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Abstract. We use a transformation due to Percus to give a simple derivation of the
Griffiths, Hurst, and Sherman, and some other new inequalities, for Ising ferromagnets with
pair interactions. The proof makes use of the Griffiths, Kelly, and Sherman and the Fortuin,
Kasteleyn, and Ginibre inequalities.

1. Introduction

We consider an Ising spin system with ferromagnetic pair inter-
actions; σt= ± 1, ieΛ, i= 1, ..., \Λ\,

H(σ)=-l/2 Σ V^- ΣM, J0^°> (1-1)
i φ j i

where H is the energy of the system and ht are external magnetic fields.
The Ursell, or cluster function, ut(il9...9i^ play a central role in

statistical mechanics. They are given for spin systems, by the relations [1]

,J), / = l , . - . , μ i | (1-2)

where we have written h and J for the collections {ftj, {Jί7 } and

Z(Λ;*, J) = Tr{σ)exp[-H(σ)] . (1.3)

(1.4)

<σk>, ...

where < > denotes expectations with respect to the measure μ(σ)
= Z~l exp[ — H]; (we have set the temperature β"1 = 1).

The Griffiths, Kelly, and Sherman [2] (GKS) inequalities for this
system apply when the h{ have the same sign for all i; say fc/^0, /t^O,
(similar results hold by symmetry when ht < 0, all i). They state

(1.5)
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where A,BcΛ and σA = Y\ σ{. The more recent Fortuin, Kasteleyn, and
ieA

Ginibre [3] (FKG) inequalities apply whatever the signs of the ht

(assuming always of course that Jtj ^ 0). FKG consider general increasing
functions f(σh, ..., σίn), g(σjί, ..., σ, J , i.e. f(σh, ..., σh = 1, ..., σin)
έϊf(σiί,...9σiι=—t9...,σit). For such functions FKG prove that

</0>2ϊ </><£>• (1-6)

Note that if g is an increasing function — g is a decreasing function and
so the inequality in (1.6) is reversed if / is increasing and g is decreasing.

The more general form of the FKG inequalities, which we shall need
later, state that if X is a "lattice", e.g. the subsets of A ordered by inclusion,
and if P(x), x e l i s a normalized measure satisfying

P(x)P(y)^P(xvy)P(xAy), for all x.yeX (1.7)

then </#> ̂  </> <#> whenever f(x) and g(x) are increasing functions,
f(x)^f(y) if x^y. The expectations are now with respect to the
measure P.

These inequalities which apply to more general (than pair) ferro-
magnetic type interactions have found many uses in statistical mechanics
[1] (and more recently also in field theory [4]). They can be applied
directly to the first two Ursell functions, w^O^O, if ft^O, by GKS
u2(i,7)^0, for arbitrary fields by FKG. For simple proofs of GKS and
FKG see [5] and [6] respectively.

There exists also another extremely useful inequality due to Griffiths,
Hurst, and Sherman [7] (GHS) which is restricted to ferromagnetic pair
interactions,

for ft^O. (1.8)

(By symmetry u3 ̂  0 for h ̂  0.) The derivation of this inequality which
is much more specialized than either the GKS or the FKG inequalities,
is in many ways also more complicated involving combinatorial analysis,
etc. It is the purpose of this note to derive the GHS inequality as part
of a whole set of inequalities which are in turn derived, in a fairly simple
way from the GKS and FKG inequalities.

2. Proof of GHS and other Inequalities

Let {s, } be a "duplicate" set of variables to the {σj with the same
energy as in (1) and let < >' denote expectations with respect to the
measure

μ(σ, s) = Z~2(A, h, J) exp[H{σ) + i/(s)] . (2.1)
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Define qt = £(σf-s,-), tt = |(σ, + st\ qA= \\ qi9 tA = \\ tt. qt and ίf

ieA ieA

can take on the values, — 1, 0, 1 with the constraint that qt = 0=>tt = + 1,
ίf = 0=>gj = ± 1. We then readily find that (dropping the primes on < >')

(i,j, k) = 4[<β/«/fc> - <<M;> <ίfe>] ,

u4(ίj, k, I) = 8l<qiqjtktl} <9i9</> <ίJkί/>]

-2[u 3(U,fc)<ί ί> + ii3(U,/)<ίJk>].

Theorem. For Ising system with ferromagnetic pair interactions

CCΛ, (2.4)

(2 5a)
if Λ^O, C d ,

(2.5b)

Remarks, (i) <ί^>^0, and <ί^ίβ> ^ <ί^> <ίβ>, if Λ^O, is a direct
consequence of the GKS inequalities.

(ii) The proof of (2.4) is based on the GKS inequalities alone and is
due to Percus [8] who introduced the "duplicate" set of 5 variables. (2.4)
and (2.2) imply u2(Uj)^0 for arbitrary ht without the use of the FKG
inequalities [8]. The proof of (2.5) is new and makes use of the GKS and
the general form of the FKG inequalities discussed in Section 1. (2.5)
together with (2.3) imply the GHS inequality.

