Since the norm of the linear form is ||u||, we also get $||u|| \le C^{1/2}$, that is,

$$\int_X |u|^2 \, dV_\omega \le C = \int_X \langle (A^{p,q})^{-1} v, v \rangle \, dV_\omega.$$

We have therefore proved the following result.

Theorem (S. Bochner, K. Kodaira, S. Nakano, J. Kohn, A. Andreotti - E. Vesentini, L. Hörmander and continuators)

Let (X, ω) be a complete Kähler manifold and (E, h) a hermitian holomorphic vector bundle over X. Assume that the self-adjoint operator

$$A^{p,q} = A^{p,q}_{X,\omega\,;\,E,h} := [\Theta_{E,h}, \Lambda_{\omega}]$$

is positive definite on $\Lambda^{p,q}T_X^* \otimes E$. Then for every (p,q) form $v \in L^2(X, \Lambda^{p,q}T_X^* \otimes E)$ such that $\overline{\partial}_E v = 0$, the del-bar equation

(a)
$$\overline{\partial}_E u = v$$

admits a solution $u \in L^2(X, \Lambda^{p,q-1}T^*_X \otimes E)$ in the sense of distributions, such that

(b)
$$\int_X |u|^2 \, dV_\omega \le \int_X \langle (A^{p,q})^{-1} v, v \rangle \, dV_\omega,$$

provided that the right hand side of (b) is convergent.

(c) The solution of minimal L^2 norm is the one such that $u \in (\text{Ker}\overline{\partial}_E)^{\perp} = \text{Im}\overline{\partial}_E^*$. This solution is unique and satisfies the additional property

$$\overline{\partial}_E^* u = 0$$

(d) The minimal L^2 solution satisfies $\overline{\Box}_E u = \overline{\partial}_E^* v$, therefore by ellipticity, one gets automatically $u \in C^{\infty}(X, \Lambda^{p,q-1}T_X^* \otimes E)$ if $v \in C^{\infty}(X, \Lambda^{p,q}T_X^* \otimes E)$.

Corollary 1. Let (X, ω) be a Kähler manifold (where ω is not necessarily complete), and let (E, h) be a hermitian holomomorphic line bundle such that $i\Theta_{E,h} > 0$ as a real (1, 1)form. Assume additionally that X is weakly pseudoconvex, i.e. that X possesses a smooth psh exhaustion function ψ . Then for every (n, q)-form v in $L^2_{loc}(X, \Lambda^{p,q}T^*_X \otimes E)$ $(q \ge 1)$, such that $\overline{\partial}_E v = 0$ there exists v in $L^2_{loc}(X, \Lambda^{p,q-1}T^*_X \otimes E)$ such that $\overline{\partial}_E u = v$ and

$$\int_X |u|^2 \, dV_\omega \le \int_X \frac{1}{\lambda_1 + \dots + \lambda_q} |v|^2 \, dV_\omega$$

where $0 < \lambda_1(z) \leq \cdots \leq \lambda_n(z)$ are the eigenvalues of $i\Theta_{E,h}(z)$ with respect to $\omega(z)$.

Proof. When ω is complete and additionally $v \in L^2$, this is just a special case of the theorem. Otherwise, we can apply the theorem after replacing ω by $\hat{\omega}_{\varepsilon} = \omega + \varepsilon i \partial \overline{\partial} (\psi^2)$ which is complete for any $\varepsilon > 0$. The integral involving v and $\hat{\omega}_{\varepsilon}$ is then uniformly bounded by the same integral calculated for ω (exercise, see Lemma 6.3 in Chapter VIII of my online book). One then gets a L^2 solution u_{ε} with respect to $\hat{\omega}_{\varepsilon}$. By weak compactness of closed balls in Hilbert spaces, it is easily shown that there is a weakly convergent sequence u_{ε_k}