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2 MARC BURGER AND ALESSANDRA IOZZI1. Introdu
tionIn [25℄ a theory of 
ontinuous bounded 
ohomology for lo
ally 
om-pa
t groups was developed whi
h proved itself to be rather useful and
exible at the same time. Bounded 
ohomology was originally de�nedby Gromov in 1982 and has already been used by several authors. Thepoint of the theory developed in [25℄ is the introdu
tion in this 
on-text of relative homologi
al algebra methods in the 
ontinuous setting.Based on this theory, the authors developed a ma
hinery whi
h hasalready proved itself very fruitful in showing several rigidity results fora
tions of �nitely generated groups or in �nding new proofs of knownresults. We want to list here in very telegraphi
 style some results inwhi
h either bounded 
ohomology or 
ontinuous bounded 
ohomologyplay an essential role.Minimal Volume (Gromov [37℄): A geometri
 appli
ation to 
ontrolthe minimal volume of a smooth 
ompa
t manifold by its simpli
ialvolume, that is the seminorm of the fundamental 
lass in `1-homology.A
tions on the Cir
le (Ghys [35℄): E. Ghys observed that the Euler
lass of a group a
tion by homeomorphisms on the 
ir
le admits abounded representative, leading thus to the bounded Euler 
lass ofthis a
tion, whi
h he showed determines it up to semi
onjuga
y (seex 2.3).Maximal Representations in Homeo+(S1) (Matsumoto, [48℄, see also[42℄): A 
hara
terization of representations of surfa
e groups whi
hare semi
onjugate to a hyperbolization as those with maximal Eulernumber (see x 3.2).Stable Length (Bavard [5℄): The stable length of 
ommutators of a�nitely generated group � vanishes if and only if the 
omparison mapbetween bounded 
ohomology and ordinary 
ohomologyH2b(�;R)! H2(�;R)is inje
tive.Chara
terization of Gromov Hyperboli
 Groups (Mineyev [50, 51℄): A�nitely generated group is Gromov hyperboli
 if and only if for everyBana
h �-module V , the 
omparison map H2b(�; V ) ! H2(�; V ) issurje
tive.Central Extensions and their Geometry (Gersten [34℄): If0! Z! e�! �! 1is a 
entral extension of a �nitely generated group � given by a boundedtwo-
o
y
le, then e� is quasiisometri
 to � � Z. Applying this to � =Sp(2n;Z) and to the inverse image e� of � in the universal 
overing of



3Sp(2n;R), one obtains that e� is quasiisometri
 to � � Z; sin
e e� hasproperty (T) for n � 2 , while ��Z does not, this shows that property(T) is not a quasiisometry invariant.Boundedness of Chara
teristi
 Classes (Gromov [37℄, Bu
her-Karlsson[12℄): Re
ently, M. Bu
her-Karlsson, strengthening a result of Gromov,showed that 
hara
teristi
 
lasses of 
at bundles admit 
o
y
le repre-sentatives taking �nitely many values, hen
e in parti
ular they arebounded.Orbit Equivalen
e (Monod{Shalom [55℄): If � is a �nitely generatedgroup, then the nonvanishing of H2b��; `2(�)� is an invariant of measureequivalen
e, and this 
an be applied to show rigidity of 
ertain produ
tsunder measure equivalen
e (see x 2.3).Theory of Amenable A
tions (Burger{Monod [25℄): For a lo
ally
ompa
t groupG a
ting on a standard measure spa
e (S; �), the amenabil-ity of the G-a
tion (in the sense of Zimmer, [65℄) is equivalent to theinje
tivity of theG-module L1(S; �) in a sense appropriate for bounded
ohomology (see De�nition 2.8).Rigidity Questions for Group A
tions on Hermitian Symmetri
 Spa
es:When G is a 
onne
ted semisimple Lie group with �nite 
enter su
hthat the asso
iated symmetri
 spa
e X is Hermitian, then there is a
anoni
al 
ontinuous bounded 
lass � 2 H2
b(G;R) 
onstru
ted usingthe K�ahler form on X . This allows to asso
iate to any homomorphism� : � ! G an invariant �(2)(�) 2 H2b(�;R), 
oined the bounded K�ahler
lass of �, and whi
h 
ontains substantial information about the homo-morphism. This is put to use to study various aspe
ts of group a
tionson X .The �rst one 
on
erns the 
ase where � is a latti
e in SU(1; p), � isthe homomorphism �! SU(1; q) obtained from inje
ting SU(1; p) in astandard way into SU(1; q) (1 � p � q), and the question is the lo
alrigidity of � in the variety of representations of � into SU(1; q) (see x 5);an important part of this paper will be devoted to developing 
ertaintools in 
ontinuous bounded 
ohomology whi
h are instrumental inanswering this question { see x 4 { (Burger{Iozzi [19, 14, 16℄, Koziarz{Maubon [45℄).The se
ond aspe
t deals with the 
ase in whi
h G is in general theisometry group of a Hermitian symmetri
 spa
e, � is the fundamen-tal group of a 
ompa
t oriented surfa
e and the question 
on
erns thegeometri
 understanding of 
ertain 
omponents of the representationvariety of � into G, namely those formed by the set of maximal repre-sentations { see x 3.3 { (Burger{Iozzi{Wienhard [23, 21, 22℄, Wienhard[61℄, Burger{Iozzi{Labourie{Wienhard [13℄).



4 MARC BURGER AND ALESSANDRA IOZZIThe third aspe
t is when � is an arbitrary, say �nitely generated,group: remarkably, if � : �! G has Zariski dense image and X is notof tube type, then the bounded K�ahler 
lass of � determines � up to
onjugation, (Burger{Iozzi [18℄, Burger{Iozzi{Wienhard [20℄).The s
ope of these notes is to give a des
ription of one underlying fea-ture in 
ontinuous bounded 
ohomology 
ommon to these last results([19, 14, 16, 23, 21℄) as well as to the proof in [42℄ of Matsumoto's the-orem in [48℄ and to Gromov's proof of Mostow rigidity theorem in [59℄.More spe
i�
ally, we prove an integral formula whi
h involves spe
i�
representatives of bounded 
ohomology 
lasses. Parti
ular instan
es ofthis formula were proven already in [42℄ and [23℄, while here we give atreatment whi
h uni�es at least the �rst half of the statement. As thisis rather te
hni
al, we postpone its statement to x 2 (Proposition 2.43and also Prin
iple 3.1) and x 4.2 (Proposition 4.9 and Prin
iple 4.11),where the patient reader will be gently guided.The paper is organized as follows. In x 2 we lay the foundation of
ontinuous bounded 
ohomology for the noninitiated reader, who willbe lead to the statement of an easy version of the main result in x 4. Inx 3 we des
ribe the instan
es in whi
h the results of x 2.7 are used. Inx 4 we give a 
omplete proof of a more general version of the Formula inProposition 2.43 from whi
h the statements in Proposition 2.43 
an beeasily obtained. Finally, in x 5 we give the appli
ation whi
h triggeredProposition 4.9, namely an original proof of a deformation rigidity the-orem announ
ed in 2000 in [19℄ and [42℄ with a sket
h of a proof andalso proven by more geometri
 methods in 2004 in [45℄.A
knowledgments: The authors thank Theo B�uhler and Anna Wien-hard for detailed 
omments on this paper.2. Bounded Cohomology PreliminariesWe refer to [25℄, [53℄ and [17℄ for a 
omplete a

ount of di�erentparts of the theory.2.1. De�nition via the Bar Resolution. LetG be a lo
ally 
ompa
tgroup.Definition 2.1. A 
oeÆ
ient G-module E is the dual of a separableBana
h spa
e on whi
h G a
ts 
ontinuously and by linear isometries.Examples 2.2. Relevant examples of 
oeÆ
ientG-modules in this noteare:



5(1) R with the trivial G-a
tion;(2) Any separable Hilbert spa
e H with a 
ontinuous G-a
tion byunitary operators;(3) L1(G=H) with the G-a
tion by translations, where H is a
losed subgroup of the se
ond 
ountable group G.(4) L1w�(S;E), that is the spa
e of (equivalen
e 
lasses of) weak�-measurable maps f : S ! E from a G-spa
e (S; �) into a
oeÆ
ient module. We re
all that a regular G-spa
e is a stan-dard Borel measure spa
e (S; �) with a measure 
lass preservingG-a
tion su
h that the asso
iated isometri
 representation onL1(S; �) is 
ontinuous.Now we pro
eed to de�ne the standard 
omplex whose 
ohomology isthe 
ontinuous bounded 
ohomology with values in a 
oeÆ
ient moduleE. Let Cb(Gn; E) := �f : Gn ! E : f is 
ontinuous andkfk1 = supg1;:::;gn2G kf(g1; : : : ; gn)kE <1	be endowed with the G-module stru
ture given by the G-a
tion(hf)(g1; : : : ; gn) := hf(h�1g1; : : : ; h�1gn) ;and let Cb(Gn; E)G be the 
orresponding submodule of G-invariantve
tors. Then the 
ontinuous bounded 
ohomology H�
b(G;E) of G with
oeÆ
ients in E is de�ned as the 
ohomology of the 
omplex(2.1) 0 //Cb(G;E)G d //Cb(G2; E)G d //Cb(G3; E)G d // : : :where d : Cb(Gn; E)! Cb(Gn+1; E) is the usual homogeneous 
obound-ary operator(df)(g0; : : : ; gn) := nXj=0(�1)jf(g0; : : : ; ĝj; : : : ; gn) :More pre
isely,Hn
b(G;E) := ZCb(Gn+1; E)G=BCb(Gn+1; E)G ;whereZCb(Gn+1; E)G := ker �d : Cb(Gn+1; E)G ! Cb(Gn+2; E)G	are the homogeneous G-invariant n-
o
y
les, andBCb(Gn+1; E)G = im�d : Cb(Gn; E)G ! Cb(Gn+1; E)G	are the homogeneous G-invariant n-
oboundaries.



6 MARC BURGER AND ALESSANDRA IOZZIRemark 2.3. If � 2 Hn
b(G;E), then we de�nek�k := inf �k
k1 : 
 2 ZCb(Gn+1; E); [
℄ = �	 ;that is Hn
b(G;E) is a seminormed spa
e with the quotient seminorm.If we drop the hypothesis of boundedness in (2.1), we obtain the 
on-tinuous 
ohomology of G, whi
h we denote by Hn
 (G;E). Thus 
ontin-uous bounded 
ohomology appears as the 
ohomology of a sub
omplexof the 
omplex de�ning 
ontinuous 
ohomology, and thus we have anatural 
omparison mapH�
b(G;E)! H�
(G;E) :Note however that in the 
ase of 
ontinuous 
ohomology, the appro-priate 
oeÆ
ients are just topologi
al ve
tor spa
es with a 
ontinuousG-a
tion (See [38℄, [9℄ and [6℄ for the 
orresponding homologi
al algebratheory in 
ontinuous 
ohomology.)If the group G is dis
rete, the assumption of 
ontinuity is of 
ourseredundant, and in this 
ase the 
ohomology and bounded 
ohomologywill be simply denoted by H�(G;E) or H�b(G;E) respe
tively. Observethat in this 
ase a homologi
al algebra approa
h was already initiatedby R. Brooks [11℄ and later developed by N. Ivanov [43℄ and G. Noskov[56℄.Exer
ise 2.4. Write down the 
omplex of inhomogeneous 
o
hainsand the formula for the 
oboundary map in this setting; 
ompare with[53, x 7.4℄ and/or [38℄.2.2. Low Degree. We indi
ate brie
y here what the bounded 
oho-mology 
omputes in low degrees. Noti
e however that in order to verifyour assertions, one should mostly use the nonhomogeneous de�nitionof 
ontinuous bounded 
ohomology (see Exer
ise 2.4).� Degree n = 0 Sin
e BCb(G;E) = 0, thenH0
b(G;E) = ZCb(G;E)G= �f : G! E : f is 
onstant and G-invariant	= EG ;that is the spa
e of G-�xed ve
tors in E and, in fa
t, there is no dif-feren
e between 
ontinuous 
ohomology and 
ontinuous bounded 
o-homology in degree 0.� Degree n = 1 If we denote by � the (linear) isometri
 a
tion of Gon E, the 
ohomology group H1
(G;E) 
lassi�es the 
ontinuous aÆnea
tions of G with linear part �, while H1
b(G;E) the 
ontinuous aÆne



7a
tions of G with linear part � and with bounded orbits. In parti
ular,if E = R is the trivial module, then H1
b(G;R) = Hom
b(G;R) = 0, andthe same holds also if E = H is a separable Hilbert spa
e (exer
ise) andif E is any re
exive separable Bana
h module, [53, Proposition 6.2.1℄.� Degree n = 2 If G is a dis
rete group and A is an Abelian group (inparti
ular, A = Z or R) , it is a 
lassi
al result that H2(G;A) 
lassi�esthe equivalen
e 
lasses of 
entral extensions eG of G by A, that is theequivalen
e 
lasses of short exa
t sequen
es0 //A // eG //G //0 ;su
h that the image of A in eG is 
ontained in the 
enter. There is nosu
h a 
hara
terization of se
ond 
ontinuous bounded 
ohomology indegree two. However, as alluded to in the introdu
tion, Gersten gavea very useful geometri
 property of 
entral extensions whi
h admitasso
iated bounded 
o
y
les.Note that in general, a lot of information in degree two 
an be ob-tained from the 
omparison mapH2
b(G;E) �! H2
(G;E)as illustrated for instan
e by Bavard's and Mineyev's theorems in theintrodu
tion. It is easy to verify that if E = R, the kernel of the
omparison map in degree two (the so 
alled \exa
t part of the 
ontin-uous bounded 
ohomology") is identi�ed with the spa
e of 
ontinuousquasimorphismsQM(G;R) := �f : G! R : f is 
ontinuous andsupg;h2G jf(gh)� f(g)� f(h)j <1	up to homomorphisms and 
ontinuous bounded fun
tions { the \trivialquasi-morphisms" { namelyEH2
b(G;R) := ker�H2
b(G;R)! H2
(G;R)	= QM(G;R)=�Hom
(G;R)� Cb(R; G)� :2.3. Examples. We give here a few examples of 
o
y
les, most ofwhi
h will be used in the sequel.� Bounded Euler 
lass. Let G = Homeo+ �S1� (thought of as a dis-
rete group, for simpli
ity). The Euler 
lass e 2 H2�Homeo+(S1);R�
an be represented by a nonhomogeneous 
o
y
le arising from the 
en-tral extension of Homeo+(S1) by Z de�ned by the group HomeoZ(R) of



