Corollary 1. Let (X, ω) be a Kähler manifold (where ω is not necessarily complete), and *let* (E, h) *be a hermitian holomomorphic line bundle such that* $i\Theta_{E,h} > 0$ *as a real* $(1, 1)$ *form. Assume additionally that* X *is weakly pseudoconvex, i.e. that* X *possesses a smooth psh exhaustion function* ψ *. Then for every* (n,q) -form v *in* $L^2_{\text{loc}}(X, \underline{\Lambda}^{p,q}T^*_X \otimes E)$ $(q \ge 1)$ *, such that* $\overline{\partial}_E v = 0$ *there exists* v *in* $L^2_{\text{loc}}(X, \Lambda^{p,q-1}T^*_X \otimes E)$ *such that* $\overline{\partial}_E u = v$ *and*

$$
\int_X |u|^2 \, dV_\omega \le \int_X \frac{1}{\lambda_1 + \dots + \lambda_q} |v|^2 \, dV_\omega
$$

where $0 < \lambda_1(z) \leq \cdots \leq \lambda_n(z)$ *are the eigenvalues of* $i\Theta_{E,h}(z)$ *with respect to* $\omega(z)$ *.*

Proof. When ω is complete and additionally $v \in L^2$, this is just a special case of the theorem. Otherwise, we can apply the theorem after replacing ω by $\hat{\omega}_{\varepsilon} = \omega + \varepsilon i \partial \overline{\partial} (\psi^2)$
which is complete for any $\varepsilon > 0$. The integral involving u and $\hat{\omega}$ is then uniformly bounded which is complete for any $\varepsilon > 0$. The integral involving v and $\hat{\omega}_{\varepsilon}$ is then uniformly bounded by the same integral calculated for ω (exercise, see Lemma 6.3 in Chapter VIII of my online book). One then gets a L^2 solution u_{ε} with respect to $\hat{\omega}_{\varepsilon}$. By weak compactness of closed
balls in Hilbert spaces, it is easily shown that there is a weakly convergent sequence u balls in Hilbert spaces, it is easily shown that there is a weakly convergent sequence u_{ε_k}