MORE ON DUALITY

1. INTRODUCTION
Let £ be a vector space of dimension n. Recall that the dual space of
E is the vector space £* := L(F,R).

Let’s take a closer look to the elements of E*. We start with a lemma
which will motativate the sequel.

Lemma 1.1. Let E be a vector space of dimension n.

1) If w € E* is non zero, then ker(u) is a subspace of £ of dimension
n—1.

2) Two non zero elements u,u’ € E have same kernel if and only if
they are proportional.

3) Let H be any subspace of £ of dimension n — 1. Then there exists

a non zero element w € K* such that H = ker(u).

In particular, we have a one-to-one correspondence between the lines
of E* and the subspaces of dimension n — 1 of K.

Proof. 1) Since u is non zero, there exists w € E such that u(w) # 0.
Now pick any A € R, and set z = TL)U). Then we have

Hence the map u : £ — R is surjective, and by the Rank Theorem we
have the conclusion.

2) If v = Au (with XA # 0), then clearly ker(u') = ker(u). Conversely,
if u,u’ have same kernel, let vy, --- v, be a basis of F such that u(v;)
is a basis of Im(u) = R and vy, -+ ,v, is a basis of ker(u).

By choice of vy, we have u(vy) # 0, and so u'(v1) # 0 by assumption.
!

Now set A := M

u(v)
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Let x € F, and write © = zyv1 + -+ + 2,v,. We then have u(z) =
ziu(vy) and u'(x) = x1u'(v1) (for the second equality we use the fact
that ker(u') = ker(u), hence u/(z) = Au(z) for any = € F, so u' = Au.

3) Assume that H is a subspace of £ of dimension n—1. Let vq, -+ v,
be a basis of H and extend it into a basis vy, -+ ,v, of F.

Now set u(v;) = 0 for s = 2,--- ,n and u(v1) = 1. This defines a non
zero element v € E*. We claim that ker(u) = H. To prove this, let
z € K, and write © = zqv1 + -+ + 2,v,. Then we have u(zx) = 1, so
x € ker(u) <= =z € Span(vy,--- ,v,) = H.

The last point of the lemma follows directly from 1),2) and 3).
0

This lemma says that we have a one-to-one correspondence between
the lines of E* and the subspaces of dimension n — 1 of E the sub-
spaces of dimension 1 of £*. The aim of what follows is to extend this
correspondence to higher dimensions. We will show that there exists a
one-to-one correspondence between subspaces of dimension n — k of I
and subspaces of dimension k of E*, for any 1 < k < n.

If E is a vector space of dimension n, we will denote by Vi(FE) the set
of subspaces of dimension k of F., for any 0 < k < n.

Let v be a basis of E. Recall that v} € E* is defined by v/(v;) = 1 and
v¥(v;) = 0if j # 1, and that v* is a basis of F*, called the dual basis
of v.

For sake of simplicity, we will denote (F£*)* by £**.

2. BIDUALITY

Recall that ¥ and E* have same dimension, so they are isomorphic.
An isomorphism can be produced as follows: pick a basis vy, -+ ,v, of
FE, and consider the corresponding dual basis vy, .-+, v of E*.

Then ¢y 1 v; € £ +— v € E* is an isomorphism of vector spaces.

This isomorphism is not canonical, since we have to choose a basis of £
to construct it. However, there exists a canonical isomorphism between
FE and E**, as the following theorem shows:

Theorem 2.1. Let E be a vector space of dimension n.
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Then the map

X:z€FE—(ue E"—u(z)eR)e £

is an isomorphism of vector spaces.

Proof. The fact that x(z) : v € £ +— u(x) is a linear transformation,
as well as y, is left to the reader. Now since £/ and E** have same
dimension, it suffices to prove that x is injective for example.

Let € E such that y(z) = 0. Let v a basis of K, and write z =
rivy + -+ 4+ zuv,. I v*ois the corresponding dual basis, recall that

vi(z) = ;.

We then have x(z)(v}) = 0 = v(x) = z; for any 7, so x = 0 and the
map Y 1s injective.

O

Corollary 2.1. Let E be a vector space of dimension n, and let u :=
(ug, -+ ,u,) be a basis of E*. Then there exists a basis w of E such
that u = w

Before proving this result, let’s point out that this is not as trivial as
it appears. It is not sufficient to take the inverse images of uy,--- ,u,
under the map ¢,, since the map does NOT send every basis of E to
its dual basis (even if it sends v to v*).

