Improved criteria on the resistance against differential attacks

Anne Canteaut and Joëlle Roué

Inria Paris-Rocquencourt, Project team SECRET

March 27, 2014

Overview

1 Introduction to differential cryptanalysis

2 Classical criteria for substitution-permutation networks

3 New criteria on the resistance against differential attacks

1 Introduction to differential cryptanalysis

- 2 Classical criteria for substitution-permutation networks
- 3 New criteria on the resistance against differential attacks

Substitution-permutation networks

Let *m* and *t* be two positive integers.

Notation

SPN(m, t, S, M) defined over \mathbb{F}_2^{mt} :

Substitution function:

t copies of a permutation S of \mathbb{F}_2^m ;

Diffusion function:

a linear permutation M of \mathbb{F}_2^{mt} .

SPN(m, 10, S, M):

Differential cryptanalysis [Biham-Shamir 90]

Attack: Find a, b such that, for almost all keys K,

$$\Pr_{\mathbf{X}}[E_{\mathcal{K}}(\mathbf{X}+\mathbf{a})+E_{\mathcal{K}}(\mathbf{X})=\mathbf{b}]\gg\frac{1}{2^{n}-1}.$$

Security criterion

 $\max_{a\neq 0,b\neq 0} \Pr_{x}[E_{\mathcal{K}}(x+a) + E_{\mathcal{K}}(x) = b] \text{ should be small for all } \mathcal{K}.$

Notation

Let $(E_k)_k$ be an iterated cipher with r rounds.

• The probability of an r-round differential (a, b) for a fixed key k is

$$\mathrm{DP}_r^{E_k}(a,b) = \mathrm{Pr}_X[E_k(X) + E_k(X+a) = b];$$

• The expected probability of an r-round differential (a, b) is

$$\operatorname{EDP}_{r}^{E}(a,b) = 2^{-\kappa} \sum_{k \in \mathbb{F}_{2}^{\kappa}} \Pr_{X}[E_{k}(X) + E_{k}(X+a) = b];$$

• The maximum expected probability for r rounds is

$$\mathrm{MEDP}_r^E = \max_{a\neq 0,b} \mathrm{EDP}_r^E(a,b).$$

Introduction to differential cryptanalysis

2 Classical criteria for substitution-permutation networks

3 New criteria on the resistance against differential attacks

Differential uniformity

Let S be a function from \mathbb{F}_2^m into \mathbb{F}_2^m . For any a and b in \mathbb{F}_2^m ,

$$\delta(a,b) = |\{x \in \mathbb{F}_2^m, S(x+a) + S(x) = b\}|$$
.

• The differential uniformity of S is

$$\delta(S) = \max_{a \neq 0, b} \delta(a, b);$$

• The differential spectrum of S is the multi-set $\{\delta(a, b), a \in \mathbb{F}_2^m \setminus \{0\}, b \in \mathbb{F}_2^m\}.$

Sboxes with the same differential spectrum

Definition

Two permutations S and S' of \mathbb{F}_2^m are affinely equivalent if there exist two affine permutations of $\mathbb{F}_2^m A_1$ and A_2 such that $S' = A_2 \circ S \circ A_1$.

If S and S' are affinely equivalent, they satisfy

$$\delta_{\mathcal{S}'}(\mathsf{a},\mathsf{b}) = \delta_{\mathcal{S}}(\mathsf{L}_1(\mathsf{a}),\mathsf{L}_2^{-1}(\mathsf{b})), \ \forall \mathsf{a},\mathsf{b} \in \mathbb{F}_2^m \ ,$$

where L_1 and L_2 correspond to the linear parts of A_1 and A_2 .

Differential probability of a two-round characteristic

Let $a = (a_1, \ldots, a_t), b = (b_1, \ldots, b_t)$ and $c = (c_1, \ldots, c_t)$ be nonzero elements of $(\mathbb{F}_2^m)^t$.

$$\mathrm{ECP}_{2}(a, M(c), b) \leq \left(\frac{\delta(S)}{2^{m}}\right)^{wt(c)} \left(\frac{\delta(S)}{2^{m}}\right)^{wt(M(c))}$$

Branch number

Let M be a permutation of $(\mathbb{F}_2^m)^t$. We associate to M the code \mathcal{C}_M of length 2t and size 2^t over \mathbb{F}_2^m defined by

$$\mathcal{C}_M = \{(c, M(c)), c \in (\mathbb{F}_2^m)^t\}$$
.