8 MARC BURGER AND ALESSANDRA IOZZIhomeomorphisms of the real line whi
h 
ommute with integral trans-lations 0 //Z // HomeoZ(R) p // Homeo+(S1) //sjj 0 :Then, if one 
hoses a se
tion s of the proje
tion p in su
h a way thats(f)(0) 2 [0; 1), for f 2 Homeo+(S1), the 
o
y
le asso
iated to the
entral extension is bounded and hen
e de�nes a bounded 
ohomology
lass 
alled the bounded Euler 
lass eb 2 H2b�Homeo+(S1);R�, inde-pendent of the se
tion 
hosen. A homogeneous 
o
y
le whose 
lass isa multiple of the bounded Euler 
lass is the orientation 
o
y
le de�nedby(2.2) 
(g0; g1; g2) := 8><>: 1 if (g0x; g1x; g2x) is positively oriented�1 if (g0x; g1x; g2x) is negatively oriented0 otherwise ;where x 2 S1 is a �xed basepoint and g0; g1; g2 2 Homeo+(S1). Then itis an exer
ise to show that �2eb = [
℄ 2 H2b�Homeo+(S1);R�.� Dupont 
o
y
le (�rst instan
e). Let G = PU(1; 1) and 
onsider theunit disk D2 with Poin
ar�e metri
 (1� jzj2)�2jdzj2 and asso
iated areaform !D2 = (1� jzj2)�2dz ^ dz. If x 2 D2, then(2.3) bD2 (g0; g1; g2) := Z�(g0x;g1x;g2x) !D2 ;where �(g0x; g1x; g2x) is the geodesi
 triangle with verti
es g0x, g1x,g2x, is a PU(1; 1)-invariant 
o
y
le whi
h is bounded sin
ejbD2 (g0; g1; g2)j < � :Moreover, if the basepoint x is 
hosen on the boundary �D2 �= S1,then the 
o
y
le �D2 that one 
an de�ne analogously by integrationon ideal triangles is also PU(1; 1)-invariant and bounded, and, in fa
t,if 
jPU(1;1) denotes the restri
tion to PU(1; 1) < Homeo+(S)1 of theorientation 
o
y
le 
 de�ned in (2.2), then�
jPU(1;1) = �D2 :� Cartan invariant. If h ; i is a Hermitian form of signature (p; 1) onCp+1, a model of 
omplex hyperboli
 p-spa
e HpC is given by the 
oneof negative lines. In this model the visual boundary �HpC is the set ofisotropi
 lines. A basi
 invariant of three ve
tors x; y; z 2 Cp+1 is theirHermitian triple produ
t[x; y; z℄ = hx; yihy; zihz; xi 2 C



9whi
h 
an be proje
tivized to give a well de�ned map ��HpC �! R�nCwhose 
omposition with 1� arg gives the Cartan invariant (invariantangulaire, [26℄)(2.4) 
p : (�HpC )3 ! [�1; 1℄ :A 
hain in �HpC is by de�nition the boundary of a 
omplex geodesi
in HpC , that is an isometri
ally and holomorphi
ally embedded 
opy ofD2; as su
h, it is a 
ir
le equipped with a 
anoni
al orientation, and itis uniquely determined by any two points lying on it. When restri
tedto a 
hain, the Cartan invariant is nothing but the orientation 
o
y
le(2.2); furthermore, the Cartan invariant is a stri
t alternating 
o
y
leon (�HpC )3 �= �SU(1; p)=P �3, where P < SU(1; p) is a minimal paraboli
subgroup.The area form !D2 
an be generalized in di�erent dire
tions: the �rstuses the fa
t that the area form on the Poin
ar�e disk is obviously also itsvolume form and will be illustrated in the next example; the subsequentthree examples use instead that the area form on the Poin
ar�e disk isits K�ahler form, that is a nonvanishing di�erential two-form whi
h isPU(1; 1)-invariant (hen
e 
losed). The existen
e of a K�ahler form !Xis what distinguishes, among all symmetri
 spa
es, the Hermitian ones.� Volume 
o
y
le. Let G = PO(1; n)Æ be the 
onne
ted 
omponent ofthe group of isometries of real hyperboli
 spa
e HnR. Then the volumeof simpli
es with verti
es in HnR is uniformly bounded, hen
e de�nesa G-invariant alternating 
ontinuous bounded 
o
y
le. Likewise, thevolume of ideal simpli
es in HnR (that is simpli
es with verti
es on thesphere at in�nity �HnR ofHnR) de�nes aG-invariant alternating bounded
o
y
le.� Dupont 
o
y
le. Let G be a 
onne
ted semisimple group with �nite
enter and X the asso
iated symmetri
 spa
e whi
h we assume to beHermitian. In the sequel we will normalize the Hermitian metri
 su
hthat the minimum of the holomorphi
 se
tional 
urvature is �1. Let-ting now !X be the K�ahler form and x 2 X a basepoint, integrationover simpli
ies �(x; y; z) with verti
es x; y; z and geodesi
 sides givesrise to a 
ontinuous G-invariant 
o
y
le on G de�ned bybX (g0; g1; g2) := Z�(g0x;g1x;g2x) !X ;for g0; g1; g2 2 G, whi
h turns out to be bounded (Dupont [29℄). Infa
t, more pre
isely we have thatkbXk1 = �rX ;



10 MARC BURGER AND ALESSANDRA IOZZIwhere rX is the rank of X , (Domi
{Toledo [28℄ and Cler
{�rsted [27℄).Noti
e that, 
ontrary to the 
onstant se
tional 
urvature 
ase, thegeodesi
 triangle �(g0x; g1x; g2x) has uniquely de�ned geodesi
 sides,but not uniquely de�ned interior: however the integral is well de�nedbe
ause the K�ahler form is 
losed.� Bergmann 
o
y
le. To extend the previous pi
ture to the boundary,re
all that any Hermitian symmetri
 spa
e X has a realization as abounded symmetri
 domain D � Cn. Let �S be the Shilov boundary ofD, that is the only 
losed G-orbit in the topologi
al boundary �D of D.While in the rank one 
ase any two points in the topologi
al boundary�D of D 
an be 
onne
ted by a geodesi
, the same is not true in higherrank. Let �S(3) be the subset of �S3 
onsisting of triples of points whi
h
an be joined pairwise by geodesi
s. Then for x1; x2; x3 2 �S(3) one 
ande�ne heuristi
ally(2.5) �X (x1; x2; x3) := Z�(x1;x2;x3) !Xwhi
h turns out to be, on
e again, an invariant alternating 
o
y
le,whi
h is also bounded sin
ek�Xk1 = �rX :We refer to [27℄ for a justi�
ation of this heuristi
 formula.� Maslov index. Let V be a real ve
tor spa
e with a symple
ti
 formh ; i : V � V ! R, G = Sp(V ) = �g 2 GL(V ) : g preserves h ; i	 andX the asso
iated symmetri
 spa
e. Then X is a 
lassi
al example ofHermitian symmetri
 spa
e and the Grassmannian L(V ) of Lagrangiansubspa
es is in a natural way identi�ed with the Shilov boundary of thebounded domain realization of X . The Bergmann 
o
y
le �X de�nedabove is here equal to �iV , where iV (L1; L2; L3) is the Maslov index ofthree Lagrangians L1; L2; L3 2 L(V ) de�ned, following Kashiwara, asthe sign of the quadrati
 formL1 � L2 � L3 �! R(v1; v2; v3) 7! hv1; v2i+ hv2; v3i+ hv3; v1i :In fa
t, iV is de�ned for all triples of Lagrangians and it is an Sp(V )-invariant 
o
y
le taking integer values in the interval [�n; n℄, where2n = dimV . For a more thorough dis
ussion of all obje
ts involved see[13℄.Here is �nally an example of a 
o
y
le with nontrivial 
oeÆ
ients.� Gromov{Sela{Monod 
o
y
le. Let T := (E ;V) be a tree (in the senseof Serre) with verti
es V, edges E , letG := Aut(T ) be its automorphism



11group and let d be the 
ombinatorial distan
e on T . For any n 2 Z,we are going to 
onstru
t a bounded 
o
y
le with values in `2�E (n)�,where E (n) is the set of oriented geodesi
 paths in T of length n. Forn 2 N, de�ne !(n) : G�G! `2(E (n))(g0; g1) 7! !(n)g0;g1to be !(n)g0;g1(
) := 8><>: 1 if d(g0x; g1x) � n and 
 � 
g0x;g1x�1 if d(g0x; g1x) � n and 
�1 � 
g0x;g1x0 otherwise ;where, if x 2 T is a basepoint and 
y;z denotes the oriented geodesi
path from y to z. Then by de�nition of 
oboundary operatord!(n)(g0; g1; g2) = !(n)(g0; g1) + !(n)(g1; g2) + !(n)(g2; g0) ;and it is easy to verify thatd!(n) = 0 if and only if n = 1 :In fa
t, the support of d!(n)(g0; g1; g2) is 
ontained in the tripod withverti
es g0x; g1x; g2x and 
enter o,g2x������{{{
{{

{{
{���

��
��

��

�~~
~~

~~
~~

~~

o �>>>>>>>> �???????? �@@@@@@@@@@g0x g1xand the total 
ontributions of a path 
 2 E (n) whi
h does not meet o orwhi
h meets o at one of its endpoints is zero, while d!(n)(g0; g1; g2)(
) 6=



12 MARC BURGER AND ALESSANDRA IOZZI0 if and only if 
 is a path whi
h 
ontains the 
enter o of the tripod inits interior. However, sin
esupg0;g1;g2 kd!(n)(g0; g1; g2)k2 <1 ;it follows that 
(n) := d!(n) : G�G�G! `2�E (n)�is a bounded G-invariant 
o
y
le, even though !(n) is not a bounded
o
hain (in fa
t, k!(n)g0;g1k22 = 2(d(g0x; g1x) � n)). Let 
(n)GSM := [
(n)℄ 2H2b�Aut(T ); `2(E (n))� be the bounded 
ohomology 
lass so de�ned,whi
h is independent of the 
hosen basepoint x. These 
lasses turnout to be nontrivial in the following rather strong sense:Theorem 2.5 (Monod{Shalom [54℄). Let � be a �nitely generatedgroup and � : � ! Aut(T ) an a
tion of � by automorphisms on T .Then the following are equivalent:(i) the a
tion of � is not elementary;(ii) the pullba
k �(2)�
(2)GSM� 2 H2b��; `2(E (2))� is nonzero;(iii) the pullba
k �(2)�
(n)GSM� 2 H2b��; `2(E (n))� is nonzero for everyn � 2.A similar but more elaborate 
onstru
tion for Gromov hyperboli
graphs of bounded valen
y due to Mineyev, Monod and Shalom givesthe following general nonvanishing result:Theorem 2.6 (Mineyev{Monod{Shalom [52℄). Let � be a 
ountablegroup admitting a proper nonelementary a
tion on a hyperboli
 graphof bounded valen
y. Then H2b��; `2(�)� is nontrivial.Remark 2.7. Another illustration of the relevan
e of bounded 
o-homology with 
oeÆ
ients is provided by the result of Monod andShalom already alluded to in the introdu
tion. They proved that iftwo groups �1 and �2 are �nitely generated and measure equivalent,then H2b��1; `2(�1)� 6= 0 if and only if H2b��2; `2(�2)� 6= 0.Re
all that two groups are measure equivalent if there exists a spa
eX with a �-�nite measure �, su
h that the a
tions of the �is on (X; �)are measure preserving, 
ommute, and admit a �nite volume funda-mental domain. The typi
al example of measure equivalent groupsare latti
es �1;�2 in a lo
ally 
ompa
t group G, where one 
an take(X; �) = (G; dg), where dg is the Haar measure on G.



