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Introduction

Food web and resource–consumer interactions

Food web describes the feeding
connections (who eats whom) in an
ecological community.

Hypothesis: The food web results in
the interaction of species which are
submitted to foraging and Drawinian
evolution.

Objective: Understand the effect of
adaptive foraging on evolution of
resource–consumer system.



Introduction

Adaptation and trait distribution
Adaptation: evolutionary process whereby an organism becomes better able

to live in its habitat.

Hyp: Adaptation is driven by mutation and selection.

Adaptive trait z quantify the adaptedness of an organism to its environment:
mortality rate µ(z), interaction forces ∆(z , y) between consumers z and
resources y , carrying capacity of resources K (y).

Population density f (t, z) describes the frequency of adaptive trait z inside
the population with mean trait z∗.

z̄ = z∗

µ(z)
f(z) Mortality rate

Trait distribution

z

Adaptation occurs when mean
trait equal optimal trait:
z∗ = z̄ = argminz∈Rµ(z)



Introduction

Selection at a community scale
Niche position and interaction strength

I Adaptation acts at a species scale characterized by its trait.
I Interactions between species create evolution trade off at the

community scale.
⇒ Selection at the community scale.



Introduction

Adaptive foraging

Foraging: Consumers spread their
foraging efforts φ(z , y) over the
resources.

Effective interaction between consumer
and resource
= interaction strength * foraging effort
= ∆(z , y)φ(z , y)

Adaptive foraging: Consumers adapt
their foraging effort on the abundance of
resources.



Introduction

Evolutionary consequences of adaptative foraging

(Heckmann et al., 2012) Adaptive foraging tends to stabilize community.

(May,1973) Comunity stability is closely linked to Diversity.

Objectives:
In the context of evolution, what is the effect of different foraging
strategies on the evolution of community and their emergence.

Q? What is the effect of those strategies on community diversity?

Q? What is the effect of those strategies on community stability
and productivity?



A simple evolution model of consumer with
trait constant resources : stochastic approach



IBM model

An Individual Based Model of consumers
The model describes interaction between consumers (zi) that evolve
under mutation and selection and ressources with fixed trait (yk)
(Champagnat et al. , 2013).

I At time t = 0: initial distribution
I Resources with traits (y1, . . . , yr ) and distribution r(t, yk):

∂trn(t, yk) = rn(t, yk) (g − rn(t, yk))− rn(t, yk)

1
n

N(t)∑
i=1

∆(z i
t , yk)


I Each consumer has 2 independent exponential clocks;

Goal: Describe the trait distribution of consumer νn
t = 1

n

N(t)∑
i=1

δz i
t
.



IBM model

An asexual Individual Based Model
Numerical simulation with n = 300 individuals (Champagnat et al. , 2013)

2 Resources
Concentration rn(t, yk)

Consumers
Trait distribution

Observation: The trait distribution of consumers and the concentrations
of resources converge to an equilibrium.

Main objective: Describe the equilibrium of trait distribution and
concentrations.



IBM model

From stochastic to deterministic model

(Champagnat et al. , 2013) Under the assumption mn = o(1/n) then for
any N > 0 and (z1, . . . , zN), the sequence of processes
(< νn

t ,
∑N

i=1 δzi >, rn(t, yk)) converges in probability to a deterministic
continuous couple (c(t, zi ), r(t, yk)) solution of the following system of
ordinary differential equations

∂tc(t, zi ) = c(t, zi )
(
−µ(zi ) +

r∑
k=1

∆(zi , yk)r(t, yk)
)

∂tr(t, yk) = r(t, yk)
(

g − r(t, yk)−
N∑

j=1
∆(zi , yk)u(t, zi )

)

Goal: Describe the equilibrium of the deterministic model.



IBM model

From stochastic to deterministic model

(Champagnat et al. , 2013) Under the assumption mn = o(1/n) then for
any N > 0 and (z1, . . . , zN), the sequence of processes
(< νn

t ,
∑N

i=1 δzi >, rn(t, yk)) converges in probability to a deterministic
continuous couple (c(t, zi ), r(t, yk)) solution of the following system of
ordinary differential equations

∂tc(t, zi ) = c(t, zi )
(
−µ(zi ) +

r∑
k=1

∆(zi , yk)r(t, yk)
)

∂tr(t, yk) = r(t, yk)
(

g − r(t, yk)−
N∑

j=1
∆(zi , yk)u(t, zi )

)

Goal: Describe the equilibrium of the deterministic model.
For any N > 0 and traits (z1, . . . , zN), (y1, . . . , yr ), there exists a unique
weakly stable equilibrium of the system.



IBM model

From stochastic to deterministic model

(Champagnat et al. , 2013) Under the assumption mn = o(1/n) then for
any N > 0 and (z1, . . . , zN), the sequence of processes
(< νn

t ,
∑N

i=1 δzi >, rn(t, yk)) converges in probability to a deterministic
continuous couple (c(t, zi ), r(t, yk)) solution of the following system of
ordinary differential equations

∂tc(t, zi ) = c(t, zi )
(
−µ(zi ) +

r∑
k=1

∆(zi , yk)r(t, yk)
)

∂tr(t, yk) = r(t, yk)
(

g − r(t, yk)−
N∑

j=1
∆(zi , yk)u(t, zi )

)

Main issue: At this scale no mutation occurs : P(T n
mut < T )→ 0 as

n→∞ for all T > 0 -> NO EVOLUTION



Evolution of consumer and resources :
Nonlocal PDE approach



Asexual deterministic

A quantitative model of evolution
Ressources dynamics model: resources density r(t, y) described at time

(t) with trait (y) by

∂tr = r
((

g − ρ(t)
K (y)

)
−
∫

C(t, z , y)c(t, z)dz
)

+ Dr∂
2
y r(t, y)

Mutations: describes by the diffusion operator with Dr corresponds to the

mean effects of mutations.