The branch number d of M is the minimum distance of C_M .

Singleton's bound:

The minimum distance d of the code \mathcal{C}_M satisfies

$$d = \min_{c \neq 0} wt(c, M(c)) \leq t + 1,$$

with equality for MDS codes (Maximum Distance Separable).

AES-128 [Daemen-Rijmen 98], [FIPS PUB 197]

- Key-alternating block cipher;
- Block size: 128 bits;
- Key size: 128 bits;
- 10 rounds;
- Round-permutation: concatenation of 4 SPN(8, 4, S, M);

$$\blacktriangleright S(x) = L \circ \psi^{-1} \left(\psi(x)^{254} \right)$$

where ψ is an isomorphism from \mathbb{F}_2^8 into the field \mathbb{F}_{2^8} and L is an affine permutation of \mathbb{F}_2^8 ;

• *M* is a linear permutation of $(\mathbb{F}_2^8)^4$ with branch number 5.

$$\Rightarrow \max_{a,c,b} \operatorname{ECP}_2(a, M(c), b) \leq 2^{-6 \times 5}.$$

Characteristics vs. differentials

But we need to estimate the value of

$$\mathrm{EDP}_{2}(a,b) = \sum_{c \in \mathbb{F}_{2}^{mt}} \mathrm{ECP}_{2}(a,M(c),b).$$

Let $(E_k)_k$ be a block cipher of the form SPN(m, t, S, M) where M is a linear permutation with branch number d. We have:

$$\mathrm{MEDP}_2^{\boldsymbol{\mathsf{E}}} \le \left(\frac{\delta(S)}{2^m}\right)^{d-1}$$

FSE 2003 bound (for differentials): [Chun *et al.* 03], [Park *et al.* 03]

Let $(E_k)_k$ be a block cipher of the form SPN(m, t, S, M) where M is a linear permutation with branch number d. Then,

$$\operatorname{MEDP}_{2}^{\boldsymbol{\mathsf{E}}} \leq 2^{-md} \max\left(\max_{\boldsymbol{\mathsf{a}} \in (\mathbb{F}_{2}^{m})^{*}} \sum_{\boldsymbol{\gamma} \in (\mathbb{F}_{2}^{m})^{*}} \delta(\boldsymbol{\mathsf{a}}, \boldsymbol{\gamma})^{d}, \max_{\boldsymbol{\mathsf{b}} \in (\mathbb{F}_{2}^{m})^{*}} \sum_{\boldsymbol{\gamma} \in (\mathbb{F}_{2}^{m})^{*}} \delta(\boldsymbol{\gamma}, \boldsymbol{\mathsf{b}})^{d} \right)$$

Difference table

	$\max\left(\max_{\boldsymbol{a}\in (\mathbb{F}_{2}^{m})^{*}}\sum_{\boldsymbol{\gamma}\in (\mathbb{F}_{2}^{m})^{*}}\delta(\boldsymbol{a},\boldsymbol{\gamma})^{\boldsymbol{d}},\max_{\boldsymbol{b}\in (\mathbb{F}_{2}^{m})^{*}}\sum_{\boldsymbol{\gamma}\in (\mathbb{F}_{2}^{m})^{*}}\delta(\boldsymbol{\gamma},\boldsymbol{b})^{\boldsymbol{d}}\right)$														
	$\begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$	$\begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$	$\begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}$	$\begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}$	$\begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$	$\begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}$	$\begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}$	$\begin{pmatrix} 1\\ 1\\ 0\\ 1 \end{pmatrix}$	$\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$	$\begin{pmatrix} 1\\ 1\\ 0\\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\1\\1\\1 \end{pmatrix}$	$\begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}$	$\begin{pmatrix} 1\\ 0\\ 0\\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1\\0\\1\\1 \end{pmatrix}$	$\begin{pmatrix} 1\\ 1\\ 1\\ 0 \end{pmatrix}$
(0, 0, 0, 1)	4	0	0	0	0	2	0	2	0	0	2	2	0	2	2
(0, 0, 1, 1)	0	0	0	0	2	0	2	0	0	2	2	0	2	2	4
(0, 1, 0, 1)	0	0	0	2	0	2	0	0	2	2	0	2	2	4	0
(1, 1, 1, 1)	0	0	2	0	2	0	0	2	2	0	2	2	4	0	0
(0, 0, 1, 0)	0	2	0	2	0	0	2	2	0	2	2	4	0	0	0
(0, 1, 1, 0)	2	0	2	0	0	2	2	0	2	2	4	0	0	0	0
(1, 0, 1, 0)	0	2	0	0	2	2	0	2	2	4	0	0	0	0	2
(1,1,0,1)	2	0	0	2	2	0	2	2	4	0	0	0	0	2	0
(0, 1, 0, 0)	0	0	2	2	0	2	2	4	0	0	0	0	2	0	2
(1, 1, 0, 0)	0	2	2	0	2	2	4	0	0	0	0	2	0	2	0
(0,1,1,1)	2	2	0	2	2	4	0	0	0	0	2	0	2	0	0
(1, 0, 0, 1)	2	0	2	2	4	0	0	0	0	2	0	2	0	0	2
(1, 0, 0, 0)	0	2	2	4	0	0	0	0	2	0	2	0	0	2	2
(1, 0, 1, 1)	2	2	4	0	0	0	0	2	0	2	0	0	2	2	0
(1, 1, 1, 0)	2	4	0	0	0	0	2	0	2	0	0	2	2	0	2

