THE ISING MODEL Exercises

Loren Coquille (loren.coquille@univ-grenoble-alpes.fr)

Correlation inequalities - GKS and applications

QUESTION 1. Griffith Kelly Sherman inequalities [GKS]
Let $\Lambda \in \mathbb{Z}^{d}$ and $K=\left(K_{C}\right)_{C \subset \Lambda}$ be a family of real numbers. Consider the following probability distribution on $\Omega_{\Lambda}=\{-1,+1\}^{\Lambda}$:

$$
\mathbb{P}_{\Lambda, K}(\omega)=\frac{1}{Z_{\Lambda, K}} \exp \left(\sum_{C \subset \Lambda} K_{C} \omega_{C}\right)
$$

where $\omega_{C}=\prod_{i \in C} \omega_{i}$.

1. Show that the Ising measures in Λ with + , free, and periodic boundary conditions can be written in this form with $K_{C} \geq 0$ for all $C \subset \Lambda$ if the magnetic field h is positive.
2. If $K_{C} \geq 0$ for all $C \subset \Lambda$, show that for any $A \subset \Lambda$,

$$
\begin{equation*}
\mathbb{E}_{\Lambda, K}\left(\sigma_{A}\right) \geq 0 \tag{1}
\end{equation*}
$$

Hint : expand each $e^{K_{C} \omega_{C}}$ in Taylor series, and recall that $\sum_{\omega= \pm 1} \omega^{m}$ is equal to 2 if m is even or to 0 if m is odd.
3. If $K_{C} \geq 0$ for all $C \subset \Lambda$, show that for any $A, B \subset \Lambda$,

$$
\begin{equation*}
\mathbb{E}_{\Lambda, K}\left(\sigma_{A} \sigma_{B}\right) \geq \mathbb{E}_{\Lambda, K}\left(\sigma_{A}\right) \mathbb{E}_{\Lambda, K}\left(\sigma_{B}\right) . \tag{2}
\end{equation*}
$$

Hint : the "duplicated variables trick".

- Write $\mathbb{E}_{\Lambda, K}\left(\sigma_{A} \sigma_{B}\right)-\mathbb{E}_{\Lambda, K}\left(\sigma_{A}\right) \mathbb{E}_{\Lambda, K}\left(\sigma_{B}\right)$ as the expectation of some random variable under the product measure $\mathbb{P}_{\Lambda, K} \otimes \mathbb{P}_{\Lambda, K}\left(\omega, \omega^{\prime}\right)=\mathbb{P}_{\Lambda, K}(\omega) \mathbb{P}_{\Lambda, K}\left(\omega^{\prime}\right)$.
- Rewrite the expectation using the change of variables $\omega_{i}^{\prime \prime}=\omega_{i} \omega_{i}^{\prime}=\omega_{i} / \omega_{i}^{\prime}$.
- Apply the inequalities (1) for each fixed configuration $\omega^{\prime \prime}$.

QUESTION 2. Consequences of the GKS inequalities. Consider the Ising model in a box $\Lambda \Subset \mathbb{Z}^{d}$, with the following Hamiltonian:

$$
\mathcal{H}_{\Lambda, \boldsymbol{J}, \boldsymbol{h}}^{\eta}(\boldsymbol{\sigma}):=-\sum_{\substack{i, j \in \Lambda \\ i \sim j}} J_{i j} \sigma_{i} \sigma_{j}-\sum_{i \in \Lambda} h_{i} \sigma_{i}-\sum_{\substack{i \in \Lambda, j \notin \Lambda \\ \sim j}} J_{i j} \sigma_{i} \eta_{j}
$$

