100, rue des maths 38610 Gières / GPS : 45.193055, 5.772076 / Directeur : Thierry Gallay

Depuis lundi 18 mai, le bâtiment de l'Institut Fourier est à nouveau accessible par badge ou code, de 6h30 à 18h30, du lundi au vendredi (hors jours fériés et pont de l'Ascension). Les locaux communs, dont la cafétéria et la bibliothèque, restent fermés jusqu'à nouvel ordre. Un registre de présence devant être tenu, les membres du laboratoire souhaitant accéder à leur bureau sont priés de s'annoncer en répondant aux sondages envoyés par la direction du laboratoire. Le travail à distance doit toutefois rester la règle autant que possible. Pour de plus amples informations, consulter l'intranet du laboratoire.
 
---------------------------------------------------------------------------------
 
 

Wild Cantor sets in $R^3$: A survey.

Mardi, 4 Octobre, 2005 - 16:00
Prénom de l'orateur : 
Dusan
Nom de l'orateur : 
Repovs
Résumé : 

The first part of the talk will be a historical survey on wild Cantor sets in $R^3$, the first such
set being constructed by Louis Antoine already in the 1920's in his Dissertation, after he was blinded while
serving in the French army during WWI. In the second part of the talk we shall
present a new general technique for constructing wild Cantor sets in $R^{3}$ which are nevertheless
Lipschitz homogeneously embedded into $R^3$. Applying the well-known Kauffman version of the Jones polynomial
we shall show that our construction produces even uncountably many topologically inequivalent wild
Cantor sets in $R^{3}$. These Cantor sets have the same number of components in the interior of each
stage of the defining sequence and are Lipschitz homogenous. We shall also announce some other new
results on wild Cantor sets in $R^3$ and state some related open problems and conjectures.

Institution de l'orateur : 
University of Ljubljana
Thème de recherche : 
Topologie
Salle : 
06
logo uga logo cnrs