Results for AES

FSE 2003 bound for AES:

$$\mathrm{MEDP}_2 \leq 79 \times 2^{-34}.$$

Exact value for AES with the naive Sbox (i.e. the inverse function $\psi^{-1}(\psi(x)^{254})$): MEDP₂ = 79 × 2⁻³⁴.

Exact value for AES [Keliher-Sui 07]:

 $MEDP_2 = 53 \times 2^{-34}.$

Introduction to differential cryptanalysis

2 Classical criteria for substitution-permutation networks

One criteria on the resistance against differential attacks

New bound on $MEDP_2$

Notation:

A block cipher $(E_k)_k$ is denoted by $\text{SPN}_F(m, t, S, M)$ if it is a Substitution-Permutation Network over $(\mathbb{F}_{2^m})^t$ where:

- S is a permutation of \mathbb{F}_{2^m} ;
- *M* is an \mathbb{F}_{2^m} -linear permutation of $(\mathbb{F}_{2^m})^t$.

New bound:

Let d be the branch number of M and

$$\mathcal{B}(\mu) := \max_{1 \leq u < d} \max_{a,b,\lambda \in \mathbb{F}_{2^m}^*} \sum_{\gamma \in \mathbb{F}_{2^m}^*} \delta(a,\gamma)^u \delta(\gamma\lambda + \mu, b)^{d-u}, \quad \mu \in \mathbb{F}_{2^m}.$$

Then,

$$\operatorname{MEDP}_2 \leq 2^{-md} \max_{\mu \in \mathbb{F}_{2^m}} \mathcal{B}(\mu).$$

Difference table

$\gamma \in \mathbb{F}_{2m}^*$															
	1	α	α^2	α^3	$lpha^4$	α^{5}	α^{6}	α^7	α^8	α^9	α^{10}	α^{11}	α^{12}	α^{13}	α^{14}
1	4	0	0	0	0	2	0	2	0	0	2	2	0	2	2
α	0	0	0	0	2	0	2	0	0	2	2	0	2	2	4
α ²	0	0	0	2	0	2	0	0	2	2	0	2	2	4	0
α ³	0	0	2	0	2	0	0	2	2	0	2	2	4	0	0
α^4	0	2	0	2	0	0	2	2	0	2	2	4	0	0	0
α5	2	0	2	0	0	2	2	0	2	2	4	0	0	0	0
α6	0	2	0	0	2	2	0	2	2	4	0	0	0	0	2
α7	2	0	0	2	2	0	2	2	4	0	0	0	0	2	0
α8	0	0	2	2	0	2	2	4	0	0	0	0	2	0	2
α9	0	2	2	0	2	2	4	0	0	0	0	2	0	2	0
α10	2	2	0	2	2	4	0	0	0	0	2	0	2	0	0
α11	2	0	2	2	4	0	0	0	0	2	0	2	0	0	2
α ¹²	0	2	2	4	0	0	0	0	2	0	2	0	0	2	2
α ¹³	2	2	4	0	0	0	0	2	0	2	0	0	2	2	0
α14	2	4	0	0	0	0	2	0	2	0	0	2	2	0	2

 $\sum \delta(a, \gamma)^{\boldsymbol{u}} \delta(\boldsymbol{\gamma}, \boldsymbol{b})^{\boldsymbol{d}-\boldsymbol{u}}.$