Selection at resource scale: Trait y affects carrying capacity K ,

K (y) := e
− y2

2σ2
K√

2πσ2
K

with σ2
k mean size of the ressource niche.

Density–dependence: Mortality increases with the total quantity of
resources

ρ(t) =
∫

r(t, y)dy



Asexual deterministic

A quantitative model of evolution
Ressources dynamics model: resources density r(t, y) described at time

(t) with trait (y) by

∂tr = r
((

g − ρ(t)
K (y)

)
−
∫

C(t, z , y)c(t, z)dz
)

+ Dr∂
2
y r(t, y)

Mutations: describes by the diffusion operator with Dr corresponds to the

mean effects of mutations.

Selection at resource scale: Trait y affects carrying capacity K ,

K (y) := e
− y2

2σ2
K√

2πσ2
K

with σ2
k mean size of the ressource niche.

Selection at system scale: C(t, z , y) potential consumption of resource

y by a consumer of trait z .



Asexual deterministic

A quantitative model of evolution

Consumer dynamics model: consumer density c(t, z) described at time
(t) with trait (z) by

∂tc = c
(
−µ(z) +

∫
C(t, z , y)r(t, y)dy

)
+ Dc∂

2
y r(t, y)

Mutations: describes by the diffusion operator with Dc corresponds to the

mean effects of mutations.

Selection at consumer scale: Trait z affects mortality µ,

µ(z) := d + m(z) with m increasing with |z | and α = m′′(0) > 0.

Selection at system scale: C(t, z , y) potential consumption of resource y

by a consumer c(t, z) of trait z .



Asexual deterministic

Consumption and foraging strategies

Consumption of resource r(t, y) by the consumer z depends on the
effective interaction between consumers and resources ∆(z , y)φ(t, z , y)
and the searching time h.

C(t, z , y) = ∆(z , y)φ(t, z , y)
1 + h

∫
∆(z , y)φ(t, z , y)r(t, y)dy

Foraging strategies:

Mower consumers: random foraging, φRF (t, z , y) = r(t, y)∫
r(t, ydy) .



Asexual deterministic

Consumption and foraging strategies
Consumption

C(t, z , y) = ∆(z , y)φ(t, z , y)
1 + h

∫
∆(z , y)φ(t, z , y)r(t, y)dy

Foraging strategies:

Mower consumers: random foraging, φRF (t, z , y) = r(t, y)∫
r(t, ydy) .

Smart consumers: adaptive foraging. Efforts φAF evolves in time
depending on consumer trait z .

∂tφAF (t, z , y) = vφc(t, z)(
∫
R

r(t, y)φAF (t, z , y ′)[u(t, z , y)− u(t, z , y ′)]+dy ′

−
∫
R

r(t, y ′)φAF (t, z , y)[u(t, z , y ′)− u(t, z , y)]+dy ′)

where u(t, z , y) is the intake of consumer z when spending all its effort
on resource y : u(t, x , y) = ∆(z,y)r(t,y)

1+hb
∫
R
φAF (t,z,y)∆(z,y)r(t,y)dy



Asexual deterministic

Consumption and foraging strategies
Consumption

C(t, z , y) = ∆(z , y)φ(t, z , y)
1 + h

∫
∆(z , y)φ(t, z , y)r(t, y)dy

Foraging strategies:

Mower consumers: random foraging, φRF (t, z , y) = r(t, y)∫
r(t, ydy) .

Smart consumers: adaptive foraging. Efforts φAF evolves in time
depending on consumer trait z .

∂tφAF (t, z , y) = vφc(t, z)(
∫
R

r(t, y)φAF (t, z , y ′)[u(t, z , y)− u(t, z , y ′)]+dy ′

−
∫
R

r(t, y ′)φAF (t, z , y)[u(t, z , y ′)− u(t, z , y)]+dy ′)

+ Mixed consumers: sum of the two strategies weighted by a
trait x ∈ (0, 1), φMF (t, z , y) = (1− x)φRF (t, y) + xφAF (t, z , y).



Asexual deterministic

Numerical results: emergence of community

Diffusion rate Dr = Dc = 10−2,
Resources distribution r(t, y)
Consumers distribution c(t, z)
Carrying capacity distribution

K (y) e
− y2

2σ2
K√

2πσ2
K

with σ2
k = 0.75
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Asexual deterministic

Numerical results: emergence of community

Diffusion rate Dr = Dc = 10−2,
Resources distribution r(t, y)
Consumers distribution c(t, z)
Carrying capacity distribution

K (y) e
− y2

2σ2
K√

2πσ2
K

with σ2
k = 0.75

◦ Random foraging: consumer
concentrate around optimal trait
of resource.
−−− Adaptive foraging:
Resource are pushed toward niche
borders and consumer distribution
have 3 peaks;
? Mixed foraging (x = 0.5):
Resource spreads over the niche
as well as consumers.
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Asexual deterministic

Effect of foraging on diversity
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Adaptive foraging promotes diversity among resource-consumer
system.



Asexual deterministic

Conclusions

? General model to describe the evolution of community of interacting
species.
? Deterministic model that allows multiple traits to dominate in
population.

Future work
- Description and quantification of the equilibrium distribution;
- Link with a stochastic model;



Thank you for your attention
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