THE ISING MODEL Exercises

Loren Coquille (loren.coquille@univ-grenoble-alpes.fr)

CORRELATION INEQUALITIES - GKS AND APPLICATIONS

QUESTION 1. Griffith Kelly Sherman inequalities [GKS]

Let $\Lambda \in \mathbb{Z}^d$ and $K = (K_C)_{C \subset \Lambda}$ be a family of real numbers. Consider the following probability distribution on $\Omega_{\Lambda} = \{-1, +1\}^{\Lambda}$:

$$\mathbb{P}_{\Lambda,K}(\omega) = \frac{1}{Z_{\Lambda,K}} \exp(\sum_{C \subset \Lambda} K_C \omega_C)$$

where $\omega_C = \prod_{i \in C} \omega_i$.

- 1. Show that the Ising measures in Λ with +, free, and periodic boundary conditions can be written in this form with $K_C \ge 0$ for all $C \subset \Lambda$ if the magnetic field h is positive.
- 2. If $K_C \geq 0$ for all $C \subset \Lambda$, show that for any $A \subset \Lambda$,

$$\mathbb{E}_{\Lambda,K}(\sigma_A) \ge 0. \tag{1}$$

Hint : expand each $e^{K_C\omega_C}$ in Taylor series, and recall that $\sum_{\omega=\pm 1} \omega^m$ is equal to 2 if m is even or to 0 if m is odd.

3. If $K_C \ge 0$ for all $C \subset \Lambda$, show that for any $A, B \subset \Lambda$,

$$\mathbb{E}_{\Lambda,K}(\sigma_A \sigma_B) \ge \mathbb{E}_{\Lambda,K}(\sigma_A) \mathbb{E}_{\Lambda,K}(\sigma_B).$$
(2)

Hint : the "duplicated variables trick".

- Write $\mathbb{E}_{\Lambda,K}(\sigma_A\sigma_B) \mathbb{E}_{\Lambda,K}(\sigma_A)\mathbb{E}_{\Lambda,K}(\sigma_B)$ as the expectation of some random variable under the product measure $\mathbb{P}_{\Lambda,K} \otimes \mathbb{P}_{\Lambda,K}(\omega, \omega') = \mathbb{P}_{\Lambda,K}(\omega)\mathbb{P}_{\Lambda,K}(\omega')$.
- Rewrite the expectation using the change of variables $\omega_i'' = \omega_i \omega_i' = \omega_i / \omega_i'$.
- Apply the inequalities (1) for each fixed configuration ω'' .

QUESTION 2. Consequences of the GKS inequalities. Consider the Ising model in a box $\Lambda \subseteq \mathbb{Z}^d$, with the following Hamiltonian:

$$\mathcal{H}^{\eta}_{\Lambda,\boldsymbol{J},\boldsymbol{h}}(\boldsymbol{\sigma}) := -\sum_{\substack{i,j\in\Lambda\\i\sim j}} J_{ij}\sigma_i\sigma_j - \sum_{i\in\Lambda} h_i\sigma_i - \sum_{\substack{i\in\Lambda, j\notin\Lambda\\i\sim j}} J_{ij}\sigma_i\eta_j$$

We write:

$$\mu^{\eta}_{\Lambda,\boldsymbol{J},\boldsymbol{h}}(\boldsymbol{\sigma}) = \frac{e^{-\mathcal{H}^{\eta}_{\Lambda,\boldsymbol{J},\boldsymbol{h}}(\boldsymbol{\sigma})}}{Z^{\eta}_{\Lambda,\boldsymbol{J},\boldsymbol{h}}} \quad \text{ and } \quad \langle f \rangle^{\eta}_{\Lambda,\boldsymbol{J},\boldsymbol{h}} = \sum_{\boldsymbol{\sigma} \in \Omega_{\Lambda}} f(\boldsymbol{\sigma}) \mu^{\eta}_{\Lambda,\boldsymbol{J},\boldsymbol{h}}(\boldsymbol{\sigma})$$

Show that

- 1. $\langle \sigma_A \rangle^+_{\Lambda, J, h}$ is an non decreasing function of J and of h.
- 2. for all $\boldsymbol{J} \geq 0, \, \boldsymbol{h} \geq 0$ and $A \subset \Lambda_1 \subset \Lambda_2 \Subset Z^d$ we have

$$\langle \sigma_A \rangle_{\Lambda_1, \boldsymbol{J}, \boldsymbol{h}}^{\varnothing} \leq \langle \sigma_A \rangle_{\Lambda_2, \boldsymbol{J}, \boldsymbol{h}}^{\varnothing}$$

deduce the existence of the free state

$$\mu^{\varnothing}_{\boldsymbol{J},\boldsymbol{h}}:=\lim_{\Lambda\uparrow\mathbb{Z}^d}\mu^{\varnothing}_{\Lambda,\boldsymbol{J},\boldsymbol{h}},$$

- 3. for all $J \ge 0$, $h \ge 0$, $\langle \sigma_A \rangle_{J,h}^+$ is an increasing function of the dimension d of the lattice.
- 4. Recall the definition of the critical inverse temperature $\beta_c(d)$ of the ferromagnetic Ising model, and show that it is a non increasing function of d.
- 5. for $\boldsymbol{J} \equiv \beta J$ with J > 0 and $\boldsymbol{h} \ge 0$,
 - (a) $\langle \sigma_A \rangle_{\beta,h}^{\varnothing} := \langle \sigma_A \rangle_{\boldsymbol{J},\boldsymbol{h}}^{\varnothing}$ is left-continuous as a function of β .
 - (b) $\langle \sigma_A \rangle_{\beta,h}^+ := \langle \sigma_A \rangle_{\boldsymbol{J},\boldsymbol{h}}^+$ is right-continuous as a function of β .

Hint : Use the following lemma : Let $a_{m,n}$ be a non decreasing double sequence bounded above. Then,

$$\lim_{m \to \infty} \lim_{n \to \infty} a_{m,n} = \lim_{n \to \infty} \lim_{m \to \infty} a_{m,n} = \sup_{m,n} \{a_{m,n}\}$$

The same result holds if the double sequence is nonincreasing and bounded below.

QUESTION 3. On the article "GHS and other inequalities" by Lebowitz, CMP 35, 87-92 (1974)

- 1. Explain why $u_2(i,j) \ge 0$ for arbitrary field h, while $u_1(i) \ge 0$ only holds for $h \ge 0$.
- 2. Prove the relation (2.2).
- 3. Prove the relation (2.6).
- 4. We will now focus on the proof of the inequalities (2.4) of the Theorem:
 - (a) Prove the relation (2.7) for $\phi(q) = q_C$ and $\Psi(t) = 1$.
 - (b) Explain why $P(A) \in [0, 1]$ and $f(A) \ge 0$.
 - (c) Deduce that $\langle q_C \rangle' \geq 0$ for any $C \subset \Lambda$.
 - (d) Explain why this implies $u_2(i, j) \ge 0$ for arbitrary field h without the use of the FKG inequalities.