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The Fortuin–Kasteleyn (also called Random Cluster) model

Definition of the Fortuin-Kasteleyn model

Let Λ b Zd be a finite connected subgraph of Zd. Consider the graph G = (VΛ, EΛ), where VΛ and
EΛ are the vertices and edges of Zd ∩Λ. The configuration space is ΩΛ := {0, 1}EΛ . A configuration in
ΩΛ is denoted ω = {ω(e)}e∈EΛ . It associates to each edge e a number in {0, 1}. The edge e is called
open in the configuration ω if ω(e) = 1, it is called closed if ω(e) = 0. A connected component (also
called cluster) of ω is a set of vertices such that any two elements can be linked by a path of open
edges.
Let ω ∈ Ω := {0, 1}EZd be a boundary condition, we write Ωω

Λ :=
{
ω ∈ Ω tq ω ≡ ω on Zd\Λ

}
.

Let κΛ(ω) be the number of connected components of the configuration ω ∈ Ωω
Λ which intersect Λ,

including isolated sites. We define a probability measure on Ωω
Λ, which depends on two real parameters

p ∈ [0, 1] and q ∈ (0,∞) :

PωΛ,p,q(ω) =
1

ZωΛ,p,q

∏
e∈EΛ

[
pω(e)(1− p)1−ω(e)

]
qκΛ(ω)

Remarks :

• For q = 1, we recover the percolation model. It is the only parameter for which the variables
ω(e) are independant. In the sequel q ∈ N? will play a special role.

• We define two “extremal” boundary conditions : ω ≡ 0 is called free boundary condition, we write
Ω0

Λ, and P0
Λ,p,q, whereas ω ≡ 1 is called “wired” boundary condition, we write Ω1

Λ and P1
Λ,p,q.

Definition of the Potts model

Let Λ b Zd and G = (VΛ, EΛ) as before. The configuration space is ΣΛ := {1, ..., q}VΛ . A configu-
ration is written σ = {σi}i∈VΛ

. It associates to each vertex i ∈ Λ a number in {1, ..., q}, usually called

“color”. Let σ ∈ Σ := {1, ..., q}Z
d

be a boundary condition, we write Σσ
Λ :=

{
σ ∈ Σ tq σ ≡ σ on Zd\Λ

}
.

We associate to each configuration σ ∈ Σσ
Λ its Hamiltonian in Λ, which depends on a real parameter:

the inverse temperature β ∈ [0,∞]:

HΛ,β(σ) = −β
∑

{i,j}∈EZd : {i,j}∩Λ 6=∅

δσi,σj

where δx,y = 1 if x = y and 0 otherwise.
We define a probability measure on Σσ

Λ, depending on β and q ∈ N∗ :

PσΛ,β,q(σ) =
1

ZσΛ,β,q
exp (−HΛ,β(σ)) where ZσΛ,β,q =

∑
σ∈ΣσΛ

exp (−HΛ,β(σ))

Remark : The boundary condition σ ≡ i ∈ {1, . . . , q} is called boundary condition “i”, we write Σi
Λ

and P iΛ,β,q. Note that all the colors play the same role.

loren.coquille@univ-grenoble-alpes.fr


QUESTION 1.

For q = 2, show that the Potts model at inverse temperature β coincides (if we rename the colors 1
and 2 in +1 and -1) with the Ising model at inverse temperature β/2. The Potts model can thus be
viewed as a generalization of the Ising model.

The Edwards-Sokal coupling

We will study the link between the Potts model with boundary condition “1”, and the FK model with
wired boundary condition. Let q ∈ {2, 3, 4, ...}, p ∈ [0, 1], and G = (VΛ, EΛ) as before.
Consider the product space

Σ1
Λ × Ω1

Λ = {1, 2, 3, ...q}VΛ × {0, 1}EΛ

We define a probability measure on this space (called Edwards-Sokal coupling) :

µΛ,p(σ, ω) =
1

Z

∏
e∈EΛ

(
(1− p)δω(e),0 + pδω(e),1δe(σ)

)
(1)

where δe(σ) = δσi,σj for e = {i, j} ∈ EΛ and Z =
∑

(σ,ω)∈Σ1
Λ×Ω1

Λ

∏
e∈EΛ(1− p)δω(e),0 + pδω(e),1δe(σ).

Note that µΛ,p can be seen as the product measure Uniform(ΣΛ)×Bernoulli(p)EΛ conditionned on
the event C := {δe(σ) = 1 for all e such that ω(e) = 1}.

QUESTION 2. Marginals of the measure µΛ,p

Let p = 1− e−β ∈ [0, 1), prove the following statements :

1. The marginal of µΛ,p on Σ1
Λ is the Potts measure, i.e.:

µ1(σ) :=
∑
ω∈Ω1

Λ

µΛ,p(σ, ω) =
1

Z1
Λ,β,q

exp

β ∑
e∈EZd : e∩Λ6=∅

δe(σ)


2. The marginal of µΛ,p on Ω1

Λ is the FK measure, i.e.:

µ2(ω) :=
∑
σ∈Σ1

Λ

µΛ,p(σ, ω) =
1

Z1
Λ,p,q

∏
e∈EΛ

pω(e)(1− p)1−ω(e)

 qκΛ(ω)

3. Moreover, Z1
Λ,p,q = e−β|EΛ|Z1

Λ,β,q.

