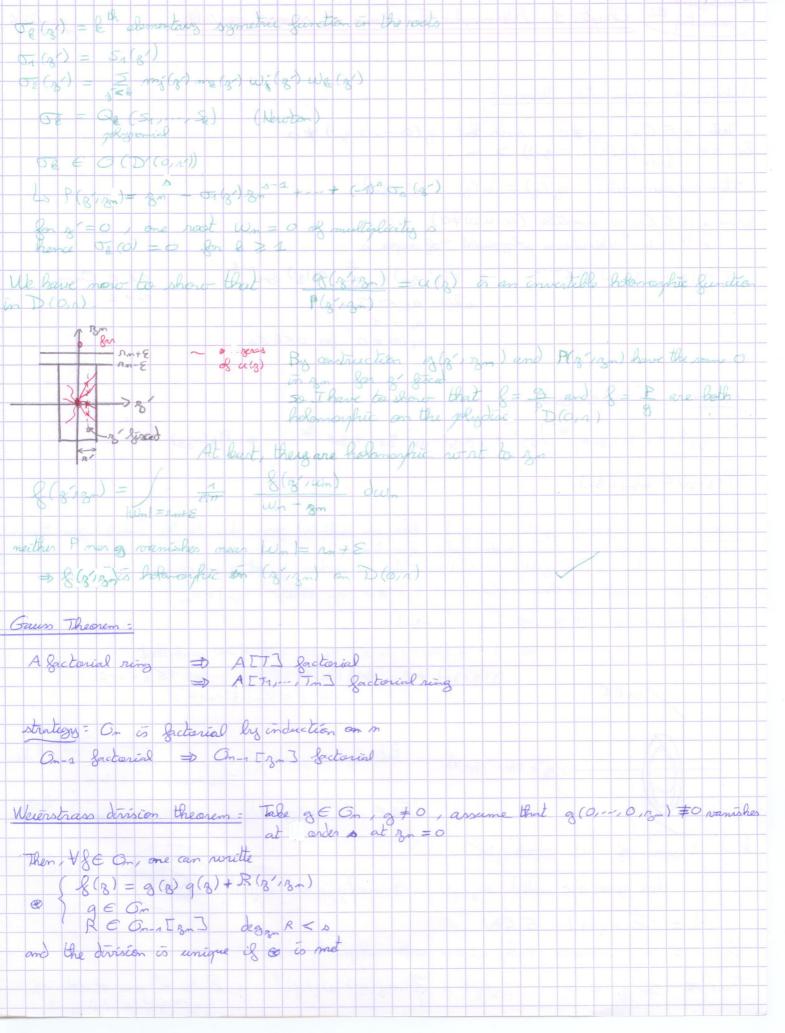
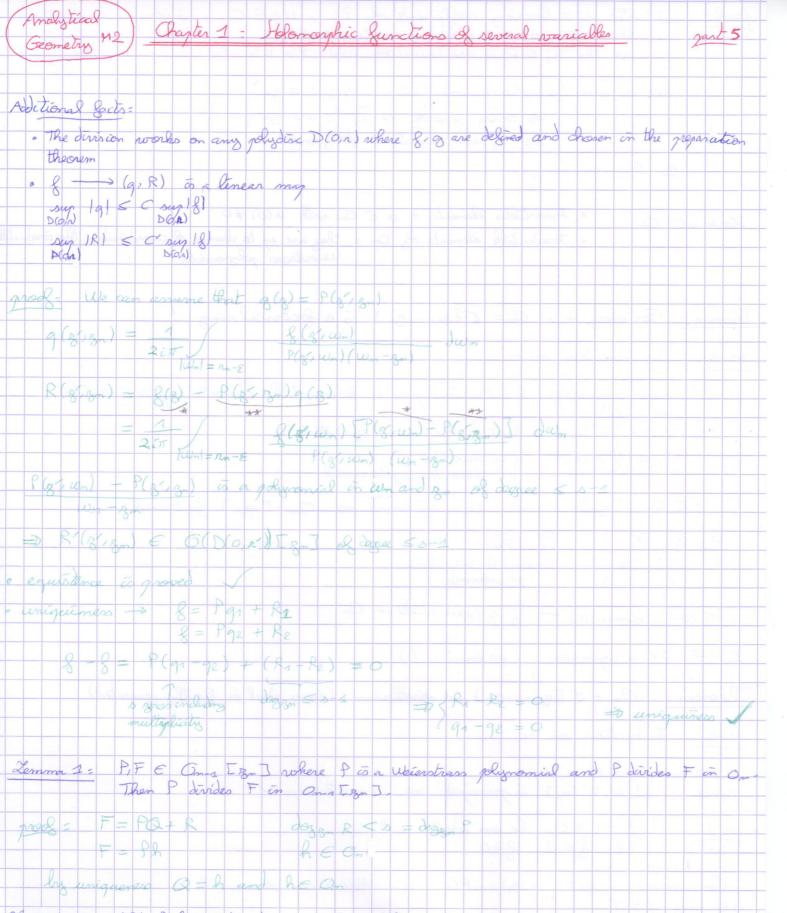
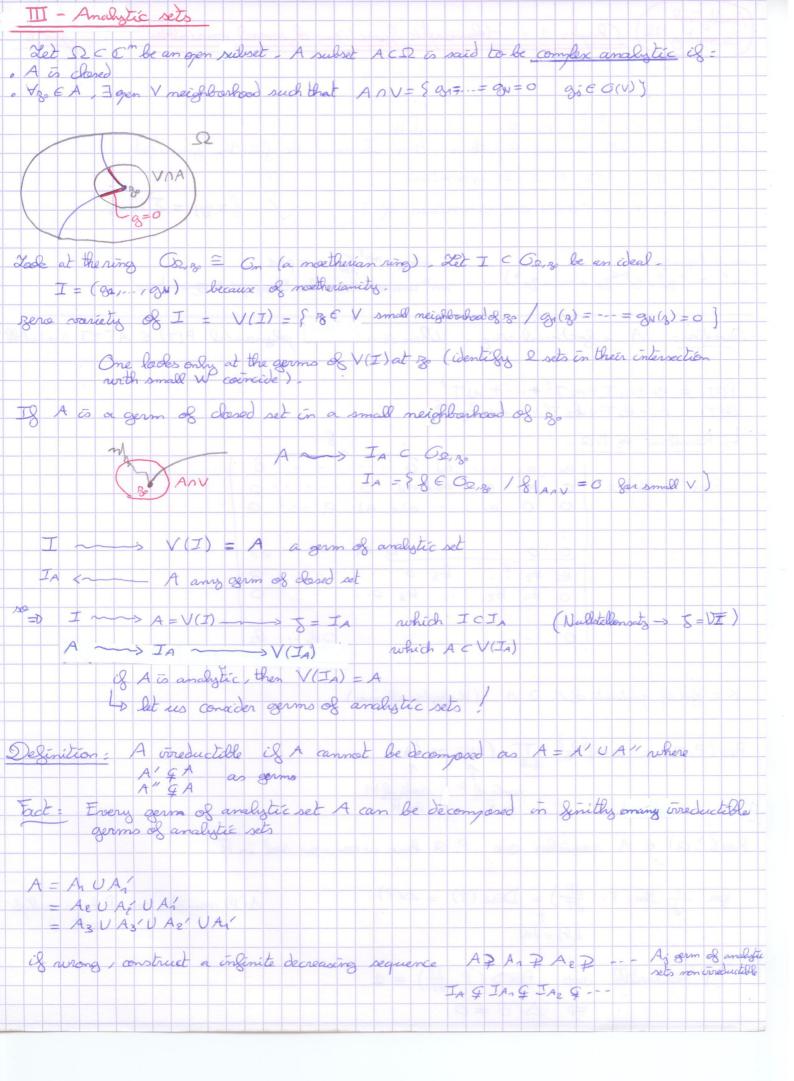

num) 1 com due (200)-3 D (wr-131) E D D (BUTTO) holomorphic night respect to win on both sides Land apply tandy gamera Filmé for continuous lunde Acas aborgutely convergent r(iv) = h(i)W5 1-85 WE-RE XJEN dita ut Ing Caj Blastons 1=(1,-,1) 117 === 45+35 ENERM R(w) du. B(B)=Z AENM adra this genes (200)" WE TOD (August 1) W & a Canadytic hence Hartog's theorem : & segarate holomorphic (even without assuming & continuous) implies & is holomorphic Topology of O(2)= Let KCQ be a compact subset. PK(8) = sur 18(3)1 = max 18(3)1 BEK 18(3)1 = gEK this is a semi-norm Destriction = F a K-vector space K=Ron C a semi-norm és a may p= E -> R; such that $x \rightarrow p(x)$ $e \forall \lambda \in \mathbb{K}$ $p(\lambda z) = |\lambda| p(z)$ • $\forall x_{inj} \in E \quad p(x+nj) \leq p(x) + p(nj)$ (don t assume the separation = p(x) = 0 = 0 = 0) Suppose you are given an arbitrary family (pa)det of semi-morms tendamental system of neighborhood of 0 - will be - $\int_{\mathcal{A}_{1},\ldots,\mathcal{A}_{N}} \mathcal{E}_{1},\ldots,\mathcal{E}_{N} = \{ \mathbf{x} \in \Xi \ \Big| \ P_{\mathbf{x}_{3}}(\mathbf{x}) \neq \mathcal{E}_{3} \ \{ \mathbf{x}_{1},\ldots,\mathbf{x}_{N} \}^{2} \sup_{\mathbf{y} \in \mathbb{T}} \mathbb{T} \ \Big\}$ P1(x) < 81 B(O,E) Pe (21) < E, meighborhood (monimuge) of 0, say V such that SCIVCU $M_{P_3}(x) \leq \epsilon_2$ 11211<8 E is a topological vector spice ! $(x=0 \neq \forall \alpha \in J p_{\alpha}(\alpha)=0)$ E Hausdorff #D

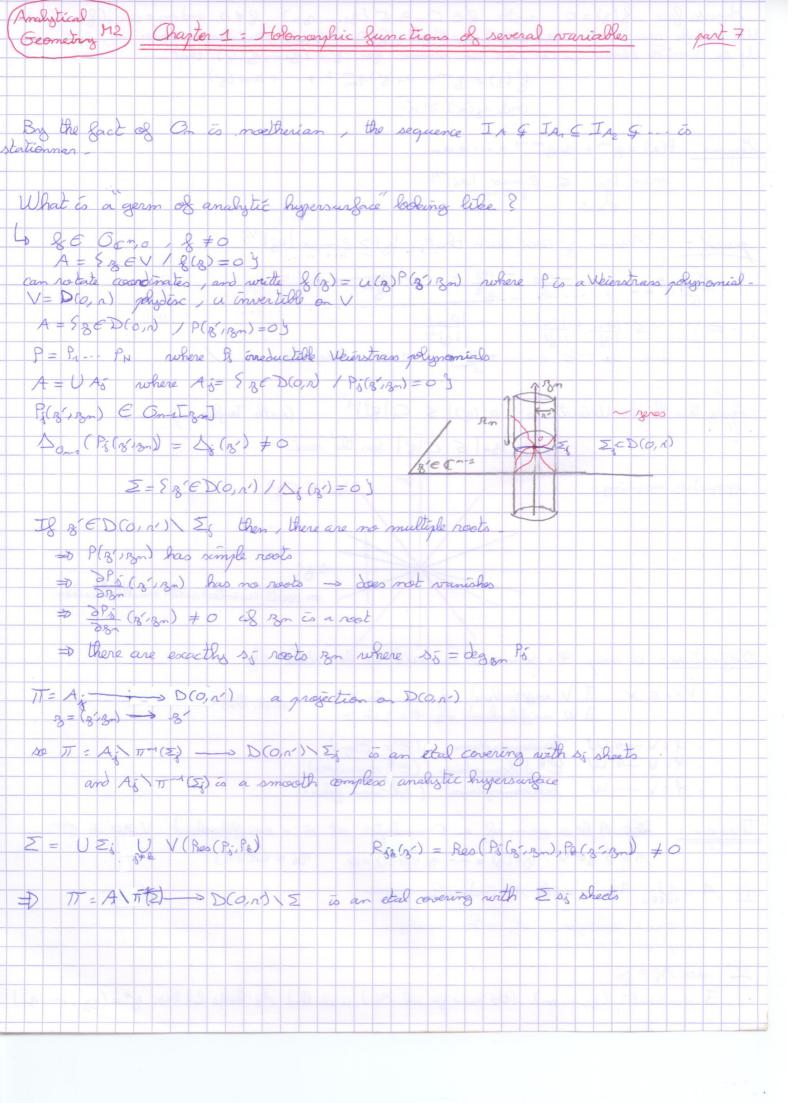
Analytical Chapter 1 = Holomorphic Sunctions of several , variables Geometry 12 part 2 leghrie were topology of weater space F $= F^* dual \rightarrow q \in E^* \qquad Pq(x) = |q(x)|$ (bad, not good enough) Weak topology = IS E already a topological vector space : E = topological dual of continuous CE tinear forms get family of some - morms q(x) = 14(x)) for 4 E F' Locally convex topological vector space - (F, with topology desired by a collection of (X2) Rem is alled a Candry sequence if 4 YZEI VEDO, IN UMMEN Pa(xm-xm) <E Definition : E is sequentially complete if every Cauchy sequence is convergent Observation: If the topology is Hunder and can be defined by a countable family of semi- norms then the topology is metricable (definable by a trane) (Pa)dens a countable la > grage = E Haunder & day = 2 2 - min (1, pa(x p)) distance (expensive) odistranslation invariant d(x+a, m+a) = d(x,m) VX, y, a EE 32 (2) 5 2^{-R} min $(2(p_{\alpha}(x)) \leq \epsilon$ neighborhood of O (D) ATR means seed for a for subsamily -P2 (20) < 2 8 1=> A Fréchet space is a topological vector space E where topology is defined by a countable family of semi-norms, that is Hausdorff and complete. Definition: O(2), Px KCQ Ge complementaire de 2 $K_{\nu} = \{x \in \Omega \mid |x| \leq \nu, d(x, G \Omega) \geq 2^{-\nu}\}$ bounded and cloped hence compact Ku verev (Kv) is an "exchanisting sequence " VKCR compact, JU such that KCKO CKU

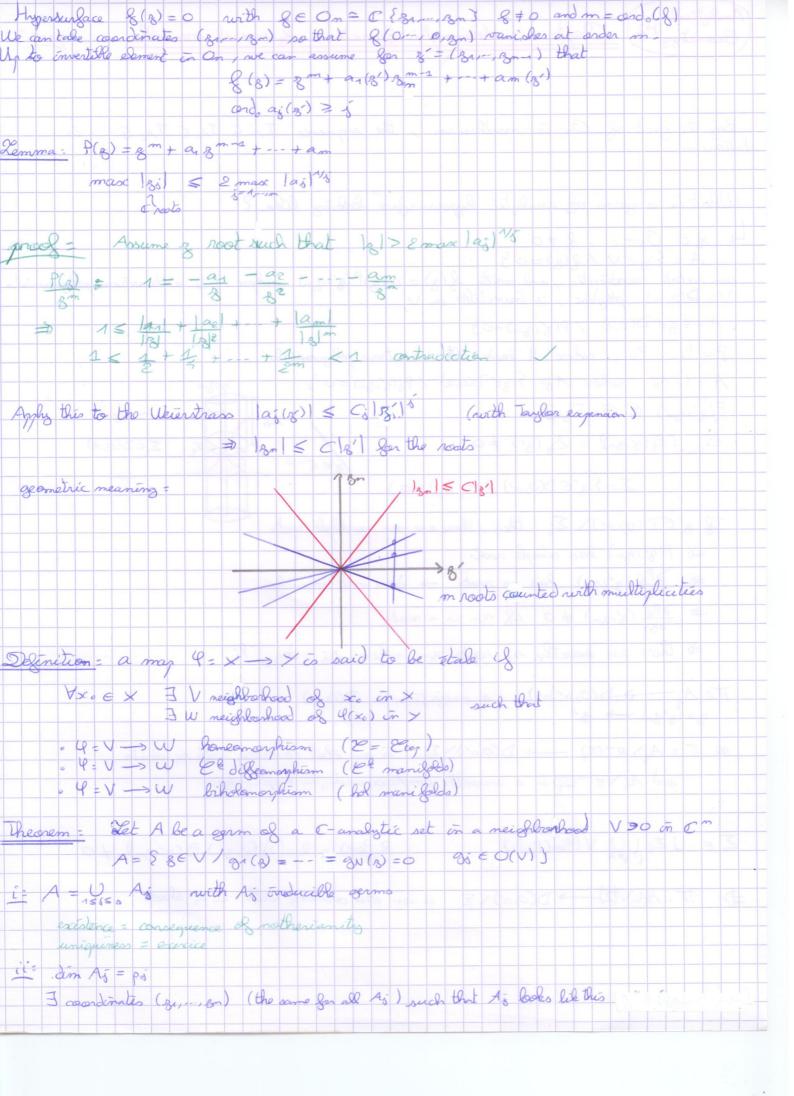

ΧĻ	>	Exe	- 0	2/	1	x	<	ν		6	()	C	2) 5	2	-2	y																		2	_				
		U			-	2			-		1	-				-			-		-		100					1		3.							1600			
	-							-	su	2	18	2		<	PK,			5																	-					1
K	C	82		_	_	Pi	<	8	ex		0	0							}	70	and	Rag	33	S	_(6	2)	5	ca	n	be	de	line	Jl	hy t	he	P	()	VEIN	e.
58.	PI	< 2 (8) <	28	3	C		5	8	P	ĸ	8)	20	sy			-	-	/	+																	18	-		
																																	1							
Theore		. /	1	510	2		0		6		-	~	Fa	5-0	ot	-	010	,	-	+	+	16	19								19	19						3	8	
- aco a	m		_	_	_	_	1	_								-	-																	1	2202					
Rema	sk:	C	-9	(2	3	Ŧ	50	C	9	gen	nct	ion	2	SX SX	Sa	2	2	C	R	n	2	50	970	- 7	62)		<u>b</u>		281				- (X		
	PK.	-	5	sup		m	ax		17	24	Ra	1				R	2	4				2	0	-		-									0			0	-	
		1 =						1					-	2	-	-	+	0	2	-	_	_																	-	
(,		9 (S				Ve	2	0 0	a	tre	ech	et	2	pac	e	as	ne	rel								3	5.0		-		2.4	6			-0					
(C	°(Q)	1	PK	19) 70 90	CALS VIIV	3	a	Ð	rēd	het	37	eæ	-	-	-	-	-		2	_																-		
De :		2da		tam					-	C	36	2)				2	C	50	0)			5		on	in	uar	us	R	n t	he	Fré	che	F	ton	Pac	m		2		
		Des 2	282	d2	- 0	20m	Zm		4		-			1		1				H			6		0 4	3		0				4				0				8
	10	8	62		=	6	it	-)~		1	20	(-	-			-		E	up lite	8-	5	d	w			W	n										,			
				4		1	_		1	π	7	B	11	25)							-					99	2					R			-	1		1	1	
Landerson and	1	27	80	3)	+	1	21	OK TT	;) m	1		t	-	0	4		E	11	W))	K.7	A	2	er	3	-0	w	m				i dar	0	0	= 0	K.1	de	1	an!	
	0	way	1 17	200	int						Te			-	81	1	e	1		31	2	10			100		-		-		58									
		and	2	T	in	- ne		-	þ	a (88-)]	4		a er	1ª	1	4	-	3	-		1		$\frac{1}{1}$		Ry.	0.				nd	In						+	
			t													1	Qu	71	9m				10																	
			+	+	+	+	-		1	_		-	4	-	0	×	-	i	61		DU	27.5)	8((ں							10						-	
	Pk	0	28		4	; .	d)		A	_	(0)												C	5	R	es	21	10	(A	k)	5	-5	5					
					2	-	8	pai)	Jm E		8'			-	1	-		1	a	ine		1	0			-			-					12			_	
Montel		The	oren	m	-													1				5																		
					1				0	1					-																-0)	0	/	2	,	1			
Take	52	rad		an	201	Te	n	su ie	e se	et V	KC	I	2	52	E			(22)	su	ch	a	se	qu	ier F	re 12	U	at	is	n].	en Qu	13	pro t	nli	g t	toe	inc	ed	on		
a sel	1	1. Sel					-																					K'					A			155		2.4	2	
Ther	E	con	ne	ngen	nt	\$	ul	se	qu	en	ce	(ł	2p.	pe	N	-	m	C	3(0)		Vo	<	Va	< -		<	Ng	<		200							
mo	oof:		1	be	0	÷	5	1	he	ore	m	-	+ 0	dia	90	me	al		sa	lep	eg	u	enc	e	te	ch	nå	Ju	e	(T	1	. 0	ace	ai	ce "	2)			
Refor			-		4	3	_							_		+	+	+	-	-	1								0		-	-				1				
-														1				1																						
Remo	ank		C	200	(s	2)	ē.	ō	a	9	Pont	el	By	ace	-	br	et.	m	st		C	9 (.	Ω)		fon	9	<	+ a	0			-	X	K	2	1				
Anal	stic	cor	ti	nie	ale	ion	t	he	one	m	-	-			1	100								8				K					-	-	-				_	
Nam	nm	2:	20	2	Ω	C	E	m	2e	a	0	nn	ec	Ed	0	er	2	et	a	n	2	26	:0	50	2)	-						1		X						
Zen			Th	en	0	ig	-	E	80	E	2	S	ac	2 t	ha	5	A	'd	EN	NA	2		De	×	s (rz	(2	=	0		1	-				1	1			_	
			4	o t	he	n	8	B	0		čn	S	2																											