Proof. The function H(σ) + H(s) appearing in the measure μ{σ9s)
in (2.1) becomes in terms of the variables q and ί,

= - [1/2 X 2JijqιqΛ - [1/2 X 2J£Jί£ί,
ί i*j [ i*j J (2 6)

where we have indicated explicitly the dependences of the energy on h
and J and use the cap to remind us that q{ and ίf in (2.6) are not Ising
variables since they take the values — 1, 0, 1 with the restrictions men-
tioned earlier. Using (2.6) it is easy to see that for any functions φ(q)
and ψ(t)9

iφ(q) Ψ(φ = Σ P(A) f(Λ) q(A), (2.7)
AcΛ

where
P(A) = {Ύτqi exp[-ffΛ« 0,2J)]}

• {Tr(j eκpl-HΛ(t; 2ft, 2J)]}/Z2(Λ; h, J),

f(A) = {Ύrqi φ(q) expί-HA(q;0,2J)]}/Z(A 0,2J), (2.9)

g(A) = {Tr(l Ψ(t) expl-HΛ(t; 2ft, 2J)]}/Z(I; 0,2J). (2.10)
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Here A denotes the complement of A in A and the subscripts / as well
as the absence of a cap on HA and HA indicate that in taking traces in
(2.8)-(2.10) over the qh is A, and th is A, the q{ and tt are to be treated
as Ising variables taking on the values + 1 only, while q{ = 0 for i s A,
tt = 0 for i e A. Clearly P(A) is the probability with respect to the measure
μ(σ, 5) that qt= ± 1 , t{ = 0 for is A, while f(A) is the expectations value
of φ(q) in an Ising system in A with energy HA(q; 0,21). Similarly g(A)
is the expectation value of Ψ(t) in an Ising system in A with energy

HΛ(t;2h,2J).
It is now readily seen that (2.4) holds since in this case f(A) ^ 0 by

GKS and g(A)= 1. To prove (2.5) we note first that it follows from the
GKS inequalities that <σβ>, Be A is non decreasing as A is increased,
i.e. (σpA, ^ (σB}Λ for Λ'DΛ (and h ̂  0). Hence for φ (q) = qc, Ψ(t) = tD,
f(A) is an increasing and g(A) a decreasing function of the "size" of A,
i.e. f{A')^f(A\ g{A')^g{A) iϊA'DA. Similarly

<qcqB>= Σ P(Λ)χ(A)^ Σ P{A)Xl{A)XiiΛ) (2.11)
AcΛ AcΛ

where
χ(A) = Tvqi {qcqD expL-HA(q 0, 2J)]}/Z(A; 0,2J), (2.12)

and χ ^ ) , χ 2 (^) a r e t n e corresponding Ising expectations of qc and qB

respectively. The inequality in (2.11) follows from GKS which also shows
that both Xi(A) and χ2(A) are increasing functions on the sets A.

Thus (2.5) will be a consequence of the FKG inequalities if we can
show that the measure P satisfies (1.7), i.e.

P(A) P(B) ^ P{A u B) P(A n B). (2.13)

Using (2.8) we see that (2.13) is a consequence of the following lemma.

Lemma. For an Ising spin system with general ferromagnetic inter-
actions,

HΛ=-Σ JQ°Q> JQ^° ( 2 1 4 )
QCΛ

Z{ΛX) Z(Λ2) S Z(ΛιvA2) Z(AinA2) (2.15)

where Z(A) = Trσ exp [HA(σ)].

Remark. In applying (2.15) to prove (2.13), At = A, A2 = B or Aγ = A,
A2 = B.

Proof. Setting A1nA2 = K1, Λ1\K1 = K2, A2\K1 = K3 we want to
show that

] ^ 0 . (2.16)
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Now it follows readily from the GKS inequalities that (2.16) holds when
there is no interaction between spins on sites in JK^ and spins on sites
in K3. Consider now the change in F when an interaction term of the
form c/σQlσβ3, J > 0 , Q1CK1, Q3CK3 is added to the energy of the
system. Taking the derivative of F with respect of J we obtain

-JJ-<σQ,σQ^κX2,-<oQlσQ3yKl3 (2.17)

where we have used the abbreviations K12 = K1KJK2, etc. The right
side of (2.17) is ^ 0 by GKS and hence F ̂  0. The lemma and the theorem
are thus proven.

Remarks, (i) It follows from (2.3) that u4(iJ,k,l)^0 whenever <σk>
and <σj> (or, by symmetry the expectation values of any pair of spins in
the set {ίj, k, /}) vanish, e.g. h = 0. Furthermore using the symmetry of u4

and the fact that <ίΛίz> = (qkqι) when h = 0, we have in this case

\u4{i,j, k, 0| g 2u2(iJ) u2{k, I),

|κ 4 (U, k, /)| S 2{u2{Uj) u2(k, 0 u2(i9 k) u2(j, /)] 1 / 2

 5

\u4(ij, k, 01 ̂  2{u2{Uj) u2(k, 0 u2(i9 k) u2(j, I) u2(i91) u2(j, /c)]1 / 3.

This may be of some relevance to the question of the decay rates of the
different Ursell functions [9].

(ii) For h ̂  0, {qA} is a decreasing and <ί^> is an increasing function
of the external fields {/zj.

(iii) By combining (2.4), (2.5) and the subsequence remark we find
that for h ̂  0,

^ <qΛ> <*B> <<?c> ̂  <qAQc> <h> >

S <qA> <h> <tc> ^<qA> <tBtc>
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