Difference table

Difference table

		$\mathcal{B}(\mu) = \max_{oldsymbol{1} \leq oldsymbol{u} < oldsymbol{d}}$					$\max_{a,b,\lambda\in\mathbb{F}_{2}^{*}m}\sum_{\gamma\in\mathbb{F}_{2}^{*}m}\delta(a,\gamma)^{u}\delta(\gamma\lambda+\mu,b)^{d-u}.$								
	1	α	α^2	α ³	α^4	α^5	α ⁶	α^7	α8	α ⁹	α^{10}	α^{11}	α ¹²	α^{13}	α^{14}
1	4	0	0	0	0	2	0	2	0	0	2	2	0	2	2
α	0	0	0	0	2	0	2	0	0	2	2	0	2	2	4
α2	0	0	0	2	0	2	0	0	2	2	0	2	2	4	0
α ³	0	0	2	0	2	0	0	2	2	0	2	2	4	0	0
α^4	0	2	0	2	0	0	2	2	0	2	2	4	0	0	0
α5	2	0	2	0	0	2	2	0	2	2	4	0	0	0	0
α6	0	2	0	0	2	2	0	2	2	4	0	0	0	0	2
α7	2	0	0	2	2	0	2	2	4	0	0	0	0	2	0
α8	0	0	2	2	0	2	2	4	0	0	0	0	2	0	2
α9	0	2	2	0	2	2	4	0	0	0	0	2	0	2	0
α^{10}	2	2	0	2	2	4	0	0	0	0	2	0	2	0	0
α^{11}	2	0	2	2	4	0	0	0	0	2	0	2	0	0	2
α^{12}	0	2	2	4	0	0	0	0	2	0	2	0	0	2	2
α^{13}	2	2	4	0	0	0	0	2	0	2	0	0	2	2	0
α^{14}	2	4	0	0	0	0	2	0	2	0	0	2	2	0	2

New bound on $MEDP_2$

Let $(E_k)_k$ be a block cipher of the form $SPN_F(m, t, S, M)$ where M has branch number d. Let

$$\mathcal{B}(\mu) := \max_{1 \leq u < d} \max_{a,b,\lambda \in \mathbb{F}_{2^m}^*} \sum_{\gamma \in \mathbb{F}_{2^m}^*} \delta(a,\gamma)^u \delta(\gamma\lambda + \mu, b)^{d-u}, \quad \mu \in \mathbb{F}_{2^m}.$$

Then,

$$\operatorname{MEDP}_2 \leq 2^{-md} \max_{\mu \in \mathbb{F}_{2^m}} \mathcal{B}(\mu).$$

Result for AES:

$$\mathrm{MEDP}_2 \leq 55.5 \times 2^{-34}.$$

Optimality of the new bound

Theorem

This bound is smaller or equal to the FSE 2003 bound, with equality if S is an involution.

Theorem

Let S be a permutation of \mathbb{F}_{2^m} and t be any integer with $t \leq 2^{m-1}$. Then, there exists a linear diffusion layer M over $(\mathbb{F}_{2^m})^t$ such that \mathcal{C}_M is MDS and the cipher $\mathrm{SPN}_F(m, t, S, M)$ satisfies

$$\mathrm{MEDP}_2^{\boldsymbol{E}} \geq 2^{-m(t+1)}\mathcal{B}(0).$$

Examples

 $SPN(4, 4, S_6, M)$, where S_6 can be used in the cipher Prince [Borghoff *et al.*, 12]:

• for any \mathbb{F}_2 -linear permutation M of \mathbb{F}_2^{16} with d = 5, FSE 2003 bound gives:

$$\mathrm{MEDP}_2^{\boldsymbol{E}} \leq 34 \times 2^{-14};$$

• for any *M* linear over \mathbb{F}_{2^4} with d = 5, where \mathbb{F}_{2^4} is identified with \mathbb{F}_2^4 by $\{1, \alpha, \alpha^2, \alpha^3\}$, α a root of $X^4 + X^3 + X^2 + X + 1$:

$$\mathrm{MEDP}_2^E \leq 33 \times 2^{-14};$$

• there exists M' linear over \mathbb{F}_{2^4} with d = 5, where \mathbb{F}_{2^4} is identified with \mathbb{F}_2^4 by $\{1, \beta, \beta^2, \beta^3\}$, β a root of $X^4 + X + 1$, such that:

$$\mathrm{MEDP}_2^E = 34 \times 2^{-14}.$$