13It is interesting to 
ompare this with a result of Gaboriau [31, 33℄asserting the equality of `2 Betti numbers if �1 and �2 are orbit equiva-lent. Re
all that `2-Betti numbers of � are 
omputed using the ordinary
ohomology groups H���; `2(�)� [32℄.Now that we have some examples at hand, it is 
lear that, just like inthe 
ase of 
ontinuous 
ohomology, there is the need of more 
exibilitythan allowed by the bar resolution as, for instan
e, some of the 
o
y
lesde�ned above { e. g. the Dupont 
o
y
le in (2.3) { are not 
ontinuous.2.4. Homologi
al Algebra Approa
h to Continuous BoundedCohomology. Let V be a Bana
h G-module. As for ordinary 
on-tinuous 
ohomology, there is a notion of relatively inje
tive Bana
hG-module appropriate in this 
ontext.Definition 2.8. A Bana
h G-module V (that is a Bana
h spa
e withan a
tion of G by linear isometries) is relatively inje
tive if it satis�esan extension property, namely:{ given two 
ontinuous Bana
h G-modules A and B and a G-morphism i : A! B between them (that is a 
ontinuous linearG-map), su
h that there exists a left inverse � : B ! A withnorm k�k � 1 (whi
h is linear but not ne
essarily a G-map),and{ given any G-morphism � : A! V ,there exists a G-morphism � : B ! V su
h that the diagramA � � { //� ��@
@@

@@
@@

B9�~~V
ommutes, and k�k � k�k.We remark that the existen
e of su
h � is a rather severe restri
tionon {, as it implies that there exists a splitting of B = A + C, where Cis a Bana
h 
omplement of A in B; if however we were to require that� is a G-morphism, then the splitting would be G-invariant and hen
eall Bana
h G-modules would be relatively inje
tive.Example 2.9. For any 
oeÆ
ient G-module E, let L1w�;alt(Gn+1; E) bethe subspa
e of (equivalen
e 
lasses of) alternating fun
tions, that isf 2 L1w�;alt(Gn+1; E) if and only if f��(g0; : : : ; gn)� = sign(�)f(g0; : : : ; gn).It is not diÆ
ult to show that the Bana
h G-modules Cb(Gn+1; E),L1(Gn+1; E) and L1w�;alt(Gn+1; E) are relatively inje
tive. In fa
t, if V



14 MARC BURGER AND ALESSANDRA IOZZIis any of the above fun
tion spa
es and � : A ! V is a G-morphism,then one 
an de�ne �(b)(g0; : : : ; gn) := ��g0�(g�10 b)�(g0; : : : ; gn) andverify that it has the desired properties.Definition 2.10. Let E be a 
oeÆ
ient G-module.(1) A resolution (E�; d�) of E is an exa
t 
omplex of Bana
h G-modules su
h that E0 = E and En = 0 for all n � �10 // E d0 // E1 d1 // : : : dn�2 // En�1 dn�1 // En dn // : : :(2) The 
ontinuous submodule CE of E is the submodule de�nedas the subspa
e of E of ve
tors on whi
h the a
tion of G isnorm-
ontinuous, that is v 2 CE if and only if kgv � vk ! 0as g ! e. Then a strong resolution of E by relatively in-je
tive G-modules is a resolution where the Ejs are relativelyinje
tive G-modules, with a 
ontra
ting homotopy de�ned onthe sub
omplex (CE�; d�) of 
ontinuous ve
tors, that is a maphn+1 : CEn+1 ! CEn su
h that:{ khn+1k � 1, and{ hn+1dn + dn�1hn = IdEn for all n � 0.Given two strong resolutions of a 
oeÆ
ient Bana
h G-module E byrelatively inje
tive G-modules, the extension property in De�nition 2.8allows to extend the identity map of the 
oeÆ
ients to a G-morphismof the resolutions, whi
h in turns results in an isomorphism of the 
or-responding 
ohomology groups. In general however, the isomorphismthat one thus obtains is only an isomorphism of topologi
al ve
torspa
es, not ne
essarily isometri
. More pre
isely,Exer
ise 2.11. (1) Let (E�; d�) be a strong resolution of a 
oeÆ-
ient module E, and (F�; d0�) a strong resolution of E by rel-atively inje
tive modules. Then there exists a G-morphism of
omplexes �� : E� ! F� whi
h extends the identity Id : E ! Eand su
h that �0 = Id .0 // E d0 //Id
��

E1 d1 //�1
��

: : : dn�2 // En�1 dn�1 // En dn // : : :0 // E d00 // F1 d01 // : : : d0n�2 // Fn�1 d0n�1 // Fn d0n // : : :Note that the existen
e of �1 = d0Id is just an appli
ation ofthe de�nition of relative inje
tivity while, for j � 2, in the
onstru
tion of �j one has to use the 
ontra
ting homotopy todeal with the kernel of dj�1.



15(2) If in addition also (E�; d�) is by relatively inje
tive modules,then there exists aG-homotopy equivalen
e between G-morphismsof 
omplexes whi
h indu
es an isomorphism in 
ohomology.Re
all that if �� and �� areG-morphisms of 
omplexes (E�; d�)and (F�; d0�), a G-homotopy �� : �� ! ���1 is a sequen
e of G-morphisms �n : En ! Fn�1,En�1 dn�1 //

�� ��

En dn //�n
��

�n
��

�n
}}||

||
||

||
||

||
||

||
|

En+1
����

�n+1
}}||

||
||

||
||

||
||

||
|

Fn�1 d0n�1 // Fn d0n // Fn+1su
h that �n+1dn + d0n�1�n = �n � �n :Corollary 2.12. The 
ontinuous bounded 
ohomology of a lo
ally
ompa
t groupG with 
oeÆ
ients in the 
oeÆ
ient moduleE is isomor-phi
 (as a topologi
al ve
tor spa
e) to the 
ohomology of the sub
om-plex of invariants of any strong resolution of E by relatively inje
tiveG-modules.We want to present a 
ase in whi
h the isomorphism is indeed iso-metri
, together with providing a realization of bounded 
ohomologywhi
h turns out to be very useful from the geometri
 point of view.2.5. Amenable A
tions. The notion of amenable a
tion is a rela-tivized notion of that of an amenable group and we refer to [65, Chap-ter 4℄ and [53℄ for details and proofs (see also [3, Chapter 4℄ for agroupoid point of view). We start our dis
ussion with the de�nitionwhi
h will be the most useful for us, although it is not ne
essarily themost transparent among those available.Definition 2.13. A lo
ally 
ompa
t group G is amenable if and onlyif there exists a (left) G-invariant mean on L1(G), that is a norm-
ontinuous G-invariant linear fun
tional m : L1(G) ! R su
h thatm(f) � 0 if f � 0, m(1) = 1, and hen
e has norm kmk = 1.Analogously, one has:Definition 2.14. Let (S; �) be a G-spa
e with a quasiinvariant mea-sure. The a
tion of G on (S; �) is amenable if and only if there existsa G-equivariant proje
tion m : L1(G � S) ! L1(S) whi
h is L1(S)-linear and su
h that m(1G�S) = 1S, m(f) � 0 if f � 0 and hen
e mhas norm kmk = 1.



16 MARC BURGER AND ALESSANDRA IOZZIExamples of amenable groups in
lude Abelian, 
ompa
t, and solv-able groups as well as all extensions of amenable groups by amenablegroups and indu
tive limits of amenable groups.. For example, let Pbe a minimal paraboli
 subgroup in a Lie group G: sin
e P is a 
om-pa
t extension of a solvable group, then P is amenable. Moreoverone 
an show that, although a non
ompa
t semisimple Lie group G isnever amenable, it a
ts amenably on the homogeneous spa
e G=P , [65,Chapter 4℄.This is not by 
han
e, in fa
t:Proposition 2.15 (Zimmer [65, Proposition 4.3.2℄). Let G be a lo
ally
ompa
t group and H � G any 
losed subgroup. The a
tion of Gon G=H is amenable (with respe
t to the quotient 
lass of the Haarmeasure) if and only if H is an amenable group.Corollary 2.16. A group a
ts amenably on a point if and only if itis amenable.We want to illustrate now a 
hara
terization of amenable a
tion(whi
h was a
tually the original de�nition [65, Chapter 4℄) modeledon the 
hara
terization of amenable groups by a �xed point property.Namely a lo
ally 
ompa
t group G is amenable if and only if there isa �xed point on any G-invariant 
ompa
t 
onvex subset in the unitball (in the weak�-topology) of the dual of a separable Bana
h spa
e.on whi
h G a
ts 
ontinuously by linear isometries. The 
on
ept ofamenable a
tion on
e again relativizes that of amenable group. Westart illustrating it in terms of bundles in the 
ase of a homogeneousa
tion .Let us 
onsider the prin
ipal H-bundle G! G=H. For any separa-ble Bana
h spa
e E and any 
ontinuous isometri
 a
tion H ! Iso(E),we 
an 
onsider the asso
iated bundle with �ber the dual E� of Eendowed with the weak�-topology. Sin
e the group G a
ts by bundleautomorphisms on the bundle G ! G=H it preserves the subbundleof the asso
iated bundle with �ber the unit ball E�1 � E�. Let A bea G-invariant weak�-measurable subset of G=H �H E�1 whi
h is �ber-wise weak�-
ompa
t and 
onvex. Then we say that G a
ts amenablyon G=H if and only if whenever in the above situation, there existsan A-valued measurable se
tion of the asso
iated bundle whi
h is G-invariant.The following de�nition is just the translation of the above pi
turein the more general 
ase of \virtual group a
tions" (see [47℄ and [57℄ fora des
ription of the philosophy behind it and [66℄ for the expli
it 
or-responden
e between prin
ipal bundle automorphisms and measurable
o
y
les { see the next de�nition).



17Definition 2.17 (Zimmer [65℄). Let G be a lo
ally 
ompa
t groupa
ting 
ontinuously and by linear isometries on a separable Bana
hspa
e E, and let (S; �) be a G-spa
e with a quasiinvariant measure.Let � : S�G! Iso(E) be a measurable 
o
y
le (that is a measurablemap su
h that �(s; gh) = �(s; g)�(sg; h) for almost all s 2 S and forall g; h 2 G) and let s 7! As a Borel assignment of a 
ompa
t 
onvexsubset of the unit ball E�1 of the dual su
h that �(s; g)�As = Asg. LetF �S; fAsgs2S� := �f : S ! E�1 : f is measurable andf(s) 2 As for a: e:s 2 S	be endowed with the G-a
tion (gf)(s) := �(s; g)f(sg). The above data�S; fAsgs2S� is an aÆne a
tion of G over (S; �).Proposition 2.18 (Zimmer [63℄, Adams [1℄, Adams{Elliott{Giordano[2℄). A lo
ally 
ompa
t group G a
ts amenably on S if and only iffor every aÆne a
tion of G over S there is a �xed point, that is ameasurable fun
tion f 2 F �S; fAsgs2S� su
h that f(s) = �(s; g)f(sg)for almost every s 2 S and g 2 G.Example 2.19. Any a
tion of an amenable group is amenable. Wesaw already that a (nonamenable) group a
ts amenably on a homoge-neous spa
e with amenable stabilizer. Another important example ofan amenable a
tion of a (nonamenable) group is that of a free groupFr in r-generators (r � 2) on the boundary �Tr of the asso
iated treeTr, with respe
t to the measure m�C(x)� = �2r(2r�1)n�1��1, where xis a redu
ed word of length n and C(x) is the subset of �Tr 
onsistingof all in�nite redu
ed words starting with x.The relevan
e (as well as a new 
hara
terization) of amenability of ana
tion with respe
t to bounded 
ohomology is given by the following:Theorem 2.20 (Burger{Monod [25℄). Let (B; �) be a regular G-spa
ewith a quasi-invariant measure. Then the following are equivalent:(i) The G-a
tion on B is amenable;(ii) L1(B) is relatively inje
tive;(iii) L1w�(Bn; E) is relatively inje
tive for every 
oeÆ
ient G-moduleE and every n � 1.We pre
ede the proof with the following observation. Let � : V ! Wbe a G-morphism of Bana
h G-modules V , W su
h that there is a leftinverse G-morphism � : W ! V with k�k � 1; assume moreover thatW is relatively inje
tive. Then V is also relatively inje
tive as one 
an



18 MARC BURGER AND ALESSANDRA IOZZIeasily see from the diagramA � � { //� ��@
@@

@@
@@

B�
ss

~~ !!V � // W :�kkProof. We give an idea of the proof of the equivalen
e of the �rsttwo statements. Sin
e L1(G � B) �= L1w��G;L1(B)�, and be
ausewe have already observed that L1w��G;L1(B)� is relatively inje
tive(Example 2.9), by the above observation with V = L1(B) and W =L1w��G;L1(B)� it is enough to �nd a left inverse G-morphism of normone of the in
lusion L1(B) ,! L1(G� B); but this is implied by thede�nition we gave of amenable a
tion.Conversely, 
onsider the diagramL1(B) � � { //Id %%JJJJJJJJJ
L1(B �G)L1(B)and observe that { admits a left inverse of norm one given by�(F )(b; g) := ZG F (b; g) (g)dg ;where  � 0 is some 
ontinuous fun
tion with 
ompa
t support andintegral one. If L1(B) is inje
tive, there is a G-map � : L1(B �G)! L1(B) of norm one making the above diagram 
ommutative; inparti
ular �(f 
 1G) = f for all f 2 L1(B), whi
h, together with theG-equivarian
e implies that � is L1(B)-linear. �This gives us yet another 
hara
terization of the amenability of agroup.Corollary 2.21. Let G be a lo
ally 
ompa
t group. The followingare equivalent:(i) The group G is amenable;(ii) The trivial G-module R is relatively inje
tive;(iii) Every 
oeÆ
ient G-module is relatively inje
tive.Exer
ise 2.22. Show that if G is amenable, then Hn
b(G;E) = 0 forany n � 1 and any 
oeÆ
ient G-module E.Putting together Theorem 2.20, Corollary 2.12 and some extra work�nally one obtains the following



19Corollary 2.23 (Burger{Monod [25℄). There is a 
anoni
al isometri
isomorphism H�
b(G;E) �= H��L1w�;alt(B�; E)G� :The �rst important appli
ation of the above 
orollary is in degree 2.Let � be a 
lass of 
oeÆ
ient Bana
h G-modules. In our 
ase, weshall be mostly 
on
erned with the 
ase in whi
h either � 
onsists ofall separable Hilbert G-modules �sepH, or, more simply, of the trivialmodule � = fRg.Definition 2.24 (Burger{Monod [25℄). Let (S; �) be a G-spa
e with aquasiinvariant measure �. We say that B is a doubly �-ergodi
 spa
e iffor every 
oeÆ
ient G-module E 2 �, every measurable G-equivariantmap f : B �B ! E is essentially 
onstant.Note that in the 
ase in whi
h � 
onsists only of the trivial module, adoubly ergodi
 a
tion is nothing but the 
lassi
al 
on
ept of a \mixing"a
tion.The following are then fundamental examples of doubly �-ergodi
spa
es.Examples 2.25. (1) If G is a semisimple Lie group with �nite 
en-ter and Q < G is any paraboli
 subgroup, the a
tion of G onG=Q is doubly �sepH-ergodi
;(2) If � < G is a latti
e in a lo
ally 
ompa
t group G and (B; �) isa doubly �sepH-ergodi
 G-spa
e, then (B; �) is a doubly �sepH-ergodi
 �-spa
e;(3) The a
tion of Aut(Fr) { and hen
e, by the previous example,of Fr { on �Tr is doubly �sepH-ergodi
.These examples are just a reformulation of the Mautner property[53, Corollary 11.2.3 and Proposition 11.2.2℄.While we shall make essential use in pra
ti
e of the double �sepH-ergodi
ity of the G-a
tion on G=P , where P is a minimal paraboli
, thedouble �sepH-ergodi
ity in the se
ond example is used in an essentialway in the proof of the following result (at least for �nitely generatedgroups, as we shall indi
ate). Its proof is due to Burger and Monodfor 
ompa
tly generated groups [25℄ and to Kaimanovi
h [44℄ in thegeneral 
ase.Theorem 2.26 (Burger{Monod [25℄, Kaimanovi
h [44℄). Let G be a�-
ompa
t lo
ally 
ompa
t group. Then there always exists a G-spa
e(B; �) with a quasiinvariant measure su
h that the a
tion of G is bothamenable and doubly �sepH-ergodi
.



