Grégoire Charlot
Maître de Conférences à
l'Institut Fourier
et à l'Université
Grenoble Alpes
Habilité à diriger des recherches
Adresse : Institut Fourier, 100 rue des Maths, BP 74, 38402 St Martin
d'Hères, France
Téléphone : (+33/0) 4 76 63 58 50
Email : gregoire.charlot -at- univ-grenoble-alpes.fr
Recherches :
Contrôle géométrique. Géométrie sous-Riemannienne et
sous-Finslerienne. Singularités de l'application exponentielle.
Contrôle quantique.
Stabilisation.
ANR GCM (2010-2014) ; ANR SRGI (2016-2020).
Didactique des mathématiques : Placer les élèves en situation de recherche ; SiRC ; Débat scientifique ; Enseignement fractions et décimaux en cycle 3.
GDR DEMIPS ; Projet PEGASE ;
Maths à Modeler ; IREM de Grenoble.
HDR : hdr.pdf
Publications en contrôle géométrique :
-
On subriemannian
caustics and wave fronts, for contact distributions in the three-space,
A. A. Agrachev, G. Charlot, J.-P.A. Gauthier &
V. M. Zakalyukin,
Journal of Dynamical and Control Systems, 6
(2000),
no. 3, 365-395.
-
Quasi-contact S-R metrics: normal form
in R^2n, wave front and caustic in R^4,
G. Charlot, Acta Applicandae
Mathematicae, vol 74, No 3, Dec 2002, pp 217-263.
Pdf.
-
Optimal Control in laser-induced
population transfer for two- or three-level quantum systems,
U. Boscain, G. Charlot,
J-P Gauthier, S. Guérin & H-R
Jauslin, Journal of Mathematical Physics, May 2002, vol 43, Issue 5, pp
2107-2132.
-
Optimal control of the Schrödinger equation
with two or three levels,
U. Boscain, G. Charlot, J-P Gauthier,
Nonlinear and adaptive control (Sheffield, 2001), 33-43,
Lecture Notes in Control and Inform. Sci., 281, Springer, Berlin, 2003.
-
Resonance of Minimizers for n-level
Quantum Systems with Arbitrary Costs,
U. Boscain, G. Charlot,
COCV, Vol. 10, No. 4, pp 593-614, 2004.
arXiv.
-
Nonisotropic
3-level Quantum Systems: Complete Solutions for Minimum Time and
Minimum Energy,
U. Boscain, T. Chambrion, G. Charlot,
DCDS Ser. B 5 (2005), no. 4, 957--990.
arXiv.
-
Stability
of Planar Nonlinear Switched Systems,
U. Boscain, G. Charlot, M. Sigalotti, DCDS Ser. A 15 (2006), no. 2,
415--432. arXiv.
-
The sphere and the cut locus at a tangency point in two-dimensional
almost-Riemannian geometry,
B. Bonnard, G. Charlot, R. Ghezzi, G. Janin,
Journal of Dynamical and Control Systems,
2011, Volume 17, Number 1, Pages 141-161.
-
Two-Dimensional Almost-Riemannian Structures with
Tangency Points,
A. Agrachev, U. Boscain, G. Charlot, R. Ghezzi, M. Sigalotti,
Ann. I. H. Poincaré - AN 27 (2010) 793-807.
arXiv.
-
Existence of planar curves minimizing length and curvature,
U. Boscain, G. Charlot, F. Rossi,
Proceedings of the Steklov Institute of Mathematics, vol. 270 (2010), n.
1, 43-56. arXiv.
-
Lipschitz Classification of Two-Dimensional
Almost-Riemannian Distances on Compact Oriented
Surfaces,
U. Boscain, G. Charlot, R. Ghezzi, M. Sigalotti,
Journal of Geometric Analysis, Volume 23, Issue 1 , pp 438-455.
arXiv.
-
A Normal Form for Generic 2-Dimensional
Almost-Riemannian Structures at a tangency point,
U. Boscain, G. Charlot, R. Ghezzi,
Differential Geometry and its Applications, 31 (2013), 41-62.
arXiv.
-
On the heat diffusion for generic Riemannian and sub-Riemannian structures,
D. Barilari, U. Boscain, G. Charlot, R. Neel,
IMRN, Volume 2017, Issue 15, August 2017, Pages 4639-4672,
arXiv.
-
Local properties of almost-Riemannian structures in dimension 3
U. Boscain, G. Charlot, M. Gaye, P. Mason,
Discrete Contin. Dyn. Syst. No. 9, 4115-4147 (2015). arXiv.
-
Cut locus and heat kernel at Grushin points of 2 dimensional almost Riemannian metrics,
G. Charlot. arXiv.
-
Local (sub)-Finslerian geometry for the maximum norms in dimension 2.
E. A.-L. Ali, G. Charlot, J. Dyn. Control Syst. 25, No. 3, 457-490 (2019).
HAL.
-
Local contact sub-Finslerian geometry for maximum norms in dimension 3.
E. A.-L. Ali, G. Charlot, à paraître dans MCRF (2020).
HAL.
|