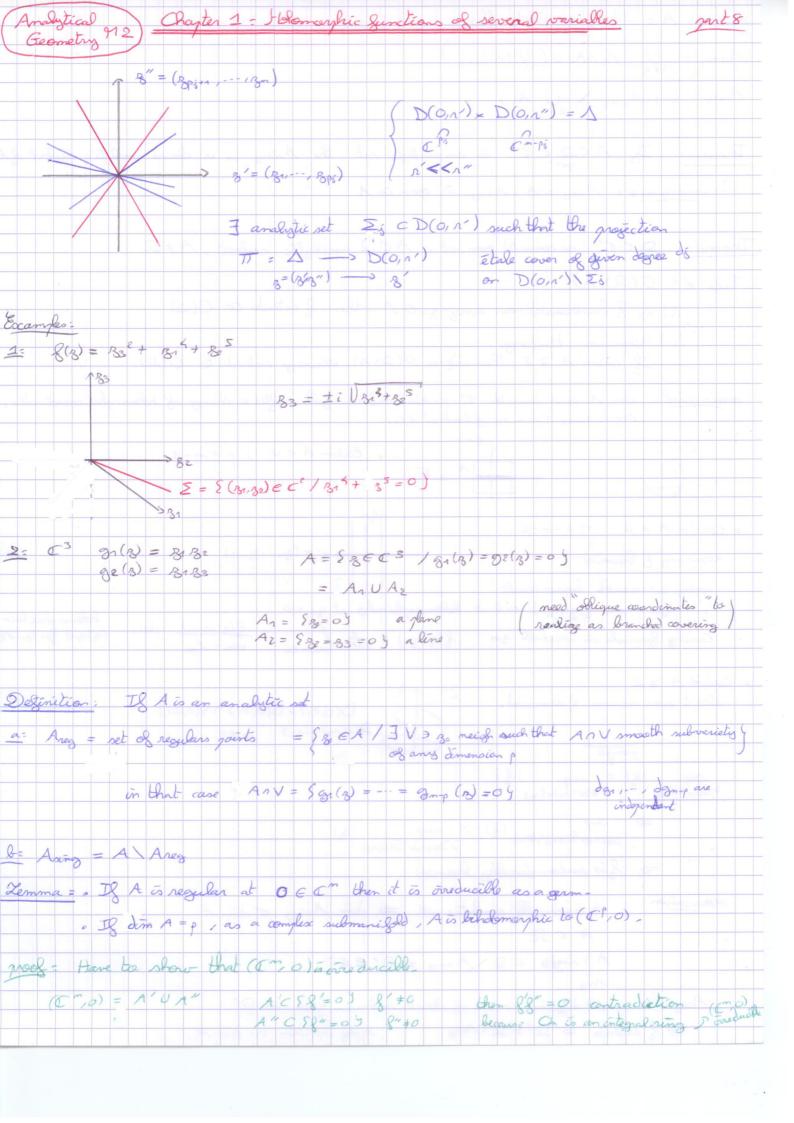


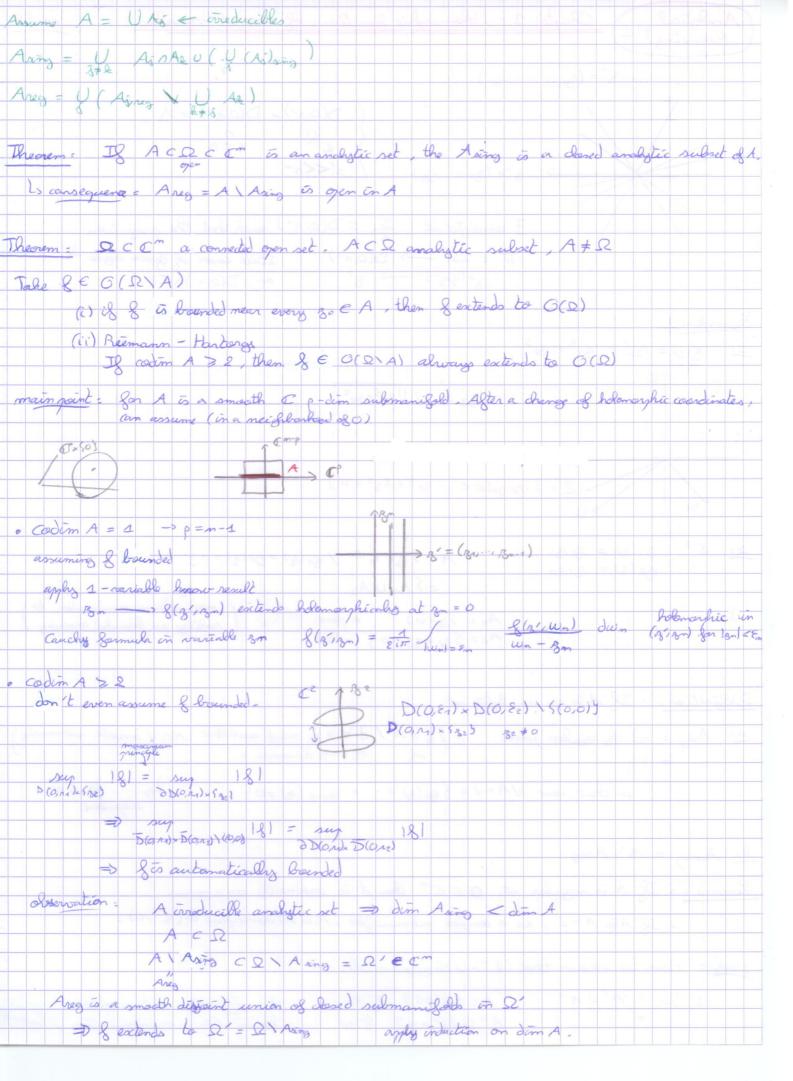
account their multiplicities

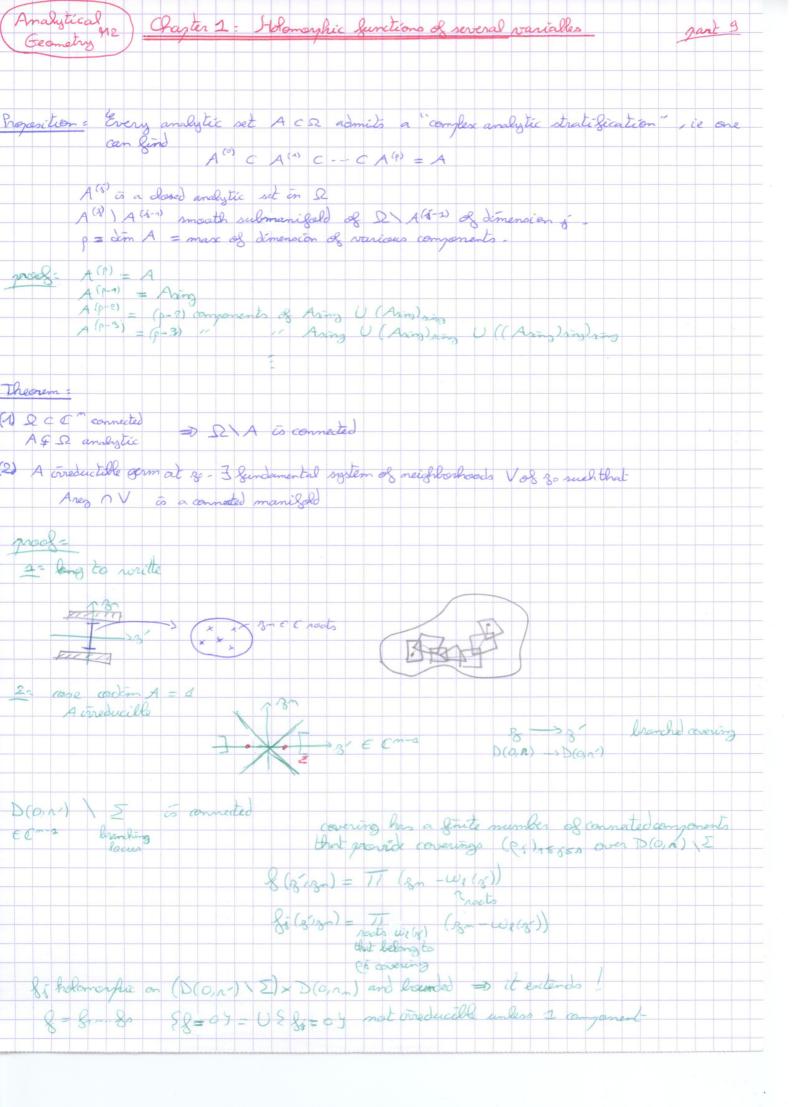


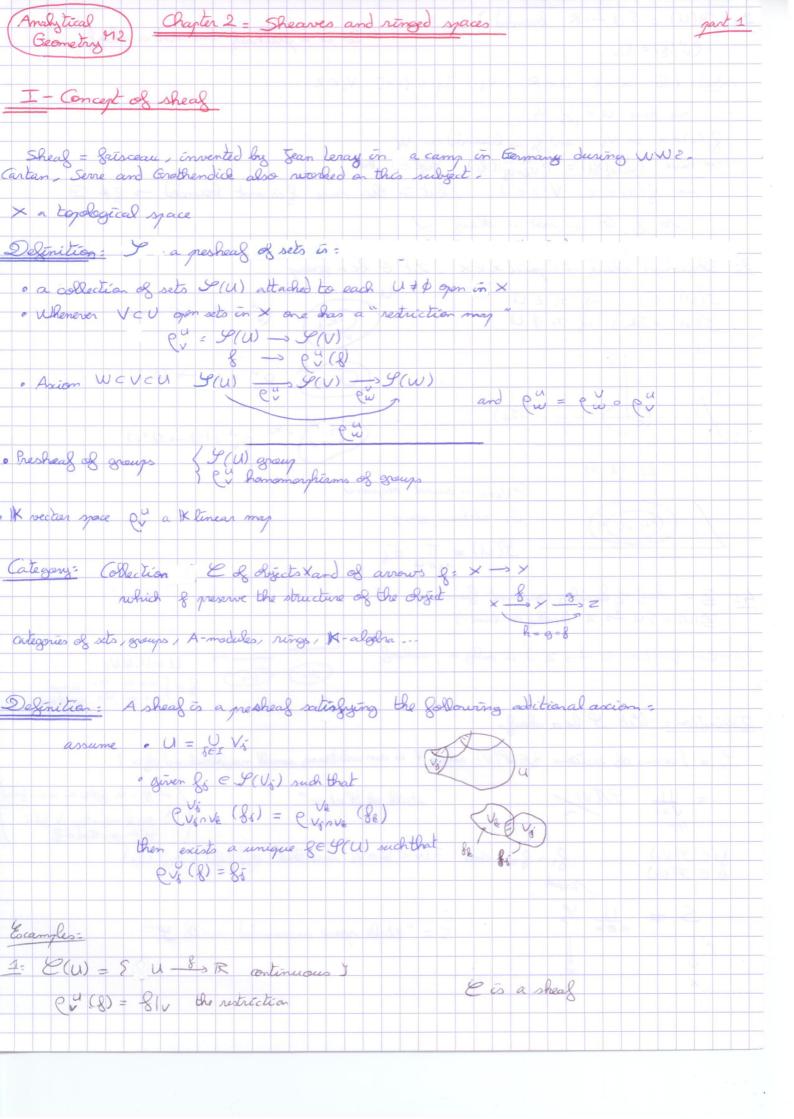

Lemma 2. Let P be a Weierstrass a golynomial.

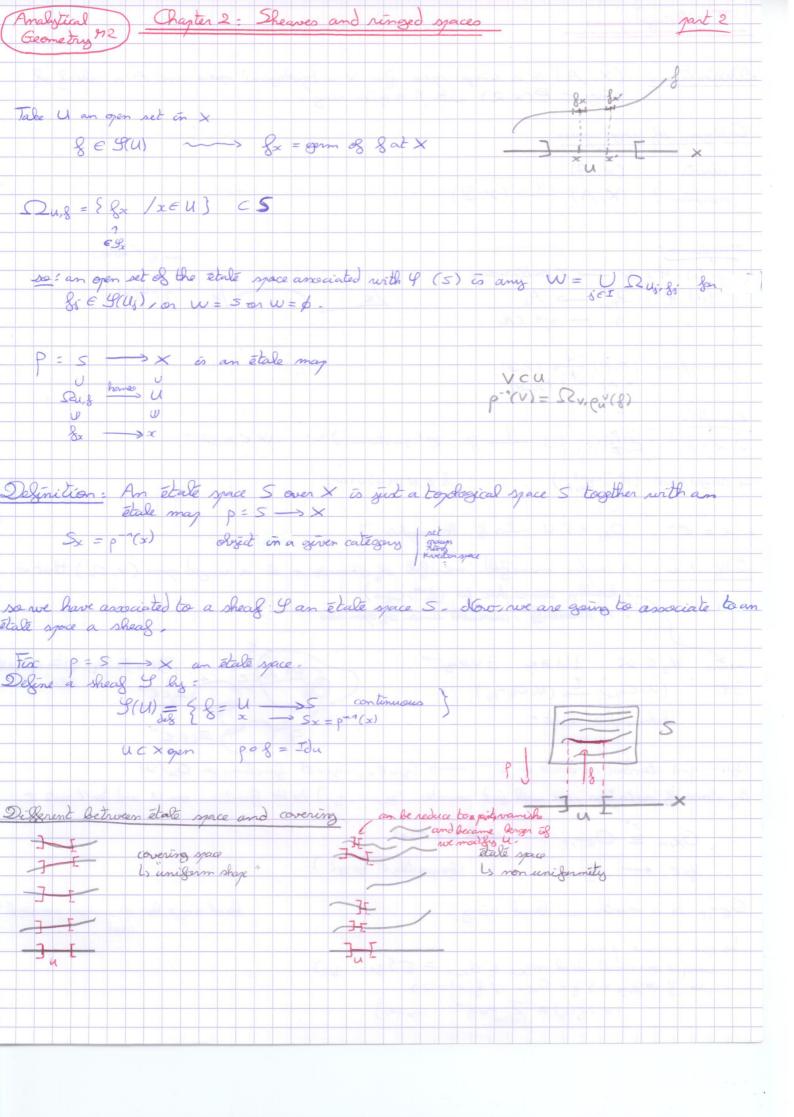

a= i8 P= Pn -- th with P.5 € On-a E3m3 then P.5 = us Prs where Ps Weinstram and us € On-a invertible b= P(8/13n) inteductible in On >> P(8/13n) inteductible in On a E3m3

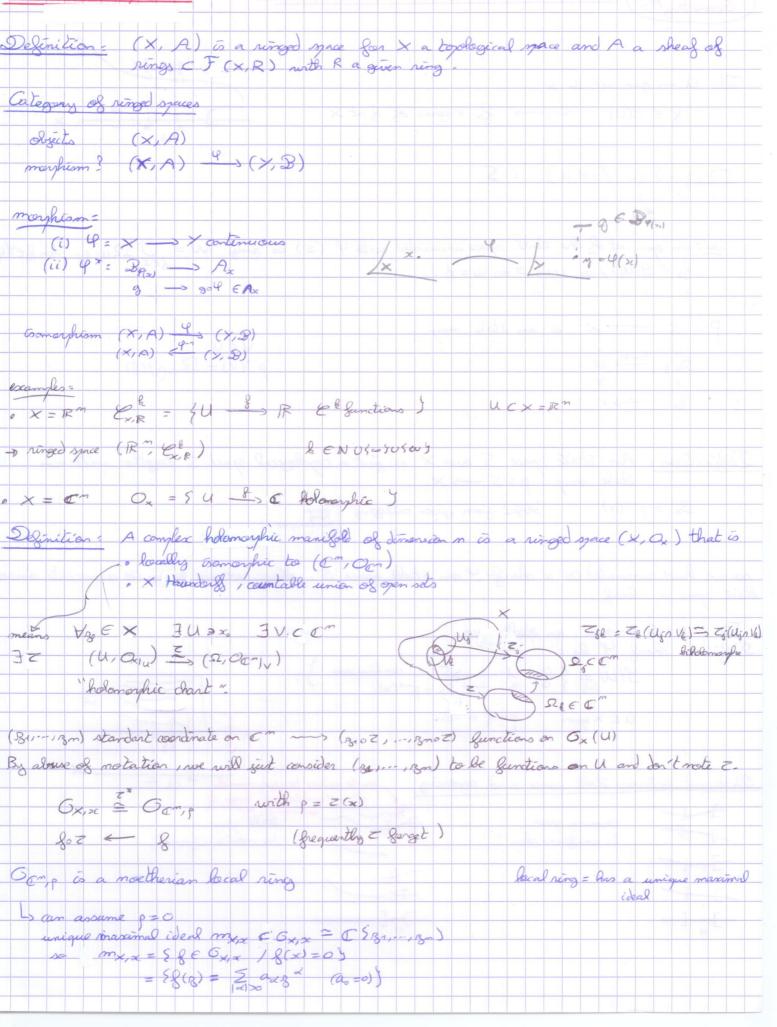

		2			-		R				0)	1			(2-	-	Y		2	D					~	6			1.0	51		7	~				1	
7	00	8-		9	-	- 0	Lel HQ	-	y	-	to	00	cm	9	- 0	ex	S.	ies	A	0	2	1	5	+	a d	50	-	2	2-	1				1			-		5/7	
	-						A	m	D.	-		E	0			100	iac T	ione	35	-0.5	Sec	an	A	-04	5_	P P			p.							C ⁴	5		2	
							23.54		m	- 0	8		-			ave.		U.V.C				c.s.u	~						-22										-	
					200		at	Re	nor	8	a	0	1-	0		_	Ъ	P	0,		1	0,	Rn)		R	2													
								0																															5	A
																										8	-	0												_
	650	- 34								9	200	=)	254	5	a	re	VA	eien	sta	as	2.	pol	y	Or	in	25	100				Ċ.				مدن	nn.	2 2		-	
				b		6	cer	aid	e																											1563	200	D.	_	
	_					-																				~	22			24 C	5							8		
	_	_								T		-	-10		0		1				0	G		-+0				+	~	18			2	5			-			
0	La	se	a	5	0	In																				ua					0			1	F		40		-	+ 80
	-	_	_	-					ø	J	re	du	ctit	ble	exa	emi	enti	8	ð	On	n :		the	za	ret	ey	5 6	20	har	-ge	as	CO	on	der	ale	51	ore	00	rede	ctille
	-	_					_				-					-					-	_	rei	iers	ira	20	70	ky	nan	rial	5-				-		2002	104		
	+	-			_			_		_	_																												-	-
T)	_			T	-		_				-	-			5				Y		-		0	1	20		0	ND.	1	1	-								-
1	rec	ner	n	-	J	on	en	eri	3	m	1	0	m	-	e	2	St.		13	nJ		co	a	39	ICL	tor	ia	Kr	in	9									7	
		0			D		- 1	uc	F																															
1	200	8	-		Day) 0	md	uc	u	an	0	2	n	2																										-
	2:	-	D	-	2	-		207	-			(5)					-	in	2	110	F	BR	0	Don		F	6	iA	40	-	198	12-	ap.			
				-	200	ma	nt)		8	56		5		m	-01	10	1	ese			003	002	ac	la	-w						1								
		R	at	ato	0	00	d	ind	to			2	the	1-		1	10	0,		50	SIP.		#	E.C	2													,		
																	P				10	-																•		
						Ð	X	=	U	- 7			5	p	in	ver	ul +	re	34	ely		T	0	Ĩ.					100											
																										1)	-	7	_
		-	P	E	0		T	R	3	-		an	2		G	-	5	fac	ton	ia	2	=>		9	-	15	13	m	3	Sa	cta	ere	al							
																										1														
		2=	= }	Pr-		PN	_		-		Sa		P	N						10.0					3	K K	2												62-	
		_						ūn.			5	red	ud	A	V	Lky	inst	has	5											-	_	_							_	
	_	_		C	m.	1]	Rg	3			-	1		-				_																		-	2			
	-	m	0	act	-	0	2	ma	1	1 -	5	1	5	5	020	red	uc	te	Ble	in	C	à					-	1.3		12										
			-70			low	enn	ma	1)			0															7									_			+
	2-	-	7	e	the	-	m	ta	-					-	ea			1	1									1												
	-					~		T		iec			(4	101	Rece	and	20		1																1					
7	2	00	100	n :		-	3				-		- 1	R	Y	5		Va	H	-			6	men		ide	0	1	¢	2-	10.		em	000	ted)				
	r ue		er.				m		C		130	1		m	-	Cos	1	- VCA	cunu	eu	ar		ie	1000	0	un	un .	0.5	8	T	- mg	2	S							
	na	R			Tr	2	10	tio	6	0	_	~		P																									1	
4	-	0	-																																					
0	n	= (0			5	-	C	2		2.5						1	-							and the	15							3			2.1			100	
	n	= :	1			B	=	0	Γ.	S.B.	3	à	5 1	ni	na	pal	9	-	>	To	m	æ	the	ría	n	~	1		6	in the	8			T						
			1										1		/																									-
-	n	2	2		-	let	-			C						De	hel	6	I	ŧ	20	J		100	5			-	-	4			51	12						
						Pe	de		0	E	I,		F	<i>≠</i> 0	>			-	-			3					-	-	-	-				-				1		
	-	(-		-		6								-	-			11	-	1			1	-	-	-	0	-			-		-				
1								1	ac	t		3(3)	=	F	14	\$1	Br	P	-	Me	ier	st	las	0	pel	yn	an	lia				-		1		- 0			_
				3			T		,	0							6	-	-		-	10					-		1			4	1	20		6				20
	20	no	e	-	8	-	8	9	1	K				5	20		O,R	-4	F	Ba	2				1	000		100	-	10	0		P			F				-
							-							d	131	m		1			12					-	1		38					1		1			22	
	8	10	E	1	1		D		R	10	8	-	29	1	0	F		Þ			1			the	60			3	1	an	1		2	1	1		es.d			
	0	-					0			E							D	3		L		1				5		1			-		5	1			19		0	
							P		1		1	-	0							-	F	1-	1				2	0	3	E	5.0		1			1				
												100	form	100	Jus	R	08	C	m	-1	4-3	2	reg	5	¢-<				m	12										1

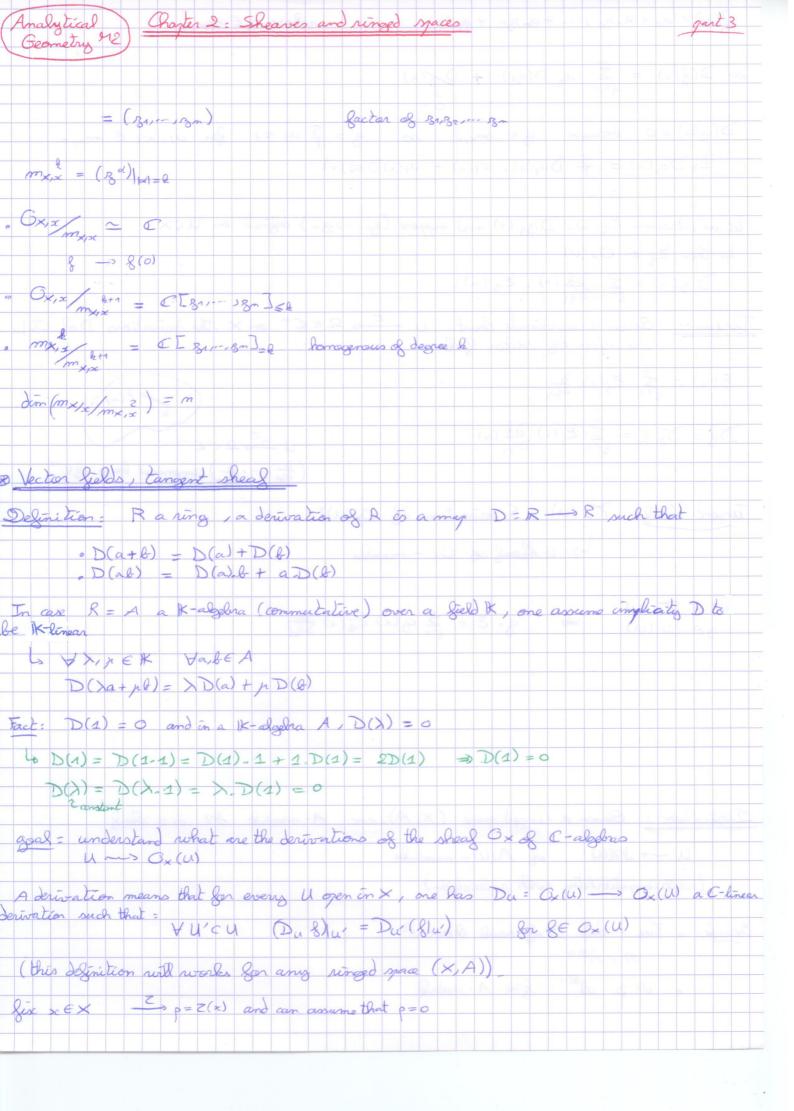

Am	0	1		5	2		-	g		4			-	L	10	2			ρ.	1	2		+-		0	0			0		-	-	0	3	12			15	2.8		
Ge	Om	etr	Ø	-	フ	-		na	F	er			52	1		On	na	n			u	nc	Lie	m	20	82	serr	era	X	200	n	al	-				-	2	ad	6	-
					2	4	5	5	33	0		0	-	1	-		E.	0	2			A			B			6	2		h					E		L		A	
a)		M		6		5	+	Ð	2		0	-	R	+		-	0		1	0											0										
to	0		2	6	m	de		r	ía	1	l	2			att	hep	40	1	EP.	en		2	m	usi		Re	le)-	20	24	20	ne	al	ed							
1	ъ	lei	F	51	2		1	0	N	E		2	K	3e	0	ęm	ena	t	er	5								-	-		1	A	V	1	6	K	-			P	
	Ð		60	1	0	1			/ (57		0	an	e.	g	ne	a	to	20	0	R	I					1		8	= 9	39	-	2	h	0	-	5				
																																		6		1			1	Z	
m: P	- (ro	11	302)	P	1		3		-	2	0		-	-	8								din alian					1	1	d	0				124	4		2.3	2
n	-		LZ3	8	13	7	.2	Se .	1		- /	Be					~	m	G	an	noi	t i	han	re	les	s ti	ha	-	pt	1	- Bu	ene	to	es		18					
3,	est	ĩa	-	C'T	A	-			20	2		- (-		1)	2			et apres		1	1	~	þ.			0	F	>/~	-)	E	4	F .		-			ble
-		23		3	1		-		0			O	12	I	9			~	les	10		a	- ra	m	1C	10	y	na	ne	olx	Ra					6		0	ned	ud	ior
PC	T) =		ao	+	a	+	- +	a	2	2	+		+	. a	4	T									Ę	1	-	-		Pr.	00	-		-	-					
a	(7)	-	= 1	80	7	Ba	7	- +	- E	Te.	78	18			+ [28	T	8	30		0.			0	-	-0	20	6	-	25	15	5			5	2	5	÷		Q.	
4	R	ese	At	an	t	R	s I	P, 0	Q	4								2		6			1	8		_			İ.										1		
	Re	~ (P		R	>	-	0		a		a	1	-		-	a	6	0		-			-				0		2	10	10	K			-		-	-	-	
				_						0												ad		0				0	1												
								2	1		-	0							, 			0						1			T										
							-	_	-	De la		0	-	1	-	-	Q	-8			-	a			2			0				0					-				
									1	0		Br		B	2	-			0	8	0			-	F	-	(0	1	3	20										
	24		-		1	-	1		1	0				T				A	12					0	On Con			: 20	-	0	23	/=	A	<		-					
							1								1		R	0	24	103			3		~	- 2		3		Z	100		12	أدرا		60					
K	=	Que	la	Q	au	st	tar	to	0	27	4	0	A		(K	a	a	ma	d	lor	1.000	1	I					53	1					8						
_			_		-	-	-	-	_			-						9							4		8		03	~	þ				đ.						
res	. ({	P, 0	2) ;	- 5	1	Ł	a	51	200		J	F	(C	Uj	-	-	ł.	R)		-{.,		-85			23		38	K.			2	A			-	3		2.50	2
		2					+	-	-				noe	t.	-	1 p	>		1	+	80	S		-		-	-						1	2		-					
		1	30	2										nik					in	K	8	000	A	-	1	3	3	Q					-			980	ł		-		
Ses	CF	2,0	2)	e	6	A		~	as	zis	Ro	0	T	Ð		P	20	2	R	ant		2 (O	200	on	N	got		, je			2	8		200	ne!					
8	or	+	1	. 5	Res	(P	/	99	PT)	=	D	to,	c	(P)	-	2	50	P)							1	(P)	10	an	ish	es		>	P.	ha	a	me	elti	ale
			0				+	-				da				-													2	A				1	A		00		1	-	
	8		8	~		~	2			1				-				10			-				200	4			0.0			4		~	0		-			6	
	P	ð	me	de	ict	Eld	le	-		Ð			1	1	1.2			07 07)	-	1																				
0.070									=	D		$ \land $	CF	5)	#	C	>																								



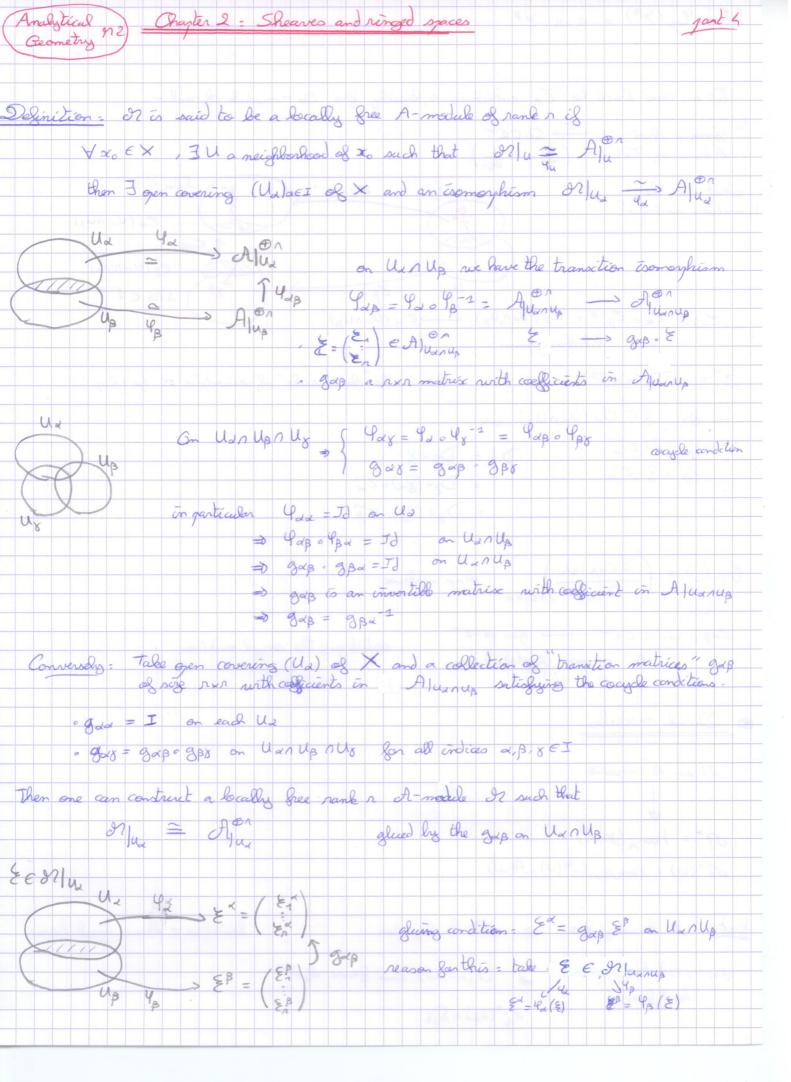




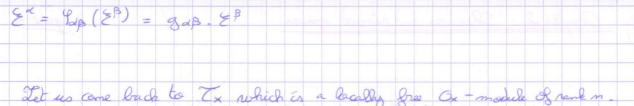


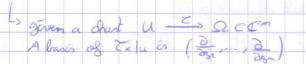

2.
$$2(U) = 5U = 5K$$
 knowed)
 $C^{+}(S) = 5U$
 $C^{+}(S)$

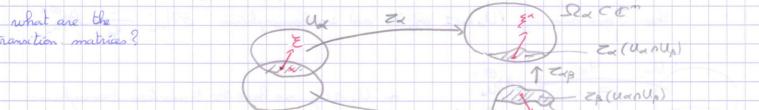
. .