Indeed, we have u; = u;(v1)vy + -+ 4 ui(v,)vr. If we set w; = o (u;),
we get w; = u;(vi)vy + -+ + uz(vn)vn Then uz(w]) = u](vl)uz(vl) +
-~ u;(v,)ui(v,), which has no reason to be 0 if ¢ # j and 1 if 7 = j.

To prove the result, we use Theorem 2.1.

Proof. Let u a basis of £/*, and consider the dual basis u* of E**, so
uf(u;) =0if ¢ # 5 and 1 if ¢ = j.

Set w; = x~'(u}) € E.

-1

Since x~' is an isomorphism, it sends any basis of £** to a basis of F;

in particular w is a basis of .
Now we have u;(w;) = x(w;)(u;) = u;(uz), so u;(w;) =01if 7 # j and 1
if 2 = 5. This is equivalent to say that u; = w}. O
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3. THE CORRESPONDENCE

The theorem that we want to prove is the following.

Theorem 3.1. Let E be a vector space of dimension n, and let k be
an integer, 1 < k <n. Then:

1) Let uy,--- ,ur € E* be linearly independent. Then we have:
dim ﬂ ker(u;) =n — k.
1<i<h
2) Let (uy,--- ,ug) and (u},--- ,u}) be two families of k linearly inde-

pendent vectors of E*. Then we have:

ﬂ ker(u;) = ﬂ ker(u;) <= Span(uy,- -+ ,ug) = Span(uj, - ,ul).

1<i<k 1<i<k

3) Any subspace F of F of dimension n — k can be written as
F= ﬂ ker(u;),
1<i<k
where uy, - -+ ,u, € B* are linearly independent.
In particular, the map
O : Span(uy, - ,ug) € Vi(E£*) — ﬂ ker(u;) € V—ik(F)
1<i<k

gives a one-lo-one correspondence between the subspaces of dimension
k of E* and the subspaces of dimension n — k of F.

Proof. 1) Let uy, - -+, ug, be linearly independent elements of . Extend
this family into a basis u of E*. By Corollary 2.1, there exists a basis
w of K such that u = w*.

Let z € E, and write z = zyw; + - - - + z,w,. We have u;(z) = w}(z) =

x; forv=1,--- |k, so we get
T € ﬂ ker(u;) <= x € Span(wj, ,, - ,w}).
1<i<k

We then get [\ ker(u;) = Span(ugy1,- -+ ,u,), which has dimension
1<i<k
n — k, since the u;’s are linearly independent.
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2) Let (uy,- -+ ,ug) and (uf,--- ,u)) be two families of k linearly inde-
pendent vectors of K*.

Assume first Span(uq, -+ ,ug) = Span(ul, -+, u}).

Then each u} is a linear combination of the u;’s, so if some z € E

satisfies u;(x) = 0 for any j, it also satisfies u’(x) = 0. Since this is

true for any 7, we get that (] ker(u;) C () ker(u}). Since these
1<i<k 1<i<k

two spaces have same dimension, thw inclusion shows they are equal

(alternatively, the reverse inclusion can be obtained by switching the

role of the u;’s and the u!’s).

Now assume that (] ker(u;) = [\ ker(u}). Asin the previous point,
1<i<h 1<i<h

extend uy,--- ,uy into a basis uy, -+ ,u, of £*, and let w be a basis of

FE such that u = w*.

Since w* is a basis of E*, we can write u} = cijw} + -+ + ¢w;. We
already saw in the proof of the previous point that () ker(w;) =
1<i<h
Span(wg41,- -+ ,wy,). Since by assumption, we have [\ ker(u;) =
1<i<h
() ker(u}), we get ui(w;) =c¢;; =0for j=k+1,--- ,n. Hence u} €
1<i<h

Span(wf,--- ,w}) = Span(uy, - -- ,uy), for any i. Thus Span(uj,---,u})
Span(uy,- - ,ux), and since these spaces have same dimension, they are
equal.

3) Let F be a subspace of £ of dimension n — k. Let wgyq,--- ,w, be
a basis of F' and extend it into a basis wy,--- ,w, of K. Now we have

() ker(w}) = Span(wgy1,-- - ,w,) = F.

1<i<k

The last part of the theorem comes directly from 1),2) and 3). O

Notice that this theorem implies that any subspace of dimension n — k
of F is the kernel of a surjective map f : F — R¥, so in particular any
subspace of R” of dimension n —k is the nullspace of some k x n matrix

A of rank k.