20 MARC BURGER AND ALESSANDRA IOZZIBefore we start, we re
all here Ma
key's point realization 
onstru
-tion whi
h is used in the proof.. Let (X; �) be a measure spa
e. As-so
iated to any weak�-
losed C�-subalgebra A of L1(X; �) there is ameasure spa
e (Y; �) and a map p : (X; �)! (Y; �) su
h that p�� = �and A = L1(Y; �). If in addition X is a G-spa
e, the measure � isquasiinvariant, and the subalgebra A is G-invariant, then the spa
e Yinherits a G-a
tion and the map p is a G-map [46℄.Proof. We sket
h here the proof in the 
ase in whi
h the group is dis-
rete and �nitely generated. Fix a set of r generators of G and apresentation � : Fr ! G with kernel N . Then the spa
e of N -invariantfun
tions L1(�Tr)N is 
ontained in L1(�Tr) as a weak�-
losed sub-algebra whose point realization is a measure G-spa
e (B; �) with aquasiinvariant measure. Hen
e L1(B) �= L1(�Tr)N and there is ameasure preserving Fr-map (�Tr; m) ! (B; �), so that double �sepH-ergodi
ity and amenability follow from the 
orresponding properties ofthe Fr-a
tion on �Tr. �As an immediate 
onsequen
e of the above results, we have the fol-lowing:Corollary 2.27 (Burger{Monod [25℄). Let G be a �-�nite lo
ally
ompa
t group and (B; �) any G-spa
e on whi
h G a
ts amenably anddoubly �sepH-ergodi
ally. For any separable Hilbert G-module H 2�sepH, we have an isometri
 isomorphismH2
b(G;H) �= ZL1w�;alt(B3;H)G :Proof. The double �sepH-ergodi
ity implies that L1(B2;H)G = R andhen
e L1w�;alt(B2;H)G = 0, so that the assertion follows from Corol-lary 2.23. �In parti
ular,Corollary 2.28. For every separable Hilbert G-module H 2 �sepH,the se
ond 
ontinuous bounded 
ohomology spa
e H2
b(G;H) is a Ba-na
h spa
e.2.6. Toolbox of Useful Results. We brie
y re
all here without proofsome results from [25℄ and [24℄, the �rst two of whi
h will be used indisguise in the sequel, while the others are here for illustration forthe reader more in
lined toward the 
ohomologi
al aspe
ts than theirappli
ations. For example, using an appropriate resolution one 
anprove:



21Theorem 2.29. Let G be a lo
ally 
ompa
t group and N E G anamenable normal subgroup. Then there is an isometri
 isomorphismH�
b(G;E) �= H�
b�G=N;EN� :If we restri
t our attention to degree two and trivial 
oeÆ
ients, thenone has:Theorem 2.30. Let Gj, j = 1; : : : ; n, be lo
ally 
ompa
t groups. ThenH2
b� nYj=1Gj;R� �= nMj=1 H2
b(Gj;R) :Theorem 2.31. Let G1; G2 be lo
ally 
ompa
t groups, let � < G1�G2be a latti
e with dense proje
tion in ea
h fa
tor, and let H be a Hilbert�-module. ThenH2b(�;H) �= H2
b(G1;H1)� H2
b(G2;H2) ;where Hi is the maximal �-invariant subspa
e of H su
h that the re-stri
ted a
tion extends 
ontinuously to G1�G2 fa
toring via Gj, wherei 6= j, 1 � i; j � 2.The last results follow from an analog of a Lyndon{Ho
hs
hild{Serreexa
t sequen
e.Theorem 2.32. If 1 ! N ! G ! Q ! 1 is an exa
t sequen
e oflo
ally 
ompa
t se
ond 
ountable groups, with N 
ompa
tly generated,and H is a 
oeÆ
ient Bana
h G-module, then the sequen
e0 // H2
b�Q;HN� // H2
b(G;H) // H2
b�N;HZG(N)�Q //

// H3
b�Q;HN� // H3
b(G;H)is exa
t.An analog of the E
kmann{Shapiro lemma is available also in bounded
ohomologyTheorem 2.33. Let G be a lo
ally 
ompa
t se
ond 
ountable group,H < G a 
losed subgroup with �nite invariant 
ovolume and H aseparable Hilbert G-module. Then indu
tion of 
o
y
les indu
es thefollowing isomorphism in all degreesHn
b(H;H) �= //Hn
b�G;L1(G=H;H)� :In degree 2 one 
an show that the in
lusion L1(G=H;H) ,! L2(G=H;H)indu
es an inje
tion in 
ohomology, and hen
e one has the following



22 MARC BURGER AND ALESSANDRA IOZZICorollary 2.34. With the above hypotheses there is an inje
tionH2
b�G;L1(G=H;H)� � � //H2
b�G;L2(G=H;H)� :Moreover, if we restri
t our attention to Lie groups and to 
ohomol-ogy with trivial 
oeÆ
ients, we have:Theorem 2.35. Let G be a 
onne
ted Lie group with �nite 
enter.Then H2
b(G;R) �= H2
(G;R).Noti
e that the surje
tivity of the 
omparison map follows from thearguments used in the dis
ussion of the examples at the beginning ofthis se
tion. The inje
tivity follows from the interplay between Maut-ner property and properties of quasimorphisms. If however we 
onsiderlatti
es even in semisimple Lie groups, then the 
omparison map is def-initely not an isomorphism. In fa
t we have the following:Theorem 2.36 (Epstein{Fujiwara [30℄). If � is a nonelementary Gro-mov hyperboli
 group, then H2b(�;R) is an in�nite dimensional Bana
hspa
e.This applies for instan
e to the 
ase where � is a 
o
ompa
t latti
ein a 
onne
ted Lie group G of real rank one and with �nite 
enter. In
ontrast, latti
es in higher rank Lie groups exhibit, on
e again, strongrigidity phenomena:Theorem 2.37 (Burger{Monod [24, 25℄). Let � < G be an irredu
iblelatti
e in a 
onne
ted semisimple Lie group with �nite 
enter and realrank at least two. Then the 
omparison mapH2b(�;R)! H2(�:R)is inje
tive in degree two and its image 
oin
ides with the restri
tionto � of G-invariant 
lasses.This is somehow a perfe
t example whi
h illustrates how the 
oho-mology theory for dis
rete groups and with trivial 
oeÆ
ients does notsuÆ
e, as the proof of the above result depends in an essential way onthe Theorem 2.33 where the 
ohomology of � with trivial 
oeÆ
ients isrelated to the 
ohomology of the ambient (nondis
rete) group G with
oeÆ
ients in the indu
ed Hilbert G-module L2(G=�).There is however also a version of Theorem 2.37 with 
oeÆ
ients,namely:Theorem 2.38 (Monod{Shalom [54℄). Assume that � is a latti
e in a
onne
ted simple Lie group G with �nite 
enter and real rank at least



23two and E is any separable 
oeÆ
ient �-module. ThendimH2b(�; E) = (dimE� if �1(G) is in�nite0 otherwise.2.7. An Easy Version of \The Formula".2.7.1. The Pullba
k. The use of resolutions 
onsisting of L1 fun
tions,although very useful, has its side e�e
ts. For example, given � : G! G0is a 
ontinuous homomorphism of lo
ally 
ompa
t groups, it is obviousthat the indu
ed pullba
k in bounded 
ohomology �� : H�
b(G0; E) !H�
b(G;E) 
ould be implemented simply by pulling ba
k 
o
y
les ifwe were using the bar resolution: however the pullba
k, even via a
ontinuous map, of a fun
tion in L1 (hen
e an equivalen
e 
lass offun
tions) does not ne
essarily give a well de�ned equivalen
e 
lass offun
tions. We re
all here how it is however possible to implement thepullba
k in a rather natural way in the 
ase of 
o
y
les whi
h arise ingeometri
 situations, on
e again using homologi
al algebra.In fa
t, if X is a measurable G0-spa
e, it is shown in [17, Proposi-tion 2.1℄ that the 
omplex B1(X�) of bounded measurable fun
tionsis a strong resolution of R. Not knowing whether the modules arerelatively inje
tive, we 
annot 
on
lude that the 
ohomology of thesub
omplex of G0-invariants 
omputes the 
ontinuous bounded 
oho-mology of G0, however we 
an dedu
e the existen
e of a fun
toriallyde�ned map ��X : H��B1(X�)G0�! H�
b(G0;R)su
h that to any bounded measurable G0-invariant 
o
y
le 
 : Xn+1 !R 
orresponds 
anoni
ally a 
lass [
℄ 2 Hn
b(G0;R), [17, Corollary 2.2℄.Let us now assume that there exists a �-equivariant measurable map' : G=P ! X, where P < G is a 
losed amenable subgroup. An exam-ple of su
h situation o

urs when X is the spa
e M1(G0=P 0) of proba-bility measures on the homogeneous spa
e G0=P 0 with G0 a semisimpleLie group and P 0 a minimal paraboli
 subgroup, in whi
h 
ase the ex-isten
e of the map ' follows immediately from the 
hara
terization ofamenability given in Proposition 2.18, as one 
an easily see by tak-ing E to be the spa
e of 
ontinuous fun
tions on X, As = M1(X)(hen
e 
onstant with respe
t to s 2 S), and �(s; h) = �(h). The mainpoint of [17℄ is to show that the map ' 
an be used to implement the
omposition(2.6) H��B1(X�)G0� ��X //H�
b(G0;R) ��b //H�
b(L;R) :More spe
i�
ally, we re
all here the following de�nition



24 MARC BURGER AND ALESSANDRA IOZZIDefinition 2.39. Let X be a topologi
al spa
e and 
 : X ! R a Borelmap. We say that 
 is a stri
t Borel 
o
y
le if 
 is de�ned everywhereand satis�es everywhere the relation d
 = 0.Then we have:Theorem 2.40 (Burger{Iozzi [17℄). LetG;G0 be lo
ally 
ompa
t groups,let � : L ! G0 be a 
ontinuous homomorphism from 
losed subgroupL < G, let P < G be a 
losed amenable subgroup and let ' : G=P ! Xa �-equivariant measurable map into a measurable G0-spa
e X. If� 2 Hn
b(G0;R) is a bounded 
ohomology 
lass representable by a G-invariant bounded stri
t measurable 
o
y
le 
 2 B1(Xn+1)G0, then theimage of the pullba
k �(n)b (�) 2 Hn
b(L;R) 
an be represented 
anoni-
ally by the 
o
y
le in ZL1(Bn+1)L de�ned by(2.7) (x0; : : : ; xn) 7! 
�'(x0); : : : ; '(xn)� :Exer
ise 2.41. Let � < PU(1; 1) be a (
o
ompa
t) surfa
e group and(�D2; �) the boundary of the hyperboli
 disk D2 with the round measure�. Then (Corollary 2.23)H2b(�;R) �= ZL1alt�(�D2)3;R�� :Give an example of a 
lass in H2b(�;R) whi
h 
annot be represented bya stri
t pointwise �-invariant Borel 
o
y
le on (�D2)3.This illustrates the fa
t that given a measurable G-invarian
e 
o
y-
le, while it is easy to make the 
o
y
le either stri
t (see [65, Appen-dix B℄) or everywhere G-invariant, obtaining both properties at thesame time is sometimes not possible.2.7.2. The Transfer Map. We need only one last bounded 
ohomolog-i
al ingredient. If L < G is a 
losed subgroup the inje
tion L ,! Gindu
es by 
ontravarian
e in 
ohomology the restri
tion mapr�R : H�
b(G;R)! H�
b(L;R) :If we assume that LnG has a G-invariant probability measure �, thenthe transfer map T� : Cb(G�)L ! Cb(G�)G ;de�ned by integration(2.8) T(n)f(g1; : : : ; gn) := ZLnG f(gg1; : : : ; ggn)d�(g) ;for all (g1; : : : ; gn) 2 Gn, indu
es in 
ohomology a left inverse of r�R ofnorm one T�b : H�
b(L;R)! H�
b(G;R) ;