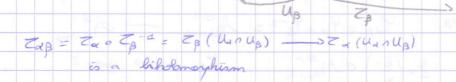


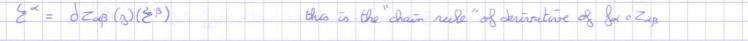
II - Ringed spaces

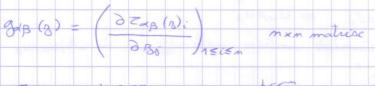


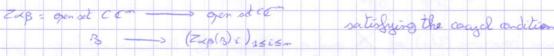


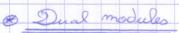

& (Di) = a + a Bi + - - + an Bn + g (Sc) where g E mx is $\sum_{x \in \mathcal{D}} \mathbb{D}(g(x)) = \sum_{x \in \mathcal{D}} a_x \mathbb{D}(x_x) + \mathbb{D}(x_x)$ D'g(x)=0 because ge mx, 2 so g= Eue ve for us, ve Emx, x $L_{3}D_{g}(x) = \sum_{q} D_{u_{q}}(x) \cdot \nabla_{q}(x) + u_{q}(x)D_{v_{q}}(x)$ = 0 let us introduce Ej (x) = DBj (x) and suppose (B1, ..., Bm) defined on UCX Is then Ei E Ox(U) $D_{S(x)} = \sum_{g=1}^{\infty} \frac{\partial S_{g}(x)}{\partial S_{g}} = \sum_{g=1}^{\infty} \frac{\partial S_{g}(x)}{\partial S_{g}}$ Theorem : Given a coordinate chart U = SCET on X, the derivations Dog Oxfu are given by vector fields = $\mathcal{E}(\mathbf{x}) = \sum_{j=1}^{n} \mathcal{E}_{j}(\mathbf{x}) \frac{\partial}{\partial \mathbf{x}^{j}}$ (23 6 2 (2) $DS = DzS = \sum_{x=1}^{n} E_{x}(x) \stackrel{es}{=} S(z_{x})$ U-Z RCCM (In ... , In canonical bears of C Tangent sheaf = Tx (4) = 5 derivations of Gx(4)) 45 sheaf of Gx - modules EET.(U) $\Rightarrow q_{\circ} \mathcal{E} = \sum_{i=1}^{\infty} q_i(x) \mathcal{E}_{i}(x) \frac{\partial}{\partial x_i}$ ge Ox (U) Desinition: Given a ringed space (X, A), an A-module of is a sheaf U -> Ir(W) of A(W) - modules (with compatibilities with restriction) Example: . The module It & name nove A n=AOn · In a At free A-model

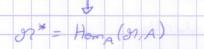

-

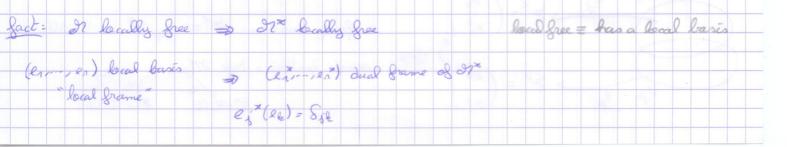


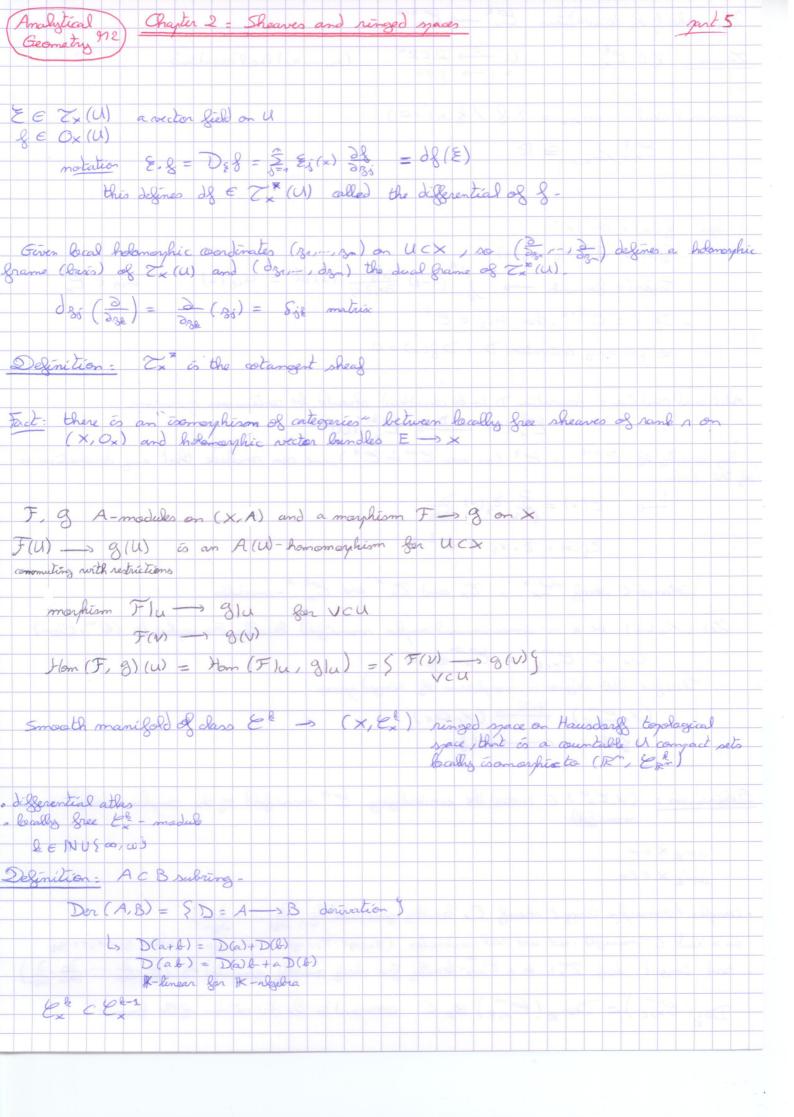

DB EC

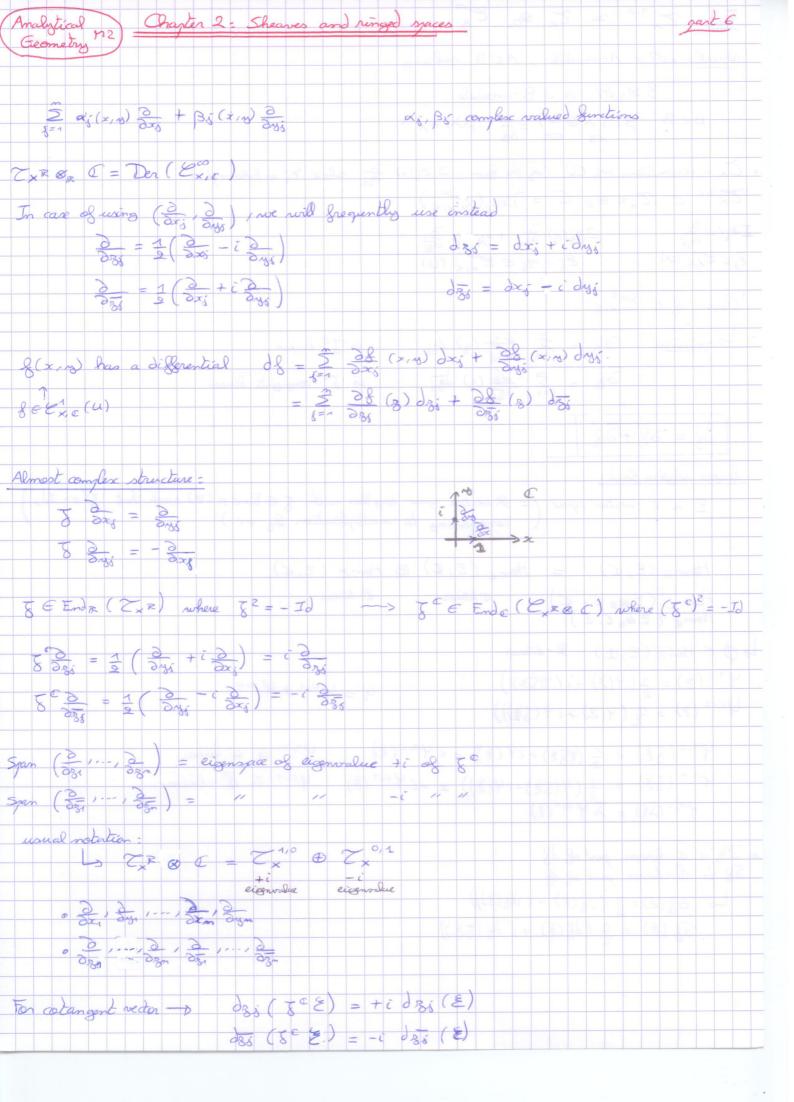












 $\mathcal{H}^{*}(\mathcal{U}) = \operatorname{Hom}_{\mathcal{A}(\mathcal{U})}(\mathcal{H}(\mathcal{U}), \mathcal{A}(\mathcal{U}))$

Tx sheaf of derivations Ex -> Ex-1 Lemma: SE Expe U Z DCR^m x -3 p=0 (x1,-,xn) lead avaidante masañalideal mx, = 58/8(x)=0) Exix /mx/x = R $g(x) = \sum x_i x_s u_{is}(x)$ Taylor's formula $\longrightarrow \int (1-b) \frac{\partial^2 g}{\partial x_i \partial x_i} (tx) dt = u_{i\delta}(x)$ Uis E Ele-e IS & E E & + 2, then wis E E 2 => for any derivation D , D g(x) = 0 Aditional condition - derivation D to be considered should be continuous operators Et (U) D Et (U) 202+2 in 62 (or ever 20 in 2°), rue can conclude that any derivation is By density of of the Sorm $\mathcal{E}(\mathbf{x}) = \sum_{i=1}^{\infty} \mathcal{E}_{i}(\mathbf{x}) \frac{\partial}{\partial \mathbf{x}_{i}}$ Lp Es (x) = E. x5 E Ek-1 Cotangent sheaf Tx*, Tx and Tx* are th-2-modules Let (X, Ox) be a n-dimensional complex manifold lecally isomorphic to (C^m, Gen) $G_{\times} \subset \mathcal{C}_{\times, \mathcal{C}}^{\circ} = \mathcal{C}_{\times}^{\circ} \otimes_{\mathbb{R}} \mathcal{C}$ Therefore this defines a morphism of ringed spaces $(X, E_{x,c}^{\infty}) \xrightarrow{q=T_{0}} (X, G_{x})$ 804 - 8 Desmittion = (x, Ex) is called the underlying to manifold of the complex analytic manifold dimR X = m Jime X = 2m · complex holomorphic tangent sheaf Tx locally generated by (Dr. --) -) as a real Commight ince use real coordinates (xinga ixe inserior ix minga) refere 35=x5+inss real tangent sheaf The is a thing locally free sheaf locally generated by (2, 2, 1--, 2, 2) Der (Ex, c) = Der R (Ex, R) & C concepton to the derivations of the form =

Fact: $T_{X}^{1,0} \simeq T_{X}^{0,0} \mathcal{C}_{X}^{\infty}$ Nemerle - ∂Ta A-module, ACB subring $B \otimes_{A} \partial T$ is a B-module $B \in B$ B. $(X \otimes x) = (BX) \otimes_{A} X$ $e_{B} \in S = ST = \partial S$ $T_{X} = derivations of <math>G_{X}$ (of the form $\Sigma \in \mathfrak{f}(x) \xrightarrow{2}{\mathfrak{s}}$ where $\mathfrak{E}_{\mathfrak{f}}$ is holomorph $T_{X}^{1,0} \subset T_{XR} \otimes_{R} \mathfrak{C} = Der_{\mathfrak{s}}(\mathcal{E}_{X,\mathfrak{C}}^{\infty})$

 $\begin{array}{c} \Sigma \mathcal{E}_{i}(\omega) \stackrel{\partial}{\rightarrow} & Z \mathcal{E}_{i}(\mathcal{B}) \stackrel{\partial}{\rightarrow} \stackrel{\partial}{\rightarrow} \stackrel{\partial}{\rightarrow} & Z \mathcal{E}_{i}(\mathcal{B}) \stackrel{\partial}{\rightarrow} \stackrel{\partial}{\rightarrow} \stackrel{\partial}{\rightarrow} \stackrel{\partial}{\rightarrow} & Z \mathcal{E}_{i}(\mathcal{B}) \stackrel{\partial}{\rightarrow} \stackrel{\partial}{\rightarrow} \stackrel{\partial}{\rightarrow} \stackrel{\partial}{\rightarrow} & Z \mathcal{E}_{i}(\mathcal{B}) \stackrel{\partial}{\rightarrow} \stackrel{\partial}{\rightarrow} \stackrel{\partial}{\rightarrow} \stackrel{\partial}{\rightarrow} \stackrel{\partial}{\rightarrow} \stackrel{\partial}{\rightarrow} & Z \mathcal{E}_{i}(\mathcal{B}) \stackrel{\partial}{\rightarrow} \stackrel$

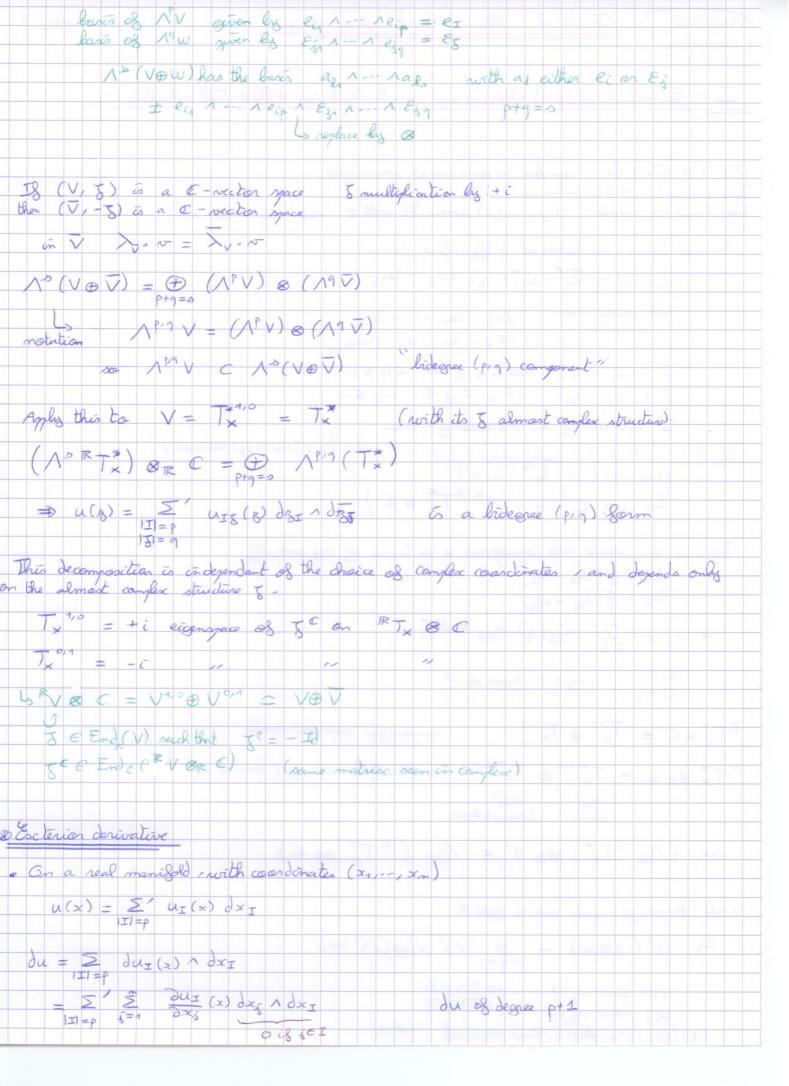
Given & E E X, E

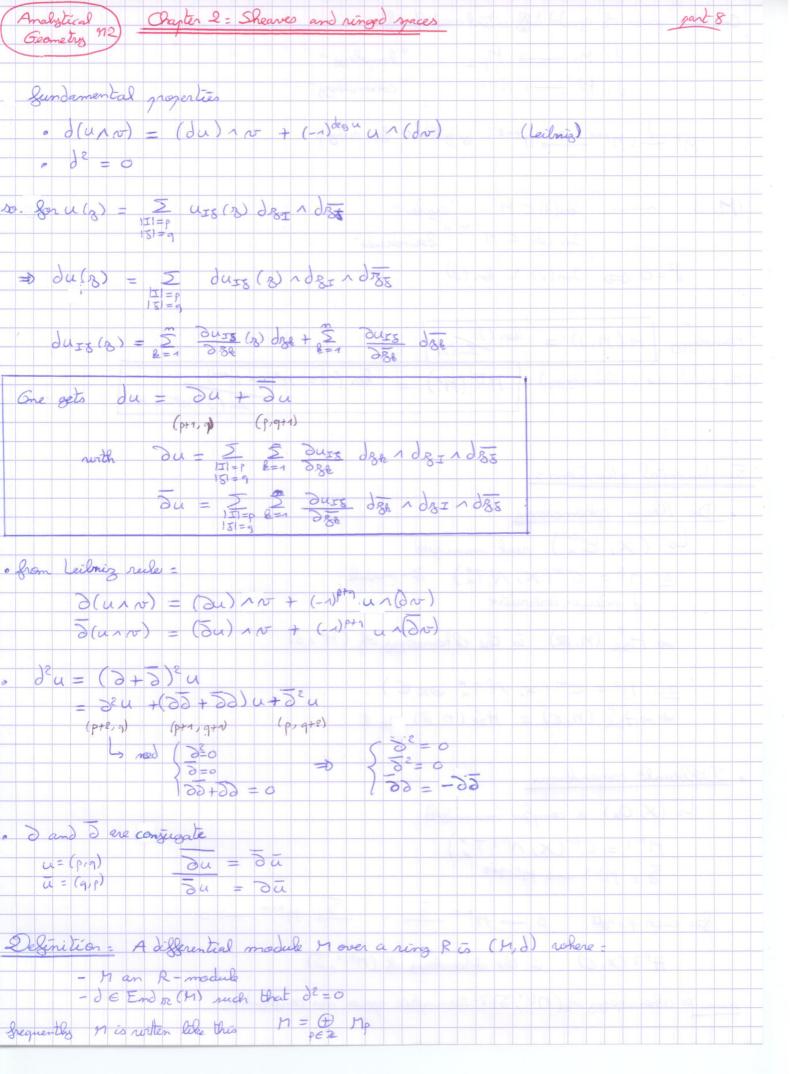
 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

8= 28+28

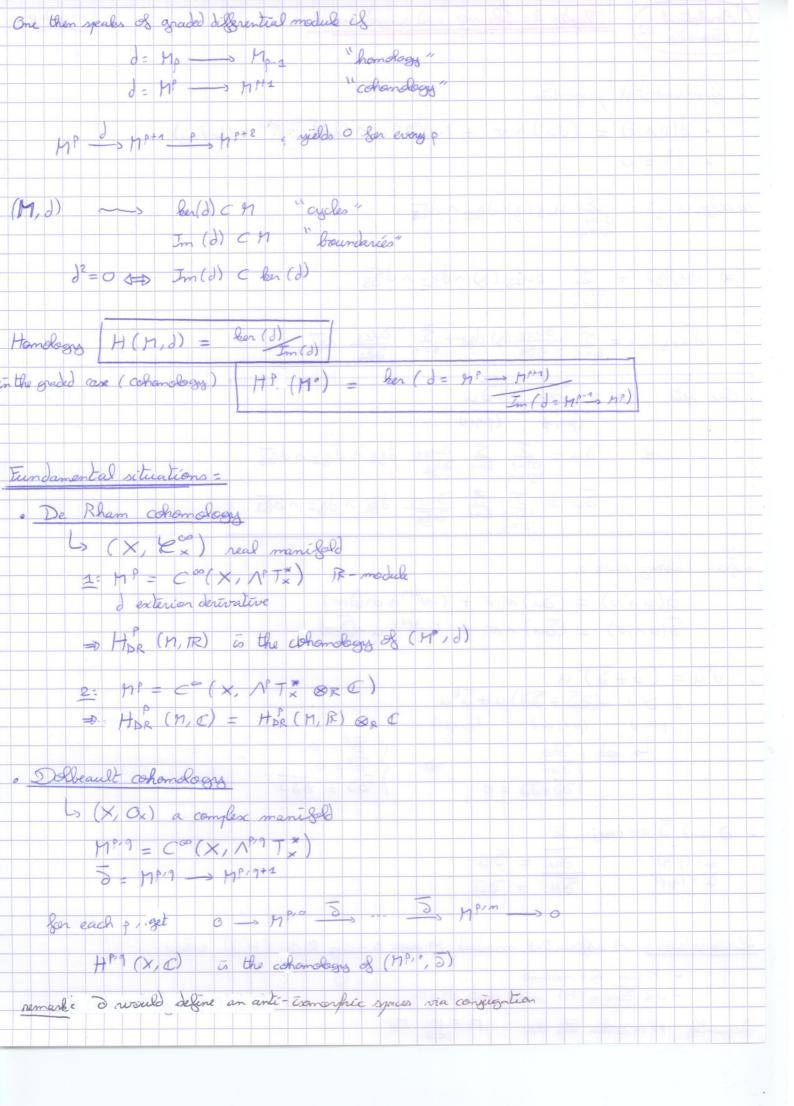
linear algebra lact:

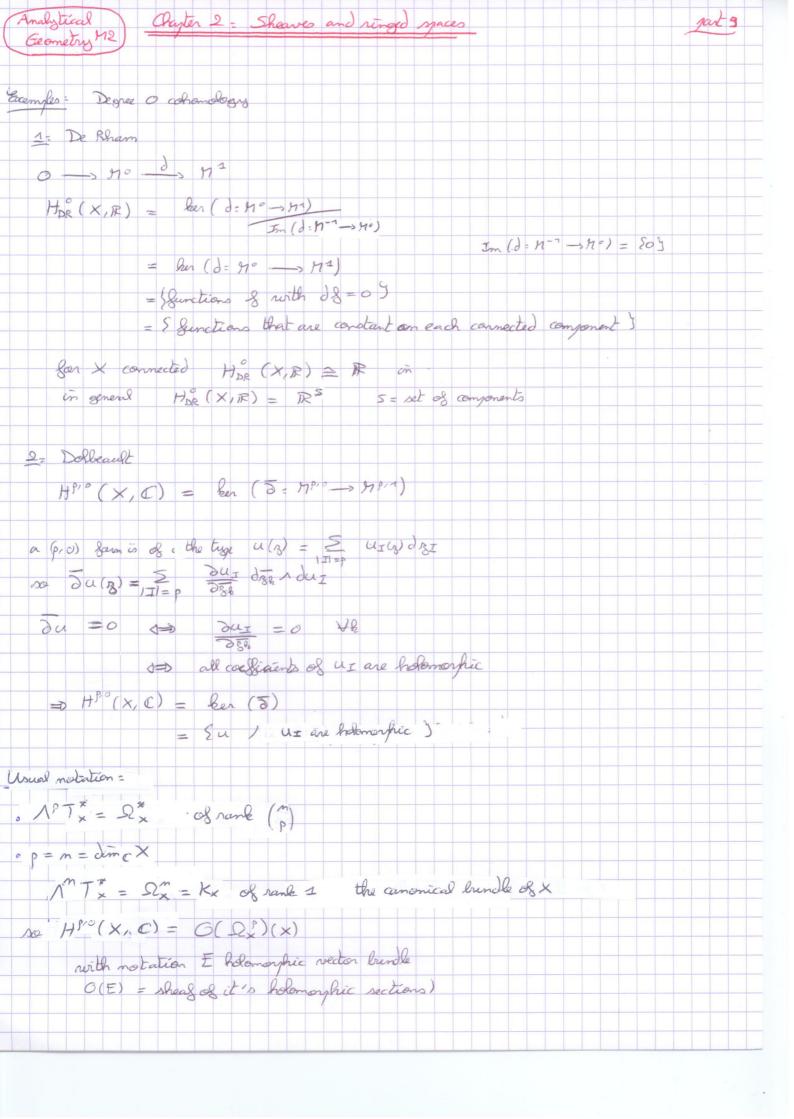
 $E = e^{-vector space} \left(= R vector space together with <math>\xi \in End_R(E)$ such that $\xi^2 = -Id_r \right)$ corresponding to multiplication by $\pm i$