Indeed, let F' be a subspace of dimension n — k of F, and write it as

F= [\ ker(u;), where uy,--- ,u; € E* are linearly independent.
1<i<k

Then set f:2 € B (ui(z), - ,up(z)) € RE

<
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Clearly this is a linear transformation, and ker(u) = [\ ker(u;) = F.
1<i<k
Since dim F' = n — k, the Rank Theorem says that rank(f) =k, so f

is surjective (since dimR* = k).

Notice that the correspondence is apparently not canonical: we have
to choose a basis of the subspace of E* to define the corresponding
subspace of F. In fact, it is, and even better: the inverse map is also
canonical, as shows the following theorem.

Theorem 3.2. Lel E be a vector space of dimension n, and let 1 <
k <n. Then we have:

1) If F' € Vi.(E*), then () ker(u) € V,_r(F).

u€eF!
2) If F € V,u_i(FE), then {u € E*|u, =0} € Vi(E*).
3) The map

o F' € Vi(E") = [ ker(u) € Vi(E)

ueF’!

is bijective, and the inverse map is given by

1. Fe Vk(E) — {u € E*|U|F = 0} S Vn_k(E*).

Proof. 1) Let F’ be a subspace of E* of dimension k, and let uy, -+, uy
be a basis of F’'. We claim that [\ ker(u) = ()] ker(u;).
uer’ 1<i<k

The inclusion C is clear. Now assume that € [ ker(u;). Since any
1<i<k

u € F'is a linear combination of the u;’s, we also have u(z) = 0, and
this proves the other inclusion. Now apply Theorem 3.1 to conclude.

2) Let F be a subspace of £ of dimension n — k. Recall that the
linear transformation v : v € E* — u), € F* is surjective. Indeed, let
Vkt1," " , U, be a basis of F, and extend it into a basis of vy, -+ , v, of
E. Now for any v’ € F*,set u(v;) =0ifi =1,--- ,kand u(v;) = v/(v;)
fori=k+1,--- ,n. Then u|, = u'.

The Rank Theorem then gives dimker(¢)) = dim £* — dim F* = n —
(n — k) = k. This is exactly what we wanted to prove.

3) Denote by ¢’ the second map. We have to prove ¢ o ¢)'(F') = F' for
any F' € V,_1(F) and ¢ o (F) = F for any F € Vi(E*).
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If F' € V,_r(FE), then we have ¥(¢'(F')) = (] ker(u), so this
we! (F")

subspace contains [, since by definition u(z) = 0 for any = € F' and

any u € ¢'(F'). Since these two spaces have same dimension, they are

equal. Thus ¢ (¢'(F')) = F".
Now for any F' € Vi(E*), ¢'(¢(F)) = {u € E*|u),,, = 0}, so this

subspace contains F', since by definition u(z) = 0 if v € F and z €
t(F). Since these two spaces have same dimension, they are equal.

Thus ¢'(¢(F)) = F.
]

Remark: As usual, you can replace R by any field & (e.g. Q,C,F,...),
all the results here and their proofs remain valid.

4. AN APPLICATION

We end these considerations by given an application of this correspon-
dence with £ = 1.

Let’s try to solve the following question: Let p be a prime number, and
let £ = ). This is a vector space over F,. How many subspaces of
FE of dimension n — 1 do we have (this number is finite because E is
finite; it has p™ elements) ?

If p = 2, the problem can be solved by hand directly, but if p is arbi-
trary, it is quite difficult. By Theorem 3.1, this number is equal to the
number of lines of £, that is the number of lines of F, since £K* ~ E.
So we just have to count the number of lines of F = F}. A line is
defined by a non zero vector, and two lines are distinct if and only if
the corresponding vectors are not proportional. There is p” — 1 non

TL_l .
zero vectors of I/, and there are pp_1 non proportional non zero vectors

(remember that we work with vector spaces over F,, so the constants
are elements of F,, not real numbers anymore). Hence the number of
pt—1
p—1"

subspaces of dimension n — 1 of F is

The general correspondence is very useful in geometry. For example, it
allows to transform a problem involving a configuration of planes into a
problem involving a configuration of lines, which is easier. It also gives
for free new theorems by applying duality. Unfortunately, I don’t have
concrete references or examples for the moment, but believe me...this
correspondence is very useful.