25(see [53, Proposition 8.6.2, pp.106-107℄).Noti
e that the fun
torial ma
hinery does not apply dire
tly to thetransfer map, as it is not a map of resolutions but it is only de�nedon the sub
omplex of invariant ve
tors. However, the following result,whi
h will be obtained in greater generality in x 4.1.2, allows us anywayto use the resolution of L1 fun
tions on amenable spa
es.Lemma 2.42 (Monod [53℄). Let P; L < G be 
losed subgroups with Pamenable, and let(2.9) T�G=P : �L1�(G=P )��L; d��! �L1�(G=P )��G; d��be de�ned by(2.10) T(n)G=P f(x1; : : : ; xn) := ZLnG f(gx1; : : : ; gxn)d�(g) ;for (x1; : : : ; xn) 2 (G=P )n. Then the diagram(2.11) H�
b(L;R) T�b //�=
��

H�
b(G;R)�=
��H�
b(L;R) T�G=P // H�
b(G;R)
ommutes, where the verti
al arrows are the 
anoni
al isomorphismsin bounded 
ohomology extending the identity R! R.Putting together all of these ingredients, one has a general formulawhi
h has several appli
ations to rigidity questions.Proposition 2.43. Let G;G0 be lo
ally 
ompa
t se
ond 
ountablegroups and let L < G be a 
losed subgroup su
h that LnG 
arries aG-invariant probability measure �. Let � : L! G0 be a 
ontinuous ho-momorphism,X a measurableG0-spa
e and assume that there exists anL-equivariant measurable map ' : G=P ! X, where P < G is a 
losedsubgroup. Let �0 2 Hn
b(G0;R) and let � := T(n)b ��(n)b (�0)� 2 Hn
b(G;R).Let 
 2 L1�(G=P )n+1�G and 
0 2 B1(Xn+1)G0 be alternating 
o
y
lesrepresenting � and �0 respe
tively. If we assume that P is amenablethen we have(2.12)ZLnG 
0�'(gx0); : : : ; '(gxn)�d�(g) = 
(x0; : : : ; xn) + 
oboundary;for almost every (x0; : : : ; xn) 2 (G=P )n+1.
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ations of \The Formula"The above proposition is really just a 
areful reformulation of theimplementation of the bounded Toledo map, de�ned as the 
ompositionT�b(�) := T� Æ ��b : H�
b(G0;R)! H�
b(G;R)of the pullba
k followed by the transfer map in 
ontinuous bounded
ohomology. Likewise, its generalization (Proposition 4.9) will be areformulation of the implementation of the pullba
k followed by thetransfer map and by an appropriate 
hange of 
oeÆ
ients. While forthese two statements there is a uni�ed treatment, in the appli
ations {whi
h require that both Hn
 (G;R) and Hn
b(G;R) are one dimensional {we have to resort to a 
ase by 
ase study. The situation 
an be howeversummarized in the following:Prin
iple 3.1. Let G;G0 be lo
ally 
ompa
t se
ond 
ountable groupsand let L < G be a 
losed subgroup su
h that LnG 
arries aG-invariantprobability measure �. Let � : L! G0 be a 
ontinuous homomorphism,X a measurableG0-spa
e and assume that there exists an L-equivariantmeasurable map ' : G=P ! X, where P < G is a 
losed subgroup.Let �0 = [
0℄ 2 Hn
b(G0;R) and let Hn
 (G;R) �= Hn
b(G;R) = R� = R[
℄,where 
 2 ZL1�(G=P )n+1�G and 
0 2 B1(Xn+1)G0 are alternating
o
y
les and 
0 is stri
t. If P is amenable, then there exists an expli
it
onstant ��0 2 R su
h that(3.1)ZLnG 
0�'(gx0); : : : ; '(gxn)�d�(g) = ��0
(x0; : : : ; xn) + 
oboundary;for almost every (x0; : : : ; xn) 2 (G=P )n+1.Remark 3.2. (1) Noti
e that if for example the a
tion of G on(G=P )n is ergodi
, then there is no 
oboundary term, as ergod-i
ity is equivalent to the nonexisten
e ofG-invariant measurablemaps (G=P )n ! R whi
h are not 
onstant. This is going to bethe 
ase in all of our appli
ations.(2) Clearly the above formula would not be useful as is if we wereinterested in the values of the measurable fun
tion ' on setsof measure zero. It is for this purpose that in the appli
ationto deformation rigidity of latti
es of 
omplex hyperboli
 isome-tries, where we need to gather information about the \values"of ' on a 
hain in the boundary of 
omplex hyperboli
 spa
e(see x 5), we need to re
ur to the use of 
oeÆ
ients 
oupledwith the use of �bered produ
ts. This will be done in x 4, after



27that we illustrate in the next se
tion some of the appli
ationsof Proposition 2.43 and Corollary 3.1.While there is no general proof of this prin
iple, in ea
h 
ase theidenti�
ation of the 
onstant ��0 will follow from the interplay betweenthe bounded Toledo map and the 
orresponding map in 
ontinuous
ohomology, that is from the 
ommutativity of the following diagram(3.2) Hn
b(G0;R) //��b
��

Hn
 (G0;R)��
��Hn
b(L;R)T�b

��

Hn
 (L;R)T�
��Hn
b(G;R) �= // Hn
 (G;R)where the horizontal arrows are the obvious 
omparison maps between
ontinuous bounded and 
ontinuous 
ohomology, the map �� is thepullba
k in ordinary 
ontinuous 
ohomology, and the transfer mapT� : H�
(L;R) ! H�
(G;R) is de�ned by integration on LnG if LnGis 
ompa
t. This is the 
ase in the appli
ations we present in this se
-tion, and we refer the reader to x 5 for a further dis
ussion on thisimportant point.We give now a very short list of some situations in whi
h the aboveformula is of use. (Note that in all our examples, as remarked before.one 
an 
on
lude that there are no 
oboundaries.) Not all results arenew, and our method does not even provide a new proof in some 
ases.Nevertheless, we deem appropriate to dis
uss here possible appli
abilityof this method, as well as its present limitations.3.1. Mostow Rigidity Theorem. The 
elebrated theorem of Mostowasserts that, in dimension n � 3, any two 
ompa
t hyperboli
 manifoldsM1 and M2 whi
h are homotopy equivalent are isometri
. In his notes[59℄, Thurston provides a new proof of this result, using measure homol-ogy (a generalization of `1-homology) as well as the determination ofthe maximal ideal simpli
es in hyperboli
 geometry. Sin
e this last re-sult (later obtained by Haagerup and Munkholm [40℄) was available atthat time only for n = 3, Thurston's proof of Mostow Rigidity Theoremis limited to this 
ase. However, the proof 
ontains in disguise exa
tlyour formula (2.12) for all n � 3, while with our method we su

eed onlyin proving the formula in the 
ase in whi
h n = 3, be
ause in the gen-eral 
ase we do not have enough information about the 
omparison map



28 MARC BURGER AND ALESSANDRA IOZZIin higher degrees. In fa
t, while Hn
 �SO(1; n)� �= R, in general it is notknown whether the 
omparison map Hn
b�SO(1; n)�! Hn
 �SO(1; n)� isinje
tive for all n: if n = 3 this is due to Blo
h, [8, 7℄.So let M1;M2 be 
ompa
t hyperboli
 3-manifolds with isomorphi
fundamental groups, set � := �1(M1) < SO(1; 3) =: G whi
h is a
o
ompa
t latti
e and let �0 := �1(M2) < SO(1; 3) =: G0. Let G=P =X = S2 = �H3R and let ' : S2 ! S2 be the �-equivariant boundaryhomeomorphism, where � : � ! �0 is an isomorphism. Let 
 = 
0 bethe volume 3-
o
y
le on ideal 3-simpli
es de�ning 
ohomology 
lasses� = �0 2 H3
b�SO(1; 3);R�. Then one obtains that ��0 = vol(M2)vol(M1) , andhen
e the formula (2.12) reads(3.3)Z�nSO(1;3) vol('(g�0); : : : ; '(g�3))d�(g) = vol(M2)vol(M1) vol(�0; : : : ; �3) ;where vol(�0; : : : ; �3) is the volume of the ideal simplex in H3R with ver-ti
es �0; : : : ; �3, � is the normalized Haar measure on �nSO(1; 3) andequality holds almost everywhere. Be
ause the measure � is a probabil-ity measure, it follows that vol(M2) � vol(M1), from whi
h, inter
hang-ing the role of M1 and M2 one obtains that M1 and M2 have the samevolume. Now observe that both sides of (3.3) are 
ontinuous fun
tionson (S2)4 whi
h, 
oin
iding almost everywhere, are therefore equal forall values of (�0; : : : ; �3) 2 (S2)4. Thus, whenever vol(�0; : : : ; �3) is max-imal, we dedu
e from (3.3) taking into a

ount that vol(M1) = vol(M2)and � is a probability measure, that vol �'(�0); : : : ; '(�3)� is maximalas well. From this, one dedu
es like in [59℄, that the isomorphism be-tween the fundamental groups extends to an isomorphism between theambient 
onne
ted groups.Let us relate this to the `1-homology approa
h of Gromov{Thurston.If f : H3R ! H3R denotes a lift of a homotopy equivalen
e asso
iatedto the isomorphism � : � ! �0, then Thurston's smearing te
hniqueimplies that if � : �3 ! H3R is any straight simplex, thenZ�nSO(1;3) vol �f�g�(0)�; : : : ; f�g�(3)��d�(g) = vol(�)vol(M2)vol(M1) :One 
an then follow an idea of Pansu, using the fa
t that f extends
ontinuously to the boundary with extension f : S2 ! S2 and let theverti
es of � tend to (�0; : : : ; �3) 2 (S2)4 to obtain (3.3).The strength of this argument is that it extends to all real hyperboli
spa
es HnR. Its limitation however lies in the fa
t that it requires verystrong 
onditions on � in order to have a map extending \ni
ely" to



29the boundary. Beside it 
annot be applied for example in Matsumoto'stheorem sin
e there is no symmetri
 spa
e asso
iated to Homeo+(S1).3.2. Matsumoto's Theorem. Let �g be the fundamental group ofa 
ompa
t oriented surfa
e �g of genus g � 2 and let � : �g !Homeo+(S1) be an a
tion of �g on the 
ir
le by orientation preserv-ing homeomorphisms. Let e 2 H2(Homeo+(S1);Z) be the Euler 
lassde�ned by the 
entral extension0 //Z // HomeoZ(R) // Homeo+(S1) //0 ;where HomeoZ(R) is the group of homeomorphisms of the real linewhi
h 
ommute with the integral translations. Then �(2)(e) 2 H2(�g;Z)and, sin
e �g is a K(�g; 1) and hen
e H2(�g;Z) �= H2(�g;Z), we 
anevaluate �(2)(e) on the fundamental 
lass [�g℄ 2 H2(�g;Z) of �g. Wethus obtain a numeri
al invariant atta
hed to the representation �,
alled the Euler number eu(�) of �,eu(�) := 
�(2)(e); [�g℄� ;whi
h turns out to be uniformly bounded with respe
t to the represen-tation. In fa
t, we have the Milnor{Wood inequality [49, 62℄jeu(�)j � j�(�g)j ;and we say that a representation ismaximal if jeu(�)j = j�(�g)j. Exam-ples of maximal representations are for instan
e hyperbolizations (thatis, faithful representations into PU(1; 1) su
h that the image �(�g) is alatti
e in PU(1; 1). Matsumoto's theorem provides some kind of 
on-verse to this statement, namely:Theorem 3.3 (Matsumoto [48℄). If � is maximal, then � is semi
onju-gate to a hyperbolization.Re
all that a semi
onjuga
y in this 
ontext is a monotone in
reasingmap from the real line to itself whi
h 
ommutes with translations byinteger multiples of 2�.Our proof in [42℄ follows on
e again from the formula in (2.12), wherewe take G = PU(1; 1), G0 = Homeo+(S1), PU(1; 1)=P = S1, X =M1�PU(1; 1)=P �, 
 the orientation 
o
y
le and 
0 its restri
tion toPU(1; 1). Then one 
an prove that � = eu(�)�(�g) and thus one obtains that(2.12) readsZ�nPU(1;1)('(gb0)
 '(gb1)
 '(gb2)(
)d�(g) = eu(�)�(�g)
(b0; b1; b2) ;for almost every b0; b1; b3 2 S1 and where d� is the normalized measureon �nPU(1; 1). Sin
e � is a probability measure, on
e again we obtain



30 MARC BURGER AND ALESSANDRA IOZZIthe Milnor{Wood inequality jeu(�)j � ���(�g)��. Moreover, if we haveequality, then the above formula implies that the boundary map 'takes values in S1 itself. It follows that ' is \almost" order preserving,in the sense that it preserves the order of almost all triples of pointsin S1. An \inverse" of ' in an appropriate sense provides the expli
itsemi
onjuga
y between the representation � and an hyperbolization.3.3. Maximal Representations. Before Matsumoto, Goldman provedin his thesis the full 
onverse of the above statement for a representationinto PU(1; 1), namely he showed that if � : �g ! PU(1; 1) is maximal,then it is indeed a hyperbolization. The generalization of this result torepresentations into the (
onne
ted 
omponent of the) isometry groupof a Hermitian symmetri
 spa
e was the starting point of the resultsexposed in the this se
tion.So let, as above, �g be a 
ompa
t oriented surfa
e of genus g �2 and fundamental group �g := �1(�g), and let � : �g ! G0 be ahomomorphism into the 
onne
ted 
omponent G0 = Iso(X 0), of theisometry group of a Hermitian symmetri
 spa
e X 0. Asso
iated to �we 
an de�ne an invariant �� as follows: let f : �g ! �g �� X 0 bea smooth se
tion of the 
at bundle with �ber X 0 asso
iated to theprin
ipal �g-bundle f�g ! �g, and let ~f : f�g ! X 0 be a smooth�g-equivariant lift of f . The K�ahler form !X 0 on X 0 pulls ba
k to a�g-invariant 
losed two form ~f �!X 0 on f�g, whi
h hen
e des
ends to a
losed two form on �g. Sin
e the map ~f is unique up to �g-equivarianthomotopy, the integral �� := Z�g ~f �!X 0depends only on � and de�nes the Toledo invariant of �. Moreover,while the above de�nition would not have been possible in the 
aseof a representation of �g into Homeo+(S1), we 
ould have de�ned ��analogously to x 3.2 as �� := 
�(2)(�); [�g℄�and in fa
t it 
an be proven that the two de�nitions 
oin
ide. For moreinterpretations of the Toledo invariant see for instan
e [13℄. At anyrate, we also have an analogue of the Milnor{Wood inequality, namely(3.4) j��j � ���(�g)��rX 0 ;where rX 0 is the rank of the symmetri
 spa
e X 0 [28, 27℄, and we saythat � is maximal if j��j = ���(�g)��rX 0.Before we state the next result, re
all that an important sub
lassof Hermitian symmetri
 spa
es 
onsists of those of tube type, that is