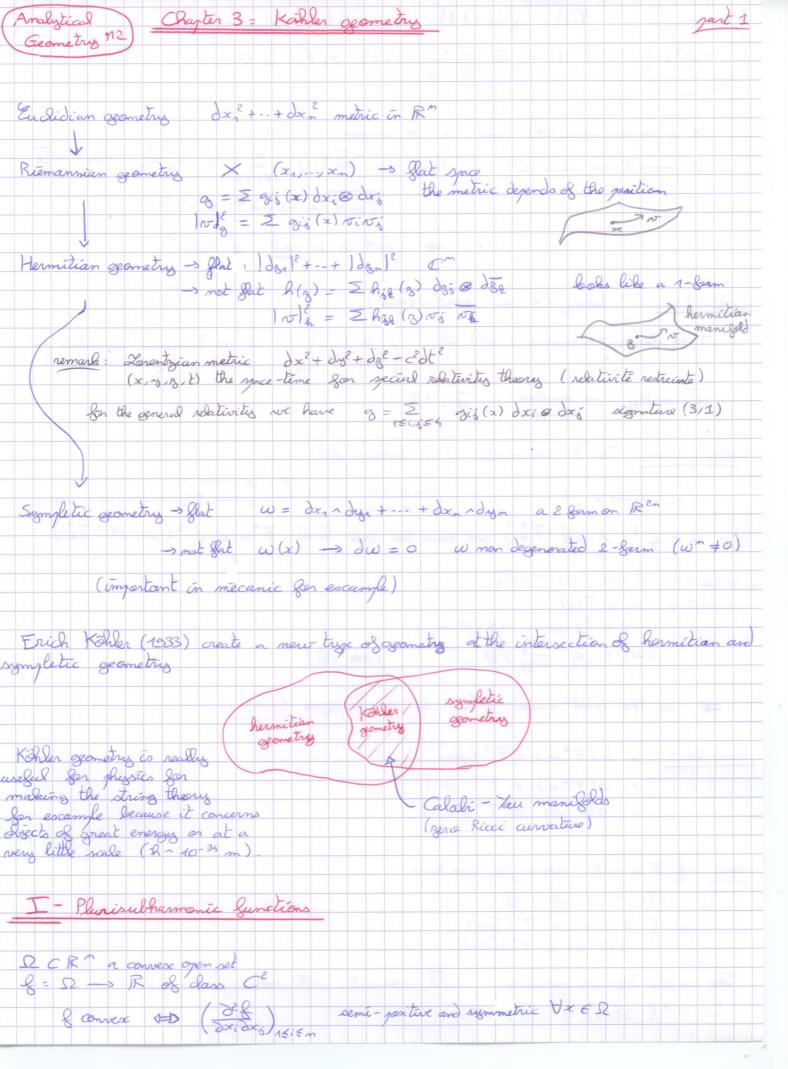

 $Hom_{\mathcal{R}}(\mathcal{E}, \mathcal{C}) = Hom_{\mathcal{C}}(\mathcal{E}, \mathcal{C}) \oplus Hom_{\mathcal{T}}(\mathcal{E}, \mathcal{C})$

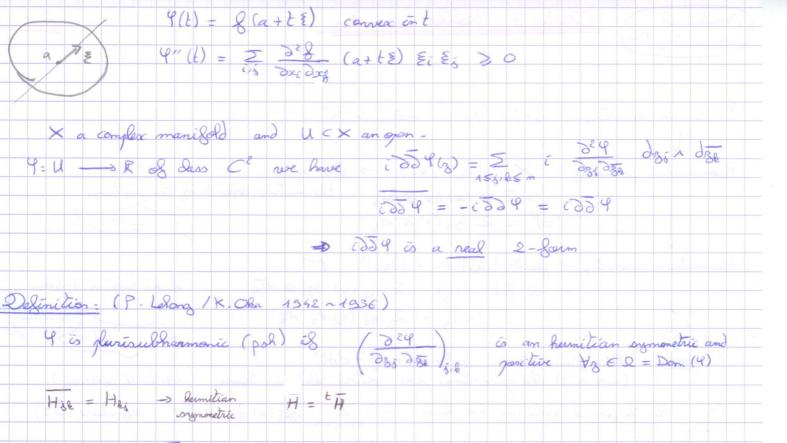

Home (ESRE, C, C)

Lp & C Hom IR (E, C) R-linear


 $\begin{array}{c} \varphi^{1,0}\left(\Xi\right) = \frac{1}{2}\left(\varphi(\Xi) - i\left(\varphi(\Xi)\right)\right) \\ \varphi^{0,1}\left(\Xi\right) = \frac{1}{2}\left(\varphi(\Xi) + i\varphi(\Xi\Xi)\right) \\ \varphi^{0,1}\left(\Xi\right) = \frac{1}{2}\left(\varphi(\Xi) + i\varphi(\Xi\Xi)\right) \end{array}$


 $\frac{28}{58} \stackrel{\circ}{\text{cs}} = \frac{1}{5} \left(\frac{1}{58} \left(\frac{1}{58} \right) + \frac{1}{5} \left(\frac{1}{58} \left(\frac{1}{58} \right) + \frac{1}{58} \right) \right)$



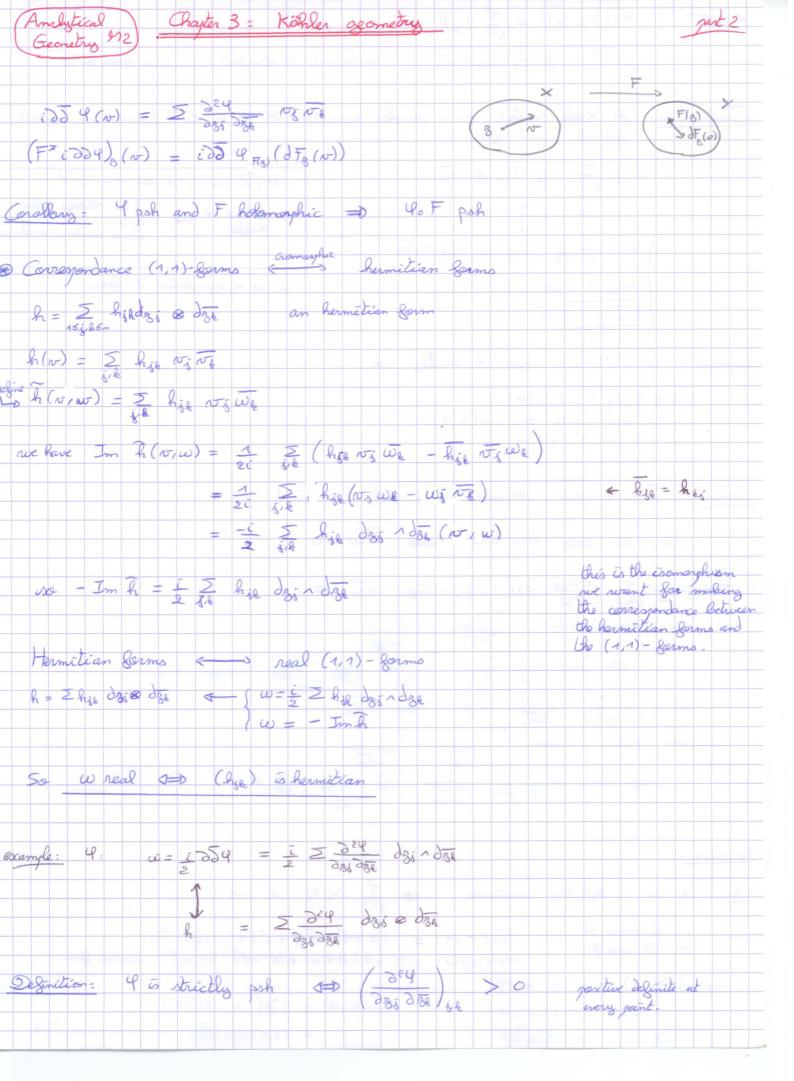


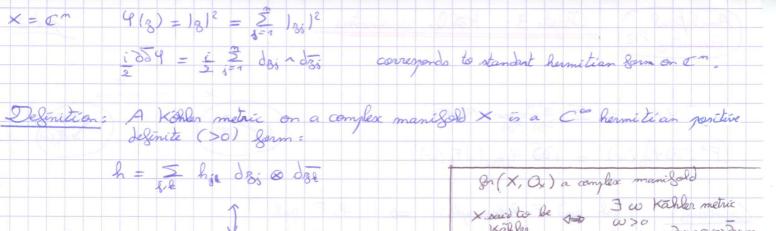
1. 1. 8

Observation - 2, 5 commutes with holomorphic maps .

ken u e C^e (Y, N¹, T^{*}) rere have the Bull-back F^{*} u e C^e (X, N¹, T^{*})

 $u(\omega) = Z u_{IS} \partial \omega_{I} \wedge \partial \overline{\omega}_{S}$ substitute $\omega = F(s)$ $\omega_{\tilde{s}} = F_{S}(s)$ $1 \le \tilde{s} \le m$


 $\omega_{\tilde{s}} = T_{\tilde{s}}(g) \qquad 1 \leq \tilde{s} \leq m$ $\partial \omega_{\tilde{s}} = \sum_{l=1}^{\infty} \frac{\partial F_{l}}{\partial g_{l}} \partial g_{l} \qquad (mo \ \partial \overline{g_{l}})$


= > so the jull-back Ft is & bidegree (prg)

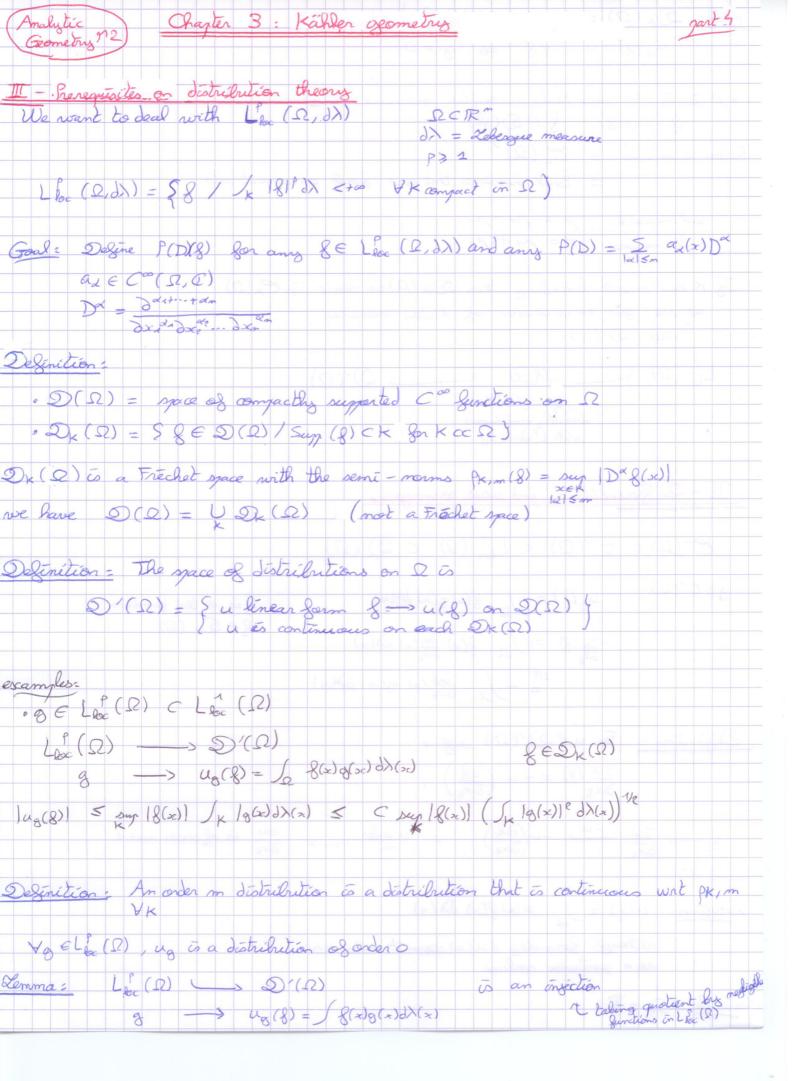
Properties: $\partial (F^* u) = F^* (\partial u)$ $\partial (F^* u) = F^* (\partial u)$ $\partial (F^* u) = F^* (\partial u)$

mode: is F is anti-holomorphic we have $JF_{i} = \sum \frac{\partial F}{\partial S_{i}} \frac{\partial S_{i}}{\partial S_{i}}$ $\Rightarrow \int \partial(F^{*}u) = F^{*}(Ju)$ The complex Hessian operation - i dd commutes with holomorphic maps $<math>J = F^{*}(i \partial J + i \partial J)$

.

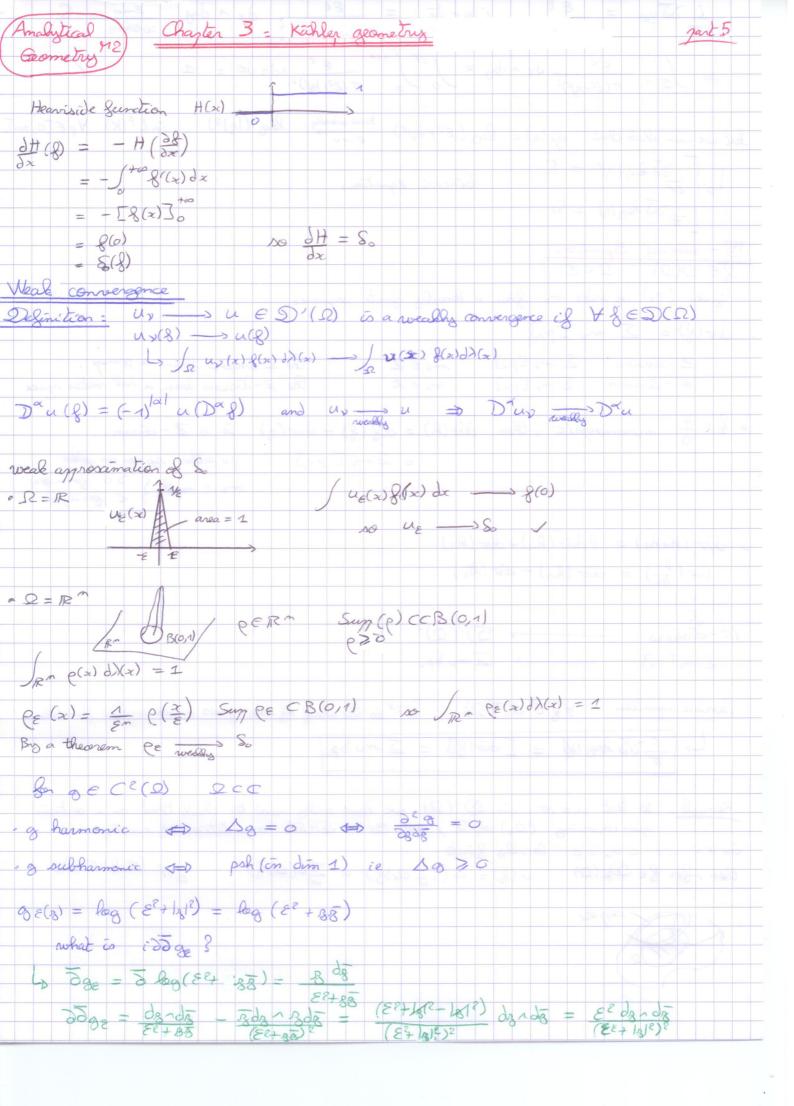
$$\int \omega = \frac{t}{2} \sum_{i,k} \omega_{ik} (x) dx_i n dx_k$$
$$\int \omega_{ik} = h_{ik}$$
$$\int \partial \omega = 0$$

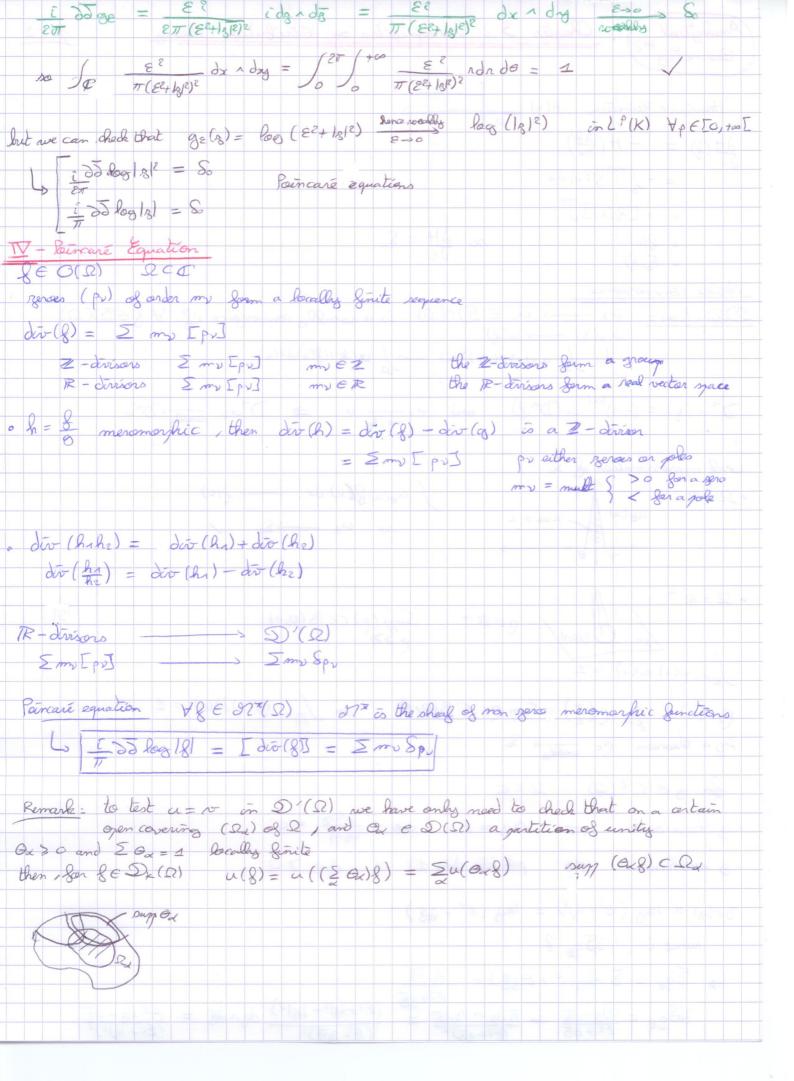
escample: w = i 259 for 4 strictly psh

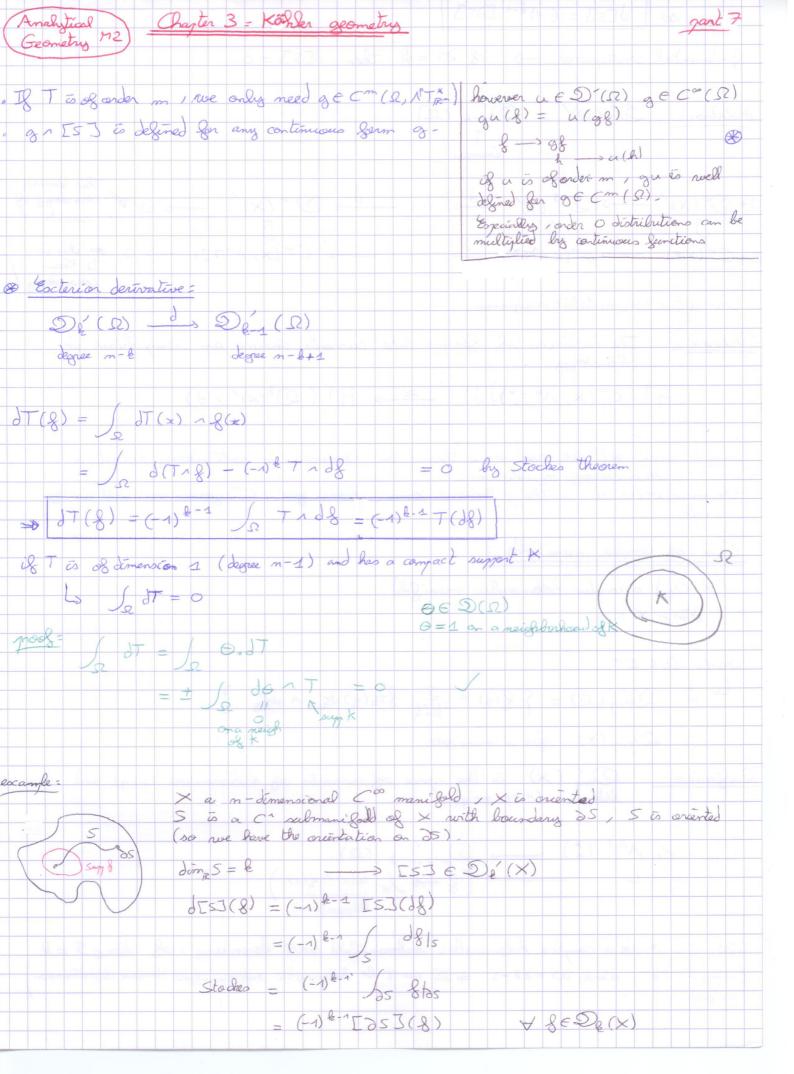

$$\frac{\partial \omega}{\partial \omega} = (\partial + \overline{\partial}) (i \overline{\partial} \overline{\partial} 4) = i \overline{\partial} (\overline{\partial} 4) + i \overline{\partial} (\overline{\partial} \overline{\partial} 4) = i \overline{\partial} (\overline{\partial} 4) + i \overline{\partial} (\overline{\partial} 5) = 0$$

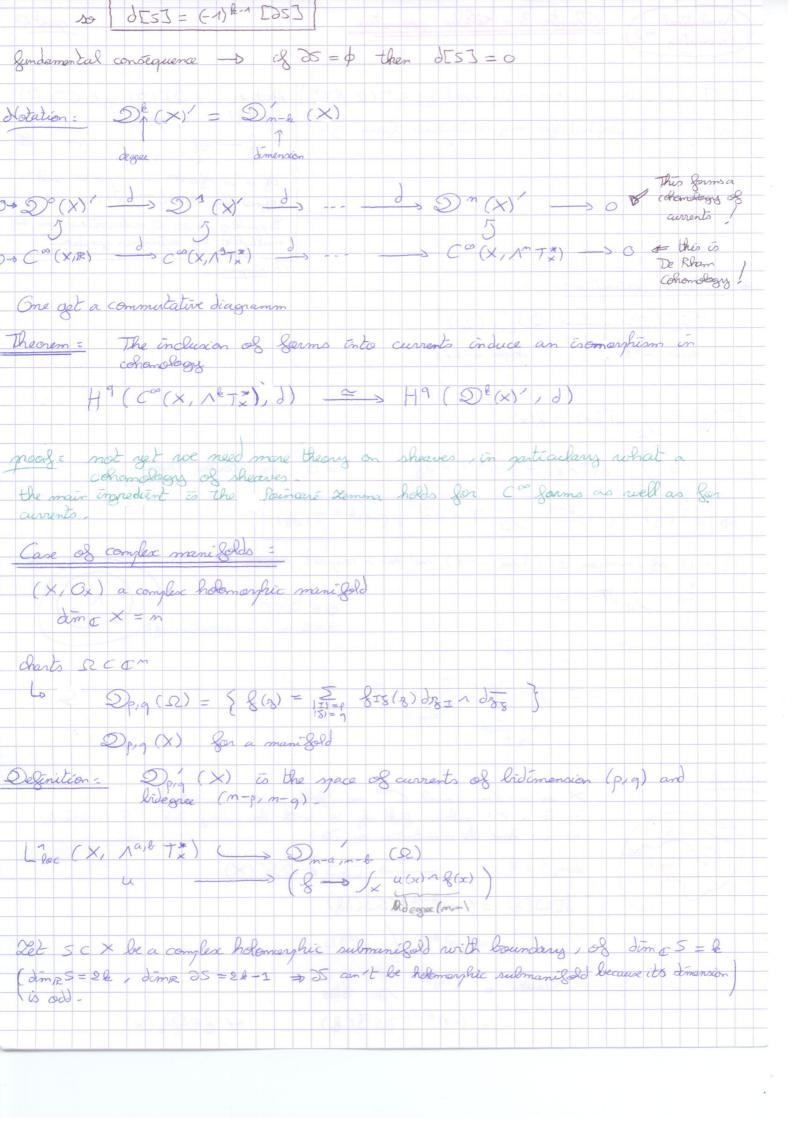
Remark: $\overline{\partial}\omega = \overline{\partial}\omega$ because ω is real $(\omega = \overline{\omega})$