We write:

$$
\mu_{\Lambda, \boldsymbol{J}, \boldsymbol{h}}^{\eta}(\boldsymbol{\sigma})=\frac{e^{-\mathcal{H}_{\Lambda, \boldsymbol{J}, \boldsymbol{h}}^{\eta}(\boldsymbol{\sigma})}}{Z_{\Lambda, \boldsymbol{J}, \boldsymbol{h}}} \quad \text { and } \quad\langle f\rangle_{\Lambda, \boldsymbol{J}, \boldsymbol{h}}^{\eta}=\sum_{\boldsymbol{\sigma} \in \Omega_{\Lambda}} f(\boldsymbol{\sigma}) \mu_{\Lambda, \boldsymbol{J}, \boldsymbol{h}}^{\eta}(\boldsymbol{\sigma})
$$

Show that

1. $\left\langle\sigma_{A}\right\rangle_{\Lambda, \boldsymbol{J}, \boldsymbol{h}}^{+}$is an non decreasing function of \boldsymbol{J} and of \boldsymbol{h}.
2. for all $\boldsymbol{J} \geq 0, \boldsymbol{h} \geq 0$ and $A \subset \Lambda_{1} \subset \Lambda_{2} \Subset Z^{d}$ we have

$$
\left\langle\sigma_{A}\right\rangle_{\Lambda_{1}, \boldsymbol{J}, \boldsymbol{h}}^{\varnothing} \leq\left\langle\sigma_{A}\right\rangle_{\Lambda_{2}, \boldsymbol{J}, \boldsymbol{h}}^{\varnothing}
$$

deduce the existence of the free state

$$
\mu_{\boldsymbol{J}, \boldsymbol{h}}^{\varnothing}:=\lim _{\Lambda \uparrow \mathbb{Z}^{d}} \mu_{\Lambda, \boldsymbol{J}, \boldsymbol{h}}^{\varnothing},
$$

3. for all $\boldsymbol{J} \geq 0, \boldsymbol{h} \geq 0,\left\langle\sigma_{A}\right\rangle_{\boldsymbol{J}, \boldsymbol{h}}^{+}$is an increasing function of the dimension d of the lattice.
4. Recall the definition of the critical inverse temperature $\beta_{c}(d)$ of the ferromagnetic Ising model, and show that it is a non increasing function of d.
5. for $\boldsymbol{J} \equiv \beta J$ with $J>0$ and $\boldsymbol{h} \geq 0$,
(a) $\left\langle\sigma_{A}\right\rangle_{\beta, h}^{\varnothing}:=\left\langle\sigma_{A}\right\rangle_{\boldsymbol{J}, \boldsymbol{h}}^{\varnothing}$ is left-continuous as a function of β.
(b) $\left\langle\sigma_{A}\right\rangle_{\beta, h}^{+}:=\left\langle\sigma_{A}\right\rangle_{\boldsymbol{J}, \boldsymbol{h}}^{+}$is right-continuous as a function of β.

Hint : Use the following lemma :
Let $a_{m, n}$ be a non decreasing double sequence bounded above. Then,

$$
\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} a_{m, n}=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} a_{m, n}=\sup _{m, n}\left\{a_{m, n}\right\}
$$

The same result holds if the double sequence is nonincreasing and bounded below.

QUESTION 3. On the article "GHS and other inequalities" by Lebowitz, CMP 35, 87—92 (1974)

1. Explain why $u_{2}(i, j) \geq 0$ for arbitrary field h, while $u_{1}(i) \geq 0$ only holds for $h \geq 0$.
2. Prove the relation (2.2).
3. Prove the relation (2.6).
4. We will now focus on the proof of the inequalities (2.4) of the Theorem:
(a) Prove the relation (2.7) for $\phi(q)=q_{C}$ and $\Psi(t)=1$.
(b) Explain why $P(A) \in[0,1]$ and $f(A) \geq 0$.
(c) Deduce that $\left\langle q_{C}\right\rangle^{\prime} \geq 0$ for any $C \subset \Lambda$.
(d) Explain why this implies $u_{2}(i, j) \geq 0$ for arbitrary field h without the use of the FKG inequalities.