31those, like for instan
e the Poin
ar�e disk, whi
h are biholomorphi
allyequivalent to Rn � iC, where C � Rn is an open 
one. There areseveral 
hara
terizations of the Hermitian symmetri
 spa
es of tubetype, but the relevant one here lies in the fa
t that it is only for theseHermitian symmetri
 spa
es that the 
o
y
le �X 0 in (2.5) takes only a�nite number of values [20℄. Then we have:Theorem 3.4 (Burger-Iozzi-Wienhard [23, 21℄). Let � : �g ! G0 be amaximal representation. Then � is faithful with dis
rete image. More-over the the Zariski 
losure of the image of � is redu
tive and theasso
iated symmetri
 spa
e is of tube type.A thorough study of maximal representations has been 
arried overin several papers, see [60, 41, 23, 21, 10℄ for example, and many addi-tional interesting properties have been proven. We have limited our-selves here to present the features whi
h are a dire
t 
onsequen
e ofProposition 2.43 and Corollary 3.1. To illustrate the te
hnique, wesuppose here that the image of the representation � is Zariski densein G'. In this 
ase we have that G = SU(1; 1), and � is the imageof the 
ompa
t surfa
e group via a hyperbolization, SU(1; 1)=P �= S1,X is the Shilov boundary of X 0 (that is the unique 
losed G0-orbit inthe topologi
al boundary of the bounded domain realization of X 0),while 
0 = �X 0 and 
 = �D2 as de�ned in (2.5). Then one obtains that��0 = �����(�g)�� and hen
e (2.12) readsZ�nPU(1;1) �X 0�'(gx0); '(gx1); '(gx2)�d�(g) = �����(�g)���D2 (x0; x1; x2) :On
e again, sin
e � is a probability measure, we obtain the inequality(3.4), and if � is maximal we have that(3.5) �X 0�'(x0); '(x1); '(x2)� = rX 0�D2 (x0; x1; x2)for almost all (x0; x1; x2) 2 (S1)3.The equality (3.5) has then far rea
hing 
onsequen
es. In fa
t, e2�i�Xis on �S(3) a rational fun
tion and tube type domains are 
hara
terizedby the property that this rational fun
tion is 
onstant (Burger{Iozzi[18℄ and Burger{Iozzi{Wienhard [20℄); but the equality (3.5) implies,taking into a

ount that �(�) is Zariski dense, that e2�i�X is 
onstanton a Zariski dense subset of �S(3), hen
e 
onstant, whi
h implies that X 0is of tube type. Using then that if X 0 is of tube type the level sets of �X 0on �S(3) are open, one dedu
es easily that �(�) is not dense and, beingZariski dense, is therefore dis
rete. The fa
t that � is inje
tive requiresmore elaborate arguments in whi
h (3.5) enters essentially [23, 21℄.



32 MARC BURGER AND ALESSANDRA IOZZI4. Toward \The Formula" with Coeffi
ientsIn this se
tion we develop some tools in bounded 
ohomology forlo
ally 
ompa
t groups and their 
losed subgroups whi
h will be appliedto our spe
i�
 situation. In parti
ular we prove a formula in x 4.2 ofwhi
h Proposition 2.43 is a parti
ular 
ase.4.1. With the Use of Fibered Produ
ts. The invariants we 
on-sider in this paper are bounded 
lasses with trivial 
oeÆ
ients; howeverapplying a judi
ious 
hange of 
oeÆ
ients { from R to the L1 fun
tionson a homogeneous spa
e { we 
apture information whi
h otherwisewould be lost by the use of measurable maps (see the last paragraphof x 2 and Remark 5.8).In doing so, we �rst �nd ourselves to have to deal with a somewhatnew situation. More pre
isely, while the fun
torial ma
hinery devel-oped in [25℄, [53℄ and [17℄ applies in theory to general strong resolu-tions, in pra
ti
e one ends up working mostly with spa
es of fun
tionson Cartesian produ
ts. In this se
tion we deal with spa
es of fun
tionson �bered produ
ts (of homogeneous spa
es), whose general frame-work would be that of 
omplexes of fun
tions on appropriate sequen
es(Sn; �n) of (amenable) spa
es whi
h would be analogues of simpli
ialsets in the 
ategory of measured spa
es.In parti
ular we shall �rst show in x 4.1.1 that we 
an 
omputethe 
ontinuous bounded 
ohomology with some L1 
oeÆ
ients as the
ohomology of the 
omplex of L1 fun
tions on appropriate �beredprodu
ts, then in x 4.1.2 and x 4.1.3 respe
tively we shall see howto implement the transfer map and the pullba
k using this parti
ularresolution.4.1.1. Realization on Fibered Produ
ts. The goal of this se
tion is tode�ne the �bered produ
t of homogeneous spa
es and prove that the
omplex of L1 fun
tions on �bered produ
ts satis�es all propertiesne
essary to be used to 
ompute bounded 
ohomology. Observe thatbe
ause of the proje
tion in (4.1), we shall deal here with 
ohomologywith 
oeÆ
ients.Let G be a lo
ally 
ompa
t, se
ond 
ountable group and P;H 
losedsubgroups of G su
h that P � H. We de�ne the n-fold �bered produ
t(G=P )nf of G=P with respe
t to the 
anoni
al proje
tion p : G=P !G=H to be, for n � 1, the 
losed subset of (G=P )n de�ned by(G=P )nf := �(x1; : : : ; xn) 2 (G=P )n : p(x1) = � � � = p(xn)	 ;



33and we set (G=P )nf = G=H if n = 0. The invarian
e of (G=P )nf for thediagonal G-a
tion on (G=P )n indu
es a G-equivariant proje
tion(4.1) pn : (G=P )nf ! G=Hwhose typi
al �ber is homeomorphi
 to (H=P )n.A useful des
ription of (G=P )nf as a quotient spa
e may be obtainedas follows. Considering H=P as a subset of G=P , the map(4.2) qn : G� (H=P )n ! (G=P )nf(g; x1; : : : ; xn) 7! (gx1; : : : ; gxn)is well de�ned, surje
tive, G-equivariant (with respe
t to the G-a
tionon the �rst 
oordinate on G � (H=P )n and the produ
t a
tion on(G=P )nf ) and invariant under the rightH-a
tion on G�(H=P )n de�nedby(4.3) (g; x1; : : : ; xn)h := (gh; h�1x1; : : : ; h�1xn) :It is then easy to see that qn indu
es a G-equivariant homeomorphism�G� (H=P )n�=H ! (G=P )nf ;whi
h hen
e realizes the �bered produ
t (G=P )nf as a quotient spa
e.Let now � and � be Borel probability measures respe
tively on Gand H=P , su
h that � is in the 
lass of the Haar measure on G and� is in the H-invariant measure 
lass on H=P . The pushforward �n =(qn)�(� � �n) of the probability measure � � �n under qn is then aBorel probability measure on (G=P )nf whose 
lass is G-invariant andthus gives rise to Bana
h G-modules L1((G=P )nf ) and G-equivariant(norm) 
ontinuous mapsdn : L1�(G=P )nf�! L1�(G=P )n+1f � ; for n � 0 ;de�ned as follows:{ d0f(x) := f(p(x)), for f 2 L1(G=H), and{ dnf(x) = Pn+1i=1 (�1)i�1f�pn;i(x)�, for f 2 L1�(G=P )nf� andn � 1,where(4.4) pn;i : (G=P )n+1f ! (G=P )nfis obtained by leaving out the i-th 
oordinate. Observe that from theequality (pn;i)�(�n+1) = �n, it follows that dn is a well de�ned linearmap between L1 spa
es.Then:Proposition 4.1. Let L � G be a 
losed subgroup.



34 MARC BURGER AND ALESSANDRA IOZZI(i) The 
omplex0 //L1(G=H) // : : : //L1�(G=P )nf� dn //L1�(G=P )n+1f �
// : : :is a strong resolution of the 
oeÆ
ient L-module L1(G=H) byBana
h L-modules.(ii) If P is amenable and n � 1, then the G-a
tion on (G=P )nfis amenable and L1�(G=P )nf� is a relatively inje
tive Bana
hL-module.Using [25, Theorem 2℄ (see also x 2), this implies immediately thefollowing:Corollary 4.2. Assume that P is amenable. Then the 
ohomologyof the 
omplex of L-invariants0 // L1(G=P )L // L1�(G=P )2f�L // : : :is 
anoni
ally isomorphi
 to the bounded 
ontinuous 
ohomologyH�
b�L;L1(G=H)� of L with 
oeÆ
ients in L1(G=H).Remark 4.3. Just like for the usual resolutions of L1 fun
tions onthe Cartesian produ
t of 
opies of an amenable spa
e (see x 2 or[25℄), it is easy to see that the statements of Proposition 4.1 andof Corollary 4.2 hold verbatim if we 
onsider instead the 
omplex�L1alt�(G=P )��; d��, where L1alt�(G=P )nf� is the subspa
e 
onsisting offun
tions in L1�(G=P )nf� whi
h are alternating (observe that the sym-metri
 group in n letters a
ts on (G=P )nf ).Proof of Proposition 4.1. The proof of Proposition 4.1(i) 
onsists in the
onstru
tion of appropriate 
ontra
ting homotopy operators. Sin
e itis rather long and te
hni
al, it will be given in the appendix at the endof this paper.To prove Proposition 4.1(2), we start by observing that if n � 1 wehave by de�nition the in
lusion (G=P )nf � (G=P )n and hen
e there isa map of G-spa
es � : (G=P )nf ! G=P;obtained by proje
tion on the �rst 
omponent. Sin
e ��(�n) = �, �realizes the measure G-spa
e (G=P )nf as an extension of the measureG-spa
e G=P . If P is amenable, the latter is an amenable G-spa
e andhen
e the G-spa
e (G=P )nf is also amenable [64℄. Sin
e L is a 
losedsubgroup, (G=P )nf is also an amenable L-spa
e [65, Theorem 4.3.5℄ andhen
e L1�(G=P )nf� is a relatively inje
tive L-module, (Theorem 2.20or [25℄). �



354.1.2. An Implementation of the Transfer Map. We re
alled in (2.8)the de�nition of the transfer map, and remarked that the fun
torialma
hinery does not apply dire
tly be
ause T� is not a map of resolu-tions but is de�ned only on the sub
omplex of invariant ve
tors. Thepoint of this subse
tion is to see how the transfer map in [53℄ 
an beimplemented, in a 
ertain sense, on the resolution by L1 fun
tions onthe �bered produ
t de�ned in x 4.1.1.Let H;P be 
losed subgroups of G su
h that P < H. We as-sume that P is amenable so that, by Proposition 4.1, the 
omplex�L1�(G=P )�f�; d�� is a strong resolution of the 
oeÆ
ient module L1(G=H)by relatively inje
tive L-modules. For n � 1, f 2 L1�(G=P )nf�L, and(x1; : : : ; xn) 2 (G=P )nf , let(4.5) (� (n)G=Pf)(x1; : : : ; xn) := ZLnG f(gx1; : : : ; gxn)d�( _g) :This de�nes a morphism of 
omplexes� �G=P : �L1�(G=P )�f�L�! �L1�(G=P )�f�G�and gives a left inverse to the in
lusion�L1�(G=P )�f�G� ,! �L1�(G=P )�f�L� :The indu
ed map in 
ohomology� �G=P : H�
b�L;L1(G=H)�! H�
b�G;L1(G=H)�is thus a left inverse of the restri
tion map r�L1(G=H).Lemma 4.4. With the above notations, and for any amenable groupP , the diagram(4.6) H�
b(L;R) T�b //��L
��

H�
b(G;R)��G
��H�
b�L;L1(G=H)� ��G=P // H�
b�G;L1(G=H)�
ommutes, where �� is the 
anoni
al map indu
ed in 
ohomology bythe morphism of 
oeÆ
ients � : R! L1(G=H).Observe that if in the above lemma we take H = G, then the �beredprodu
t (G=P )nf be
omes the usual Cartesian produ
t (G=P )n, and the
ohomology of the 
omplex of L-invariants �L1�(G=P )��L; d�� 
om-putes as usual the bounded 
ohomology of L with trivial 
oeÆ
ients.Hen
e we obtain on
e again Lemma 2.42.