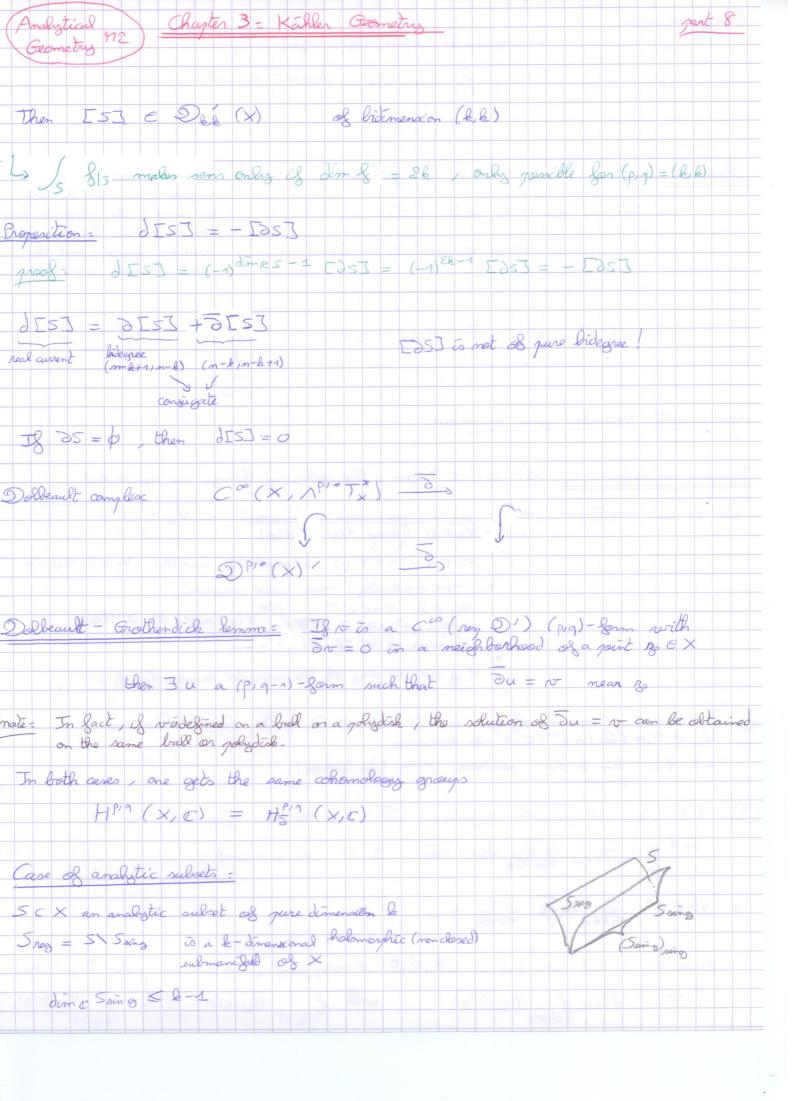

$$\partial \omega = 0 \quad d \Rightarrow \quad \partial \omega = 0 \quad d \Rightarrow \quad \partial \omega = 0$$


$$= \frac{1}{2} \sum_{ij \in \mathbb{Z}} \frac{\partial u_{ij}}{\partial u_{ij}} \frac{\partial g_{ij}}{\partial g_{ij}} \frac{\partial g_{ij}}{\partial g_{$$



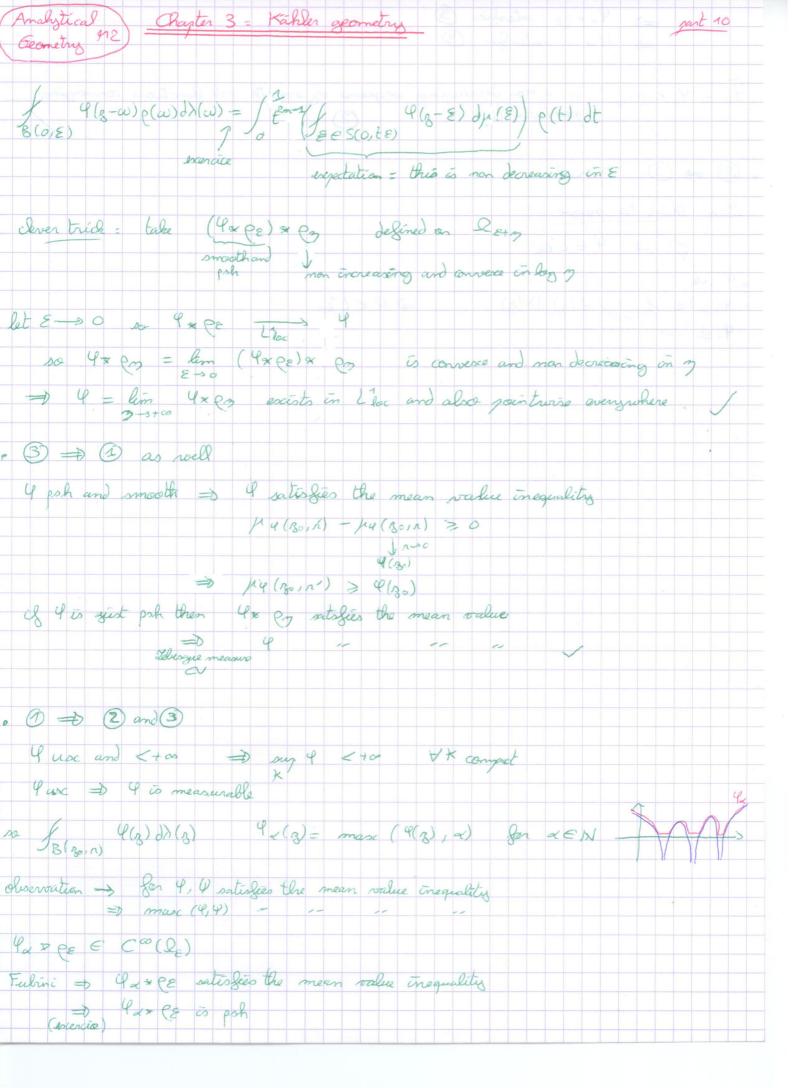

.

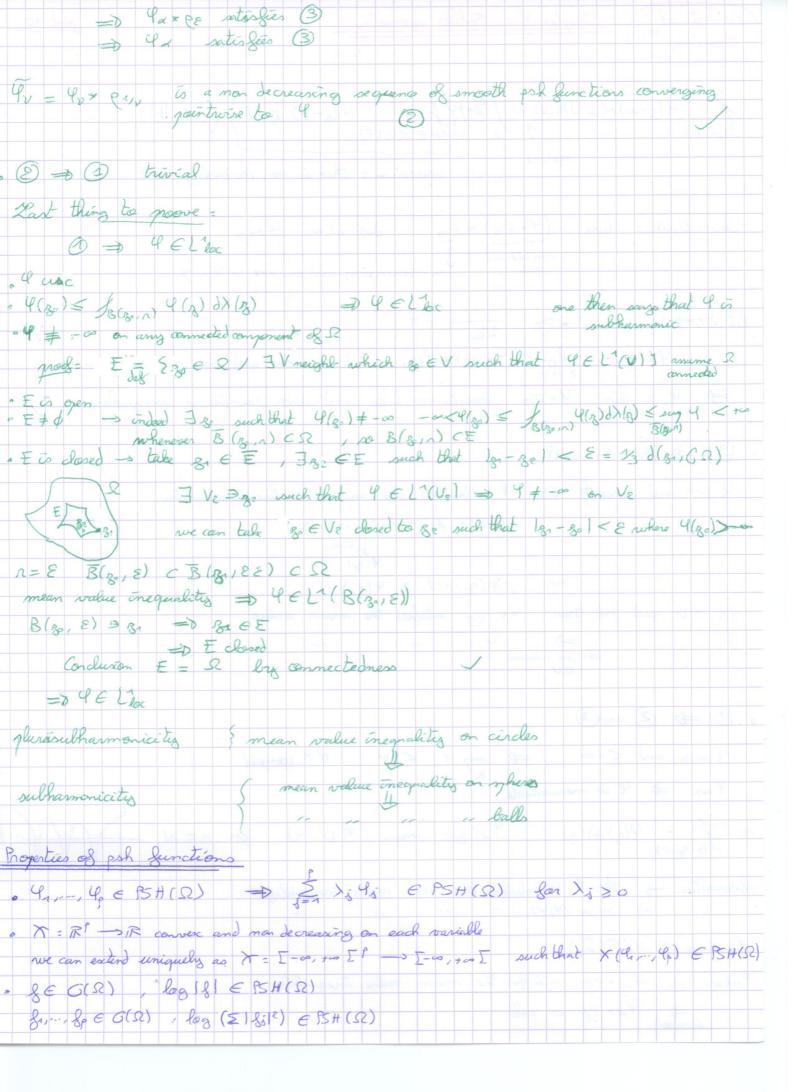


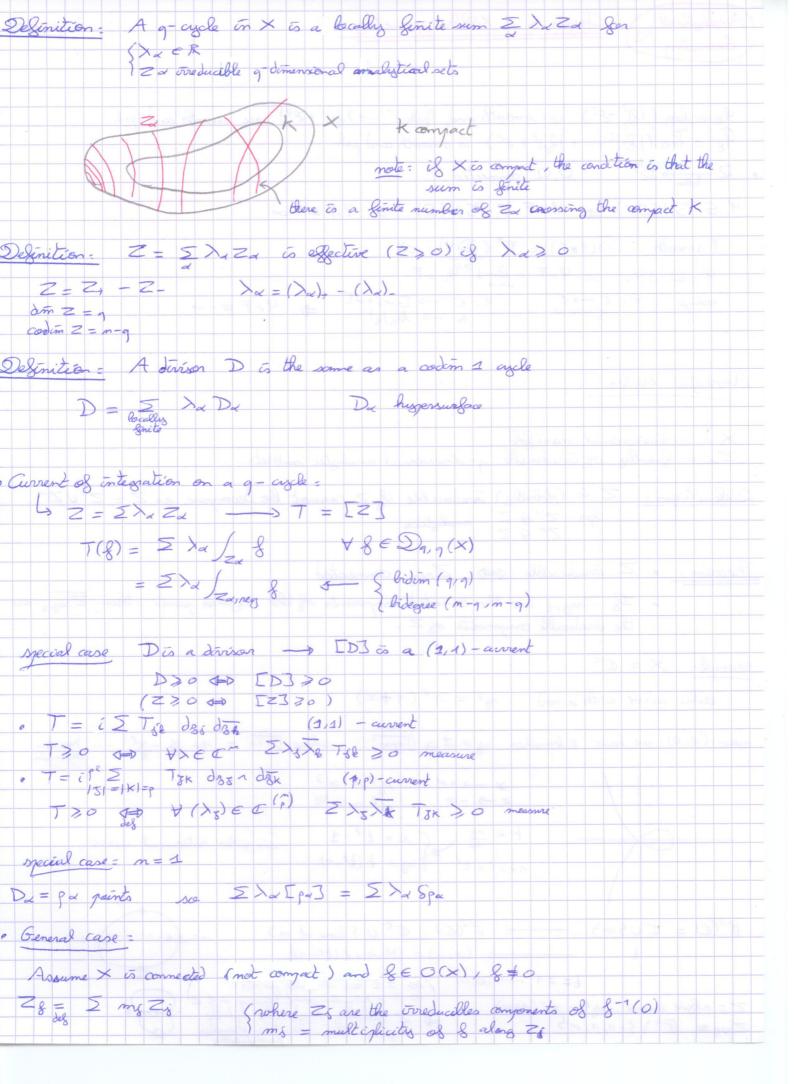


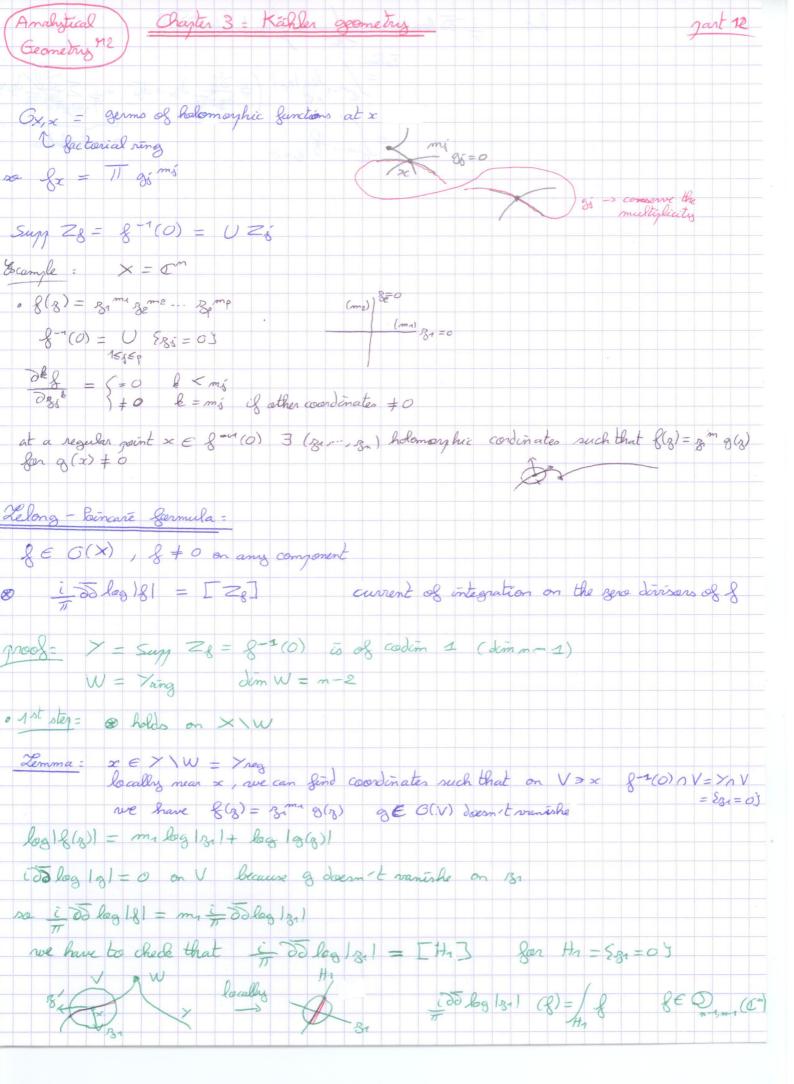


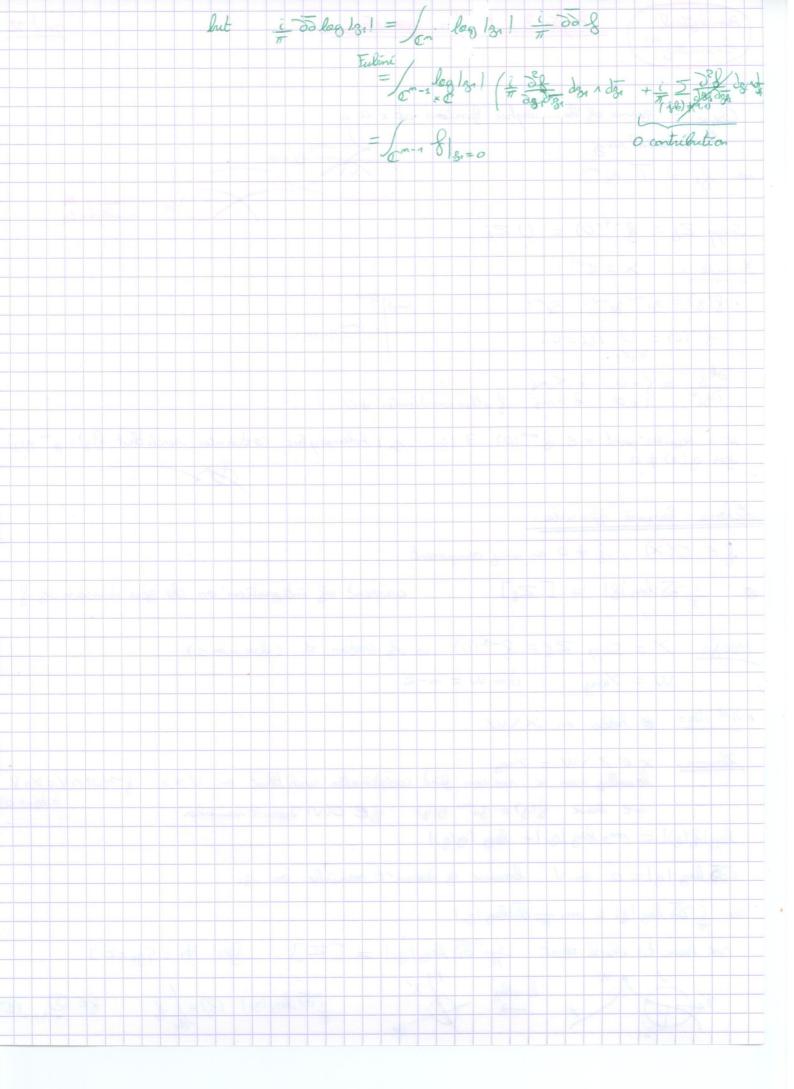
$$\frac{(\operatorname{real training})}{(\operatorname{carmentagy})} \xrightarrow{\operatorname{carmetagy}} \xrightarrow{\operatorname{carmeagy}} \xrightarrow{\operatorname{carmetagy}} \xrightarrow{\operatorname{ca$$

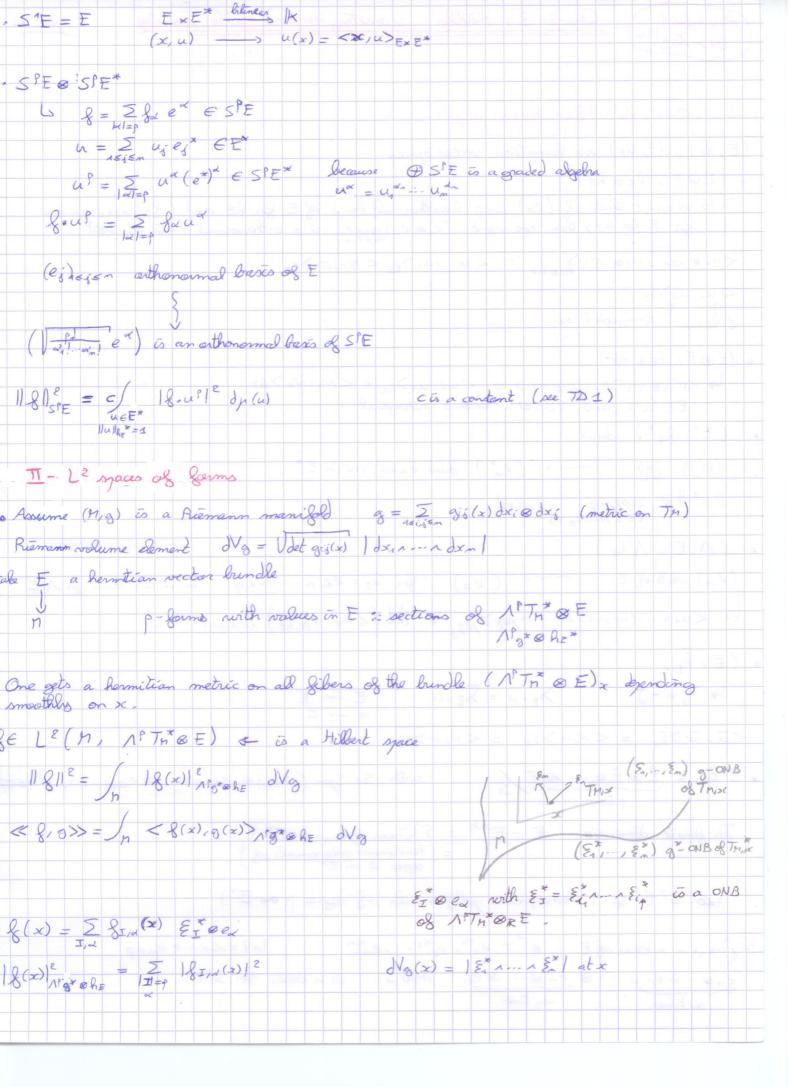







Exercice: Check that 4 E Co (21505) (9 some as just before) T-00, +002 a1 00 > 5 4 Senite de ~ proof of the theorem -· Generalized Jensen Germuch Lo ne ce (w) w c c open ne 30, R $\mu(\mathcal{B}(n)) = \frac{1}{2\pi} \int \mu(\mathcal{B}(n) + n e^{i\Theta}) d\Theta$ • 30 D(Br,R) $\mu(s_{i},n') - \mu(s_{i},n) = \frac{n}{\pi} \int_{n}^{n'} \frac{dt}{dt} \int_{D(s_{i},t)} \Delta \mu(s) d\lambda(s) \quad (\text{Jensen Spinisher})$ consequence - if bu zo then ~ p(Ben) is a non decreasing function $\frac{\partial}{\partial n} \frac{\mu}{n} (s_{0,n}) = \frac{n}{\pi n} \int_{D} (s_{0,n}) \frac{\partial \mu}{\partial s_{0,n}} = \frac{1}{\pi} \int_{D} (s_{0,n}) \frac{\partial \mu}{\partial s_{0,n}} = \frac{n}{\pi} \int_{D} (s_{0,n}) \frac{\partial \mu}{\partial s_{0,n}} \frac{\partial \mu}{\partial s_{0,n}} = \frac{1}{\pi} \int_{D} (s_{0,n}) \frac{\partial \mu}{\partial s_{0,n}} \frac{\partial \mu}{\partial s_{0,n}} \frac{\partial \mu}{\partial s_{0,n}} = \frac{1}{\pi} \int_{D} (s_{0,n}) \frac{\partial \mu}{\partial s_{0,n}} \frac{\partial \mu}{\partial s_{0,n}} \frac{\partial \mu}{\partial s_{0,n}} \frac{\partial \mu}{\partial s_{0,n}} = \frac{1}{\pi} \int_{D} (s_{0,n}) \frac{\partial \mu}{\partial s_{0,n}} \frac{\partial$ t=log n => pr(son) = p(sonet) is a convex Sunction of t $\int_{\mathcal{B}(\mathbb{R}^{n})} \mathcal{U}(\mathbb{R}) d\lambda(\mathbb{R}) = \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \mathcal{U}(\mathbb{R}^{n} + ne^{\frac{1}{n}}a) do d\mu(a)$ · Por SECE and YE (SC) concluxion =: ~ > /4 (Boin) = /B(Boin) (B) dr (B) is converse and non decreasing of · 3 - 2 4 E Lioc (D) such that idd 4 3 0 in sens of distributions (RE) a familly of regularizing kernels defined on $\Omega_{\mathcal{E}}$ $\Omega_{\mathcal{E}} = S \otimes \mathcal{E} \Omega / d(S, G, \Omega) > \mathcal{E}$ $\Psi = \left(\mathcal{B} \right) = \int \Psi \left(\mathcal{B} - \omega \right) \mathcal{C} \left(\omega \right) d\lambda \left(\omega \right)$ B(0, 2) No le * CE E C∞ (SLE) > 4 * CE E PSH (RE) (m CE take $e_{\varepsilon}(\omega) = \frac{1}{\varepsilon} e(\frac{|\omega|}{\varepsilon})$ so that =




$$\begin{aligned} \begin{array}{c} \begin{array}{c} \left(\left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \right) \right) \right) \\ \left(\left(\begin{array}{c} \left(\left(\begin{array}{c} \left(\right) \right) \right) \right) \\ \left(\left(\left(\begin{array}{c} \left(\right) \right) \right) \\ \left(\left(\left(\right) \right) \\ \left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\right) \right) \\ \left(\left(\right) \right) \\ \left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\right) \right) \\ \left(\left(\left(\right) \right) \\ \left(\left(\left(\right) \right) \\ \left(\left(\left(\right) \right) \\ \left(\left(\left(\right) \right) \\ \left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\right) \right) \\ \left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\right) \right) \\ \left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\left(\right) \right) \right) \right) \\ \left(\left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\left(\right) \right) \right) \right) \\ \left(\left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\left(\right) \right) \right) \right) \\ \left(\left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\left(\right) \right) \right) \right) \\ \left(\left(\left(\left(\right) \right) \right) \right) \\ \left(\left(\left(\left(\right) \right) \right) \right) \\ \left(\left(\left(\left(\left(\right) \right) \right) \right) \\ \left(\left(\left(\left(\left(\right) \right) \right) \right) \\ \left(\left(\left(\left(\left(\left(\right) \right) \right) \right) \right) \\ \left(\left(\left(\left(\left(\left(\right) \right) \right) \right) \right) \\ \left(\left(\left(\left(\left(\left(\left(\left(\left(\right) \right) \right) \right) \right) \right) \\ \left(\right) \right) \right) \right) \right) \right) \right) \right) \right)$$

Chapter & = Operators in Hermitian and Kähler geometry Analytical part 1 Geometry M2 I - Basic hermitian linear algebra (E, hE), (F, hE) are hermitian vector spaces · (E@F, he & hF) Is we want that if (ex) 1525 & is a either and basis of E for he and (& p) 1595t is one for F for hF, then we want (exelep) is a orthonormal basis of ESF < UN & NA 1 428 N2 heshif = < UN 142 > he < NN 1 N2 > hit < un ue hE C-linear C-conjugate linear · (E@F, hE@ hF) > < UI ONA JUE ON2 > = < UAJUE > hE + < NAJNZ > hE E@ 503 and 503 OF become orthogonal (E*, hE*) dual (Ra) ONB ~~> (ex) dual basis ON in E* $\||u^*\|| = \sup_{x \in \mathbb{Z}, ||x||_{R_E} \leq 1} |u(x)|$ · (NE, NhE) (ea) ONB of E ----> (ex) for ex= einn--- reip is a ON basis for 1ºE L' < un n- nup, van --- nop DAPRE = det (< ux, vphE) 15 x, psp $(\overline{E}, h_{\overline{r}})$ $b = -3 \qquad \sum_{E = u} = \sum_{E = u} E \xrightarrow{u} E \xrightarrow{u} = \sum_{u} E \xrightarrow{u} E \xrightarrow$ <U, T> AE = < MU > AE = < U, N> AE · SPE = E& E& -- & E/ with S= Span (xow - escop) - x, e - exp / JEOp) P times In finite timension E = E ** = 5 timen forms on E 3 = { homogenous polynomials of y degree 1 on E* => SPE = 5 homogenous jolyromials of degree p on E*} (eg)resen aberio of E e = en eze --- . em $|\alpha| = d_1 + - + d_m = p$ mod S to a basis for SPE la@---@en@---@en@---@en an times de times

Analytical Chapter 4 = Geometry M2)

So the L² spaces requires coefficients fin (x) to be measurable and in L²be when express in smooth orthonormal frames.