QUESTION 3. Reformulation of the previous results
Using the previous question, show the following statements :

1. For ω ∈ Ωw
Λ , the conditional distribution µΛ,p(·|ω) on Σ1

Λ is obtained by coloring the vertices as
follows : 

constant color ∈ {1, . . . , q} on each cluster
independant between clusters
uniformly distributed in {1, . . . , q}



2. For σ ∈ Σ1
Λ, the conditional distribution µΛ,p(·|σ) on Ω1

Λ is obtained as follows : Independently
for each edge e ∈ EΛ,
if e = [i, j] ∈ EΛ is such that σi 6= σj , then ω(e) = 0,
and if σi = σj , then

ω(e) =

{
1 with probability p
0 with probability 1− p

QUESTION 4. Correlations in the Potts model are connexions in the FK model
For x, y ∈ Zd, let {x↔ y} = {there exists some path of open edges connecting x to y}.
Show that

∀x, y ∈ VΛ,
P1

Λ,β,q(σx = σy)− 1/q

1− 1/q
= P1

Λ,p,q(x↔ y)

Note that the left-hand side above quantifies how P1
Λ,β,q differs from ⊗i∈ΛUniform{1...q} on the event

{σx = σy}.

QUESTION 5. FKG inequality and existence of the infinite volume measure P1
p,q.

There is a natural partial order on the set of configurations of the FK model:

ω ≤ ω′ ⇐⇒ ω(e) ≤ ω′(e) ∀e ∈ EΛ.

Therefore, a function f : ΩΛ −→ R is called increasing if ω ≤ ω′ =⇒ f(ω) ≤ f(ω′).
The FKG inequality, seen in the course in terms of the spin variables for the Ising model, is valid in
the framework of the FK model: Let Λ b Zd, p ∈ [0, 1], q ∈ [1,∞) and ω ∈ Ω, and let f, g : Ωω

Λ −→ R
be two increasing functions. Then

〈fg〉ωΛ,p,q ≥ 〈f〉ωΛ,p,q〈g〉ωΛ,p,q
where we write 〈.〉ωΛ,p,q the expectation under the measure PωΛ,p,q.

Using the FKG inequality, prove the existence of the infinite volume measure P1
p,q.

(Hint : Proceed the same way as in the course for the Ising model and µ+
β ! )

QUESTION 6. Phase transition in the Potts model ⇔ Percolation transition in the FK model
Let us define the magnetization of the Potts model with boundary condition 1 :

mΛ(β) =
〈 1
|Λ|
∑

i∈Λ δσi,1〉1Λ,β,q − 1/q

1− 1/q

Note that mΛ = 1 if all the vertices of Λ have the color 1, and mΛ = 0 if each vertex has a uniform
color in {1, . . . q} (it is the case for β =∞). We say that the system is in an ordered phase if

m(β) :=
〈δσ0,1〉1β,q − 1/q

1− 1/q
= lim

Λ↑Zd
mΛ(β) > 0.

On the other hand, we say that percolation occurs in the (infinite volume) FK model if

Pwp,q(0↔∞) = lim
Λ↑Zd

PwΛ,p,q(0↔ Λc) > 0,

where {0↔∞} = {0 belongs to an infinite cluster}.

In this exercise you will prove that these two limits are well defined and coincide, which shows that
the Potts model is ordered if and only if the FK model percolates.



1. Let p = 1− e−β , show that

P1
Λ,p,q(i↔ Λc) =

〈δσi,1〉1Λ,β,q − 1/q

1− 1/q

2. Show that

P1
p,q(0↔∞) = lim

Λ↗Zd
P1

Λ,p,q(0↔ Λc)

3. Show that
〈δσ0,1〉1β,q = lim

Λ↑Zd
〈 1

|Λ|
∑
i∈Λ

δσi,1〉1Λ,β,q

(Hint : Proceed the same way as in the course for the Ising model and µ+
β (σ0). )

QUESTION 7. Comparison inequalities
Let p1, p2 ∈ [0, 1] and q1, q2 ∈ [1,∞) such that either

• q1 ≥ q2 and p1 ≤ p2, or

• q2 ≥ q1 and p1

q1(1−p1) ≤
p2

q2(1−p2)

1. Show that for any increasing function f ,

〈f〉1Λ,p1,q1 ≤ 〈f〉
1
Λ,p2,q2 .

(Hint : Use the FKG inequality. )

2. Deduce that the function p 7→ P1
p,q(0 ↔ ∞) is non decreasing. We can thus unambiguously

introduce the following definition:

pc(q) := sup{p ∈ [0, 1] : P1
p,q(0,∞) = 0}.

3. Use the previous question and the results proved in the course for the Ising model to show that
pc(2) ∈ (0, 1).

4. Deduce that pc(q) ∈ (0, 1) for all q > 2.