36 MARC BURGER AND ALESSANDRA IOZZIProof of Lemma 4.4. Let Gnf be the n-fold �bered produ
t with respe
tto the proje
tion G ! G=H. The restri
tion of 
ontinuous fun
tionsde�ned on Gn to the subspa
e Gnf � Gn indu
es a morphism of strongL-resolutions by L-inje
tive modulesR� : Cb(G�)! L1(G�f)extending � : R! L1(G=H), so that the diagram(4.7) Cb(Gn)L T(n)
//R(n)L

��

Cb(Gn)GR(n)G
��L1(Gnf )L � (n)G // L1(Gnf )G
ommutes.Likewise, the proje
tion �n : Gnf ! (G=P )nf , for n � 1, gives by pre-
omposition a morphism of strong L-resolutions by L-inje
tive modules�� : L1((G=P )�f)! L1(G�f)extending the identity L1(G=H)! L1(G=H) and, as before, the dia-gram(4.8) L1(Gnf )L � (n)G // L1(Gnf )GL1�(G=P )nf�L�(n)L OO � (n)G=P // L1�(G=P )nf�G ;�(n)GOO


ommutes.The 
omposition of the map indu
ed in 
ohomology by R� with theinverse of the isomorphism indu
ed by �� in 
ohomology realizes there-fore the 
anoni
al map(4.9) ��L : H�
b(L;R)! H�
b�L;L1(G=H)�indu
ed by the 
hange of 
oeÆ
ient � : R ! L1(G=H), [53, Proposi-tion 8.1.1℄. Hen
e the 
ommutative diagrams indu
ed in 
ohomology



37by (4.7) and (4.8) 
an be 
ombined to obtain a diagramH�
b(L;R) T�b //R�L
����L

''

H�
b(G;R)R�G
�� ��G

ww

H�
b�L;L1(G=H)� ��G //(��L)�1 �=
��

H�
b�G;L1(G=H)�(��G)�1�=
��H�
b�L;L1(G=H)� ��G=P // H�
b�G;L1(G=H)�whose 
ommutativity 
ompletes the proof. �4.1.3. An Implementation of the Pullba
k. In this se
tion we shall usethe results of x 2.7.1 (see also [17℄) to implement the pullba
k inbounded 
ohomology followed by the 
hange of 
oeÆ
ients, by usingthe resolution by L1 fun
tions on the �bered produ
t.We saw already in x 2.7.1 how to implement the 
omposition (2.6)with the use of a boundary map ' : G=Q ! X, where Q < G isan amenable subgroup and X is a measurable G0-spa
e. The point ofthis se
tion is to move one step further and to show how to represent
anoni
ally the 
omposition of the above maps with the map ��L in(4.9).To this purpose, let P;H;Q be 
losed subgroups of G su
h thatP � H \Q, and let us 
onsider the mapG�H=P ! G=Q(g; xP ) 7! gxQwhi
h, 
omposed with ', gives a measurable map e' : G �H=P ! Xwhi
h has the properties of being:{ L-equivariant with respe
t to the a
tion by left translations onthe �rst variable: e'(
g; _x) = �(
)e'(g; _x) for all 
 2 L and a. e.(g; _x) 2 G�H=P ;{ H-invariant with respe
t to the right a
tion 
onsidered in (4.3):e'(gh�1; h _x) = e'(g; _x) for all h 2 H and all (g; _x) 2 G�H=P .For every n � 1, the measurable mape'nf : G� (H=P )n �! Xn(g; _x1; : : : ; _xn) 7! �e'(g; _x1); : : : ; e'(g; _xn)�gives, in view of (4.2), (i) and (ii), a measurable L-equivariant map'nf : (G=P )nf ! Xn de�ned by the 
omposition(4.10) 'nf : (G=P )nf q�1n //

�G� (H=P )n�=H e'nf //Xn ;
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h that for every 1 � i � n + 1 the diagram(G=P )n+1f 'n+1f //pn;i
��

Xn+1
��(G=P )nf 'nf // Xn
ommutes, where pn;i was de�ned in (4.4) and the se
ond verti
al arrowis the map obtained by dropping the i-th 
oordinate. Pre
ompositionby 'nf gives thus rise to a morphism of strong L-resolutions0 // R� _

��

// : : : // B1(Xn)'(n)f
��

// : : :0 // L1(G=H) // : : : // L1�(G=P )nf� // : : :extending the in
lusion R ,! L1(G=H). Let us denote by(4.11) '�f : H��B1(X�)G0�! H�
b�L;L1(G=H)�the map obtained in 
ohomology.One more te
hni
al result whi
h 
olle
ts many fun
toriality state-ments needed in this paper, and is a small modi�
ation of a lemma in[53℄.Lemma 4.5. Let G;G0 be lo
ally 
ompa
t groups, � : G! G0 a 
ontin-uous homomorphism, E a G-
oeÆ
ient module and F a G0-
oeÆ
ientmodule. Let � : F ! E be a morphism of G-
oeÆ
ient modules,where the G-module stru
ture on F is via �. Let (E�) be a strongG-resolution of E by relatively inje
tive G-modules, and let (F�) be astrong G0-resolution of F . Then any two extensions of the morphism� to a morphism of G-
omplexes indu
e the same map in 
ohomologyH��FG0� �! H��EG� � :Proof. By [53, Lemma 7.2.6℄ any two extensions of � are G-homotopi
and hen
e indu
e the same map in 
ohomologyH��F �(G)� �! H��EG� � :Moreover, the in
lusion of 
omplexes FG0� � F �(G)� indu
es a uniquemap in 
ohomology H��FG0� �! H��F �(G)� � ;hen
e proving the lemma. �



39Proposition 4.6. Assume that P is amenable. Then the map '�fde�ned in (4.11) 
oin
ides with the 
ompositionH��B1(X�)G0� ��X //H�
b(G0;R) ��b //H�
b(L;R) ��L //H�
b�L;L1(G=H)� :Proof. By Proposition 4.1 �L1�(G=P )�f�; d�� is a strong resolution byrelatively inje
tive L-modules, so it is enough to apply Lemma 4.5with G = L, E = L1(G=H), F = R the trivial 
oeÆ
ient G0-module,F� = B1(X�), and E� = �L1(G=P )�f�. �For further use we re
ord the expli
it reformulation of the aboveproposition:Corollary 4.7. LetG;G0 be lo
ally 
ompa
t se
ond 
ountable groups,L;H; P;Q � G 
losed subgroups with P � H \Q, and assume that Pis amenable. Let � : L! G0 be a 
ontinuous homomorphism,X a mea-surable G0-spa
e and assume that there is an L-equivariant measurablemap ' : G=Q ! X. Let �0 2 Hn
b(G0;R) be a bounded 
ohomol-ogy 
lass whi
h admits as representative a bounded stri
t G0-invariantmeasurable 
o
y
le 
0 : Xn+1 ! R. Then the 
lass�(n)L ��(n)b (�0)� 2 Hn
b�L;L1(G=H)�is represented by the L-invariant essentially bounded measurable 
o
y-
le ~
0 : (G=P )n+1f ! Rde�ned by(4.12) ~
0(x0; x1; : : : ; xn) := 
0�'nf (x0; x1; : : : ; xn)� ;where 'nf is de�ned in (4.10).Remark 4.8. Consider now that 
ase in whi
h L = G = G0, � = Id(so that we 
an take ' = Id) and X = G=Q; if the 
lass � 2 Hn
b(G;R)admits as representative a bounded stri
t G-invariant Borel 
o
y
le 
 :(G=Q)n+1 ! R, then under the 
hange of 
oeÆ
ients R! L1(G=H),the 
lass �(n)G (�) 2 H(n)
b �G;L1(G=H)�is represented by the bounded stri
t G-invariant Borel 
o
y
le~
 : (G=P )n+1f ! Rde�ned by(4.13) ~
(x1; : : : ; xn+1) := 
(x1Q; : : : ; xn+1Q) :



40 MARC BURGER AND ALESSANDRA IOZZI4.2. \The Formula", Finally. We apply now all the results obtainedso far to prove �nally a generalization of the Formula in Proposi-tion 2.43. In this se
tion we have the following standing assumptions:{ G and G0 are lo
ally 
ompa
t se
ond 
ountable groups,{ L;H; P;Q � G are 
losed subgroups with P � H \Q,{ LnG 
arries a G-invariant probability measure �,{ X is a measurable G0-spa
e,{ there is a �-equivariant measurable map ' : G=Q ! X, where� : L ! G0 be a 
ontinuous homomorphism, and 'n+1f is themap de�ned in (4.10),{ �0 2 Hn
b(G0;R) is represented by an alternating stri
t 
o
y
le
0 2 B1(Xn+1)G0, and ~
0 : (G=P )n+1f ! R is the 
orrespondingalternating 
o
y
le de�ned in (4.12).{ � 2 Hn
b(G;R) is represented by an alternating 
o
y
le 
 2ZL1�(G=Q)n+1�G and ~
 : (G=P )n+1f ! R is the 
orrespondingalternating 
o
y
le de�ned in (4.13).Proposition 4.9. If � := T(n)b ��(n)b (�0)� 2 Hn
b(G;R) and P is amenable,we haveZLnG ~
0�'n+1f (gx0; : : : ; gxn+1)�d�( _g) = ~
(x1; : : : ; xn+1) + 
oboundaryfor a. e. (x1; : : : ; xn+1) 2 (G=P )n+1f .Remark 4.10. If H were to be ergodi
 on (H=P )n, as for instan
e it isoften the 
ase if n = 2, then there would be no 
oboundary. In fa
t, inthis 
ase G would a
t ergodi
ally on (G=P )2f be
ause it a
ts on the basisof the �bration (G=P )2f ! G=H transitively with stabilizer H, whi
hthen by hypothesis a
ts ergodi
ally on the typi
al �ber homeomorphi
to (H=P )2. Hen
e L1((G=P )2f)G = R. Thus any 
oboundary wouldbe 
onstant and hen
e zero, being the di�eren
e of two alternatingfun
tions.Prin
iple 4.11. If Hn
 (G;R) �= Hn
b(G;R) = R� = R[
℄, and P isamenable, there exists an expli
it 
onstant ��0 2 R su
h thatZLnG ~
0�'n+1f (gx0; : : : ; gxn+1)�d�( _g) = ��0~
(x1; : : : ; xn+1) + 
oboundaryfor a. e. (x1; : : : ; xn+1) 2 (G=P )n+1f .



41Proof of Proposition 4.9. The 
ommutativity of the square in the fol-lowing diagram (see Lemma 4.4)Hn�B1(Xn+1)G0� !(n)X // Hn
b(G0;R) �(n)b // Hn
b(L;R) �(n)L //T(n)b
��

Hn
b�L;L1(G=H)�� (n)G=P
��Hn�B1((G=Q)n+1)G� !(n)G=Q // Hn
b(G;R) �(n)G // Hn
b�G;L1(G=H)�applied to the 
lass �(n)b (�0) 2 Hn
b(L;R) reads� (n)G=P ��(n)L ��(n)b (�0)�� = �(n)G �T(n)b ��(n)b (�0)�� = �(n)G (�) :Hen
e the representatives for the 
lasses �(n)G (�) and �(n)L ��(n)b (�0)� 
ho-sen a

ording to Corollary 4.7 satisfy the relation� (n)G=P (~
0) = ~
+ db ;where b 2 L1�(G=P )nf�G, whi
h, using the de�nition of � (n)G=P in (4.5)implies thatZLnG ~
0�'n+1f (gx0; : : : ; gxn)�d�( _g) = ~
(x0; : : : ; xn) + dbfor a. e. (x0; : : : ; xn) 2 (G=P )n+1f . �Noti
e that if G = H and Q = P , we obtain Proposition 2.43.5. One More Appli
ation of \The Formula": DeformationRigidity of Latti
es of Hyperboli
 IsometriesAs alluded to at the beginning of x 3, the transfer map T� : H�
(L;R)!H�
(G;R) makes sense only if LnG is 
ompa
t as the restri
tion map(of whi
h the transfer map would be a left inverse) is often not inje
-tive if L is only of �nite 
ovolume, (see [14℄). So the diagram (3.2) isnot 
omplete, but in some 
ases, as for instan
e if G is a 
onne
tedsemisimple Lie group, the missing arrow 
an be repla
ed by a more
ompli
ated diagram involving the 
omplex of L2 di�erential forms onthe 
orresponding symmetri
 spa
e. For a very thorough dis
ussion ofthis point we refer the reader to [14℄ from where we extra
t what weneed in the following dis
ussion.The K�ahler form !p on 
omplex hyperboli
 spa
es HpC is the unique(up to s
alars) two-form on HpC whi
h is invariant by isometries. Let�p be the K�ahler 
lass, that is the 
ontinuous 
ohomology 
lass in
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�SU(1; p);R� 
orresponding to !p under the Van Est isomorphismH2
�SU(1; p)� �= 
2(HpC )SU(1;p). If � < SU(1; p) is a (torsionfree) latti
e,let H�2(M) denote the L2-
ohomology of the �nite volume hyperboli
manifoldM := �nHpC , that is the 
ohomology of the 
omplex of smoothdi�erential forms � on M su
h that � and d� are in L2. Under theassumption that p � 2, Zu
ker proved [67℄ that H22(M) inje
ts intothe de Rham 
ohomology H2dR(M) �= H2(�;R), while if � is 
o
ompa
t(and p is arbitrary) we have by Hodge theory that H22(M) = HdR(M).Furthermore, we have the following:Proposition 5.1. [14, Corollary 4.2℄ Let � : � ! PU(1; q) be a ho-momorphism of a latti
e � < SU(1; p). The pullba
k �(2)(�p) of theK�ahler 
lass is in H22(M) ,! H2dR(M) �= H2(�;R).Denoting by h ; i the s
alar produ
t in H22(M) and by !M 2 H22(M)the L2-
ohomology 
lass de�ned by the K�ahler form on M indu
ed by!p, we de�ne an invariant asso
iated to the homomorphism � : � !PU(1; q), by(5.1) i� := h��(!q); !Mih!M ; !Mi :Proposition 5.2. [16℄ If either � is 
o
ompa
t or p � 2, the map� 7! i� is 
onstant on 
onne
ted 
omponents of the representationvariety Rep ��;PU(1; q)�.We have then the following global rigidity result:Theorem 5.3 (Burger{Iozzi [19℄, [16℄, Koziarz{Maubon [45℄). Assumethat � < SU(1; p) is a latti
e and p � 2. Then ji�j � 1 and equalityholds if and only if there is an isometri
 embedding of the 
orresponding
omplex hyperboli
 spa
es HpC !HqC whi
h is �-equivariant.Corollary 5.4 (Burger{Iozzi [19℄, [16℄, Koziarz{Maubon [45℄). Thereare no nontrivial deformations of the restri
tion to � of the standardembedding SU(1; p) ,! SU(1; q).Our proof of the above theorems relies on the te
hniques developedin this paper (Proposition 4.9 in parti
ular), on [14℄ and on [16℄. Analternative proof using harmoni
 maps, as well as an overview of thehistory and 
ontext of the topi
, 
an be found in the paper by Koziarzand Maubon [45℄. The above 
orollary in the 
ase in whi
h � is 
o-
ompa
t is a result of Goldman and Millson [36℄. If on the other handp = 1, Gusevskii and Parker [39℄ 
onstru
ted nontrivial quasiFu
hsiandeformations of a non
o
ompa
t latti
e � < SU(1; 1) into PU(1; 2);however, it is still possible to 
on
lude the following result whi
h gen-eralizes the 
ase in whi
h � is a 
ompa
t surfa
e group, [60℄:



43Theorem 5.5 ([15℄, [14℄). Let � < SU(1; 1) be a latti
e and � : � !PU(1; q) a representation su
h that ji�j = 1. Then �(�) leaves a 
om-plex geodesi
 invariant.We turn now to a short des
ription of how Theorem 5.3 follows fromProposition 4.9 (using also results from [14℄ and [16℄).The ideal boundary �HpC of 
omplex hyperboli
 p-spa
e HpC is iden-ti�ed with the proje
tivized 
one of null ve
tors�HpC = C�n�x 2 Cp+1 : (x; x) = 0	 :and 
arries a ri
h geometry whose \lines"are the 
hains. The \ge-ometry of 
hains" was �rst studied by E. Cartan who showed that,analogously to the Fundamental Theorem of Proje
tive Geometry [4,Theorem 2.26℄, any automorphism of the in
iden
e graph of the geom-etry of 
hains 
omes, for p � 2, from an isometry of HpC , [26℄. Closely
onne
ted to this is Cartan's invariant angulaire 
p introdu
ed in thesame paper [26℄ and re
alled in (2.4) in x 2.3. Observe that j
pj = 1exa
tly on triples of points whi
h belong to a 
hain; moreover it repre-sents the multiple of the bounded K�ahler 
lass 1��bp 2 H2
b�SU(1; p);R)�[18℄, that is of the bounded 
ohomology 
lass whi
h 
orresponds to theK�ahler 
lass �p 2 H2
�SU(1; p);R� under the isomorphism in Theo-rem 2.35.Let us assume now that L = � < SU(1; p) is a latti
e and move tothe main formula, whi
h will be an implementation of Proposition 4.9in our 
on
rete situation. Let Cp be the set of all 
hains in �HpC and,for any k � 1, letCfkgp := �(C; �1; : : : ; �k) : C 2 Cp; (�1; : : : ; �k) 2 Ck	be the spa
e of 
on�gurations of k-tuples of points on a 
hain. Both Cpand Cf1gp are homogeneous spa
es of SU(1; p). In fa
t, the stabilizer Hin G of a �xed 
hain C0 2 Cp is also the stabilizer of a plane of signature(1; 1) in SU(1; p) and hen
e isomorphi
 to S�U(1; 1)�U(p� 1)�. ThenSU(1; p) a
ts transitively on Cp (for example be
ause it a
ts transitivelyon pairs of points in �HpC and any two points in �HpC determine uniquelya 
hain) and H a
ts transitively on C0, so that, if P = Q \H, whereQ is the stabilizer in SU(1; p) of a �xed basepoint �0 2 C0, there areSU(1; p)-equivariant (hen
e measure 
lass preserving) di�eomorphismsSU(1; p)=H ! CpgH 7! gC0



44 MARC BURGER AND ALESSANDRA IOZZIand SU(1; p)=P ! Cf1gpgP 7! (gC0; g�0) :Moreover, the proje
tion � : Cf1gp ! Cp whi
h asso
iates to a point(C; �) 2 Cf1gp the 
hain C 2 Cp is a SU(1; p)-equivariant �bration, thespa
e Cfkgp appears then naturally as k-fold �bered produ
t of Cf1gp withrespe
t to �, and for every k � 1, the map(5.2) �SU(1; p)=P �kf ! Cfkgp(x1P; : : : ; xkP ) 7! (gC0; x1�0; : : : ; xk�0)where xiH = gH, 1 � i � k, is a SU(1; p)-equivariant di�eomorphismwhi
h preserves the SU(1; p)-invariant Lebesgue measure 
lass. UsingFubini's theorem, one has that for almost every C 2 Cp the restri
tion'C : C ! �HqCof ' to C is measurable and for every 
 2 � and almost every � 2 C'
C(
�) = �(
)'C(�) :This allows us to de�ne'f3g : Cf3gp ! (�HqC )3(C; �1; �2; �3) 7! �'C(�1); 'C(�2); 'C(�3)� :Then Proposition 4.9 
an be reinterpreted as follows:Theorem 5.6. Let i� be the invariant de�ned in (5.1). Then for almostevery 
hain C 2 Cp and almost every (�1; �2; �3) 2 C3,Z�nSU(1;p) 
q�'f3g(gC; g�1; g�2; g�3)�d�(g) = i�
p(�1; �2; �3) ;where 
p is the Cartan invariant and � is the SU(1; p)-invariant prob-ability measure on �nSU(1; p).Corollary 5.7. Assume that i� = 1. Then for almost every C 2 Cpand almost every (�1; �2; �3) 2 C3
q�'C(�1); 'C(�2); 'C(�3)� = 
p(�1; �2; �3) :Proof of Theorem 5.6. Let H;Q; P < SU(1; p) su
h as in the above dis-
ussion. Sin
e Q is the stabilizer of a basepoint �0 2 �HpC , it is a mini-mal paraboli
 subgroup and hen
e the 
losed subgroup P is amenable.Moreover, H a
ts ergodi
ally on H=P � H=P sin
e in H=P � H=P



45there is an open H-orbit of full measure. We 
an hen
e apply Propo-sition 4.9 with G = SU(1; p), G0 = PU(q; 1) and �0 = �bq . More-over, by [14, (5.1), (5.4), and Lemma 5.3℄ we have that � = i��bp.Set G=Q = �HpC , 
0 = i�
p 2 B1�(�HpC )3�SU(1;p), X = �HpC and
0 = 
q 2 B1�(�HpC )3�PU(q;1). Then the 
on
lusion of the theoremis immediate if we observe that the identi�
ation in (5.2) transformsthe map '3f de�ned in (4.10) into the map 'f3g de�ned above. �Remark 5.8. It is now 
lear what is the essential use of the �beredprodu
t: the triples of points that lie on a 
hain form a set of measurezero in ��HpC �3, and hen
e we would not have gained any informationon these 
on�guration of points by the dire
t use of the more familiarformula as in Prin
iple 3.1.Corollary 5.7 states that if the invariant takes its maximal valuethen the boundary map ' maps 
hains into 
hains. A modi�
ation ofa theorem of Cartan [16℄ allows then to 
on
lude the existen
e of theembedding in Theorem 5.3.Appendix A. Proof of Proposition 4.1For the proof of Proposition 4.1(i) we need to show the existen
eof norm one 
ontra
ting homotopy operators from L1�(G=P )n+1f � toL1�(G=P )nf� sending L-
ontinuous ve
tors into L-
ontinuous ve
tors.To this purpose we use the map qn whi
h identi�es the 
omplexof Bana
h G-modules �L1(G=P )�f� with the sub
omplex �L1(G �(H=P )�)H� of H-invariant ve
tors of the 
omplex �L1(G� (H=P )�)�,where now the di�erential dn is given bydnf(g; x1; : : : ; xn) = nXi=0 (�1)if(g; x1; : : : ; x̂i; : : : ; xn) ;and we show more generally that:Lemma A.1. For every n � 0 there are linear mapshn : L1�G� (H=P )n+1�! L1�G� (H=P )n�su
h that:(i) hn is norm-de
reasing and H-equivariant;(ii) for any 
losed subgroup L < G, the map hn sends L-
ontinuousve
tors into L-
ontinuous ve
tors, and



46 MARC BURGER AND ALESSANDRA IOZZI(iii) for every n � 1 we have the identityhndn + dn�1hn�1 = Id :The Lemma A.1 and the remarks pre
eding it imply then Proposi-tion 4.1.The 
onstru
tion of the homotopy operator in Lemma A.1 requiresthe following two lemmas, the �rst of whi
h showing that the measure� on H=P 
an be 
hosen to satisfy 
ertain regularity properties, andthe se
ond 
onstru
ting an appropriate Bruhat fun
tion for H < G.Let dh and d� be the left invariant Haar measures on H and P .Lemma A.2. There is an everywhere positive 
ontinuous fun
tion q :H ! R+ and Borel probability measure � on H=P su
h thatZH=P d�(x) ZP f(x�)d� = ZH f(h)q(h)dh ;for every f 2 C00(H).Proof. Let q1 : H ! R+ be an everywhere positive 
ontinuous fun
tionsatisfying q1(x�) = q1(x)�P (�)�H(�) ; 8� 2 P x 2 H ;where �P , �H are the respe
tive modular fun
tions (see [58℄), and let�1 be the 
orresponding positive Radon measure on H=P su
h that theabove formula holds. Then 
hoose q2 : H=P ! R+ 
ontinuous andeverywhere positive, su
h that q2d�1 is a probability measure. Thenthe lemma holds with q = q1q2 and � = q2 
 �1. �A dire
t 
omputation shows that(A.1) ZH=P f(y�1x)d�(x) = ZH=P f(x)�y(x)d�(x) ;where �y(x) = q(yx)=q(x), for all f 2 C00(H=P ) and h 2 H. Inparti
ular, the 
lass of � is H-invariant sin
e �y is 
ontinuous andeverywhere positive on H=P .Lemma A.3. There exists a fun
tion � : G! R+ su
h that(i) for every 
ompa
t set K � G, � 
oin
ides on KH with a 
on-tinuous fun
tion with 
ompa
t support;(ii) RH �(gh)dh = 1 for all g 2 G, and(iii) limg0!e supg2G RH ���(g0gh)� �(gh)��dh = 0



47Proof. Let �0 be any fun
tion satisfying (1) and (2) (see [58℄) and letf 2 C00(G) be any nonnegative fun
tion normalized so thatZG f(x)drx = 1 ;where drx is a right invariant Haar measure on G. De�ne�(g) = ZG f(gx�1)�0(x)drx ; g 2 G :It is easy to verify that also � satis�es (1) and (2), and, moreover, itsatis�es (3) as well. In fa
t, we have that for all g0; g 2 G, h 2 H�(g0gh)� �(gh) = ZG �f(g0gx�1)� f(gx�1)��0(xh)drx ;whi
h implies, taking into a

ount that RG �0(xh)dh = 1 and the in-varian
e of drx, thatZH ���(g0gh)� �(gh)��dh � ZG ��f(g0x�1)� f(x�1)��drx ;so thatlimg0!e supg2G ZH ���(g0gh)��(gh)��dh � limg0!eZG ��f(g0x�1)�f(x�1)��drx = 0 :�Proof of Lemma A.1. Let � be as in Lemma A.2 and � as in Lemma A.3.de�ne a fun
tion  : G�H=P ! R+by  (g; x) := ZH �(gh)�h�1(x)dh ;where �h(x) is as in (A.1). The following properties are then dire
tveri�
ations:{  (gh�1; hx)�h(x) =  (g; x) for all g 2 G, h 2 H and x 2 H=P ;{ RH=P  (g; x)d�(x) = 1, for all g 2 G;{  � 0 and is 
ontinuous.This being, de�ne for n � 0 and f 2 L1(G� (H=P )n+1):hnf(g; x1; : : : ; xn) = ZH=P  (g; x)f(g; x1; : : : ; xn; x)d�(x) :Then, hnf 2 L1�G� (H=P )n� and (2) implies that khnfk1 � kfk1.The fa
t that hn is an H-equivariant homotopy operator is a formal
onsequen
e of (1) and (2).



48 MARC BURGER AND ALESSANDRA IOZZIFinally, let L < G be a 
losed subgroup and f 2 L1�G� (H=P )n+1�an L-
ontinuous ve
tor, that isliml!e k�(l)f � fk1 = 0 ;where ��(l)f�(g; x1; : : : ; xn+1) = f(lg; x1; : : : ; xn) :Then hnf(lg; x1; : : : ; xn)� hnf(g; x1; : : : ; xn)=ZH=P  (lg; x)�f(lg; x1; : : : ; xn; x)� f(g; x1; : : : ; xn; x)�d�(x)+ZH=P � (lg; x)�  (g; x)�f(g; x1; : : : ; xn; x)d�(x) :The �rst term is bounded by k�(l)f � fk1 taking into a

ount (2),while the se
ond is bounded by kfk1 RH=P � (lg; x) �  (g; x)�d�(x).Now  (lg; x)�  (g; x) = ZH ��(lgh)� �(gh)��h�1(x)dh ;whi
h, taking into a

ount that RH=P �h�1(x)d�(x) = 1, implies thatZH=P �� (lg; x)�  (g; x)��d�(x) � ZH=P ���(lgh)� �(gh)��dh :Thus k�(l)hnf � hnfk1 �k�(l)f � fk1+kfk1 supg2G ZH ���(lgh)� �(gh)��dhwhi
h, using Lemma A.3, implies thatliml!e k�(l)hnf � hnfk1 = 0and shows that hnf is an L-
ontinuous ve
tor. �Referen
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