Remark = smooth normal orthonormal grames always exits (sust apply Gram - Schmidt algorithm)

L²(M, N^pT^{*}_n & E) is a Hilbert space Reposition =

· X a complex on - domensional munifold W = E Wik (3) des & det an hermitian structure on X

 $\omega = \frac{i}{2} \sum_{l \in j, k \leq m} \omega_{jk}(g) dz_l \wedge d\overline{z_k} \qquad real (1,1) - form$

 $\partial V_{\omega} = \frac{\omega^m}{m!} = \det (\omega_{se}(s)) \stackrel{i}{=} \partial s_{1} \partial s_{2} \cdots \stackrel{i}{=} \partial s_{m-1} \partial s_{m}$

dx (3) densition of the Reimitian volumo Joan

Recall: $u \in E_{nd}(E) \subset E_{nd}_{\mathbb{R}}(E)$ then $\det_{\mathbb{R}}(u) = |\det_{\mathbb{C}}(u)|^2$

Gregets a Hilbert space $L^{2}(X, \Lambda^{p, q} T_{X}^{*} \otimes E)$ with

 $b = \frac{\Sigma}{|I| = p} \begin{cases} I J_{m} (B) d_{JI} - d_{\overline{J}\overline{B}} \otimes e_{\alpha} \\ I S I = q \end{cases}$ with global $L^2 \operatorname{norm} \int_{X} |B(g)|^2 \mathcal{N}_{\omega}$

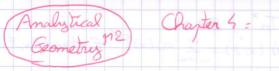
III - Differential operators

Take (M, 3) a Remannian manifold, F, F two hermitian bundles over to

Definition: A differential genation $F(D) = C^{\infty}(M, E) \longrightarrow C^{\infty}(M, F)$ of over in is such for $g \in C^{\infty}(\mathcal{H}, E)$ genere by $g(x) = \sum_{1 \le s \le n_E} f_s(x) e_s$

se = (x1, -- , xm) local coordinates $P(D)g(x) = \sum_{|\alpha| \le m} \alpha_{\alpha}(\alpha) D^{\alpha}g(\alpha)$ locally on M-Jul De = Jul De = Jul

because $F_{1,\mu} \cong U \times \mathbb{K}^{nF}$ locally, we have


 $(P(D)g(x))_{i} = \sum_{|\alpha| \leq m} \alpha_{\alpha,i,j}(\infty) \sum_{i} \frac{1}{2} \int_{\delta} f(x)$

age Co (U, MEXTE matrisc)

gart 2

By dividuation theorem , one of a automatically an exterior

$$P(D) = D'(H, E) \longrightarrow D'(H, F) availing anti-account.$$
Are have $L^{2}(H, E) \in D'(H, E)$ on $Don(HD)$ $P(D)$ $L^{2}(H, F)$
 $(e^{i}m_{E})$
with $Don(HD) = \int g \in L^{2}(H, E) \neq P(D)(g) \in L^{2}(H, F)^{1}$
 $Graph (HD) = \int g \in L^{2}(H, E) \neq P(D)(g) \in L^{2}(H, F)^{1}$
 $Graph (HD) = \int g \in L^{2}(H, E) \neq P(D)(g) \in L^{2}(H, E) \times L^{2}(H, F)^{2}$
 $graph (HD) = \int g = \int (H, F) \otimes g = \int (H, E) \otimes (H, F)^{2}$
 $graph (HD) = \int (G, P(D)) = a$ a down subgrave of the Hilbert grave $L^{2}(H, E) \times L^{2}(H, F)^{2}$
 $graph (HD) = \int (G, P(D)) = a$ a down subgrave of the Hilbert grave $L^{2}(H, E) \times L^{2}(H, F)^{2}$
 $graph = \int (H, F) \otimes (H, P(D) \otimes H) = \int (H, F) \otimes (H, F$

T

$in U_{2}, f(D)(g) = \sum_{\substack{\substack{\lambda \in m \\ |\lambda| \leq m}}} a_{\lambda}(x) D^{\alpha}g(x)$

the riemannian volume dement d'y(x) = y(x) dx, 1-- 1 dx, with (xy, -, x) coordinates on Ux (ariented).

 $\ll P(D) \$, \$) = \int_{U_{1}} < \sum_{\alpha} (x) D^{\alpha} \$ (x) , v_{\beta} (x) > dV_{\beta} (x)$

$$P = \int_{U_{d}} \sum_{q \neq i} (-1)^{q} \left\{ s(x) \quad D^{q} \left(s(x) \quad a_{i,i,s}(x) \quad g_{i}(x) \right) dx_{i} \dots dx_{i} dx_{i} \dots dx_{i} dx_{i} dx_{i} \dots dx_{i} dx_{i} \dots dx_{i} dx_{i} dx_{i} \dots dx_{i} dx_{i} dx_{i} \dots dx_{i} dx_{i} dx_{i} dx_{i} \dots dx_{i} dx_{i$$

Symbol of a differential operator =

$$\frac{1}{10m(EF)} = \sum_{|\alpha|=m} \alpha_{\alpha}(\alpha) E^{\alpha}$$

E should be seen as an element of the fiber of the cotangent bundle -> E E Tripe

to 5 (P(D)) to a Congunction on Tr" into the burdle Homp (E, F) that is a homogeneus johymomial of degree min &

 $P(D)(e^{tq} g) = \sum_{|\alpha| \leq m} a_{\alpha}(x) D_{x}^{\alpha}(e^{tq(x)} g(x))$

$$t^{m}\left(\sum_{|k|=m} \left(\frac{\partial \varphi(x)}{\partial x}\right)^{\alpha} \alpha_{\alpha}(x) \cdot \frac{\partial (x)}{\partial x}\right) e^{t\varphi(x)} + te^{-\kappa}$$

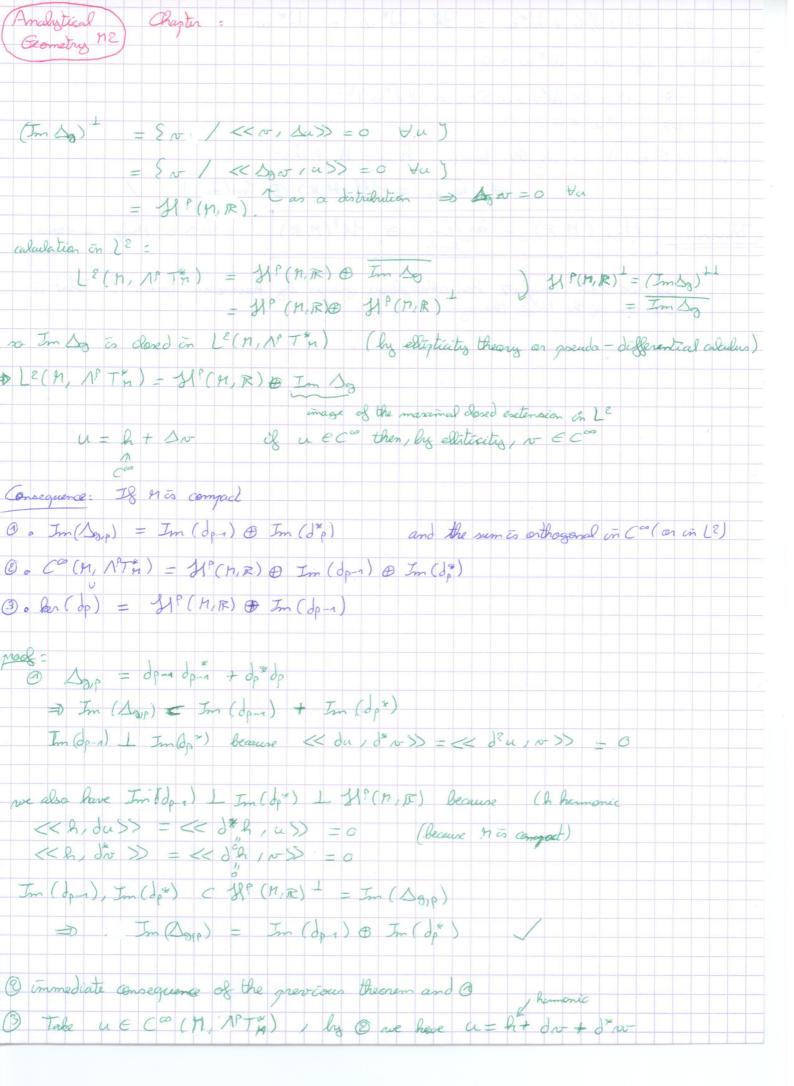
$$= t^{m}\left(\sum_{|k|=m} \left(\frac{\partial \varphi}{\partial x}\right)^{\alpha} \cdot \cdots \cdot \left(\frac{\partial \varphi}{\partial x}\right)^{\alpha}\right) + lover legree og t$$

 $\Rightarrow - (P(D)(x, d(x))) (x) = \cos (\theta + \theta + \theta) (e^{tq} - \theta)$

$$= \sum_{|x|=n} a_{\alpha}(x) g(x) (\partial f(x))^{\alpha}$$

 $\mathcal{D} = \mathcal{D}(\mathcal{P}(\mathcal{D})) \in \mathcal{C}^{\infty}(\mathcal{D}, \mathcal{S}^{m} \mathcal{T}_{\mathbf{X}} \otimes_{\mathcal{R}} \mathcal{H}_{\mathrm{GMK}}(\mathcal{E}, \mathcal{F}))$

jart ?


Destinition: P(D) is an ediptic operation if $\forall E \in Tn^*, E \neq 0$ is injective $\nabla (P(D)^*)(\mathbf{x}, \mathbf{\xi}) = (-1)^m \sigma (P(D)) (\mathbf{x}, \mathbf{\xi})^*$ adjaint of an element of Hom (Ex, Fre) Hom (Fx; Ex) because the adjoin of a surjective application is injective (and the adjoin of an injective application is surjective), if rank E = rank F Consequence: P(D) elliptic (=> P(D)* elliptic Sobolev spaces When (M,E) = \$ 8/ SK Z IDagle JVg < to YK cch J $(1+|\mathbf{E}'|^2)|\hat{\mathbf{g}}(\mathbf{E})|^2\partial\mathbf{E} < +\infty$ $W_{loc}^{s}(\mathbb{R}^{m},\mathbb{E}) = \{\{1,1\},1\}$ Basic ellipticity results -· P(D) is all order m, & E W (H, E) => P(D) & C W and (n, F) · IS P(D) is allightic and P(D) & ∈ W & (n, F) = BE Wer (M,E) proof - sust for the case of constant coefficients $P(D) = \sum_{a \in D^{\alpha}} a_{a} D^{\alpha}$ $\sigma(P(D))(\tilde{z}) = \sum_{|\alpha| \in \mathcal{A}} \alpha_{\alpha} \tilde{z}^{\alpha} \in Hom(\bar{z}, \bar{z})$ is injective because $P(D) \tilde{\alpha}$ elliptic the Fourier transform & P(D) & is P(D) & (E) = (25) and E & (E) 11 P(D) 8 1 = (1+1512) = 1 = a, 5x . B(E) 12 sounda - differential $\operatorname{trigedivity} \rightarrow = \left(c \left(1 + 1 \varepsilon \right)^{2} \right)^{2} \left(\left| \varepsilon \right|^{m} \cdot \left| \varepsilon \right|^{2} \right)^{2}$ theory Consequence - Every eliptic operator is hypelliptic When solving P(D) & = 8 with g e Coo, then & e Coo

Interior product in the exterior algebra: V vector space over 1K, V* its dual and 1° V* the space of the alternate p-multilinear forms VI -> K Given w EV, one defines the interior product by w= $L_{n} = \Lambda^{p} V^{*} \longrightarrow \Lambda^{p-1} V^{*}$) defined by tod (upr, upr) = a (1, un, ..., up-1) a hora (v, a) -> in a to trivially linear in v and in a. choose (e,...,e,) a basis of V ~ (eI)III=p is a basis of N°V* by definition $e_{I}(u_{n}, u_{p}) = det (e_{i_{p}}^{*}(u_{t}))$ Lo $ie_s e^{\star} = e_I^{\star} (e_s , u_{n, \dots}, u_{p-1})$ = 3.0 ig 5#I + e = (5) $e_{\mathbf{J}}^{\mathbf{x}} = e_{i_{\mathbf{J}}}^{\mathbf{x}} \wedge e_{i_{\mathbf{2}}}^{\mathbf{x}} \wedge \cdots \wedge e_{i_{\mathbf{p}}}^{\mathbf{x}}$ the signe is (-1) s-1 is 5= in det (0, -) ig = ie det (105 Property = [in (an B) = En (a) n B + (-1) deg a a r (en B)] Application to diSerential Jorons Lo EECO(M,TM) acco(M, NPT*n) V = TM, X Lie derivative germula = take a vector field & C C (M, Tr) x E(x) $\frac{\partial \mathbf{x}}{\partial t} = \mathbf{x}(\mathbf{x})$ we compute the the differential equation is trajectories of x (t). the flow D=R×h ->n the trajectory of a justicule starting at gasition to at time t=0 4 (robution of our differential equation such that 2(0) = 20) (t,x.) -> \$\$\$(x.) IS M is compact without boundary, & is indeed defined on R×M of go out and is not defined anymore , on the IS I has a boundary particule acquire an infinite speed. VM, & escists as a neighborhood of 50 × M $\phi_t = \eta \longrightarrow \eta$ $\rightarrow \phi(t,po)$ is h is compact R \longrightarrow $D_{i}g^{\infty}(h)$ $\phi_{t'} \circ \phi_{t} = \phi_{t+t'}$ h xif non Compact Le derivative of a p-form & wrt vector field E $Z_{\Xi} \alpha = \frac{1}{2t} \left(\Phi_t^{\mathcal{R}} \alpha \right)_{t=0}$ since It needed only in a neighborhood of any given point, this is always well defined

example:
$$\Omega = |R^{m}|$$
, $g(x) = \frac{\pi}{2}$, dx_{1}^{n}
d and \mathcal{V}^{m} constant lowly with a pointer with all g . D^{n} holes 1, so to (in the
day 1 and the day interest D^{n} much holes D^{n} holes D^{n} holes 1, and the
 $u \Rightarrow \Delta_{g} = \frac{\pi}{2} \frac{2\pi}{2} \frac{2\pi}{2}$
 $u \Rightarrow \Delta_{g} = \frac{\pi}{2} \frac{2\pi}{2} \frac{2\pi}{2}$
 $D_{abs}(x) = 0$
 $D_{abs}(x) = 0$
 $Remark : R_{g} = R_{g}(x) = 0$ (M, Aⁿ T_n^{*}) satisfies to $u = 0$, the $u \in C^{n}$ (M, NTn^{*}).
Another to in derive the day $u = 0$ (M, Aⁿ T_n^{*}) satisfies to $u = 0$, the $u \in C^{n}$ (M, NTn^{*}).
Another to in derive the day $u = 0$ (M, Aⁿ T_n^{*}) satisfies to $u = 0$, the $u \in C^{n}$ (M, NTn^{*}).
Another to in derive the day $u = 0$ (M, Aⁿ T_n^{*}) satisfies to $u = 0$, the $u \in C^{n}$ (M, NTn^{*}).
Another to inderive the day $u = 0$ and $d_{2}^{n} u = 0$
 $u = 0$ (M) $du = 0$ and $d_{2}^{n} u = 0$
 $u = 0$ (M) $du = 0$ and $d_{2}^{n} u = 0$
 $u = R_{n}$ (M) $u = R^{n}$ $u = 2$ dog $u = 0$
 $u = R_{n}$ (M) $u = R^{n}$ $u = 2$ dog $u = 0$ and $d_{2}^{n} u = 0$
 $u = R_{n}$ (M) $u = R^{n}$ $u = 2$ dog $u = 0$ and $d_{2}^{n} u = 0$
 $u = R_{n}$ (M) $u = R^{n}$ $u = 2$ dog $u = 0$ and $d_{2}^{n} u = 0$
 $u = R_{n}$ (M) $(R, R) = S$ Δ_{2} - hermore $u = R_{n}$ (M) (R) (M) $(R$

 $\partial u = dh + \frac{\partial^2}{\partial t} + \frac{\partial d^* w}{\partial t} = -\frac{\partial h}{\partial t} + \frac{\partial d^* w}{\partial t} = -\frac{\partial d^* w}{\partial t}$ $u \in her \partial \quad i \\ \\ \delta u = -\frac{\partial d^* w}{\partial t} = 0$

 $= D \quad 0 = \langle \langle \partial^* \omega , \omega \rangle = || \partial^* \omega ||^2$ $= D \quad \partial^* \omega = 0$

so u E berd is of the form " u= h + dr

=> herdp = H° (41, R) @ Im (dp-1)

Theorem = $H_{DR}^{p}(M,R) = her d_{P} \cong JI^{p}(M,R)$ W.V.D. Hodge = 1340 $\overline{Im} d_{P,n}$

So we can compute , cohomology groups by harmonic forms ! That is the aim of the House theory ,

Hodge * operator :

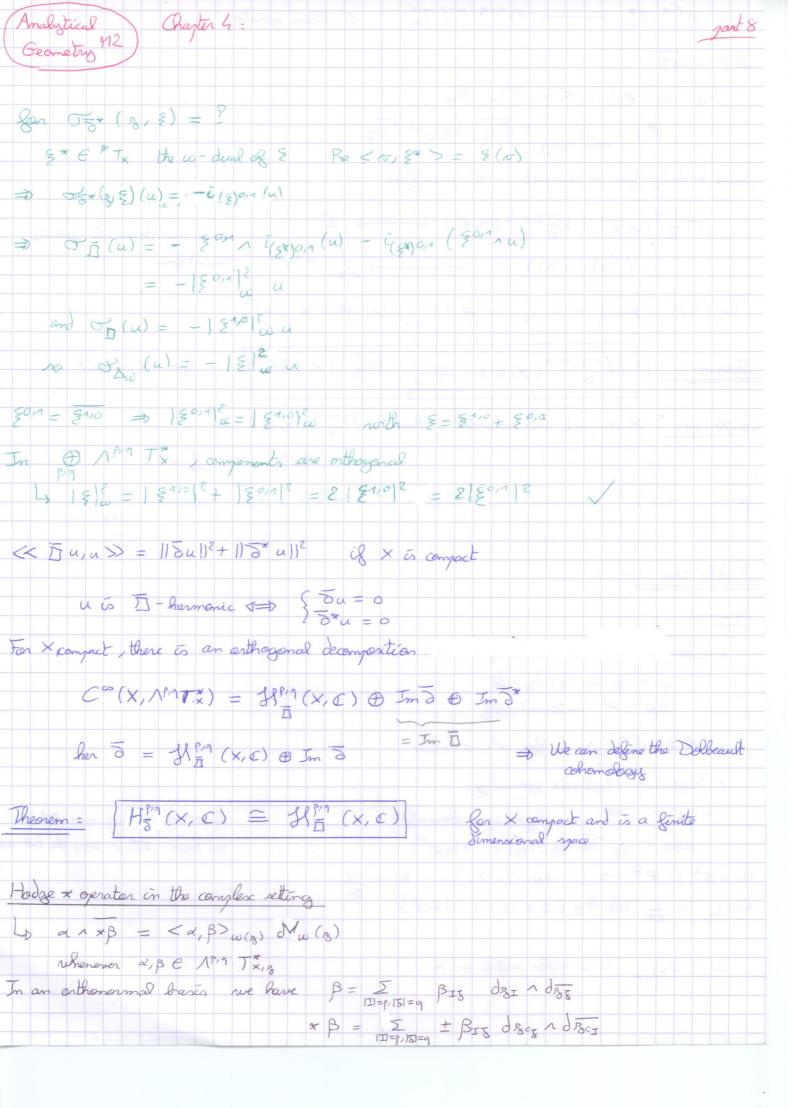
Take (91, 5) a riemannian manifold with $\dim_{\mathbb{F}} 91 = m$, $dV_g = \int det(g_{ij}(x)) dx_1 n - - n dx_n$ oriented $* = \Lambda^g T_n^* \longrightarrow \Lambda^{m-p} T_n^*$ it is the Hodge greater

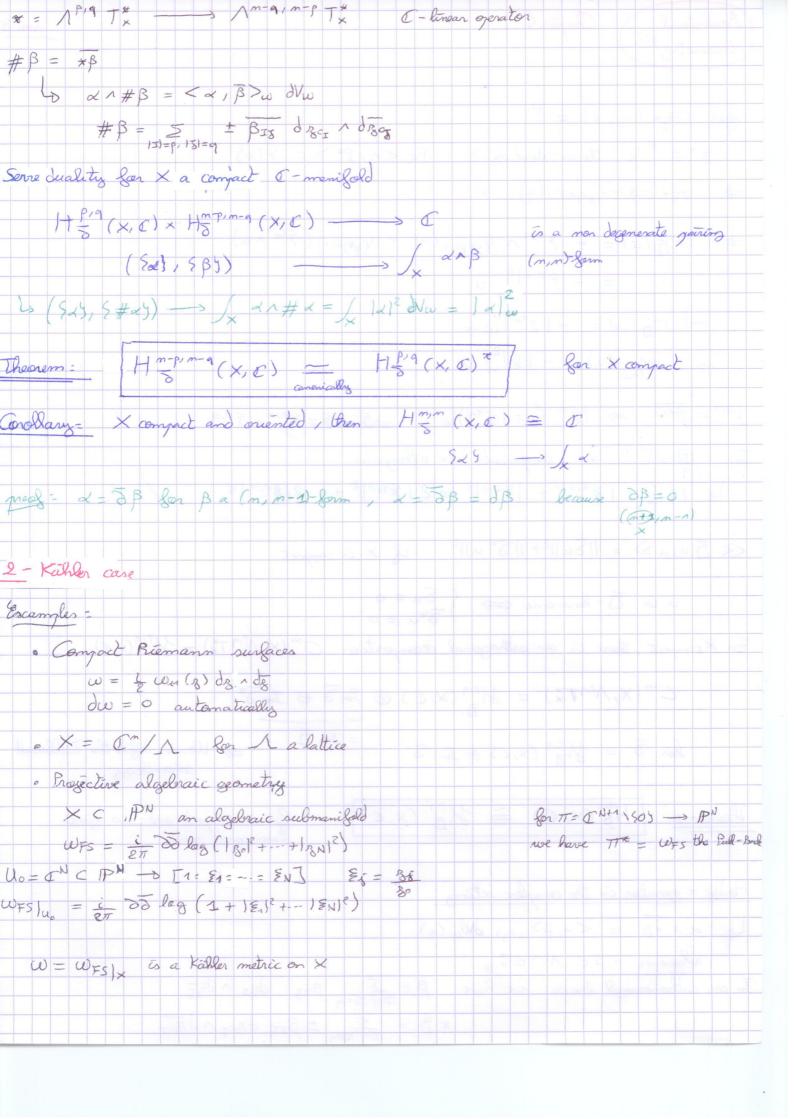
 $\forall \alpha, \beta \in N^{g}T_{n}^{*}, \alpha \wedge x\beta = \langle \alpha, \beta \rangle_{N_{3}^{*}} dN_{3}$ $\dim_{\mathbb{R}} \Lambda^{g}T_{n}^{*} = \dim_{\mathbb{R}} \Lambda^{m-p} T_{n}^{*} = \binom{m}{p}$

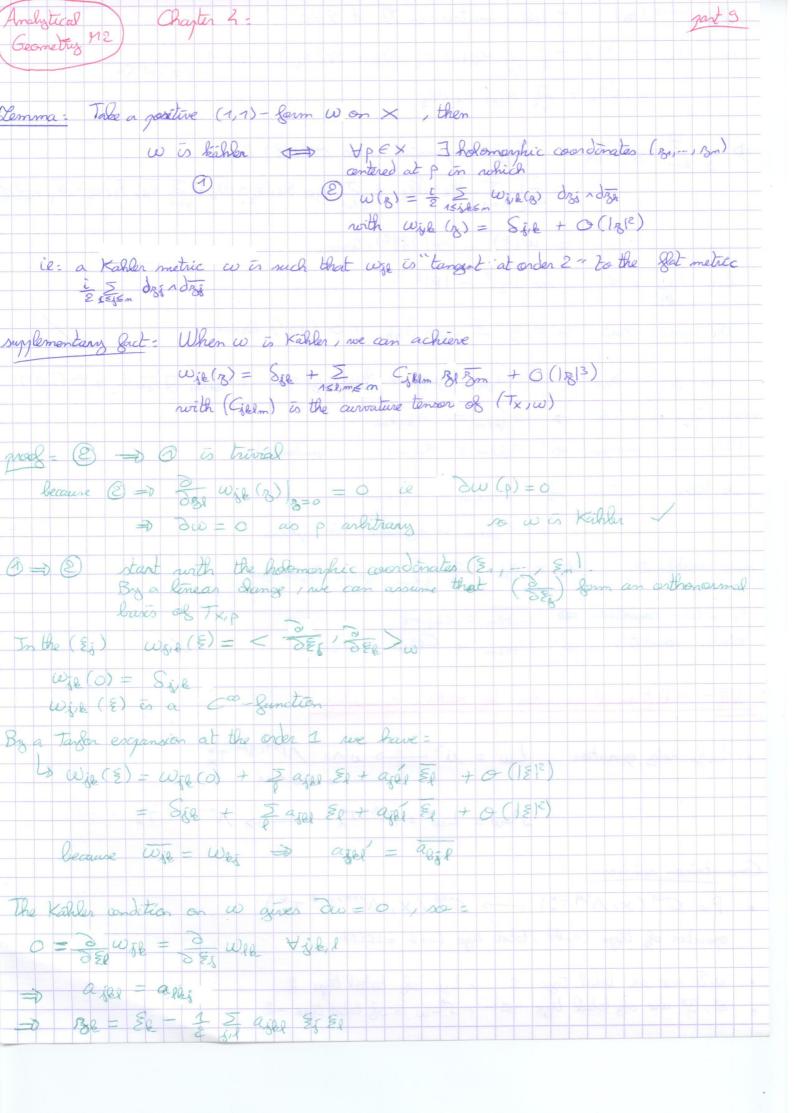
Eioc. a E X, (x1,.-, xn) coordinates centered at a . By a linear combination we can assume that (dx1,..., dxn) defines an orthonormal basis of Thra.

 $b < a', \beta > g = 2 < z \beta z \qquad since the (dz_z) form an ONB$ $dV_g(a) = dx_1 - r dx_n \qquad det (g_{is}(a)) = 1 \ because we have ar : ONB$

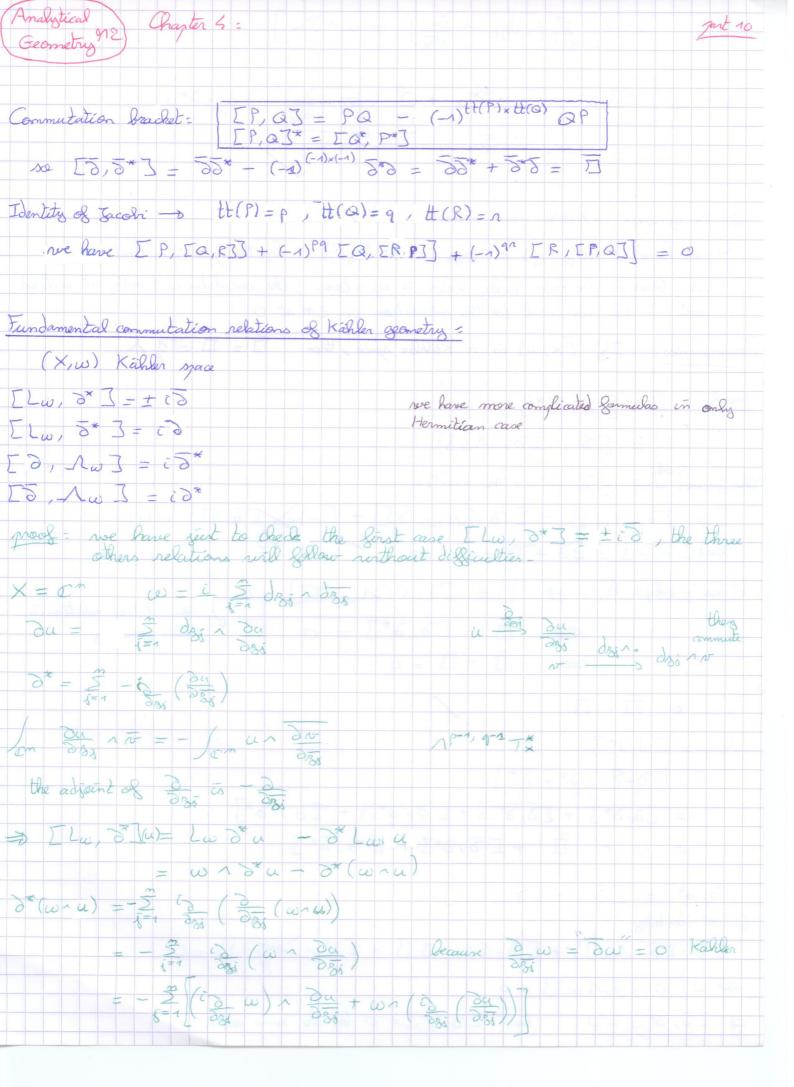
 $*\beta = \Sigma \varepsilon_{I} \beta_{I} \partial_{x_{\varepsilon_{I}}}$


 $= \sum_{\substack{|I|=p}} dx_I \wedge \sum_{\substack{I \in I = p}} \varepsilon_S \beta_S dx_S = \sum_{\substack{|I|=p}} \alpha_I \beta_I \varepsilon_I dx_I \wedge dx_C \qquad (0 i \& I \neq S)$


 $\mathcal{E}_{I} = \pm 1 = agnature of the permutation (I, GI)$


We want a formula for the formal adjoint de

 $\begin{array}{c} & & \\ & &$


	50		(Sa	3		*	æ	5)	-	_		5		n	a	1	*	a	II].		1	2	2)V.	9		11))	d	15	1	2				2					2	
			-			-	Ð	9	rai	TIT	ng	5		me	m		de	ge	ne	na	ter	j			(<i>‡ c</i>	0 2	8		α :	‡ 0)						1	1				2	
2	, 0	me	2 -	8	etr		ar	ĩ	- Se	m	on	zhi	an	-	in	de	per	nde	m	Ļa	8	g :	-																	F				
	1								H	DR	- P	()	1,	R)	4	2	1	4	PR	(n	, IF	2)	*			8	a	īnci	re	0	u	di	ty		2		D					M	
Coro	Ø					4.0			X	14	2	7	0	-		~			2		-	ŧ		F-J	0	nd	80			+	2	2	2		1	7-					_			_
Con	XXa	en	3=	-								(1					1			, .	on	ne	ce	20	*	m		vu	en										H	DR ((m, j	e) -	っ尺	
пета	2	- F	0	27											2					-	a	-	2	.(L	2	9		70-			1	1			1			Sá	y -	->	In	*
) wma	we a		8	/	0		no	87	Q	uas	rle			112		1		1	-			Ŧ			-	ł	12-			24		(1)	-)											
V														m	ū	tia	en		an	6	7	á	28	en	a	na	ni	Se	ld	2	-	9	4											
71																												X												15	/	n T		
To	abe		()	×,	w)		h	ers	ni	tic	en		ur	H	1	th	e	he	m	it	ies	n	~	ret	ic	2	C	U	E	i Jun I	12	5	, & :	5 m	wi	le	63	,50,	35	~	SE	1.1	
the r	o de	em	e de ma	for	m	is .	m	0	JV.	19	= T	- ~ × ×	11	- 4	5	n 19		- *	9	et	(0	29	(g)	*	dx.	1	dry		·	1	. 0	Xm	~ ~	da	3m		in	du	ices	>		-		
														-	3	11	C	PT	9)	-		->	0	pt.	1, .	7)			1									13	454 	>0				
															8	11	(519)			>	(PI	9-+	1)				3	2	1	~										0	
. As	sac	ia	te	9	Con	m	le	x	1	La	gla	æ	-	B	R	tra	en	rē	0	per	al	to	25	-	×						1	N.	4		6									
				0 0																		_																			_			
																																1								+				
N	e h	ar	e		5]*		2	Σ]	a	md		T	5	H)					1																-			+			
Prop	ani	tie	m	1		5	yn	n bi	ol	C	۵)) =	-	5	ym	ngl	20	PI	ſĒ	7)		=		10	5	ym	nb	R	(人	ω)	2					1						<u> </u>
proc						-	-		+				-	3								5	4	Y			**			(20				6										
	~		-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								11		C	e	ty	0)	1			t	2	4	~	u	0		2	10	u			A	-	-	-		4	_				
																			-		t	(24	P) 9	21	1	4		4	7	Q	de	20	0)					-			+		
e	50	-0	R,	SW .) -	5	>	N	E		F.	72	8			6	0	A IF	T	*		-	T	*	1,	0	0		4	- %	10	11			D.	15	1			+		+		
	0							SW	-	=	Se la construction de la constru	11	0	+	V	201	1					-							_						7					+				
			cur un	AJC 014			7/2/2		w.	- 0	8	(S))	1	5	-0	on	ging	za	te	2	n	rit	ħ	n	27	ect	- 2	0	ce	mj	iug)	at	ion		Ôn	0	-		+				
	00																																							+		+		
5		0	2	(3	\$1	£)	H		2				4			-		- +			4	1,	×	~			2	1	1			1	n											
	1					-									_			-	I	1							-	-1					1											

(Eq) -> (Be) Jacobian matrise is Io at E=0 $D = \partial_{S_{k}} = \partial_{S_{k}} + \frac{1}{2} \sum_{N \in \mathbb{Z}} a_{j \in \mathbb{N}} \left(\Xi_{j} \quad \partial_{S_{k}} + \Xi_{k} \partial_{S_{j}} \right) \quad (x \ 1) = \det_{S_{k}}$ = dEE + I are Eg dE; D 2 2 dB2 dB2 = Taylor expension mod O(1E) terms = i I dender + I agen seder den + I agen Eeden des + Old $= \omega(\xi) + O(|\xi|^2)$ terms $lim \frac{1}{181^2} = \frac{1}{2}$ to $\frac{1}{181^2} - \frac{1}{181^2}$ this means that $\omega = \frac{1}{2} \geq \partial_{8^2} - \partial_{8^2} + O(|s|^2)$ terms Wife (B) = Site + 2 (ajelm Bizm + bien Bizm + ajelm Bi Bm) + O(1813) hermitian condition to a gelm = agilm additionnal requirement => afelm = afeml (quadratec) e - Kähler condition - agezm = agezm to ajpelm is sympetric in jelim new coordinates we = 32 + 1 I agel 3/38 gm hermitian condition => Cielon = Cesme Stahler condition => Csklm = Clksm = Csmlk VII - Additional operators of Kähler geometry Lefschetz grenater Lw = NP19 T# ____ NP+1, q+1 T* Aw = Lw = APIT * APIT T* Commutation relations. • $P = C^{\infty}(X, \Lambda^{p,q}T_X) \longrightarrow C^{\infty}(X, \Lambda^{p+q}, q+l, T_X)$ gerator of type (a, b), total type a+b = tt (P) ∂, ∂ are of total type 1 , Lu of total type 2
S*, 5* are of total type -1 , A-w is of total type -2

•

for the general Kähler are which × con by the previous limma

so, because we have only order 1 operators, the adaptions (only at antered point p) are identical to the adaption in I mat 0

Consequences: IS (X, w) is a Kähler space, then $\overline{\Pi} = \overline{\Pi} = \frac{1}{2} \Delta w$

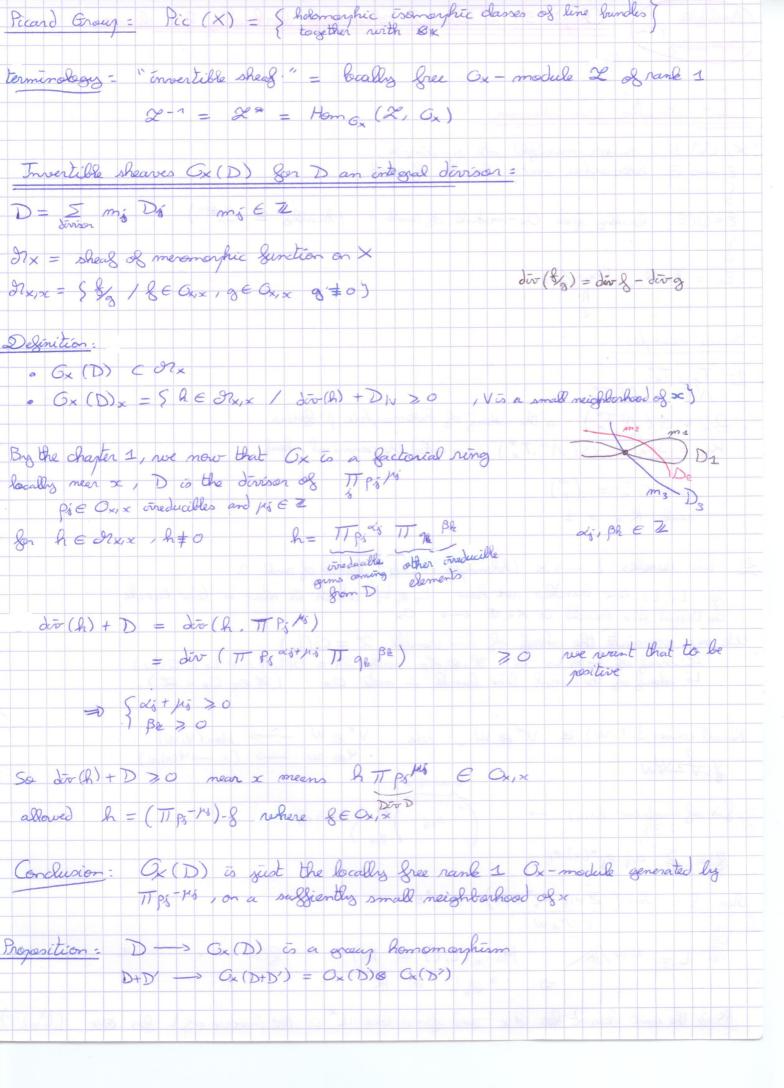
 $\frac{1}{1008} = \overline{1} = \overline$

the garder identity gives up the relation -

 $\frac{1}{10}, \frac{1}{10}, \frac{1}{10} = \frac{1}{10} + \frac{1}{10}, \frac{1}{10}, \frac{1}{10} = \frac{1}{10}, \frac{1}{10}, \frac{1}{10}, \frac{1}{10} = \frac{1}{10}, \frac{1}{10}, \frac{1}{10}, \frac{1}{10} = \frac{1}{10}, \frac{1}{10}$

let us multiply by i => T) = T2, i T10, 5] =0 (commutation relation in T> T3 - T2, 3*T = 0 Yahler genetry

 $\Delta \omega = \Sigma \partial_{1} \partial_{1}^{*} \overline{\zeta}$


= [2+2,2*+2*] = [2,2*] + [2,2*] + [2,2*] + [2,2*] = [2,2*] + [2,2*] + [2,2*] + [2,2*] = [2,2*] + [2,2*] + [2,2*]

 $\Sigma \overline{\partial}_{i} \overline{\partial}^{*} \overline{\partial} = \Sigma \overline{\partial}_{i} - i \Sigma \overline{\partial}_{i} \Lambda_{\omega} \overline{\partial}_{i}$

 $\frac{1}{3} = \frac{1}{2} = \frac{1}$

Analytical Chapter 4: Geometry gart 11 no Sw = II + EI = 27 ヨコ=コ=子人の Assume × is a Kähler space = $H^{\mathbb{B}}_{\mathbb{DR}}(X, \mathbb{C}) \cong J^{\mathbb{B}}_{\mathbb{D}\omega}(X, \mathbb{C})$ by Hodge theory take $u \in C^{\infty}(X, Co \Lambda^{k} RT_{X})$ u = Eupig north upig is of tage (prg) Dec = 253 preserves the bidegrees (not true in hermitian case). no Sw u = E Sw upig prg=l type (pig) Consequence : a harmonic J=D each up, is harmonic Hodge decomposition theorem : $\mathcal{F}_{\Delta \omega}^{e}(\mathbf{x}, \mathbf{C}) = \bigoplus_{\substack{P \neq g = e \\ P \neq g = e}} \mathcal{F}_{\overline{D}}^{P, \gamma}(\mathbf{x}, \mathbf{C})$ Additional fact: the last line ~ does not depend on the Oneice of the Kähler $H^{\mathbb{B}}_{DR}(X, \mathbb{C})$ metric w $\simeq \bigoplus_{\text{ptg}=e} H_{5}^{\text{prg}}(\mathbf{x}, c)$ TD - Check this by the Sott - chern cohomology idea = H^{pro}(X, C) ~> H^{pro}(X, C) more precise D H BC (X, C) => H BR (X, C) this isomorphism doesn't depend of w and provide the result.

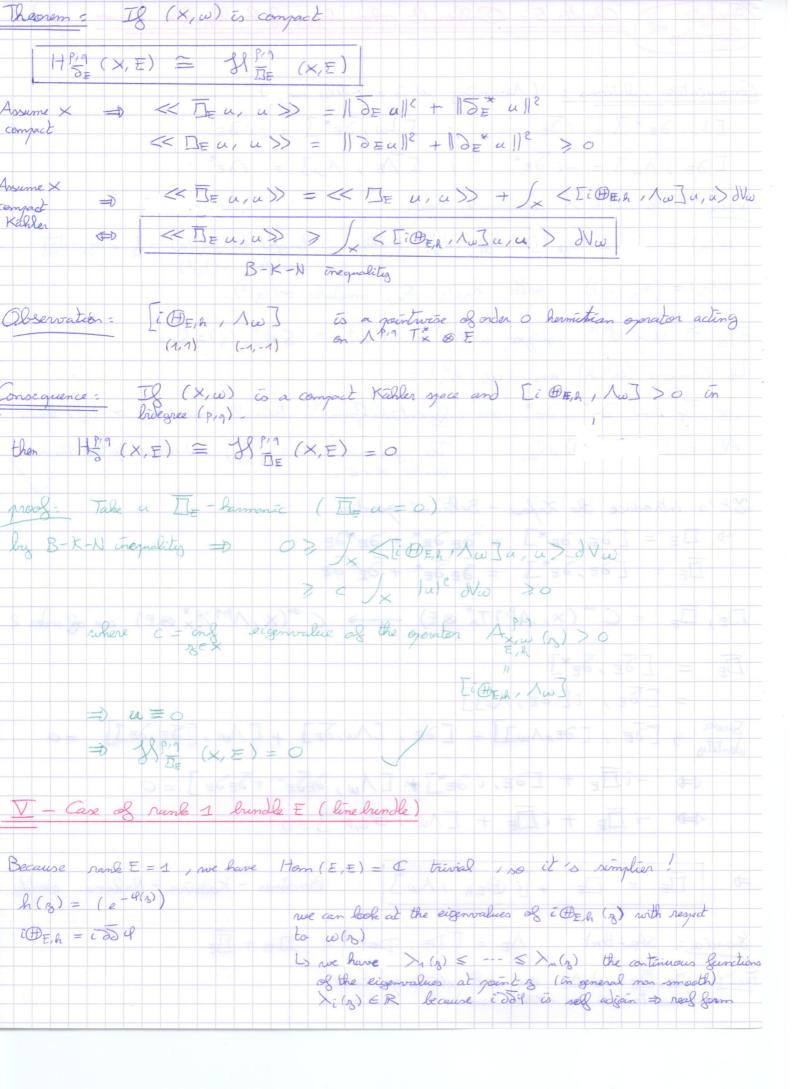
A	ma	dy	te	- 4	2	2	4	R	arl	ter	5	- North	X	Do	æ	Rai	ul	z	col	hor	no	Poq	343	d	3.	loc	al	hz	8	ree	2	she	ar	an	-	5	20	nt	1
G	ee	me	etr	vo'	-	/										4																							
	-		-	2	200	2	1	-	<u>_</u>					0				-										32			-			-		al-	iner:		2
	I	-		La	ca	ley	1	ere	e	sh	ea	ve	5																		1.4								
									-	_				0	_	1	-																						
X	F	0,	5	X	a	holo	nde	a sh	mic	N	yox ect	on	wit	h	m-	= d	R	so	inte	2,	2										5		84						
	ξ.				-			-			-				-			_										4											
70	e -	= C	SCE	E)	1	loce	ly	5	gree	2	G,		mo	del	Re	æ	s re	and	6 -	Λ	l	le	cal	hs	-	2	C	X	20)	-		8						*
	3	_	-	_	-																																		-
	Ex		=	Ex.	8	Gx, 3	, C	×,>	1/1	mx																													
			_					R																										6					
B	as	icr	e	oca	m	les	-																																
-																																							
1		1	XPT	X	×	\wedge	PT	x X																							2				1				
0	5	28	H	C	5 (15	Tx	*)		is.	the	2 /	he	al	a	5 \$	hol	om	an	ph	ic	p	- fo	m	15														
0	ł		1		Ω.	M	-	0	()	1~	T	*)	10	,	cal	loo) t	he	ca	non	ice	l.	sh	eal	5													
						4			-	1				2																									
							Ξ		- ,												4																		
			2.0	ante	1	K	×	1	1						4																								
2-	+	8	- 20	Pri	1 m	200-					,	10	R		P.	. \				6	2)0	2 -0	-	0	, .	1												
ì		0	1)	l	ene	0	un	200	0	100	e	Pran	per	<i>c</i>)	1	D	L	-	nor of	id	2	-	a	los		z.	C-	ne	lu	nd	le						
	1	he	tri	úa	l	line	l'	ene	dle	ü	>>	×	C				~	e	-2		u			~															
U							te			-					me	G	en	de	2	2	2	= (5(2)														
							81																												_				
			-	5	nec	is c	8	10	vie	na	X	xe	ne	er	inc	Ke	6	0	(MC	He	C	/×			(0	~	OC		X			1							
R		α	7	Ha		()	1.1	$\langle \rangle$	0		1/	*	2	11			-			V	*	a 1	N	_	~	->		h	(1	(1)	2	4			+			
			~							-	V	8				-	010	a			40	3	w			->	(x	->	.41	2)0	υ)							
_	4	8=	V		N C	J					-				ba	05	8	V																	(2)			-	
	8	is	of	m	at	rís	c (ai	5)		->			ſ	21-	 a:	-	2m	8-	. 1	20	Jase	50	gu	1							1		8		4		1	
					1												2)	Z,	w)																		
	5	8 :	T	D's		aiz	ej	*(x)	εį	8												R		-10				6							x			5
1-6)	R								546																
			0				(,	E	Us	*@1	N	-	-																										
							ne /									,1)	())		IK				-	R	(se)) =	=>	120		>	NE	K		-		3		
	-	~	(/	11 *				_	-	NK O				-							0			0				3	10						
-	12		-	10			0														1	×		1	0	-				01		0	-				() 1	¢ 1	
	11	L	D	the	un	nit	ete	men	rt	to	2 (× W	<	a	rd	S	on	a	le	ne	L		Ś	t	he	in	NOC	rse	0	8	L	fo	2	8	伏			= 1	-7)

•

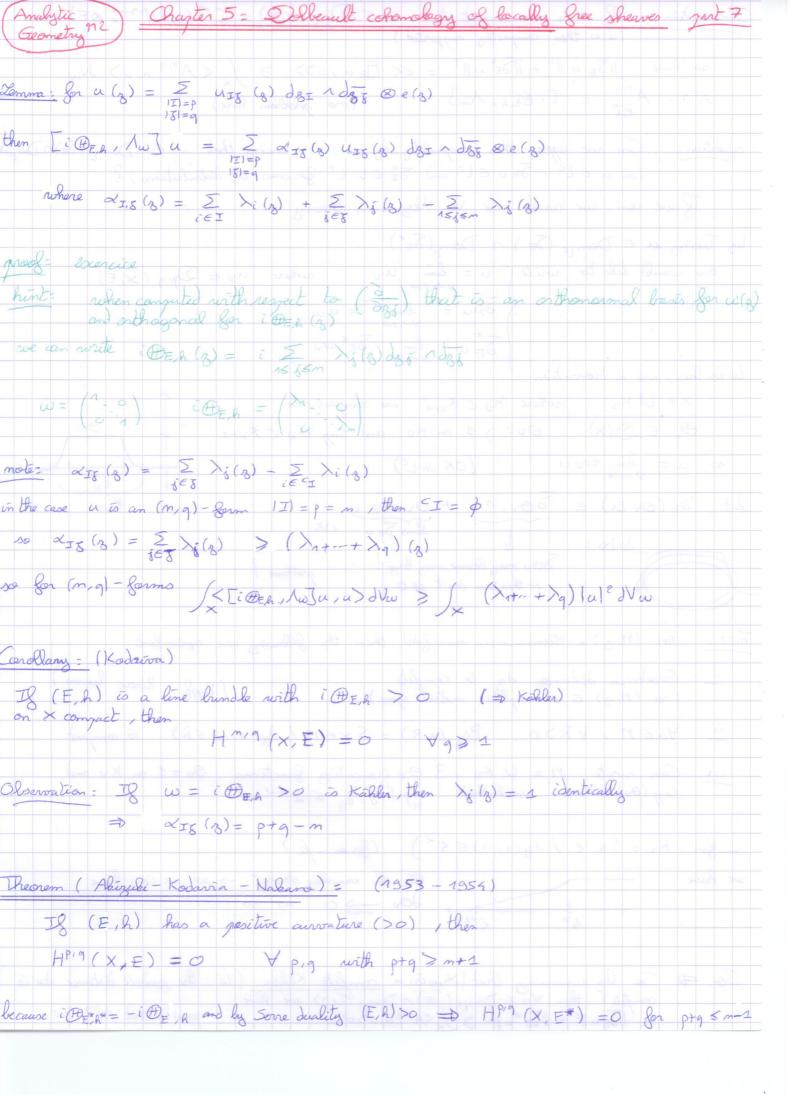
u = Zuiza (B) dBI A DE & Od N = ZNKLB(B) JBK 1 JBL @ 25* dual grame un ~ = Z UIS~(B) OKEB (B) dBIA dBS A dBK A dBL $\# = (\Lambda^{p/q} T_{X}^{*} \otimes E)_{x} \xrightarrow{} (\Lambda^{m-p/n-q} T_{X}^{*} \otimes E^{*})_{x}$ conjugate C-tinear ed adjusting the grame to be orthonormal at paint & $\Rightarrow D_{E^*}(\#u) = \# \overline{D}_{E^u} u$ Dolbeault complex of sheaves on X = $\begin{aligned} & \begin{pmatrix} q \\ = \\ & \begin{pmatrix} \infty \\ \times \\ \end{pmatrix} \begin{pmatrix} & p \\ & \gamma \\ \end{pmatrix} \begin{pmatrix} p \\ & \gamma \\ & \chi \\ \end{pmatrix} \begin{pmatrix} q \\ & \chi \\ & \chi \\ \end{pmatrix} \begin{pmatrix} q \\ & \chi \\ & \chi \\ \end{pmatrix} \begin{pmatrix} q \\ & \chi \\ & \chi \\ \end{pmatrix} \begin{pmatrix} q \\ & \chi \\ & \chi \\ \end{pmatrix} \begin{pmatrix} q \\ & \chi \\ & \chi \\ & \chi \\ \end{pmatrix} \begin{pmatrix} q \\ & \chi \\ & \chi \\ & \chi \\ \end{pmatrix} \begin{pmatrix} q \\ & \chi \\ & \chi \\ & \chi \\ \end{pmatrix} \begin{pmatrix} q \\ & \chi \\ & \chi \\ & \chi \\ & \chi \\ \end{pmatrix} \begin{pmatrix} q \\ & \chi \\$ exact sequence of sheaves except in degree O. locally $E_{1} \cong O_{2}^{\oplus \circ}$ $\lim_{t \to \infty} (K^{\circ} \xrightarrow{t} K^{\circ}) = G(\Lambda^{\circ} T_{X}^{\circ} \otimes E) = \Omega_{X}^{\circ} \otimes E$ Dolbeault Esomerphism " $H^{q}(X, \Omega^{p}_{q} \otimes E) \cong H^{p, q}(X, E)$ sheaf cohomology $d_{BI} \wedge d_{\overline{ST}} \otimes e_{\mathcal{L}} = d_{\overline{ST}} \otimes (d_{BI} \otimes e_{\mathcal{L}})$ (p,q) E (0,q) ($\mathcal{Q}_{\mathcal{L}}^{P} \otimes E$) we have H ? ? (X, E) = H ° ! 9 (X, S & & E) (p, q) II - Connections E -> M a tk-vector bundle, K= Ror O Definition: A connection on E is a differential operation of order 1 $D = C^{\infty}(M, \Lambda^{p}T_{m}^{*} \otimes E) \xrightarrow{} C^{\infty}(M, \Lambda^{p+2}, T_{m}^{*} \otimes E)$ such that D satisfies the Leibniz rule = for fec the (M, IK) · D(&u) = d8 ~ u + & Du for SECon (M, Mm Tin OR IK) · D(gru) = dgru + (-1) mgr Du example: E= n × 1K trivid D=J

Analytic 912 Chapter 5 - Dolbeault cohomology of bally free sheaves gart 3 Geometry General form of a connection: (e1,..., en) Co grame of E, n=rank KE on some open set RCX $u = \sum_{\alpha = 1}^{n} u_{\alpha} \wedge e_{\alpha} \longrightarrow u = \begin{pmatrix} u_{1} \\ \vdots \\ u_{n} \end{pmatrix}$ $u_{j} \in C^{\infty}(\Omega, \Lambda^{j} T^{*}_{n} \otimes K)$ $e_{\alpha} \in C^{\infty}(\Omega, E)$ p-form with values in E Du = É dup rep + (-1) Pup n Dep Dep $\in C^{\infty}(\Omega, \Lambda^{1}T_{h}^{*} \in E)$ @ Dep = 2 Paper JZBEC°(R, NT) $\mathcal{N}_{\mathcal{D}} \Gamma = (\Gamma_{\alpha\beta})_{1 \leq \alpha, \beta \leq n} \in C^{\infty}(\Omega, \Lambda^{2} T_{n}^{*} \otimes \mathcal{P}_{at_{nm}}(\mathcal{H}))$ Hom (tkn, kn) so Du = E dus new +1-11 Sup Straped = E (dug + E Pap rup)ed $= \partial \left(\begin{array}{c} u_{1} \\ \vdots \\ u_{n} \end{array} \right) + \left(\begin{array}{c} T_{\alpha\beta} \\ \varphi \\ u_{\beta} \end{array} \right) \wedge \left(\begin{array}{c} u_{1} \\ u_{\alpha} \end{array} \right)$ so Du a du + MAU depends of the frames ex because The matrice of the connection with respect to the game (ex) given by a calculation as thought as E-valued column vectors in 1Kr Conversely , any such formula defines a connection (over the gen set & where the frame is defined). Complex situation; for (X, Gx) a complex manifold E -> X C^{oo} C - vector bundle (not necessary holomorphic) D a connection on E Du = du + Mru locally with reject to EIR = IXK^ $d = \overline{\partial} + \overline{\partial} \qquad \text{and} \qquad \overline{\Gamma} = \overline{\Gamma}^{n,0} + \overline{\Gamma}^{n,1}$ Ly we have $SD = D^{1,0} + D^{0,2}$ unique decomposition with $D^{10}u = \partial u + D^{10}u u$ $D^{01}u = \partial u + D^{01}u u$ $D^{1,0}(g_{nu}) = \partial g_{nu} + (-1)^{d_0}g_{s}^{g_{s}} g_{n} D^{1,0}u$ $D^{0,1}(g_{nu}) = \overline{\partial} g_{nu} + (-1)^{d_0}g_{s}^{g_{s}} g_{n} D^{0,1}u$

down take E. and an low initian structure (E, R).
=> Hermitian gating


$$C^{\infty}(X, \Lambda^{pq} T_{x}^{*} \otimes E) \times C^{\infty}(X, \Lambda^{pt} T_{y}^{*} \otimes E) \longrightarrow C^{\omega}(X, \Lambda^{pt} q_{x}^{*} T_{y}^{*})$$

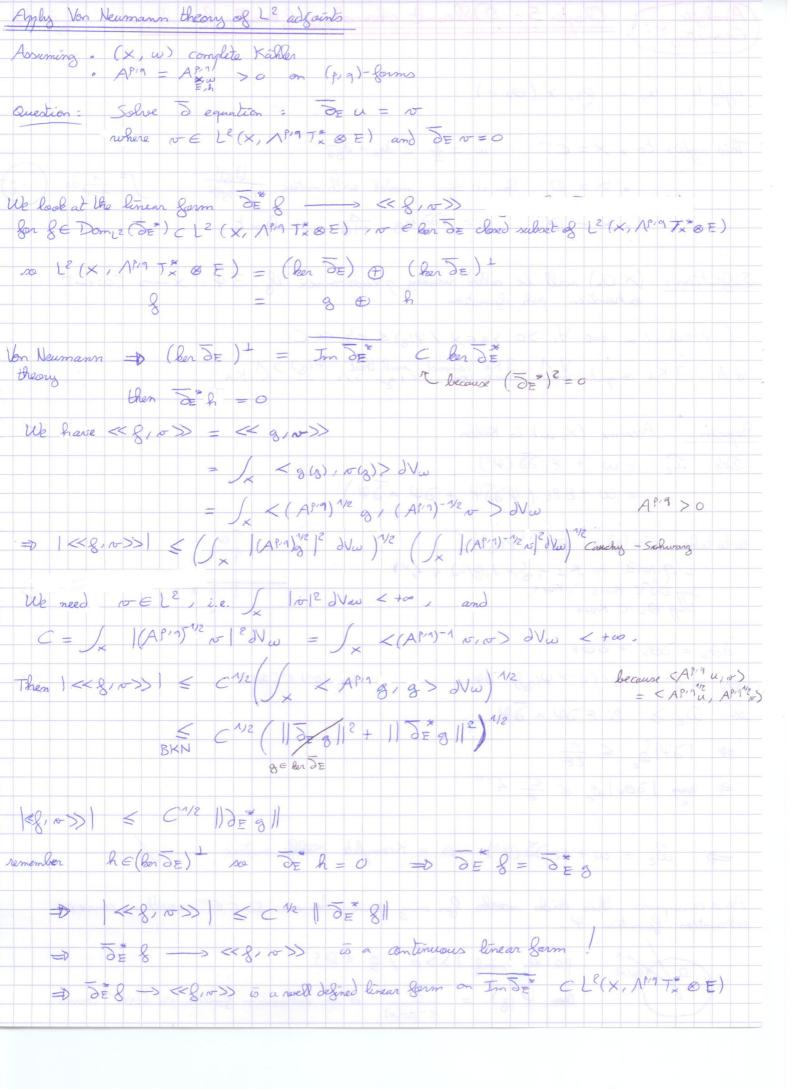
 $fu , m) \longrightarrow fu , mb + fu , mb + fu , h + fu , h + fu , h + fu + h +$


Chapter 5 - Dolbeault cohomology of locally free sheaves Analytic jart & Geometry 912 In a holomorphic grame D = D²⁰ + D^{0,2} $t \overline{H} = H$ $t \overline{H} = \overline{H}$ with Drou = Du + Jrona H-1 = H.H-2 Doin u = Du = dSu, wh = t (du + H-2 dH nu) nHo + tunh (dw + H-2 dH no) $= \mathcal{D}^{10} = \overline{H}^{-1} \partial \overline{H} = t H^{-1} \partial t H = (R_{pd})(\partial R_{pd})$ $\Rightarrow \left(D^{1/0} u = \partial u + \overline{H}^{-1} \partial \overline{H} \wedge u = \overline{H}^{-2} \partial (\overline{H} u) \right)$) Don u = Ju Curvature of a connection: Da connection on E Du ~ du + Mru Den= D (du + MAU) $\simeq \delta(du + \Gamma \wedge u) + \Gamma \wedge (du + \Gamma \wedge u)$ $= \partial^{2} u + \partial(\Gamma \wedge u) + \Gamma \wedge \partial u + \Gamma \wedge \Gamma \wedge u$ = d(P) AU - PAdu + PAdu + PAPAU we differentiale twice and use have = Deu = (dr + Par) au no more differentiations => dr + grat is a 2- form 2-form (rxn) matrix) Theoreme: $\exists a global 2 - form (D_{E,D} \in C^{\infty}(\times, \wedge^2 T_n^* \otimes Hom(E, E))$ such that $D^2 u = \mathcal{D}_{E,D} \wedge u$ DED is the arroture with respect to a trivialisation tensor of (E,D) mote: if rank E = 1 then TIT = 0 = DE, D = IT is a closed form Case of an hermitian holomorphic bundle (E,h) Is DE, h Chern connection DER anvature of the chern connection D2 = (D10 + D011)2 = (D^{1,0})² + D¹⁰ D^{0,1} + D^{0,1} D^{1,0} + (D^{0,1})²

we have
$$\circ (D^{(n)})^{\circ} = \overline{D}^{\circ} = 0$$

 $\circ (D^{(n)})^{\circ} u = \overline{H}^{-1} \overline{\partial}\overline{H} \cdot \overline{H}^{-2} \overline{\partial}\overline{H} u = \overline{H}^{-2} \overline{\partial}\overline{H} u = 0$
we $D^{2} = D^{(n)} D^{(n)} + D^{(n)} D^{(n)}$
with some life more calculus are check that $(\underline{\partial}_{\underline{e},\underline{A}} \equiv \overline{\partial} (\overline{H}^{-1} \overline{\partial}\overline{H}))$ (1.1) from
Read 1 limble:
 $U \rightarrow X$ holomorphic line limble
 $h = honorphic line limble
 $h = honorphic line limble
 $H = (e^{-4})$
 $B_{\underline{e},\underline{A}} \equiv \overline{\partial} (e^{4} \overline{\partial} e^{-4})$
 $= \overline{\partial} e^{4}$
 $= \overline{\partial} e^{4}$
 $W = 12^{2}$ entire $g_{\underline{h}} = e^{-4}$
 $E = 2$
 $E = 2$$$

$< \varepsilon_{\alpha}(s), \varepsilon_{\beta}(s) > h =$	Sapp + I ajexp & Bibb	+ I a feat 35 Bh	+ 5 Bitap Si En tols")
			cannot le Relled
hermitian -> { aje xp		sume that =	Barrel - 2 - 2
	(quadratec	Journ)	
$= \overline{\mathcal{E}}_{\mathcal{A}}(x) = \mathcal{E}_{\mathcal{A}}(x)$	8) - E after 35 Br Ep (3) q=10	
(a) K6 = 1 =		- Why of the mark	B. Kalis I
	e this (Ex(2)), then		WC 1 4 A
$\langle e_{\alpha}(s), e_{\beta}(s) \rangle$	Dh = Sap = 5 Colorp	85Bh + 0- 03/3)	
where CZE xB = -	I se ap		
	B) are the anature coefficie	entr	Semma 2 - Ore
			= (a) a (a) (b (b))
$b \partial (\langle e_2(2), e_3($	B) R) =	te das - Z Csexp	-31 ogh T SUBIT
	$\Rightarrow = \{ D_E e_{\alpha}, e_{\beta} \} +$	Sed DE CBJK	2) a S . (2 × S >
Leilniz resent	$= S \partial E e_{\alpha} / e_{\beta} J +$		
since OF er =0		(ed) of es 1	
because we have belomery grames		20 CLORD 200 0 0	
		A de and a se	
$=$ $3 dE e_{\alpha}, e_{\beta}.$) = - E Giba B 32 035	+0(131) 100 10	
DE EX =	$D_E e_{\alpha} = - \sum C_{iB_{\alpha}B_{\beta}}$	32 235 8 ep (+	~ (z[²)
	JIK ST		
=> DE,h · ea	$= D_{E} (D_{E} e_{d})$	and and the	
	= - Z Csexp dz 1	Jas Des	- Baller
	$= + \sum_{j \in \mathcal{B}, \beta} \mathcal{O}_{j \in \mathcal{B}, \beta} \mathcal{O}_{j \in \mathcal{B}, \beta}$		3=a
			/
$\Rightarrow \Theta_{E,h} = \Sigma$	six Citrap das 1 dan & ep	@ ez	
Global 2° monms:			Renard and an and
Ozerators :	$D_E = \partial_E + \partial_E$	$(1,0) \oplus (0,1)$	
Formal adjoint :	$D_E^* = \partial_E^* + \overline{\partial}_E^*$	$(-1,0) \oplus (0,-1)$	
Lefschitz =	$L_{\omega} u = \omega \wedge u$		
	$\Lambda_{\omega} = L_{\omega}^{*}$	2 Inthe Card	near grown


Analytic Geometry 912 Chapter 5 - Dolbeault cohomology of locally free sheaves part 6 Commutation relations : (Assuming w is a Kähler metric) $[L_{\omega}, \partial_{E} *] = i \partial_{E} \qquad ; \quad [L_{\omega}, \partial_{E} *] = -i \partial_{E}$ $\Box \partial \Xi , \Lambda \omega \Box = -i \partial \Xi^*$; $\Box \partial \Xi , \Lambda \omega \Box = i \partial \Xi^*$ proof = Take UC × counterates charts w(z) = 2 I wige (z) dzin dzie Kahlen tengent to wo (z) = E Zdzin dzie 0(12)2) $h(s) = (h_{\alpha,\beta}(s))$ with $h_{\alpha\beta}(s) = S_{\alpha\beta}$ modulo $o(1_{\beta}(s))$. EIL = Ux C" equipped with "trivial metric" hap (3) = Sap Lo Compare (w, h) and (w, h°) DE, DE and DE, DE are differentials from the travial ones by or (131) terms Nw = (1+ a (1218)) dVw Then just notite u = (un) and reduce to the traval Let 's introduce the Laface - Beltrami gerator DE = [JE'SE *] = DE JE + DE SE TE = [JE, JE*] = JEJE* + DE*JE DE, DE = C ~ (X, NP19 TX & E) ~ C ~ (X, NP19 TX & E) are of order 2 DE = [JEJEX] = [DE, EDE, Na]] Sacoli = [JE, [JE, NW]] - [JE, [NW, JE] + [NW, [JE, JE]] = 0 -iDE + DOE, iDE] + [/w, DEDE + DEDE] = 0 (=) - TE + EDE + LAW, DEA 3=0 DE = DE + [i DE, h . / hw] Ð Bochmen - Kodaira - Nakano identity Evencia = Show that $\Delta E = IDE, DE*J = DE+ DE$ Fact: IF, DE and AE are still elliptic grenations (even true in mon - Käller ase)-

Observation: If X is mon compact but $u \in D_{p,q}(X, E) = C^{\infty}(X, \Lambda^{p,q}T^* \otimes E)$
Observation: IS X is mon-compact but $u \in \mathcal{D}_{p,q}(X, E) = C^{\infty}(X, \Lambda^{p,q}T_{X}^{*} \otimes E)$ (u is then compactly suggested)
we have $\ \overline{D}_{\mathbf{E}} u\ ^2 + \ \overline{D}_{\mathbf{E}}^* u\ ^2 = \langle\langle \overline{D}_{\mathbf{E}} u u\rangle\rangle \geqslant \langle\langle A^{p,q} u, u\rangle dV_u$
$A^{p,q} = A^{p,q} = \Sigma \mathcal{D}_{E,h}, \Lambda \mathcal{W} $ (no problem here)
question: Can not apply this inequality by just assuming that u E Damie (JE) Domie (DE) (so u E L ² , JE u E L ² and J [*] u E L ² in sens of distributions)?
If we can, we could use Von Neumann theory.
b Taking $\alpha \in Dom_{le}(\overline{\partial E}) \cap Dom_{le}(\overline{\partial E^*})$
One would like to write $U = \lim_{x \to +\infty} U_{x}$ where $U_{x} \in \mathbb{Q}_{p,q}(x, E)$
$\sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i$
$\overline{\partial} E u = \lim_{\nu \to +\infty} \overline{\partial} E u \nu$
$\int E u = \lim_{y \to +\infty} \overline{\partial E} u y$
to do this, use a troncation : $X = U K_V$ where $K_V \subset K_{V+1}$ are compact sets 1.
$\Theta \in \mathcal{D}(X) \Theta v = 1 \text{ an } Kv \text{ and } Sup \Theta v \subset Kv + 1 \xrightarrow{1} \Theta v$
V-Stoo
but $\partial E(\partial v u) = \overline{\partial \partial v} n u + \partial v \partial \overline{E} u$ $\frac{1}{2} \overline{\partial E} u = 0 k$
$ = \frac{1}{2} \partial_E \alpha $
To may become very large! problem ! so this term don't do 0.
The last (plan which a short w
Fact: For (M, g) a Riemannian menifold then the following are equivalent
i: Geodesic distance da is complete (so (Mag) is a complete metric space) (Hog8 - Rinow lemma)
$ii: \forall a \in \mathcal{H}, \forall R > \mathcal{O}, B_{dg}(a, R) = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
$\frac{iii}{\sum_{n=1}^{\infty} write N = U \times v, \exists \Theta v \text{ transating functions } \Theta v = 1 \text{ on } \times v \text{ and}$ $\frac{1}{\sum_{n=1}^{\infty} (\Theta v) C \times v + 2} \text{ such that } \sup_{n \neq 1} \left[\partial \Theta v \right]_{\partial S} \leq 2^{-V}$
so for $K_{\nu} = S \times E / d_{q_{\nu}}(x, a) \leq S^{\nu}$ (for example)
we have the Qu vanishes slowly " -> so we can have
we have the Qu' vanishes slowly "-> so we can have dow -> dow -> 0 4" 4"
= 50 by assuming that (X, w) is a comfete Kähler (ie : the goderic distance du is
$= \underbrace{}_{\text{Complete}} \underbrace{}_{\text{Nem results}} \underbrace{}_{\text{Complete}} \underbrace{}_{\text{Complete}} \underbrace{}_{\text{Complete}} \underbrace{}_{\text{Nem results}} \underbrace{}_{\text{Nem results}} \underbrace{}_{\text{Complete}} \underbrace{}_{\text{Nem results}} \underbrace{}_{\text{Nem results}} \underbrace{}_{\text{Complete}} \underbrace{}_{\text{Nem results}} \underbrace{}_{$

part 3 Theory of $\exists ! u \in Im \exists E^*$ such that $\forall g \in Dom(\exists E^*)$ Hilbert spaces << 8100 = << DE & 10 D we can take here ge D(X, NPATX & E) This means << &10 >> = << &, DEU >> V& in sens of distributions D DEU TO In fact, the solution $u \in Im \ \overline{\partial} E^* \subset \ker \overline{\partial} E^*$ $(\ker \overline{\partial} E)^{\perp}$ $= 0 \qquad \int \partial E u = v \\ - \overline{\partial} E^* u = 0$ actually a is unique if taken in (ker JE) 1 DEU = DE DEU + DE DEU = 0= 10 so if $v \in C^{\infty}$, by $\overline{D}_{\overline{E}} \ u = \overline{\partial}_{\overline{E}}^{*} \ v$ and ellipticity of $\overline{D}_{\overline{E}}$, the solution u is C^{∞}

Since the norm of the linear form is ||u||, we also get $||u|| \le C^{1/2}$, that is,

$$\int_X |u|^2 \, dV_\omega \le C = \int_X \langle (A^{p,q})^{-1} v, v \rangle \, dV_\omega.$$

We have therefore proved the following result.

Theorem (S. Bochner, K. Kodaira, S. Nakano, J. Kohn, A. Andreotti - E. Vesentini, L. Hörmander and continuators)

Let (X, ω) be a complete Kähler manifold and (E, h) a hermitian holomorphic vector bundle over X. Assume that the self-adjoint operator

$$A^{p,q} = A^{p,q}_{X,\omega\,;\,E,h} := [\Theta_{E,h}, \Lambda_{\omega}]$$

is positive definite on $\Lambda^{p,q}T_X^* \otimes E$. Then for every (p,q) form $v \in L^2(X, \Lambda^{p,q}T_X^* \otimes E)$ such that $\overline{\partial}_E v = 0$, the del-bar equation

(a)
$$\overline{\partial}_E u = v$$

admits a solution $u \in L^2(X, \Lambda^{p,q-1}T^*_X \otimes E)$ in the sense of distributions, such that

(b)
$$\int_X |u|^2 \, dV_\omega \le \int_X \langle (A^{p,q})^{-1} v, v \rangle \, dV_\omega,$$

provided that the right hand side of (b) is convergent.

(c) The solution of minimal L^2 norm is the one such that $u \in (\text{Ker}\overline{\partial}_E)^{\perp} = \text{Im}\overline{\partial}_E^*$. This solution is unique and satisfies the additional property

$$\overline{\partial}_E^* u = 0$$

(d) The minimal L^2 solution satisfies $\overline{\Box}_E u = \overline{\partial}_E^* v$, therefore by ellipticity, one gets automatically $u \in C^{\infty}(X, \Lambda^{p,q-1}T_X^* \otimes E)$ if $v \in C^{\infty}(X, \Lambda^{p,q}T_X^* \otimes E)$.

Corollary 1. Let (X, ω) be a Kähler manifold (where ω is not necessarily complete), and let (E, h) be a hermitian holomomorphic line bundle such that $i\Theta_{E,h} > 0$ as a real (1, 1)form. Assume additionally that X is weakly pseudoconvex, i.e. that X possesses a smooth psh exhaustion function ψ . Then for every (n, q)-form v in $L^2_{loc}(X, \Lambda^{p,q}T^*_X \otimes E)$ $(q \ge 1)$, such that $\overline{\partial}_E v = 0$ there exists v in $L^2_{loc}(X, \Lambda^{p,q-1}T^*_X \otimes E)$ such that $\overline{\partial}_E u = v$ and

$$\int_X |u|^2 \, dV_\omega \le \int_X \frac{1}{\lambda_1 + \dots + \lambda_q} |v|^2 \, dV_\omega$$

where $0 < \lambda_1(z) \leq \cdots \leq \lambda_n(z)$ are the eigenvalues of $i\Theta_{E,h}(z)$ with respect to $\omega(z)$.

Proof. When ω is complete and additionally $v \in L^2$, this is just a special case of the theorem. Otherwise, we can apply the theorem after replacing ω by $\hat{\omega}_{\varepsilon} = \omega + \varepsilon i \partial \overline{\partial} (\psi^2)$ which is complete for any $\varepsilon > 0$. The integral involving v and $\hat{\omega}_{\varepsilon}$ is then uniformly bounded by the same integral calculated for ω (exercise, see Lemma 6.3 in Chapter VIII of my online book). One then gets a L^2 solution u_{ε} with respect to $\hat{\omega}_{\varepsilon}$. By weak compactness of closed balls in Hilbert spaces, it is easily shown that there is a weakly convergent sequence u_{ε_k}

converging to a solution u that is L^2 with respect to ω . In order to get rid of the global L^2 condition for v, one can likewise observe that $X_c = \{z \in X; \psi(z) < c\}$ is relatively compact in X and weakly pseudoconvex with psh exhaustion $\psi_c(z) = 1/(c - \psi(z))$. One then gets a solution u_c on X_c , and finally a global solution $u = \lim u_{c_k}$ as a weak limit for some subsequence $c_k \to +\infty$.

Corollary 2. Let X be a Kähler weakly pseudoconvex manifold and (E,h) be a hermitian holomomorphic line bundle such that $i\Theta_{E,h} > 0$. Then $H^{p,q}(X,E) = 0$ for $p+q \ge n+1$.

Proof. Let ψ be a psh exhaustion. By replacing h with $h_{\chi} = h e^{-\chi \circ \psi}$ where $\chi : \mathbb{R} \to \mathbb{R}$ is a fast increasing convex function, and taking

$$\omega = \omega_{\chi} = i\theta_{E,h_{\chi}} = i\theta_{E,h} + i\partial\partial\chi \circ \psi,$$

we can at the same time obtain that ω_{χ} is complete, and achieve the convergence of the integral

$$\int_X |v|_{h_{\chi},\omega_{\chi}}^2 dV_{\omega_{\chi}} \le \int_X |v|_{h_{\chi},\omega}^2 dV_{\omega} = \int_X |v|_{h,\omega}^2 e^{-\chi \circ \psi} dV_{\omega}$$

for any given $v \in C^{\infty}(X, \Lambda^{p,q}T_X^* \otimes E)$ with $\overline{\partial}_E v = 0$ (here the eigenvalues are equal to 1 and $A^{p,q} = (p+q-n) \operatorname{Id}$).